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The ideal boundary of the Sol group
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Abstract

We obtain equations of geodesic lines in the Lie group Sol and
prove that the ideal boundary of the Sol is a set R = {(x, y, z)| xy =
0, and x2 +y2 +z2 = 1} with a degenerate Tits metric, i.e., the distance
between different points equals ∞.

1. Introduction

It is well known that there are 8 three dimensional model geometries [Th].
Each of the 8 three-dimensional model geometries is isometric to a Lie group
with a left invariant metric. The Sol, one of the eight model geometries, is a
Lie group of dimension 3 whose underlying space is R3. Let (x, y, z) denote a
coordinate of R

3. Then, the multiplication rule of the Lie group, Sol, is given
by

(1.1) (x, y, z) · (x′, y′, z′) = (x + e−zx′, y + ezy′, z + z′).

The ideal boundary was introduced to compactify complete Riemannian
manifolds or more generally complete locally compact metric spaces (refer to
[G1]). Since then, the ideal boundary has become an important part in studying
the intrinsic geometry of complete Riemannian manifolds. It is particularly use-
ful for a Hadamard manifold, which is a connected, simply connected complete
Riemannian manifold of nonpositive curvature [EO]. The characterization of
the ideal boundary of a manifold is a critical issue in the field of the Riemannian
geometry. Recently, Valery Marenich [V] showed that the ideal boundary of Nil
is (S1, ω) with a natural CR-structure and corresponding Carnot-Caratheodory
metric ω [G2], where Nil is one of the 8 three dimensional model geometries.
Now, the Sol group is the only model geometry whose ideal boundary is un-
known to us; therefore, in this paper, we study the ideal boundary of the
Sol. The xz-plane and the yz-plane contained in the Sol are isometric to H2.
Moreover, we show that there are not geodesic rays which are not contained
in the xz-plane or the yz-plane. Then the ideal boundary of the Sol can be
determined and characterized completely as in the main theorem.
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Theorem 1.1. The ideal boundary of the Sol is a (R, d∞) with a de-
generate Tits metric, i.e., the distance between different points equals ∞, where
R = {(a, b, c)| ab = 0 and a2 + b2 + c2 = 1}.

2. Left invariant metric, Levi-Civita connection and curvature ten-
sor of the Sol

The element zero, 0 = (0, 0, 0), is the unit of the Sol group structure and
the vector fields

(2.1) X1 = (e−z, 0, 0), X2 = (0, ez, 0), X3 = (0, 0, 1).

are then left-invariant fields. We define a left-invariant metric of the Sol by tak-
ing X1, X2, X3 as the orthonormal frame. The left invariant metric on the Sol
is given by the formula ds2 = e2zdx2 + e−2zdy2 + dz2. By direct computation,
we derive the following lemmas.

Lemma 2.1. For the covariant derivatives of the Levi-Civita connection
of the left-invariant metric, defined above, the following holds:

(2.2) ∇ =


−X3 0 X1

0 X3 −X2

0 0 0




where the (i, j)-element in the table above equals ∇Xi
Xj .

Lemma 2.2. The curvature tensor of the Sol satisfies the following:

R(X1, X2)X1 = X2, R(X1, X2)X2 = −X1, R(X1, X2)X3 = 0,(2.3)
R(X2, X3)X1 = 0, R(X2, X3)X2 = −X3, R(X2, X3)X3 = X2,(2.4)
R(X3, X1)X1 = X3, R(X3, X1)X2 = 0, R(X3, X1)X3 = −X1.(2.5)

From lemma 2.2, we obtain the sectional curvatures of the Sol as follows.

(2.6) K(X1, X2) = 1, K(X2, X3) = −1, K(X3, X1) = −1.

This lemma immediately tells us that the Sol is not a Hadamard manifold.

3. Geodesic lines in the Sol

First we determine equations of geodesics issuing from 0 = (0, 0, 0). The
geodesic equations are

(3.1)
d2xk

dt2
+

∑
i,j

Γk
ij

dxi

dt

dxj

dt
= 0 (k = 1, 2, 3).

By direct computation, we find that Γ3
11 = −e2z, Γ1

13 = Γ1
31 = 1, Γ3

22 =
e−2z, Γ2

23 = Γ2
32 = −1 and the other Christoffel symbols are zeros. Then the
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geodesic equations are

ẍ + 2ẋż = 0,(3.2)
ÿ − 2ẏż = 0,(3.3)

z̈ − e2z(ẋ)2 + e−2z(ẏ)2 = 0.(3.4)

Let (x(0), y(0), z(0)) = (0, 0, 0), (ẋ(0), ẏ(0), ż(0)) = (a, b, c) and a2+b2+c2 = 1.
From differential equations (3.1) and (3.2), we know that

(3.5) ẋ = ae−2z, ẏ = be2z.

