Herz and Herz type Hardy spaces estimates of multilinear integral operators for the extreme cases

By

Lanzhe Liu

Abstract

In this paper, the endpoint estimates for some multilinear operators related to certain fractional singular integral operators on Herz and Herz type Hardy spaces are obtained.

Acknowledgement. The author would like to express his gratitude to the referee for his comments and suggestions.

1. Introduction and notations

Let T be the Calderón-Zygmund singular integral operator and $b \in BMO(R^n)$, a classical result of Coifman, Rochberg and Weiss (see [6]) states that the commutator [b,T]f=T(bf)-bTf is bounded on $L^p(R^n)$ for 1 . Chanillo (see [1]) proves a similar result when <math>T is replaced by the fractional integral operator. In [10], the boundedness properties of the commutators for the extreme values of p are obtained. In recent years, the theory of Herz space and Herz type Hardy space, as a local version of Lebesgue space and Hardy space, have been developed (see [8], [9], [12], [13]). The main purpose of this paper is to establish the endpoint continuity properties of some multilinear operators related to certain non-convolution type fractional singular integral operators on Herz and Herz type Hardy spaces.

First, let us introduce some notations (see [8], [9], [12], [13], [14]). Throughout this paper, Q will denote a cube of R^n with sides parallel to the axes. For a cube Q and a locally integrable function f, let $f_Q = |Q|^{-1} \int_Q f(x) dx$ and $f^{\#}(x) = \sup_{x \in Q} |Q|^{-1} \int_Q |f(y) - f_Q| dy$. Moreover, f is said to belong to $BMO(R^n)$ if $f^{\#} \in L^{\infty}$ and define $||f||_{BMO} = ||f^{\#}||_{L^{\infty}}$; We also define the central BMO space by $CMO(R^n)$, which is the space of those functions $f \in L_{loc}(R^n)$ such

MR (1991) Subject Classification. 42B20, 42B25 Received July 28, 2004 Revised November 11, 2005

that

$$||f||_{CMO} = \sup_{r>1} |Q(0,r)|^{-1} \int_{Q} |f(y) - f_{Q}| dy < \infty.$$

It is well-known that (see [9], [14])

$$||f||_{CMO} \approx \sup_{r>1} \inf_{c \in C} |Q(0,r)|^{-1} \int_{Q} |f(x) - c| dx.$$

Definition 1. Let $0 < \delta < n$ and $1 . We shall call <math>B_p^{\delta}(R^n)$ the space of those functions f on R^n such that

$$||f||_{B_p^{\delta}} = \sup_{r>1} r^{-n(1/p-\delta/n)} ||f\chi_{Q(0,r)}||_{L^p} < \infty.$$

For $k \in \mathbb{Z}$, define $B_k = \{x \in \mathbb{R}^n : |x| \leq 2^k\}$ and $C_k = B_k \setminus B_{k-1}$. Denote by χ_k the characteristic function of C_k and $\tilde{\chi}_k$ the characteristic function of C_k for $k \geq 1$ and $\tilde{\chi}_0$ the characteristic function of B_0 .

Definition 2. Let $0 and <math>\alpha \in R$.

(1) The homogeneous Herz space $K_p^{\alpha}(\mathbb{R}^n)$ is defined by

$$\dot{K}^\alpha_p(R^n) = \{f \in L^p_{loc}(R^n \setminus \{0\}) : \|f\|_{\dot{K}^\alpha_p} < \infty\},$$

where

$$||f||_{\dot{K}_{p}^{\alpha}} = \sum_{k=-\infty}^{\infty} 2^{k\alpha} ||f\chi_{k}||_{L^{p}};$$

(2) The nonhomogeneous Herz space $K_n^{\alpha}(\mathbb{R}^n)$ is defined by

$$K_p^{\alpha}(R^n) = \{ f \in L_{loc}^p(R^n) : ||f||_{K_n^{\alpha}} < \infty \},$$

where

$$||f||_{K_p^{\alpha}} = \sum_{k=0}^{\infty} 2^{k\alpha} ||f\tilde{\chi}_k||_{L^p};$$

If $\alpha = n(1 - 1/p)$, we denote that $\dot{K}_p^{\alpha}(R^n) = \dot{K}_p(R^n)$, $K_p^{\alpha}(R^n) = K_p(R^n)$.

Definition 3. Let 1 .

(1) The homogeneous Herz type Hardy space $H\dot{K}_p(\mathbb{R}^n)$ is defined by

$$H\dot{K}_p(R^n) = \{ f \in S'(R^n) : G(f) \in \dot{K}_p(R^n) \},$$

and

$$||f||_{H\dot{K}_n} = ||G(f)||_{\dot{K}_n};$$

(2) The nonhomogeneous Herz type Hardy space $HK_p(\mathbb{R}^n)$ is defined by

$$HK_p(R^n) = \{ f \in S'(R^n) : G(f) \in K_p(R^n) \},$$

and

$$||f||_{HK_p} = ||G(f)||_{K_p};$$

where G(f) is the grand maximal function of f.

The Herz type Hardy spaces have the atomic decomposition characterization.

Definition 4. Let 1 . A function <math>a(x) on \mathbb{R}^n is called a central (n(1-1/p), p)-atom (or a central (n(1-1/p), p)-atom of restrict type), if

- 1) Supp $a \subset B(0,r)$ for some r > 0 (or for some $r \ge 1$);
- 2) $||a||_{L^p} \le |B(0,r)|^{1/p-1}$,
- $3) \int_{\mathbb{R}^n} a(x) dx = 0.$

Let 1 . A temperate distribution f**Lemma 1** (see [9], [13]). belongs to $H\dot{K}_p(R^n)$ (or $HK_p(R^n)$) if and only if there exist central (n(1 -1/p), p)-atoms (or central (n(1-1/p), p)-atoms of restrict type) a_j supported on $B_j = B(0, 2^j)$ and constants λ_j , $\sum_j |\lambda_j| < \infty$ such that $f = \sum_{j=-\infty}^{\infty} \lambda_j a_j$ (or $f = \sum_{j=0}^{\infty} \lambda_j a_j$) in the $S'(R^n)$ sense, and

$$||f||_{H\dot{K}_p}(\ or\ ||f||_{HK_p})\approx \sum_j |\lambda_j|.$$

Theorems

In this paper, we will consider a class of multilinear operators related to some integral operators, whose definition are following.

Let $\lambda > 1$, $\delta > 0$ and m be a fixed positive integer and A be a function on \mathbb{R}^n . We denote that

$$R_{m+1}(A; x, y) = A(x) - \sum_{|\beta| \le m} \frac{1}{\beta!} D^{\beta} A(y) (x - y)^{\beta}$$

and

$$Q_{m+1}(A; x, y) = R_m(A; x, y) - \sum_{|\beta|=m} \frac{1}{\beta!} D^{\beta} A(x) (x - y)^{\beta}.$$

Definition 5. Let $\varepsilon > 0$ and ψ be a fixed function which satisfies the following properties:

- (1) $\int_{\mathbb{R}^n} \psi(x) dx = 0$, (2) $|\psi(x)| \le C(1+|x|)^{-(n+1-\delta)}$,
- (3) $|\psi(x+y) \psi(x)| \le C|y|^{\varepsilon} (1+|x|)^{-(n+1+\varepsilon-\delta)}$ when 2|y| < |x|;

The multilinear Littlewood-Paley operator is defined by

$$g_{\lambda}^{A}(f)(x) = \left[\int \int_{R_{+}^{n+1}} \left(\frac{t}{t + |x-y|} \right)^{n\lambda} |F_{t,1}^{A}(f)(x,y)|^{2} \frac{dydt}{t^{n+1}} \right]^{1/2},$$

where

$$F_{t,1}^{A}(f)(x,y) = \int_{\mathbb{R}^{n}} \frac{f(z)\psi_{t}(y-z)}{|x-z|^{m}} R_{m+1}(A;x,z)dz$$

and $\psi_t(x) = t^{-n+\delta}\psi(x/t)$ for t > 0. Set $F_{t,1}(f)(y) = f * \psi_t(y)$. We also define that

$$g_{\lambda}(f)(x) = \left(\int \int_{R_{+}^{n+1}} \left(\frac{t}{t + |x - y|} \right)^{n\lambda} |F_{t,1}(f)(y)|^{2} \frac{dydt}{t^{n+1}} \right)^{1/2},$$

which is the Littlewood-Paley operator (see [15]).

