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Herz and Herz type Hardy spaces estimates
of multilinear integral operators for the
extreme cases
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Abstract
In this paper, the endpoint estimates for some multilinear operators
related to certain fractional singular integral operators on Herz and Herz
type Hardy spaces are obtained.
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1. Introduction and notations

Let T be the Calderén-Zygmund singular integral operator and b €
BMO(R™), a classical result of Coifman, Rochberg and Weiss (see [6]) states
that the commutator [b,T]f = T(bf) — bT f is bounded on LP(R™) for 1 < p <
oo. Chanillo (see [1]) proves a similar result when T is replaced by the fractional
integral operator. In [10], the boundedness properties of the commutators for
the extreme values of p are obtained. In recent years, the theory of Herz space
and Herz type Hardy space, as a local version of Lebesgue space and Hardy
space, have been developed (see [8], [9], [12], [13]). The main purpose of this
paper is to establish the endpoint continuity properties of some multilinear
operators related to certain non-convolution type fractional singular integral
operators on Herz and Herz type Hardy spaces.

First, let us introduce some notations(see [8], [9], [12], [13], [14]). Through-
out this paper, () will denote a cube of R™ with sides parallel to the axes. For
a cube @ and a locally integrable function f, let fo = |Q|™! fQ f(z)dz and

f#(z) = sup |Q| ! fQ |f(y)—foldy. Moreover, f issaid to belong to BMO(R™)
z€Q

if f# € L™ and define || f||amo = [|f#|L~; We also define the central BMO
space by CMO(R™), which is the space of those functions f € Lj,.(R™) such
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that
I£lleso =suwlQO.N " [ 1) = foldy < .
r>1 Q

It is well-known that (see [9], [14])
|flearo ~ sup inf [Q(0, )]~ / (@) - cldz.
r>1c€C Q

Definition 1. Let 0 < d <n and 1 < p < n/d. We shall call Bg(R")
the space of those functions f on R™ such that

B = B o Q. liLy :
1£llg = supr=" /2= fxqollur < o0

For k € Z, define By = {x € R" : |x| < 2"} and Cy = By \ Br_1. Denote
by xx the characteristic function of Cj, and x the characteristic function of C},
for £ > 1 and yg the characteristic function of By.

Definition 2.  Let 0 <p < oo and a € R.
(1) The homogeneous Herz space K, (R") is defined by

K (R") = {f € L, (R"\{0}) | fll e < o0},

where

o0

Illig = D 25N xkllees

k=—o00
2) The nonhomogeneous Herz space K(R"™) is defined by
P
Ky (R") ={f € Li,o(R") : |l g < o0},

loc

where

(o}

kg =D 250 f Rl o

k=0

If o = n(1 — 1/p), we denote that K(R") = K,(R"), K(R") = K,(R").

Definition 3. Let 1 <p < o0. .
(1) The homogeneous Herz type Hardy space HK,(R") is defined by

HE,(R") ={f € §'(R") : G(f) € K,(R")},
and

1k, = IGHk,;
(2) The nonhomogeneous Herz type Hardy space HK,(R") is defined by
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Ky(R") = {f € S'(R") : G(f) € Kp(R")},

and

[, = 1G(Pllx,;

where G(f) is the grand maximal function of f.
The Herz type Hardy spaces have the atomic decomposition characteriza-
tion.

Definition 4. Let 1 < p < co. A function a(z) on R™ is called a central
(n(1 —1/p),p)-atom (or a central (n(1 — 1/p),p)-atom of restrict type), if
1) Suppa C B(0,r) for some r > 0 (or for some r > 1);
2l < 15O,
3) [pn a(z)dz = 0.

Lemma 1 (see [9], [13]). Let 1 < p < oco. A temperate distribution f
belongs to HK,(R")(or HK,(R™)) if and only if there exist central (n(1 —
1/p), p)-atoms (or central (n(1 — 1/p), p)-atoms of restrict type) a; supported
on B; = B(0,27) and constants \;, >_;1Aj| < oo such that f = > Aay

(or f =372 Njaj) in the S'(R") sense, and

j=—00

1 Vg, Cor fllzrse,) = Y Il
i

2. Theorems

In this paper, we will consider a class of multilinear operators related to
some integral operators, whose definition are following.