Since a geodesic is an arc length parameterized curve, the length of the vector
(ẋ, ẏ, ż) at (x, y, z) is 1. By the left invariant metric ds2 = e2zdx2 + e−2zdy2 +
dz2, we have

(3.6) a2e−2z + b2e2z + ż2 = 1.

If one let u = e2z, after some easy computation one could find that

ẋ =
a

u
,(3.7)

ẏ = bu,(3.8)
u̇2 = 4(u2 − a2u − b2u3).(3.9)

In the end, we know that the geodesic lines are determined by the function
u. Notice that u is an elliptic function in some values of a and b. Let’s recall
the elliptic function.

Let L be a lattice in the complex plane, by which we mean the set of all
integral linear combinations of two given complex numbers ω1 and ω2, where
ω1 and ω2 do not lie on the same line through the origin.

Definition 3.1. For a given lattice L, a meromorphic function f on C

is said to be an elliptic function relative to L if f(z + l) = f(z) for all l ∈ L.

Let ℘(z; ω1, ω2) be the Weierstrass ℘−function. It is known that

(3.10) ℘̇(z)2 = f(℘(z)), f(x) = 4x3 − g2x − g3 ∈ C[x].

and the function f has three distinct roots. If we put v = −b2u + 1
3 , then we

obtain

(3.11) v̇2 = 4v3 − h2v − h3.

from (3.9), where h2 = 4
3 (1−3a2b2) and h3 = 4

27 (9a2b2 −2). If we assume that
a and b are not zeros and that 1− 4a2b2 > 0, then the cubic polynomial 4x3 −
h2x−h3 has three distinct real roots. Thus, v is a Weierstrass ℘−function and
ω2 corresponding to v is real (see p.28 in [KO]). This means that v is a periodic
function on the real line, as is u, because the linear transformation preserves
the property of periodicity. We can conclude that z is a periodic function and
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it will be very important property in determining whether a geodesic is a ray
or not.

4. Rays in the Sol

We can not calculate a geodesic line explicitly, so we have difficulty in
determining whether a geodesic line is a ray or not and, therefore, have to find
useful properties of geodesic lines in the Sol group to solve this problem.

Lemma 4.1. Two geodesics issuing from 0 with initial vectors (a, b, c),
(a, b,−c), respectively, for abc �= 0 and 1 − 4a2b2 > 0, meet at some point.

Proof. Let’s assume ż(0) = c > 0 and (x(t), y(t), z(t)), (x1(t), y1(t), z1(t))
are geodesics issuing from 0 with initial vectors (a, b, c), (a, b,−c), respectively.

t0 = min{t|z(t) = 0 for t ∈ (0, T ]} where T is the period of the function z.

Then, we claim ż(t0) = −c. First, note that z(T ) = 0 guarantees the existence
of t0, and ż(t0) has the value either c or −c from the differential equation of
geodesics. If the claim does not hold, we may assume ż(t0) = c. By the choice
of t0, we have z(t) ≥ 0 for all t ∈ [0, t0]. Furthermore, both ż(t0) = c > 0
and z(t0) = 0 indicate that the function z has a local minimum at t0. This
implies ż(t0) = 0, contradicting that ż(t0) has the value either c or −c. Thus,
the above claim holds.

Now, we will prove that two geodesics meet at t = T . Two functions
z(t + t0) and z1(t) satisfy the same first-order differential equation and have
the same initial values. Therefore,

(4.1) z1(t) = z(t + t0).

Clearly z(T ) = z(T + t0) = z1(T ) = 0.

x1(T ) =
∫ T

0

ae−2z1(t)dt =
∫ T

0

ae−2z(t+t0)dt(4.2)

=
∫ t0+T

t0

ae−2z(s)ds =
∫ T

0

ae−2z(s)ds = x(T ).(4.3)

Similarly, one can obtain y(T ) = y1(T ).

Corollary 4.1. The geodesic issuing from 0, with an initial vector for
abc �= 0 and 1 − 4a2b2 > 0, is not a ray.

Proof. Let γ(t) be a geodesic satisfying conditions in the statement.
Then, a geodesic different from γ(t) exists which connects 0 and γ(T ) with
a length equal to γ([0, T ]) by the lemma 4.1. Then, γ(t) is not a ray (see
corollary 2.111 in [GHL]).

Lemma 4.2. The geodesic issuing from 0 with an initial vector (a, b, c)
for ab �= 0, c = 0 and 1 − 4a2b2 > 0, is not a ray.
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Proof. Let γ(t) = (x(t), y(t), z(t)) be a geodesic issuing from 0 with an
initial vector (a, b, 0). Choose some t0 > 0, at which the value of ż is nonzero.
Since the length of γ̇(t0) is 1 in the Sol, we have

(4.4) a2e−2z(t0) + b2e2z(t0) + ż(t0)
2 = 1.