Let H_1 be the Hilbert space $H_1 = \{h : ||h|| = (\int \int_{R_+^{n+1}} |h(y,t)|^2 dy dt/t^{n+1})^{1/2} < \infty \}$. Then for each fixed $x \in R^n$, $F_{t,1}^A(f)(x,y)$ and $F_{t,1}(f)(y)$ may be viewed as a mapping from $(0,+\infty)$ to H_1 , and it is clear that

$$g_{\lambda}^{A}(f)(x) = \left\| \left(\frac{t}{t + |x - y|} \right)^{n\lambda/2} F_{t,1}^{A}(f)(x, y) \right\| \text{ and}$$

$$g_{\lambda}(f)(x) = \left\| \left(\frac{t}{t + |x - y|} \right)^{n\lambda/2} F_{t,1}(f)(y) \right\|.$$

We also consider the variant of g_{λ}^{A} , which is defined by

$$\tilde{g}_{\lambda}^{A}(f)(x) = \left[\int \int_{R_{+}^{n+1}} \left(\frac{t}{t + |x - y|} \right)^{n\lambda} |\tilde{F}_{t,1}^{A}(f)(x, y)|^{2} \frac{dydt}{t^{n+1}} \right]^{1/2},$$

where

$$\tilde{F}_{t,1}^{A}(f)(x,y) = \int_{R^n} \frac{Q_{m+1}(A;x,z)}{|x-z|^m} \psi_t(y-z) f(z) dz.$$

Definition 6. Let $0<\gamma\le 1$ and Ω be homogeneous of degree zero on R^n such that $\int_{S^{n-1}}\Omega(x')d\sigma(x')=0$. Assume that $\Omega\in Lip_{\gamma}(S^{n-1})$, that is there exists a constant M>0 such that for any $x,y\in S^{n-1}$, $|\Omega(x)-\Omega(y)|\le M|x-y|^{\gamma}$. We denote that $\Gamma(x)=\{(y,t)\in R_+^{n+1}:|x-y|< t\}$ and the characteristic of $\Gamma(x)$ by $\chi_{\Gamma(x)}$. The multilinear Marcinkiewicz integral operator is defined by

$$\mu_{\lambda}^{A}(f)(x) = \left[\int \int_{R_{+}^{n+1}} \left(\frac{t}{t + |x - y|} \right)^{n\lambda} |F_{t,2}^{A}(f)(x,y)|^{2} \frac{dydt}{t^{n+3}} \right]^{1/2},$$

where

$$F_{t,2}^A(f)(x,y) = \int_{|y-z| < t} \frac{\Omega(y-z)}{|y-z|^{n-1-\delta}} \frac{R_{m+1}(A;x,z)}{|x-z|^m} f(z) dz.$$

We denote that

$$F_{t,2}(f)(y) = \int_{|y-z| < t} \frac{\Omega(y-z)}{|y-z|^{n-1-\delta}} f(z) dz.$$

We also define that

$$\mu_{\lambda}(f)(x) = \left(\int \int_{R_{+}^{n+1}} \left(\frac{t}{t + |x - y|} \right)^{n\lambda} |F_{t,2}(f)(y)|^{2} \frac{dydt}{t^{n+3}} \right)^{1/2},$$

which is the Marcinkiewicz integral operator(see [16]).

Let H_2 be the Hilbert space $H_2 = \{h : ||h|| = (\int \int_{R_+^{n+1}} |h(y,t)|^2 dy dt/t^{n+3})^{1/2} < \infty\}$, then for each fixed $x \in R^n$, $F_{t,2}^A(f)(x,y)$ and $F_{t,2}(f)(y)$ may be viewed as a mapping from $(0,+\infty)$ to H_2 , and it is clear that

$$\mu_{\lambda}^{A}(f)(x) = \left\| \left(\frac{t}{t + |x - y|} \right)^{n\lambda/2} F_{t,2}^{A}(f)(x, y) \right\| \text{ and}$$

$$\mu_{\lambda}(f)(x) = \left\| \left(\frac{t}{t + |x - y|} \right)^{n\lambda/2} F_{t,2}(f)(y) \right\|.$$

The variant of μ_{λ}^{A} is defined by

$$\tilde{\mu}_{\lambda}^{A}(f)(x) = \left[\int \int_{R_{+}^{n+1}} \left(\frac{t}{t + |x - y|} \right)^{n\lambda} |\tilde{F}_{t,2}^{A}(f)(x,y)|^{2} \frac{dydt}{t^{n+3}} \right]^{1/2},$$

where

$$\tilde{F}_{t,2}^A(f)(x,y) = \int_{|y-z| \le t} \frac{\Omega(y-z)}{|y-z|^{n-1-\delta}} \frac{Q_{m+1}(A;x,z)}{|x-z|^m} f(z) dz.$$

More generally, we consider the following multilinear operators related to certain convolution operators.

Definition 7. Let F(x,t) define on $\mathbb{R}^n \times [0,+\infty)$, we denote that

$$F_t(f)(x) = \int_{\mathbb{R}^n} F(x - y, t) f(y) dy$$

and

$$F_t^A(f)(x) = \int_{\mathbb{R}^n} \frac{R_{m+1}(A; x, y)}{|x - y|^m} F(x - y, t) f(y) dy.$$

Let H be the normed space $H = \{h : ||h|| < \infty\}$. For each fixed $x \in \mathbb{R}^n$, we view $F_t(f)(x)$ and $F_t^A(f)(x)$ as a mapping from $[0, +\infty)$ to H. Then, the multilinear operator related to F_t is defined by

$$T^{A}(f)(x) = ||F_{t}^{A}(f)(x)||;$$

We also define that $T(f)(x) = ||F_t(f)(x)||$.

It is clear that Definition 5 and 6 are the particular examples of Definition 7. Note that when m = 0, T^A is just the commutator of T and A(see [11], [16]).

It is well known that multilinear operator, as a non-trivial extension of the commutator, is of great interest in harmonic analysis and has been widely studied by many authors(see [3]–[5]). In [7], the weighted $L^p(p>1)$ -boundedness of the multilinear operator related to some singular integral operator are obtained; In [2], the weak (H^1, L^1) -boundedness of the multilinear operator related to some singular integral operator are obtained. In this paper, we will establish the endpoint continuity properties of the multilinear operators g_{λ}^{A} and \tilde{g}_{λ}^{A} , μ_{λ}^{A} and $\tilde{\mu}_{\lambda}^{A}$ on Herz and Herz type Hardy spaces.

We shall prove the following theorems in Section 3.

Theorem 1. Let $0 < \delta < n$, $1 and <math>D^{\beta}A \in BMO(R^n)$ for all β with $|\beta| = m$. Then g^A_{λ} and μ^A_{λ} all map $B^{\delta}_p(R^n)$ continuously into $CMO(\mathbb{R}^n)$.

 $0 < \delta < n, 1 < p < n/\delta, 1/q = 1/p - \delta/n \text{ and } D^{\beta}A \in$ $BMO(R^n)$ for all β with $|\beta| = m$. Then \tilde{g}_{λ}^A and $\tilde{\mu}_{\lambda}^A$ all map $H\dot{K}_p(R^n)$ (or $HK_p(R^n)$) continuously into $K_q^{\alpha}(R^n)$ (or $K_q^{\alpha}(R^n)$) with $\alpha = n(1-1/p)$.

Let $0 < \delta < n$, $1 and <math>D^{\beta}A \in BMO(\mathbb{R}^n)$ for Theorem 3. all β with $|\beta| = m$.