Let A > 1,4 > 0 and m be a fixed positive integer and A be a function on
R™. We denote that

Ry1(4;2,y) Z *DBA —y)’
\ﬁ\<m
and
Qm+1(4;2,y) = Rpn(A;2,y) Z *DBA -y)’.
1Bl=

Definition 5. Let ¢ > 0 and ¢ be a fixed function which satisfies the
following properties
1) [pn ¥(x)dz =0,
( ()| < C(1 + Jaf) =10,
(3) [z +y) — v(2)] < Cly|* (1 + |2]) =" T1+7%) when 2[y| < |z];
The multilinear Littlewood-Paley operator is defined by

1/2

B t K dydt
x)—[/ foo () FADEDPRE |
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where

(2)¢i(y — 2)

FAD @) = [ T

and ) (x) =t~ 0(x/t) for t > 0. Set Fy1(f)(y) = f * ¥:(y). We also define

that
B t " Jdyde )
@ = ([ [ (o) Fa0eriE)

which is the Littlewood-Paley operator (see [15]).
Let H; be the Hilbert space Hy={h : |[h||=([ [pn+1 |h(y, t)?dydt/t"+1)1/2
+

< o0}. Then for each fixed z € R", F} (f)(x,y) and Fy1(f)(y) may be viewed
as a mapping from (0,400) to Hy, and it is clear that

Rm+1 (Av z, Z)dZ

and

ni/2
R () = H(tﬂt—m) A @)

ni/2
(@) = H<t+lt—yl) Fia(£)w)

We also consider the variant of g;\q, which is defined by

(@) = [ /] (M;y')k FA () )P ] -

where

FAG @y = [ GmtBnd)
" 7 R o=z

Yi(y — 2) f(2)dz.

Definition 6. Let 0 <~y <1 and 2 be homogeneous of degree zero on
R™ such that [g, , Q(a')do(z’) = 0. Assume that Q € Lip,(S™!), that is
there exists a constant M > 0 such that for any z,y € S"~1, |Q(z) — Q(y)| <
M|z — y|”. We denote that I'(z) = {(y,t) € R{"' : |z —y| < t} and the
characteristic of I'(z) by xpr(y). The multilinear Marcinkiewicz integral operator
is defined by

n dud 1/2
uﬁ‘(f)(x)V Lo Gaey) i@l sls|

where

Fo(f)(w,y) = / My —2) Rnn(diz, Z)f(z)dz

ly—=z|<t |y - Z|n7175 |£C - Z‘m
We denote that

Fal = [ U

y—zl<t Y

f(z)dz.
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We also define that

() () = ( /.. (H';_M)A FualF) )22 >/

which is the Marcinkiewicz integral operator(see [16]).
Let H, be the Hilbert space Hy={h : ||h||= ([ [pn+1|k(y, t)|*dydt/t"+3)1/2
+

< oo}, then for each fixed # € R", F/,(f)(x,y) and Fy2(f)(y) may be viewed
as a mapping from (0,400) to Ha, and it is clear that

and

n ni/2
i) = H(Hl_y) FA()ay)

ni/2
pA()(@) = H(mt—y) Fia(f))

The variant of uj{‘ is defined by

A 1/2
uf(fxx):V Lo ) |th‘2<f><x,y>2§f§’f§] ,

where

= . Q(y - Z) Qerl(A;xv Z)
G e S e

ly

f(z)dz.

More generally, we consider the following multilinear operators related to cer-
tain convolution operators.