Then, we regard (ae−z(t0), bez(t0), ż(t0)) as an unit vector at origin. Let γ1(t) =
(x1(t), y1(t), z1(t)) be the geodesic issuing from 0 with this velocity vector.
One can easily check that the left multiplication Lγ(t0) in the Lie group trans-
forms γ1(0), γ̇1(0) to γ(t0), γ̇(t0), respectively. These two curves γ(t + t0) and
Lγ(t0)(γ1(t)) are geodesics sharing a common starting point and velocity vector;
thus we conclude that

(4.5) γ(t + t0) = Lγ(t0)(γ1(t)).

We know that the geodesic γ1(t) is not a ray according to the previous lemma.
Therefore, t1 > 0 exists such that γ1(t) is not a length-minimizing curve con-
necting 0 and γ1(t1). Let α(t) be a length-minimizing curve connecting 0 and
γ1(t1). Since the left multiplication is an isometry, Lγ(t0)(α(t)) is a length-
minimizing curve connecting γ(t0) and γ(t1 + t0) different from γ. Therefore,
γ is not a ray.

One can easily notice that the xz-plane and yz-plane are isometric to H2,
and thus geodesics for ab = 0 are rays.

Lemma 4.3. The geodesic issuing from 0 with an initial vector (a, b, c)
for 1 − 4a2b2 = 0 is not a ray.

Proof. The inequality a2+b2 ≤ 1 means that the solution for 1−4a2b2 = 0
is only a2 = b2 = 1

2 . Let’s assume a = b = 1√
2
. Then, the geodesic correspond-

ing to the vector ( 1√
2
, 1√

2
, 0) can be easily derived from the geodesic equations

as γ(t) = 1√
2
(t, t, 0). Let’s calculate the Jacobi field along γ with J(0) = 0

and J̇(0) = (1,−1, 0) and set J(t) = f1(t)X1 + f2(t)X2 + f3(t)X3. The Jacobi
equation is

J̈+ R (γ̇, J)γ̇ = J̈ +
1
2
R(X1 + X2, f1X1 + f2X2 + f3X3)(X1 + X2)(4.6)

= J̈ +
1
2
{f2(X2 − X1) + f3(−X3) + f1(−X2 + X1) + f3(−X3)}(4.7)

=
(

f̈1 +
f1 − f2

2

)
X1 +

(
f̈2 +

f2 − f1

2

)
X2 + (f̈3 − f3)X3 = 0.(4.8)

In sum, the components of the Jacobi equation satisfy

2f̈1 + f1 − f2 = 0,(4.9)
2f̈2 + f2 − f1 = 0,(4.10)

f̈3 − f3 = 0.(4.11)
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Through this simple calculation, we have f̈1(t)+f1(t) = 0, f̈3(t)−f3(t) = 0
and f1(t) + f2(t) = 0. One can easily find that f1(t) = sin t, f3(t) = 0 are
solutions of each equation with each initial value. Therefore, we have the
following Jacobi field

(4.12) J(t) = (sin t,− sin t, 0).

Thus γ is not a ray, because J has a conjugate point at t = π. Since f(x, y, z) =
(±x,±y, z) is an isometry, the other four geodesics are not rays.

Theorem 4.1. The set R of directions of all rays issuing from 0 in the
Sol is

(4.13) R = {(a, b, c)| ab = 0, a2 + b2 + c2 = 1}.

5. Ideal boundary of the Sol

Recall the definition of the ideal boundary (M(∞), d∞) of an open mani-
fold (M, dM ). For two rays l1(t) and l2(t) issuing from some fixed point of M
denote

d̃∞(l1, l2) = lim
t→∞

dM (l1(t), l2(t))
t

.(5.1)

Rays are equivalent if d̃∞(l1, l2) = 0. The class of equivalence of l we denote by
[l] and the set of all classes of equivalent rays by R/ ∼. The metric d̃∞(l1, l2)
in a standard way defines lengths of continuous curves in R/ ∼, which in
turn generates the so-called inner metric d∞([l1], [l2]) which is by definition
the infimum of lengths of all continuous curves in R/ ∼ connecting [l1] and
[l2]. Finally, the metric space (R/ ∼, d∞) of classes of equivalent rays issuing
from some fixed point of M is the ideal boundary of a manifold (M, dM ). For
instance, the ideal boundary of the hyperbolic plane H2 of constant curvature
−1 is a circle with so-called Tits metric, where the distance between different
points equals ∞ [BP]. By theorem 4.1, the set of rays in the Sol is

(5.2) R = {(a, b, c)| ab = 0 and a2 + b2 + c2 = 1}.

In other words, it is the collection of unit parameterized geodesics issuing from
0 contained in the xz-plane or yz-plane. The metric d∞ on R is a Tits metric
on the ideal boundary of H2.

Theorem 5.1. The ideal boundary of the Sol is a (R, d∞) with a Tits
metric, where the distance between different points equals ∞, and where R =
{(a, b, c)| ab = 0 and a2 + b2 + c2 = 1}.
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