(i) If for any cube Q and $u \in 3Q \setminus 2Q$, there is a constant C > 0 such that

$$\frac{1}{|Q|} \int_{Q} \left\| \left(\frac{t}{t + |x - y|} \right)^{n\lambda/2} \sum_{|\beta| = m} \frac{1}{\beta!} |D^{\beta} A(x) - (D^{\beta} A)_{Q}| \right. \\
\times \int_{(4Q)^{c}} \frac{(u - z)^{\beta}}{|u - z|^{m}} \psi_{t}(y - z) f(z) dz \right\| dx \le C \|f\|_{B_{p}^{\delta}},$$

then \tilde{g}_{λ}^{A} maps $B_{p}^{\delta}(R^{n})$ continuously into $CMO(R^{n})$. (ii) If for any cube Q and $u \in 3Q \setminus 2Q$, there is a constant C > 0 such that

$$\begin{split} \frac{1}{|Q|} \int_{Q} \left| \left| \left(\frac{t}{t+|x-y|} \right)^{n\lambda/2} \sum_{|\beta|=m} \frac{1}{\beta!} |D^{\beta}A(x) - (D^{\beta}A)_{Q}| \right. \\ & \times \left. \int_{(4Q)^{c}} \frac{(u-z)^{\beta}}{|u-z|^{m}} \frac{\Omega(y-z)\chi_{\Gamma(z)}(y,t)}{|y-z|^{n-1-\delta}} f(z) dz \right| \left| dx \leq C \|f\|_{B_{p}^{\delta}}, \end{split}$$

then $\tilde{\mu}_{\lambda}^{A}$ maps $B_{n}^{\delta}(R^{n})$ continuously into $CMO(R^{n})$.

Proofs of theorems

We begin with the following

Let $0 < \delta < n$, $1 and <math>D^{\beta}A \in BMO(\mathbb{R}^n)$ Main Theorem. for all β with $|\beta| = m$. Suppose that T^A is the same as in Definition 7 such that T is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ for any $p,q \in (1,+\infty)$ with $1/q = 1/p - \delta/n$. If T^A satisfies the cancellation condition:

$$||F_t^A(f)(x) - F_t^A(f)(0)|| \le C||f||_{B_n^\delta}$$

for any cube Q = Q(0,d) with d > 1, $supp f \subset (2Q)^c$ and $x \in Q$. Then T^A is bounded from $B_p^{\delta}(\mathbb{R}^n)$ to $CMO(\mathbb{R}^n)$.

To prove the theorem, we need the following lemma.

Lemma 2 (see [5]). Let A be a function on \mathbb{R}^n and $\mathbb{D}^{\beta}A \in L^q(\mathbb{R}^n)$ for $|\beta| = m$ and some q > n. Then

$$|R_m(A; x, y)| \le C|x - y|^m \sum_{|\beta| = m} \left(\frac{1}{|\tilde{Q}(x, y)|} \int_{\tilde{Q}(x, y)} |D^{\beta} A(z)|^q dz \right)^{1/q},$$

where $\tilde{Q}(x,y)$ is the cube centered at x and having side length $5\sqrt{n}|x-y|$.

Proof of Main Theorem. We have to prove that there exists a constant C_Q such that

$$\frac{1}{|Q|} \int_{Q} |T^{A}(f)(x) - C_{Q}| dx \le C ||f||_{B_{p}^{\delta}}$$

holds for any cube Q=Q(0,d) with d>1. Fix a cube Q=Q(0,d) with d>1. Let $\tilde{Q}=5\sqrt{n}Q$ and $\tilde{A}(x)=A(x)-\sum\limits_{|\beta|=m}\frac{1}{\beta!}(D^{\beta}A)_{\tilde{Q}}x^{\beta}$, then $R_m(A;x,y)=$

 $R_m(\tilde{A}; x, y)$ and $D^{\beta}\tilde{A} = D^{\beta}A - (D^{\beta}A)_{\tilde{Q}}$ for all β with $|\beta| = m$. We write, for $f_1 = f\chi_{\tilde{Q}}$ and $f_2 = f\chi_{R^n\setminus \tilde{Q}}$,

$$F_t^A(f)(x) = \int_{R^n} \frac{R_{m+1}(\tilde{A}; x, y)}{|x - y|^m} F(x - y, t) f_2(y) dy$$

$$+ \int_{R^n} \frac{R_m(\tilde{A}; x, y)}{|x - y|^m} F(x - y, t) f_1(y) dy$$

$$- \sum_{|\beta| = m} \frac{1}{\beta!} \int_{R^n} \frac{F(x - y, t)(x - y)^{\beta}}{|x - y|^m} D^{\beta} \tilde{A}(y) f_1(y) dy,$$

then

$$\left| T^{A}(f)(x) - T^{\tilde{A}}(f_{2})(0) \right| = \left| \|F_{t}^{A}(f)(x)\| - \|F_{t}^{\tilde{A}}(f)(0)\| \right|
\leq \left| \left| F_{t} \left(\frac{R_{m}(\tilde{A}; x, \cdot)}{|x - \cdot|^{m}} f_{1} \right) (x) \right| \right|
+ \sum_{|\beta| = m} \frac{1}{\beta!} \left| \left| F_{t} \left(\frac{(x - \cdot)^{\beta}}{|x - \cdot|^{m}} D^{\beta} \tilde{A} f_{1} \right) (x) \right| \right|
+ \|F_{t}^{\tilde{A}}(f_{2})(x) - F_{t}^{\tilde{A}}(f_{2})(0)\| = I(x) + II(x) + III(x),$$

thus

8

$$\frac{1}{|Q|} \int_{Q} \left| T^{A}(f)(x) - T^{\tilde{A}}(f_{2})(0) \right| dx$$

$$\leq \frac{1}{|Q|} \int_{Q} I(x) dx + \frac{1}{|Q|} \int_{Q} II(x) dx + \frac{1}{|Q|} \int_{Q} III(x) dx = I + II + III.$$

Now, let us estimate I, II and III, respectively. First, for $x \in Q$ and $y \in \tilde{Q}$, using Lemma 2, we get

$$R_m(\tilde{A}; x, y) \le C|x - y|^m \sum_{|\beta| = m} ||D^{\beta}A||_{BMO},$$

thus, by the $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ boundedness of T for $1 < p,q < \infty$ with $1/q = 1/p - \delta/n$, we get

$$I \leq \frac{C}{|Q|} \int_{Q} |T \left(\sum_{|\beta|=m} ||D^{\beta}A||_{BMO} f_{1} \right) (x) |dx$$

$$\leq C \sum_{|\beta|=m} ||D^{\beta}A||_{BMO} \left(\frac{1}{|Q|} \int_{Q} |T(f_{1})(x)|^{q} dx \right)^{1/q}$$

$$\leq C \sum_{|\beta|=m} ||D^{\beta}A||_{BMO} |Q|^{-1/q} ||f_{1}||_{L^{p}}$$

$$\leq C \sum_{|\beta|=m} ||D^{\beta}A||_{BMO} d^{-n(1/p-\delta/n)} ||f\chi_{2Q}||_{L^{p}}$$

$$\leq C \sum_{|\beta|=m} ||D^{\beta}A||_{BMO} ||f||_{B_{p}^{\delta}}.$$

Secondly, taking q, r, s > 1 such that $1/r = 1/s - \delta/n$, qs < p, then by the L^s to L^r -boundedness of T and Hölder's inequality, denoting that 1/q + 1/q' = 1, we gain