Definition 7.  Let F(z,t) define on R" x [0, +00), we denote that

F(f)(z) = / F(z —y.0)f(y)dy

n

and
FAN@ = [ S by )y

Let H be the normed space H = {h : ||h|| < oo}. For each fixed z € R",
we view Fy(f)(z) and F2(f)(z) as a mapping from [0, +00) to H. Then, the
multilinear operator related to F; is defined by

TA(f) (@) = [FA () @)1

We also define that T'(f)(z) = || F:(f)(z)]].
It is clear that Definition 5 and 6 are the particular examples of Definition
7. Note that when m = 0, T is just the commutator of 7" and A(see [11], [16]).
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It is well known that multilinear operator, as a non-trivial extension of the com-
mutator, is of great interest in harmonic analysis and has been widely studied
by many authors(see [3]-[5]). In [7], the weighted L?(p > 1)-boundedness of the
multilinear operator related to some singular integral operator are obtained; In
[2], the weak (H', L')-boundedness of the multilinear operator related to some
singular integral operator are obtained. In this paper, we will establish the
endpoint continuity properties of the multilinear operators gj\4 and Q‘A“, ,uf and
ﬂf on Herz and Herz type Hardy spaces.
We shall prove the following theorems in Section 3.

Theorem 1. Let 0 < § < n, 1 < p < n/§ and D’A € BMO(R")
for all B with |3 = m. Then g3 and p3 all map Bg(R”) continuously into
CMO(R").

Theorem 2. 0<d<n,1<p<n/d,1/g=1/p—3d/n and DPBA €
BMO(R") for all 3 with |3| = m. Then g5 and i3 all map HK,(R") (or
HEK,(R")) continuously into Kg(R™)(or K'(R")) with a =n(1 —1/p).

Theorem 3. Let0<§<n,1<p<n/§and D’A € BMO(R") for

all B with |8 = m.
(1) If for any cube Q and u € 3Q\ 2Q), there is a constant C' > 0 such that

1 ¢ n\/2 1
QI /Q (t+|xy|) > @IDﬁA(az) —(DPA)q|

|Bl=m

_ \B
y / u¢t(y —2)f(2)dz||dx < CHf||Bg7
(4

Q) |u—z™

then G3t maps Bg(R”) continuously into CMO(R™).
(i) If for any cube Q and u € 3Q\ 2Q, there is a constant C > 0 such that

1 ¢ n\/2 1
bl G X it - o)

|Bl=m
u—2z)P Qy — 2)xr) (Y, 1)
X/(4Q) |(uz|)m |yiz|n,(1),5 f(z)dz|| da < C||f| 5s

then iyl maps Bg(R”) continuously into CMO(R™).

3. Proofs of theorems
We begin with the following

Main Theorem. Let0<§<n,1<p<n/§ and D’°A € BMO(R")
for all B with |3] = m. Suppose that T? is the same as in Definition T such
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that T is bounded from LP(R™) to LY(R™) for any p,q € (1,4+00) with 1/q =
1/p—6/n. If T4 satisfies the cancellation condition:

IEL () (@) = FAD ) < Cll Nl

for any cube Q = Q(0,d) with d > 1, suppf C (2Q)¢ and x € Q. Then T is
bounded from By(R") to CMO(R™).

To prove the theorem, we need the following lemma.

Lemma 2 (see [5]).  Let A be a function on R™ and DPA € Li(R™) for
|B] = m and some q¢ > n. Then

1/q
1
|Rin(4;2,y)| < Clz —y[™ Z (M /@( )|D5A(Z)|qd2> ;
) z,Y

|Bl=m
where Q(x,y) is the cube centered at x and having side length 5v/nlx — y|.

Proof of Main Theorem. We have to prove that there exists a constant
C¢ such that

ﬁ/ ITA(f)(z) — Coldx < Clifliss

holds for any cube @ = Q(0,d) with d > 1. le a cube Q = Q(0,d) with d > 1.
Let Q = 5y/nQ and A(z) = A(z) — 3 (DBA)Qxﬂ then R, (A;x,y) =

gim ”
R (A;z,y) and DPA = DPA — (DﬁA) for all 8 with || = m. We write, for
fi=Fxg and fa = fxpm\o:

P = [ D )y

no |z —ylm

+ / MF(CE —y,t)f1(y)dy

Iw —ym

(x — L.
- ¥ g T A e,

-’I/‘ _ m
161= | y'

then

T (@) = TA) )| = [IFAD @I = IF O

> ﬁ' ( :l)’:DﬁAfl) (x)’