$$\begin{split} &II \leq \frac{C}{|Q|} \int_{Q} |T(\sum_{|\beta|=m} (D^{\beta}A - (D^{\beta}A)_{\tilde{Q}})f_{1})(x)|dx \\ &\leq C \sum_{|\beta|=m} \left(\frac{1}{|Q|} \int_{Q} |T((D^{\beta}A - (D^{\beta}A)_{\tilde{Q}})f_{1})(x)|^{r}dx\right)^{1/r} \\ &\leq C \sum_{|\beta|=m} |Q|^{-1/r} \left(\int |(D^{\beta}A(x) - (D^{\beta}A)_{\tilde{Q}})f_{1}(x)|^{s}dx\right)^{1/s} \\ &\leq C \sum_{|\beta|=m} |Q|^{-1/r} \left(\int_{\tilde{Q}} |D^{\beta}A(x) - (D^{\beta}A)_{\tilde{Q}}|^{sq'}dx\right)^{1/(sq')} \left(\int_{\tilde{Q}} |f_{1}(x)|^{qs}dx\right)^{1/(qs)} \\ &\leq C \sum_{|\beta|=m} ||D^{\beta}A||_{BMO}|Q|^{1/(sq')}|Q|^{-1/r} \left(\int_{\tilde{Q}} |f_{1}(x)|^{p}dx\right)^{1/p} |Q|^{(p-qs)/(pqs)} \end{split}$$

$$\leq C \sum_{|\beta|=m} \|D^{\beta} A\|_{BMO} |\tilde{Q}|^{\delta/n-1/p} \|f\chi_{\tilde{Q}}\|_{L^{p}}$$

$$\leq C \sum_{|\beta|=m} \|D^{\beta} A\|_{BMO} \|f\|_{B_{p}^{\delta}}.$$

For III, using the cancellation condition of T, we know $III \leq C ||f||_{B_p^{\delta}}$. This completes the proof of Main Theorem.

To prove Theorem 1, 2 and 3, we need the following lemma.

Lemma 3. Let $0 < \delta < n$, $1 , <math>1/q = 1/p - \delta/n$ and $D^{\beta}A \in BMO(R^n)$ for all β with $|\beta| = m$. Then g^A_{λ} and μ^A_{λ} are all bounded from $L^p(R^n)$ to $L^q(R^n)$.

Proof. For g_{λ}^{A} , by Minkowski's inequality and the conditions of ψ , we get $g_{\lambda}^{A}(f)(x)$

$$\leq \int_{R^{n}} \frac{|f(z)||R_{m+1}(A;x,z)|}{|x-z|^{m}} \left(\int_{R_{+}^{n+1}} \left(\frac{t}{t+|x-y|} \right)^{n\lambda} |\psi_{t}(y-z)|^{2} \frac{dydt}{t^{1+n}} \right)^{1/2} dz$$

$$\leq C \int_{R^{n}} \frac{|f(z)||R_{m+1}(A;x,z)|}{|x-z|^{m}}$$

$$\times \left(\int_{0}^{\infty} \int_{R^{n}} \left(\frac{t}{t+|x-y|} \right)^{n\lambda} \frac{t^{-2n+2\delta}}{(1+|y-z|/t)^{2n+2-2\delta}} \frac{dydt}{t^{1+n}} \right)^{1/2} dz$$

$$\leq C \int_{R^{n}} \frac{|f(z)||R_{m+1}(A;x,z)|}{|x-z|^{m}}$$

$$\times \left[\int_{0}^{\infty} \left(t^{-n} \int_{R^{n}} \left(\frac{t}{t+|x-y|} \right)^{n\lambda} \frac{dy}{(t+|y-z|)^{2n+2-2\delta}} \right) t dt \right]^{1/2} dz,$$

noting that

$$\begin{split} t^{-n} \int_{R^n} \left(\frac{t}{t + |x - y|} \right)^{n\lambda} \frac{dy}{(t + |y - z|)^{2n + 2 - 2\delta}} &\leq CM \left(\frac{1}{(t + |x - z|)^{2n + 2 - 2\delta}} \right) \\ &\leq \frac{C}{(t + |x - z|)^{2n + 2 - 2\delta}} \end{split}$$

(where Mg denotes the Hardy-Littlwood maximal function of g) and

$$\int_0^\infty \frac{tdt}{(t+|x-z|)^{2n+2-2\delta}} = C|x-z|^{-2n+2\delta},$$

we obtain

$$\begin{split} g_{\lambda}^{A}(f)(x) &\leq C \int_{R^{n}} \frac{|f(z)| |R_{m+1}(A;x,z)|}{|x-z|^{m}} \left(\int_{0}^{\infty} \frac{tdt}{(t+|x-z|)^{2n+2-2\delta}} \right)^{1/2} dz \\ &= C \int_{R^{n}} \frac{|f(z)| |R_{m+1}(A;x,z)|}{|x-z|^{m+n-\delta}} dz. \end{split}$$

For μ_{λ}^{A} , notice that $|x-z| \leq 2t$, $|y-z| \geq |x-z| - t \geq |x-z| - 3t$ when $|x-y| \leq t$, $|y-z| \leq t$, and $|x-z| \leq t (1+2^{k+1}) \leq 2^{k+2}t$, $|y-z| \geq |x-z| - 2^{k+3}t$ when $|x-y| \leq 2^{k+1}t$, $|y-z| \leq t$, we obtain

$$\begin{split} & \leq \int_{R^n} \left[\int \int_{R_+^{n+1}}^{+1} \left(\frac{t}{t + |x - y|} \right)^{n\lambda} \right. \\ & \times \left(\frac{|\Omega(y - z)| |R_{m+1}(A; x, z)| |f(z)|}{|y - z|^{n - \delta - 1} |x - z|^m} \right)^2 \chi_{\Gamma(z)}(y, t) \frac{dydt}{t^{n+3}} \right]^{1/2} dz \\ & \leq C \int_{R^n} \frac{|R_{m+1}(A; x, z)| |f(z)|}{|x - z|^m} \\ & \times \left[\int_0^{\infty} \int_{|x - y| \leq t} \left(\frac{t}{t + |x - y|} \right)^{n\lambda} \frac{\chi_{\Gamma(z)}(y, t)}{(|x - z| - 3t)^{2n - 2\delta - 2}} \frac{dydt}{t^{n+3}} \right]^{1/2} dz \\ & + C \int_{R^n} \frac{|R_{m+1}(A; x, z)| |f(z)|}{|x - z|^m} \\ & \times \left[\int_0^{\infty} \sum_{k=0}^{\infty} \int_{2^k t < |x - y| \leq 2^{k+1} t} \left(\frac{t}{t + |x - y|} \right)^{n\lambda} \frac{\chi_{\Gamma(z)}(y, t) t^{-n - 3} dydt}{(|x - z| - 2^{k+3} t)^{2n - 2\delta - 2}} \right]^{1/2} dz \\ & \leq C \int_{R^n} \frac{|R_{m+1}(A; x, z)| |f(z)|}{|x - z|^{m+1/2}} \left[\int_{|x - z|/2}^{\infty} \frac{dt}{(|x - z| - 3t)^{2n - 2\delta}} \right]^{1/2} dz \\ & + C \int_{R^n} \frac{|R_{m+1}(A; x, z)| |f(z)|}{|x - z|^{m+1/\delta}} dz \\ & \leq C \int_{R_n} \frac{|R_{m+1}(A; x, z)| |f(z)|}{|x - z|^{m+n-\delta}} dz \\ & + C \int_{R^n} \frac{|R_{m+1}(A; x, z)| |f(z)|}{|x - z|^{m+n-\delta}} dz \\ & + C \int_{R^n} \frac{|R_{m+1}(A; x, z)| |f(z)|}{|x - z|^{m+n-\delta}} dz \left[\sum_{k=0}^{\infty} 2^{kn(1-\lambda)} \right]^{1/2} \\ & = C \int_{R^n} \frac{|R_{m+1}(A; x, z)| |f(z)|}{|x - z|^{m+n-\delta}} |f(z)| dz. \end{split}$$

Thus, the lemma follows from [7].

Proof of Theorem 1. From Lemma 3, we know that g_{λ} and μ_{λ} are bounded from $L^p(R^n)$ to $L^q(R^n)$ for $1 and <math>1/q = 1/p - \delta/n$. Now, it suffices to verify that g_{λ}^A and μ_{λ}^A satisfy the cancellation condition in Main Theorem,

that is

$$\left| \left| \left(\frac{t}{t + |x - y|} \right)^{n\lambda/2} F_{t,j}^{A}(f)(x,y) - \left(\frac{t}{t + |y|} \right)^{n\lambda/2} F_{t,j}^{A}(f)(0,y) \right| \right| \\ \leq C \|f\|_{B_{\alpha}^{\delta}} \text{ for } j = 1, 2.$$

Let $\operatorname{supp} f \subset (2Q(0,d))^c$ and $\tilde{A}(x) = A(x) - \sum_{|\beta|=m} \frac{1}{\beta!} (D^{\beta}A)_Q x^{\beta}$. For g_{λ}^A , we write, for $x \in Q$,

$$\begin{split} &\left(\frac{t}{t+|x-y|}\right)^{n\lambda/2} F_{t,1}^{\tilde{A}}(f)(x,y) - \left(\frac{t}{t+|y|}\right)^{n\lambda/2} F_{t,1}^{\tilde{A}}(f)(0,y) \\ &= \left(\frac{t}{t+|x-y|}\right)^{n\lambda/2} \int_{R^n} \left[\frac{1}{|x-z|^m} - \frac{1}{|z|^m}\right] \psi_t(y-z) R_m(\tilde{A};x,z) f(z) dz \\ &\quad + \left(\frac{t}{t+|x-y|}\right)^{n\lambda/2} \int_{R^n} \frac{\psi_t(y-z) f(z)}{|z|^m} [R_m(\tilde{A};x,z) - R_m(\tilde{A};0,z)] dz \\ &\quad + \int_{R^n} \left[\left(\frac{t}{t+|x-y|}\right)^{n\lambda/2} - \left(\frac{t}{t+|y|}\right)^{n\lambda/2}\right] \frac{\psi_t(y-z) R_m(\tilde{A};0,z) f(z)}{|z|^m} dz \\ &\quad - \sum_{|\beta|=m} \frac{1}{\beta!} \int_{R^n} \left[\left(\frac{t}{t+|x-y|}\right)^{n\lambda/2} \frac{(x-z)^\beta}{|x-z|^m} - \left(\frac{t}{t+|y|}\right)^{n\lambda/2} \frac{(-z)^\beta}{|z|^m}\right] \\ &\quad \times \psi_t(y-z) D^\beta \tilde{A}(z) f(z) dz \\ &:= I_1^t(x) + I_2^t(x) + I_3^t(x) + I_4^t(x). \end{split}$$

Note that $|x-z| \sim |z|$ for $x \in Q$ and $z \in \mathbb{R}^n \setminus 2Q$, by Lemma 2 and the following inequality(see[14])

$$|b_{Q_1} - b_{Q_2}| \le C \log(|Q_2|/|Q_1|) ||b||_{BMO}, for Q_1 \subset Q_2,$$

we know that, for $x \in Q$ and $y \in 2^{k+1}Q \setminus 2^kQ$,

$$|R_m(\tilde{A}; x, y)| \le C|x - y|^m \sum_{|\beta| = m} (\|D^{\beta} A\|_{BMO} + |(D^{\beta} A)_{Q(x, y)} - (D^{\beta} A)_{Q}|)$$

$$\le Ck|x - y|^m \sum_{|\beta| = m} \|D^{\beta} A\|_{BMO}.$$

Thus, similar to the proof of Lemma 3, we obtain

$$\begin{split} \|I_1^t(x)\| &\leq C \int_{R^n \setminus 2Q} \frac{|x||f(z)|}{|z|^{n+m+1-\delta}} |R_m(\tilde{A};x,z)| dz \\ &= C \sum_{k=1}^{\infty} \int_{2^{k+1}Q \setminus 2^kQ} \frac{|x||f(z)|}{|z|^{n+m+1-\delta}} |R_m(\tilde{A};x,z)| dz \\ &\leq C \sum_{|\beta|=m} \|D^\beta A\|_{BMO} \sum_{k=1}^{\infty} \int_{2^{k+1}Q \setminus 2^kQ} k \frac{|x|}{|z|^{n+1-\delta}} |f(z)| dz \\ &\leq C \sum_{|\beta|=m} \|D^\beta A\|_{BMO} \sum_{k=1}^{\infty} k 2^{-k} (2^k d)^{-n(1/p-\delta/n)} \|f\chi_{2^{k+1}Q}\|_{L^p} \\ &\leq C \sum_{|\beta|=m} \|D^\beta A\|_{BMO} \sum_{k=1}^{\infty} k 2^{-k} \|f\|_{B_p^{\delta}} \\ &\leq C \sum_{|\beta|=m} \|D^\beta A\|_{BMO} \|f\|_{B_p^{\delta}}. \end{split}$$

For $I_2^t(x)$, by the formula (see [5]):

$$R_m(\tilde{A}; x, y) - R_m(\tilde{A}; 0, y) = \sum_{|\gamma| < m} \frac{1}{\gamma!} R_{m-|\gamma|} (D^{\gamma} \tilde{A}; x, 0) (x - y)^{\gamma}$$

and Lemma 2, we get

$$|R_m(\tilde{A}; x, z) - R_m(\tilde{A}; x_0, z)| \le C \sum_{|\beta| = m} ||D^{\beta} A||_{BMO} \left(|x - x_0|^m + \sum_{0 < |\gamma| < m} |x_0 - z|^{m - |\gamma|} |x - x_0|^{|\gamma|} \right),$$

thus, similar to the estimates of $I_1^t(x)$ and Lemma 3, we get, for $x \in Q$

$$||I_2^t(x)|| \le C \sum_{|\beta|=m} ||D^{\beta}A||_{BMO} \sum_{k=1}^{\infty} \int_{2^{k+1}Q \setminus 2^k Q} \frac{|x|}{|z|^{n+1-\delta}} |f(z)| dz$$

$$\le C \sum_{|\beta|=m} ||D^{\beta}A||_{BMO} ||f||_{B_p^{\delta}}.$$

For $I_3^t(x)$, by the inequality: $a^{1/2} - b^{1/2} \le (a-b)^{1/2}$ for $a \ge b > 0$, we obtain,

similar to the estimate of Lemma 3 and I_1 ,

$$\begin{split} &\|I_{3}^{l}(x)\| \\ &\leq C \int_{R^{n} \backslash 2Q} \left(\int_{R_{+}^{n+1}} \left[\frac{t^{n\lambda/2} |x|^{1/2} |\psi_{t}(y-z)| |f(z)|}{(t+|x-y|)^{(n\lambda+1)/2} |z|^{m}} |R_{m}(\tilde{A};0,z)| \right]^{2} \frac{dydt}{t^{n+1}} \right)^{1/2} dz \\ &\leq C \int_{R^{n} \backslash 2Q} \frac{|f(z)| |x|^{1/2} |R_{m}(\tilde{A};0,z)|}{|z|^{m}} \\ &\qquad \times \left(\int \int_{R_{+}^{n+1}} \left(\frac{t}{t+|x-y|} \right)^{n\lambda+1} \frac{t^{-n} dydt}{(t+|y-z|)^{2n+2-2\delta}} \right)^{1/2} dz \\ &\leq C \int_{R^{n} \backslash 2Q} \frac{|f(z)| |x|^{1/2} |R_{m}(\tilde{A};0,z)|}{|z|^{m}} \left(\int_{0}^{\infty} \frac{dt}{(t+|x-z|)^{2n+2-2\delta}} \right)^{1/2} dz \\ &\leq C \int_{R^{n} \backslash 2Q} \frac{|f(z)| |x|^{1/2} |R_{m}(\tilde{A};0,z)|}{|z|^{m+n+1/2-\delta}} dz \\ &\leq C \sum_{|\beta|=m} \|D^{\beta}A\|_{BMO} \sum_{k=1}^{\infty} 2^{-k/2} (2^{k}d)^{-n(1/p-\delta/n)} \|f\chi_{2^{k+1}Q}\|_{L^{p}} \\ &\leq C \sum_{|\beta|=m} \|D^{\beta}A\|_{BMO} \|f\|_{B_{p}^{\delta}}. \end{split}$$

For $I_4^t(x)$, similar to the estimates of $I_1^t(x)$ and $I_3^t(x)$, by Hölder's inequality, we get

$$\begin{split} \|I_4^t(x)\| &\leq C \sum_{|\beta|=m} \sum_{k=1}^{\infty} \int_{2^{k+1}Q \setminus 2^k Q} \left(\frac{|x|}{|y|^{n+1-\delta}} + \frac{|x|^{1/2}}{|y|^{n+1/2-\delta}} \right) |D^{\beta} \tilde{A}(y)\| f(y) | dy \\ &\leq C \sum_{|\beta|=m} \sum_{k=1}^{\infty} (2^{-k} + 2^{-k/2}) (2^k d)^{\delta - n/p} \\ &\qquad \times \left(\frac{1}{|2^{k+1}Q|} \int_{2^{k+1}Q} |D^{\beta} A(y) - (D^{\beta} A)_{\tilde{Q}}|^{p'} dy \right)^{1/p'} \|f\chi_{2^{k+1}Q}\|_{L^p} \\ &\leq C \sum_{|\beta|=m} \|D^{\beta} A\|_{BMO} \sum_{k=1}^{\infty} (2^{-k} + 2^{-k/2}) (2^k d)^{-n(1/p-\delta/n)} \|f\chi_{2^{k+1}Q}\|_{L^p} \\ &\leq C \sum_{|\beta|=m} \|D^{\beta} A\|_{BMO} \|f\|_{B_p^{\delta}}. \end{split}$$

Thus

$$\left| \left| \left(\frac{t}{t + |x - y|} \right)^{n\lambda/2} F_{t,1}^A(f)(x,y) - \left(\frac{t}{t + |y|} \right)^{n\lambda/2} F_{t,1}^A(f)(0,y) \right| \right| \le C \|f\|_{B_p^\delta}.$$

For μ_{λ}^{A} , we write, for $x \in Q$,

$$\begin{split} &\left(\frac{t}{t+|x-y|}\right)^{n\lambda/2}F_{t,2}^{\tilde{A}}(f)(x,y) - \left(\frac{t}{t+|y|}\right)^{n\lambda/2}F_{t,2}^{\tilde{A}}(f)(0,y) \\ &= \int_{|y-z| \le t} \left[\frac{1}{|x-z|^m} - \frac{1}{|z|^m}\right] \left(\frac{t}{t+|x-y|}\right)^{n\lambda/2} \frac{\Omega(y-z)R_m(\tilde{A};x,z)f(z)}{|y-z|^{n-1-\delta}} dz \\ &+ \int_{|y-z| \le t} \left(\frac{t}{t+|x-y|}\right)^{n\lambda/2} \frac{\Omega(y-z)f(z)}{|y-z|^{n-1-\delta}|z|^m} [R_m(\tilde{A};x,z) - R_m(\tilde{A};0,z)] dz \\ &+ \int_{|y-z| \le t} \left[\left(\frac{t}{t+|x-y|}\right)^{n\lambda/2} - \left(\frac{t}{t+|y|}\right)^{n\lambda/2}\right] \frac{\Omega(y-z)R_m(\tilde{A};0,z)f(z)}{|y-z|^{n-1-\delta}|z|^m} dz \\ &- \sum_{|\beta|=m} \frac{1}{\beta!} \int_{|y-z| \le t} \left[\left(\frac{t}{t+|x-y|}\right)^{n\lambda/2} \frac{(x-z)^\beta}{|x-z|^m} - \left(\frac{t}{t+|y|}\right)^{n\lambda/2} \frac{(-z)^\beta}{|z|^m}\right] \\ &\times \frac{\Omega(y-z)D^\beta A(z)f(z)}{|y-z|^{n-1-\delta}} dz \\ &:= J_1^t(x) + J_2^t(x) + J_3^t(x) + J_4^t(x). \end{split}$$

Similar to the proof of Lemma 3 and g_{λ}^{A} , we obtain

$$||J_1^t(x)|| \le C \int_{R^n \setminus 2Q} \frac{|x||f(z)|}{|z|^{n+m+1-\delta}} |R_m(\tilde{A}; x, z)| dz \le C \sum_{|\beta|=m} ||D^{\beta}A||_{BMO} ||f||_{B_p^{\delta}}$$

and

$$||J_2^t(x)|| \le C \sum_{|\beta|=m} ||D^{\beta}A||_{BMO} \sum_{k=1}^{\infty} \int_{2^{k+1}Q \setminus 2^k Q} \frac{|x|}{|z|^{n+1-\delta}} |f(z)| dz$$

$$\le C \sum_{|\beta|=m} ||D^{\beta}A||_{BMO} ||f||_{B_p^{\delta}}.$$

For $J_3^t(x)$, similar to the estimates of Lemma 3 and $I_3^t(x)$, we obtain

$$\begin{split} \|J_3^t(x)\| & \leq C \int_{R^n \backslash 2Q} \left(\int_{R_+^{n+1}} \left[\frac{t^{n\lambda/2} |x|^{1/2}}{(t+|x-y|)^{(n\lambda+1)/2}} \right. \right. \\ & \times \left. \frac{|f(z)| \|\Omega(y-z) |\chi_{\Gamma(z)}(y,t)}{|y-z|^{n-1-\delta} |z|^m} |R_m(\tilde{A};0,z)| \right]^2 \frac{dydt}{t^{n+3}} \right)^{1/2} dz \\ & \leq C \int_{R^n \backslash 2Q} \frac{|f(z)| |R_m(\tilde{A};0,z) ||x|^{1/2}}{|z|^m} \\ & \times \left[\int \int_{R_+^{n+1}} \left(\frac{t}{t+|x-y|} \right)^{n\lambda+1} \frac{t^{-n} \chi_{\Gamma(z)}(y,t)}{|y-z|^{2n+2-2\delta}} dydt \right]^{1/2} dz \end{split}$$

$$\leq C \int_{R^n \setminus 2Q} \frac{|f(z)| |R_m(\tilde{A}; 0, z)| |x|^{1/2}}{|z|^{m+n+1/2-\delta}} dz$$

$$\leq C \sum_{|\beta|=m} ||D^{\beta} A||_{BMO} ||f||_{B_p^{\delta}}.$$

For $J_4^t(x)$, similar to the proof of $J_1^t(x)$, $J_3^t(x)$ and $I_4^t(x)$, we obtain

$$||J_4^t(x)|| \le C \sum_{|\beta|=m} \sum_{k=1}^{\infty} \int_{2^{k+1}Q\setminus 2^kQ} \left(\frac{|x|}{|y|^{n+1-\delta}} + \frac{|x|^{1/2}}{|y|^{n+1/2-\delta}}\right) |D^{\beta}\tilde{A}(y)||f(y)|dy$$

$$\le C \sum_{|\beta|=m} ||D^{\beta}A||_{BMO} \sum_{k=1}^{\infty} k(2^{-k} + 2^{-k/2})(2^k d)^{-n(1/p-\delta/n)} ||f\chi_{2^{k+1}Q}||_{L^p}$$

$$\le C \sum_{|\beta|=m} ||D^{\beta}A||_{BMO} ||f||_{B_p^{\delta}}.$$

Thus

$$\left| \left| \left(\frac{t}{t + |x - y|} \right)^{n\lambda/2} F_{t,2}^A(f)(x,y) - \left(\frac{t}{t + |y|} \right)^{n\lambda/2} F_{t,2}^A(f)(0,y) \right| \right| \le C \|f\|_{B_p^\delta}.$$

These yield the desired results and complete the proof of Theorem 1. \Box

Proof of Theorem 2. We only give the proof on homogeneous weighted Herz and Herz Hardy space. To be simply, we denote $\tilde{T}_{\lambda}^{A} = \tilde{g}_{\lambda}^{A}$ or $\tilde{\mu}_{\lambda}^{A}$. Let $f \in H\dot{K}_{p}(R^{n})$, by Lemma 1, $f = \sum_{j=-\infty}^{\infty} \lambda_{j}a_{j}$, where $a'_{j}s$ are the central (n(1-1/p),p)-atom with $\operatorname{supp} a_{j} \subset B_{j} = B(0,2^{j})$ and $\|f\|_{H\dot{K}_{p}} \approx \sum_{j} |\lambda_{j}|$. We write

$$\|\tilde{T}_{\lambda}^{A}(f)\|_{\dot{K}_{p}^{\delta}} = \sum_{k=-\infty}^{\infty} 2^{k\alpha} \|\chi_{k}\tilde{T}_{\lambda}^{A}(f)\|_{L^{q}}$$

$$\leq \sum_{k=-\infty}^{\infty} 2^{k\alpha} \sum_{j=-\infty}^{k-1} |\lambda_{j}| \|\chi_{k}\tilde{T}_{\lambda}^{A}(a_{j})\|_{L^{q}} + \sum_{k=-\infty}^{\infty} 2^{k\alpha} \sum_{j=k}^{\infty} |\lambda_{j}| \|\chi_{k}\tilde{T}_{\lambda}^{A}(a_{j})\|_{L^{q}}$$

$$= L + LL.$$

For LL, by the following equality

$$Q_{m+1}(A; x, y) = R_{m+1}(A; x, y) + \sum_{|\beta| = m} \frac{1}{\beta!} (x - y)^{\beta} (D^{\beta} A(x) - D^{\beta} A(y)),$$

we have, similar to the proof of Lemma 3,

$$\tilde{T}_{\lambda}^{A}(f)(x) \le T_{\lambda}^{A}(f)(x) + C \sum_{|\beta|=m} \int_{R^{n}} \frac{|D^{\beta}A(x) - D^{\beta}A(y)|}{|x - y|^{n - \delta}} |f(y)| dy,$$

thus, \tilde{T}^A_{λ} is bounded from $L^p(R^n)$ to $L^q(R^n)$ for $1 with <math>1/q = 1/p - \delta/n$ by Lemma 3 and [1]. We see that

$$LL \leq C \sum_{k=-\infty}^{\infty} 2^{k\alpha} \sum_{j=k}^{\infty} |\lambda_j| ||a_j||_{L^p} \leq C \sum_{k=-\infty}^{\infty} 2^{kn(1-1/p)} \sum_{j=k}^{\infty} |\lambda_j| 2^{-jn(1-1/p)}$$

$$\leq C \sum_{j=-\infty}^{\infty} |\lambda_j| \sum_{k=-\infty}^{j} 2^{(k-j)n(1-1/p)} \leq C \sum_{j=-\infty}^{\infty} |\lambda_j| \leq C ||f||_{H\dot{K}_p}.$$

To estimate L, we denote that $\tilde{A}(x) = A(x) - \sum_{|\beta|=m} \frac{1}{\beta!} (D^{\beta}A)_{2B_j} x^{\beta}$. Then $Q_m(A; x, y) = Q_m(\tilde{A}; x, y)$ and $Q_{m+1}(A; x, y) = R_m(A; x, y) - \sum_{|\beta|=m} \frac{1}{\beta!} (x - y)^{\beta} D^{\beta} A(x)$.

For g_{λ}^{A} , we write, by the vanishing moment of a and for $x \in B_{k}$ with $k \geq j+1$,

$$\begin{split} \tilde{F}_{t,1}^{A}(a_{j})(x,y) &= \int_{R^{n}} \frac{\psi_{t}(y-z)R_{m}(\tilde{A};x,z)}{|x-z|^{m}} a_{j}(z)dz \\ &- \sum_{|\beta|=m} \frac{1}{\beta!} \int \frac{\psi_{t}(y-z)D^{\beta}\tilde{A}(z)(x-z)^{\beta}}{|x-z|^{m}} a_{j}(z)dz \\ &= \int_{R^{n}} \left[\frac{\psi_{t}(y-z)R_{m}(\tilde{A};x,z)}{|x-z|^{m}} - \frac{\psi_{t}(y)R_{m}(\tilde{A};x,0)}{|x|^{m}} \right] a_{j}(z)dz \\ &- \sum_{|\beta|=m} \frac{1}{\beta!} \int_{R^{n}} \left[\frac{\psi_{t}(y-z)(x-z)^{\beta}}{|x-z|^{m}} - \frac{\psi_{t}(y)x^{\beta}}{|x|^{m}} \right] D^{\beta}\tilde{A}(x)a_{j}(z)dz, \end{split}$$

similar to the proof of Lemma 3 and Theorem 1, we obtain

$$\begin{split} &\|\tilde{F}_{t,1}^{A}(a_{j})(x,y)\| \\ &\leq C \int_{R^{n}} \left[\frac{|z|}{|x|^{m+n+1}} + \frac{|z|^{1/2}}{|x|^{m+n+1/2}} \right] |R_{m}(\tilde{A};x,z)| |a_{j}(z)| dz \\ &\quad + C \sum_{|\beta|=m} \int_{R^{n}} \left[\frac{|z|}{|x|^{n+1-\delta}} + \frac{|z|^{1/2}}{|x|^{n+1/2-\delta}} \right] |D^{\beta}\tilde{A}(x)| |a_{j}(z)| dz \\ &\leq C \sum_{|\beta|=m} \|D^{\beta}A\|_{BMO} \left[\frac{2^{j}}{2^{k(n+1-\delta)}} + \frac{2^{j/2}}{2^{k(n+1/2-\delta)}} \right] \\ &\quad + C \sum_{|\beta|=m} \left[\frac{2^{j}}{2^{k(n+1-\delta)}} + \frac{2^{j/2}}{2^{k(n+1/2-\delta)}} \right] |D^{\beta}\tilde{A}(x)|, \end{split}$$

thus

$$\begin{split} L &\leq C \sum_{|\beta|=m} \|D^{\beta}A\|_{BMO} \sum_{k=-\infty}^{\infty} 2^{kn(1-1/p)} \sum_{j=-\infty}^{k-1} |\lambda_{j}| \\ &\times \left[\frac{2^{j}}{2^{k(n+1-\delta)}} + \frac{2^{j/2}}{2^{k(n+1/2-\delta)}} \right] 2^{kn/q} \\ &+ C \sum_{|\beta|=m} \sum_{k=-\infty}^{\infty} 2^{kn(1-1/p)} \sum_{j=-\infty}^{k-1} |\lambda_{j}| \\ &\times \left[\frac{2^{j}}{2^{k(n+1-\delta)}} + \frac{2^{j/2}}{2^{k(n+1/2-\delta)}} \right] \left(\int_{B_{k}} |D^{\beta}\tilde{A}(x)|^{q} dx \right)^{1/q} \\ &\leq C \sum_{|\beta|=m} \|D^{\beta}A\|_{BMO} \sum_{k=-\infty}^{\infty} 2^{kn(1-\delta/n)} \sum_{j=-\infty}^{k-1} |\lambda_{j}| \left[\frac{2^{j}}{2^{k(n+1-\delta)}} + \frac{2^{j/2}}{2^{k(n+1/2-\delta)}} \right] \\ &\leq C \sum_{|\beta|=m} \|D^{\beta}A\|_{BMO} \sum_{j=-\infty}^{\infty} |\lambda_{j}| \sum_{k=j+1}^{\infty} [2^{j-k} + 2^{(j-k)/2}] \\ &\leq C \sum_{|\beta|=m} \|D^{\beta}A\|_{BMO} \sum_{j=-\infty}^{\infty} |\lambda_{j}| \leq C \sum_{|\beta|=m} \|D^{\beta}A\|_{BMO} \|f\|_{H\dot{K}_{p}}. \end{split}$$

A same argument as in the proof of Theorem 1 will give the proof of $\tilde{\mu}_{\lambda}^{A}$, we omit the details. This completes the proof of Theorem 2.

Proof of Theorem 3. We only give the proof of \tilde{g}_{λ}^{A} . For any cube Q=Q(0,d) with d>1, let $f\in B_{p}(w)$ and $\tilde{A}(x)=A(x)-\sum\limits_{|\beta|=m}\frac{1}{\beta!}(D^{\beta}A)_{\tilde{Q}}x^{\beta}$. We write, for $f=f\chi_{4Q}+f\chi_{(4Q)^{c}}=f_{1}+f_{2}$ and $u\in 3Q\setminus 2Q$,

$$\begin{split} \tilde{F}_{t,1}^{A}(f)(x,y) &= \tilde{F}_{t,1}^{A}(f_{1})(x,y) + \int_{R^{n}} \frac{R_{m}(\tilde{A};x,z)}{|x-z|^{m}} \psi_{t}(y-z) f_{2}(z) dz \\ &- \sum_{|\alpha|=m} \frac{1}{\alpha!} (D^{\alpha}A(x) - (D^{\alpha}A)_{Q}) \int_{R^{n}} \left[\frac{(x-z)^{\alpha}}{|x-z|^{m}} - \frac{(u-z)^{\alpha}}{|u-z|^{m}} \right] \psi_{t}(y-z) f_{2}(z) dz \\ &- \sum_{|\alpha|=m} \frac{1}{\alpha!} (D^{\alpha}A(x) - (D^{\alpha}A)_{Q}) \int_{R^{n}} \frac{(u-z)^{\alpha}}{|u-z|^{m}} \psi_{t}(y-z) f_{2}(z) dz, \end{split}$$

then

$$\left| \tilde{g}_{\lambda}^{A}(f)(x) - g_{\lambda} \left(\frac{R_{m}(\tilde{A}; 0, \cdot)}{|\cdot|^{m}} f_{2} \right) (0) \right|$$

$$= \left| \left| \left| \left(\frac{t}{t + |x - y|} \right)^{n\lambda/2} \tilde{F}_{t, 1}^{A}(f)(x, y) \right| \right|$$

$$-\left\|\left(\frac{t}{t+|y|}\right)^{n\lambda/2}F_{t,1}\left(\frac{R_m(\tilde{A};0,\cdot)}{|\cdot|^m}f_2\right)(0)\right\|\right\|$$

$$\leq \left\|\left(\frac{t}{t+|x-y|}\right)^{n\lambda/2}\tilde{F}_{t,1}^A(f)(x,y) - \left(\frac{t}{t+|y|}\right)^{n\lambda/2}F_{t,1}\left(\frac{R_m(\tilde{A};0,\cdot)}{|\cdot|^m}f_2\right)(0)\right\|$$

$$\leq \left\|\left(\frac{t}{t+|x-y|}\right)^{n\lambda/2}\tilde{F}_{t,1}^A(f_1)(x,y)\right\|$$

$$+\left\|\left[\left(\frac{t}{t+|x-y|}\right)^{n\lambda/2}\int_{R^n}\frac{R_m(\tilde{A};x,z)}{|x-z|^m}\psi_t(y-z)\right]$$

$$-\left(\frac{t}{t+|y|}\right)^{n\lambda/2}\int_{R^n}\frac{R_m(\tilde{A};0,z)}{|z|^m}\psi_t(-z)f_2(z)dz\right\|$$

$$+\left\|\left(\frac{t}{t+|x-y|}\right)^{n\lambda/2}\sum_{|\beta|=m}\frac{1}{\beta!}(D^\beta A(x) - (D^\beta A)_Q)$$

$$\times\int_{R^n}\left[\frac{(y-z)^\beta}{|y-z|^m} - \frac{(u-z)^\beta}{|u-z|^m}\right]\psi_t(y-z)f_2(z)dz\right\|$$

$$+\left\|\left(\frac{t}{t+|x-y|}\right)^{n\lambda/2}\sum_{|\beta|=m}\frac{1}{\beta!}|D^\beta A(x) - (D^\beta A)_Q|$$

$$\times\int_{R^n}\frac{(u-z)^\beta}{|u-z|^m}\psi_t(y-z)f_2(z)dz\right\|$$

$$=M_1(x)+M_2(x)+M_3(x,u)+M_4(x,u).$$

By the the $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ -boundedness of \tilde{g}_{λ}^A for $1 with <math>1/q = 1/p - \delta/n$, we get

$$\frac{1}{|Q|} \int_{Q} M_{1}(x) dx \leq C \left(\frac{1}{|Q|} \int_{Q} |\tilde{g}_{\lambda}^{A}(f_{1})(x)|^{q} dx \right)^{1/q}$$

$$\leq C|Q|^{-1/q} ||f_{1}||_{L^{p}} \leq C||f||_{B_{x}^{\delta}};$$

Similar to the proof of Theorem 1, we obtain

$$\frac{1}{|Q|} \int_{Q} M_2(x) dx \le C ||f||_{B_p^{\delta}}$$

and

$$\frac{1}{|Q|} \int_{Q} M_3(x, u) dx \le C \|f\|_{B_p^{\delta}}.$$

Thus, using the estimates of $M_4(x, u)$, we obtain

$$\frac{1}{|Q|} \int_{Q} \left| \tilde{g}_{\lambda}^{A}(x) - g_{\lambda} \left(\frac{R_{m}(\tilde{A}; 0, \cdot)}{|\cdot|^{m}} f_{2} \right) (0) \right| dx \leq C \|f\|_{B_{p}^{\delta}}.$$

This completes the proof of Theorem 3.

College of Mathematics
Changsha University of Science and Technology
Changsha 410077
P.R. of China
e-mail:lanzheliu@263.net

References

- S. Chanillo, A note on commutators, Indiana Univ. Math. J. 31 (1982), 7–16.
- [2] W. Chen and G. Hu, Weak type (H^1, L^1) estimate for multilinear singular integral operator, Adv. Math. (China) **30** (2001), 63–69.
- [3] J. Cohen, A sharp estimate for a multilinear singular integral on \mathbb{R}^n , Indiana Univ. Math. J. **30** (1981), 693–702.
- [4] J. Cohen and J. Gosselin, On multilinear singular integral operators on \mathbb{R}^n , Studia Math. **72** (1982), 199–223.
- [5] _____, A BMO estimate for multilinear singular integral operators, Illinois J. Math. 30 (1986), 445–465.
- [6] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611–635.
- [7] Y. Ding and S. Z. Lu, Weighted boundedness for a class rough multilinear operators, Acta Math. Sinica 17 (2001), 517–526.
- [8] J. Garcia-Cuerva, Hardy spaces and Beurling algebras, J. London Math. Soc. 39 (1989), 499–513.
- [9] J. Garcia-Cuerva and M. L. Herrero, A theory of Hardy spaces associated to the Herz spaces, Proc. London Math. Soc. **69** (1994), 605–628.
- [10] E. Harboure, C. Segovia and J. L. Torrea, Boundedness of commutators of fractional and singular integrals for the extreme values of p, Illinois J. Math. 41 (1997), 676–700.
- [11] L. Z. Liu, Continuity for commutators of Littlewood-Paley operator on certain Hardy spaces, J. Korean Math. Soc. 40 (1) (2003), 41–60.
- [12] S. Z. Lu and D. Yang, The decomposition of the weighted Herz spaces and its applications, Sci. China Ser. A 38 (1995), 147–158.
- [13] ______, The weighted Herz type Hardy spaces and its applications, Sci. China Ser. A **38** (1995), 662–673.

- [14] E. M. Stein, Harmonic Analysis: real variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton NJ, 1993.
- [15] A. Torchinsky, The real variable methods in harmonic analysis, Pure Appl. Math. 123, Academic Press, New York, 1986.
- [16] A. Torchinsky and S. Wang, A note on the Marcinkiewicz integral, Colloq. Math. 60/61 (1990), 235–243.