181=
+IIEA(F2) (@) = FA(F2)O0)]| = I(@) + () + 11 (x),
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thus

o1 [ -0

v)ds + — /II )dw + — /III )dx = I+ IT+1I1.
IQI/ [Ql [Ql

Now, let us estimate I, IT and 111, respectively. First, for x € Q and y € Q.
using Lemma 2, we get

R (A;z,y) < Clz —y|™ Z |IDP Al sros
|Bl=m

thus, by the LP(R"™) to LY(R™) boundedness of T for 1 < p,q < oo with
1/g=1/p—4d/n, we get

I< @ ( Z |DﬁA||BMOf1) (z)|dz

|B|=m

1/q
<C > ||D5A||BMO(|Q/ IT(f1)(x |qu>

18l=

<C Z ID? AllBarolQ1™ ) f1ll e
|B]=m

<C > DAl saod " MPM | fxaq e
[B]|=m

<C Y |D°Alsumollfllss-
|Bl=m.

Secondly, taking ¢,r, s > 1 such that 1/r = 1/s — §/n, gs < p, then by the L?
to L"-boundedness of T' and Holder’s inequality, denoting that 1/¢+1/¢' =1,
we gain

PA—(DPA) z)|dz
II<‘Q|/|T p2 (DA — (D" A)5) f1)(@)ld

<c Y <Q| / T(DP A - (D A), >1><x>rdz>1/r

|Bl=

<c 3 e ([10%a60) - ) >1<x>|8dx)1/s

1Bl=

1 sq 1/(‘15)
<o ¥ e [ 1) = (07 g dw) ( [ 156 o)

|Bl=m

1/p
<C Z HDﬁAHBMo|Q|1/ 5q") Q|- 1/r </ |f1(z pdx) |Q|(p7qs)/(pqs)
1Bl=
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<C Y D Aol QPP fxo e

|B|=m
<¢ 3 1D° Alsarol fll .

|B|=m
For II1, using the cancellation condition of T, we know 111 < CHf”Bg- This
completes the proof of Main Theorem. O

To prove Theorem 1, 2 and 3, we need the following lemma.

Lemma 3. LetO<d<n,1<p<n/s, 1/qg=1/p—5/n and DPA ¢
BMO(R") for all B with |3| = m. Then g3 and u3l are all bounded from
LP(R™) to L4(R™).

Proof. For gf, by Minkowski’s inequality and the conditions of v, we get
9% (f)(@)

1/2
|f(2) [ Bmt1(A; 2, 2)| / t " o dydt
< - _
f/n |z — 2| Rt t+ |z —y W}t(y Z)| irn dz

[f () B i1 (A; 2, 2)]
Rr |z — 2™

1/2
y /OO/ t nA t72n+26 dydt / J
z
o Jre \t+lz—yl) (Q+y—z|/t)+2-20¢ttn

|f ()| Rm+1(A; 2, 2)|
R" |z — 2™

o0 t ni d 1/2
-n Y
) Vo (t / (t + o — yl) (t+ 1]y — ZI)Q’”“‘S) tdt] =

noting that

t A dy 1
" <CM
o (e31) e = ()
C

<
= (t+ |w — 2[)2n 228

<C

<C

(where Mg denotes the Hardy-Littlwood maximal function of g) and

= tdt —2n+425
/0 (t+ [z — 2[)2n 22— Clo — 27,

we obtain

|f ()| Rmt1(A; 2, 2) /°° tdt 1/2dz
n |z — z|™ o (t+|z—z|)2nt+2-2

|f(2)[|[ Bnt1 (A; 2, 2))|
|(E _ Z|m+n76

(@) < C /

=C dz.

R n
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For y4, notice that |z —2| < 2t, |y—z| > [z —2|—t > |r—2z|—3t when |z —y| < t,
ly —z| <t,and |z — 2| < t(1 4+ 2FF1) <2842t |y — 2| > |2 — 2| — 2F+3t when
|z —y| < 2+t |y — 2| < t, we obtain

pa (f)(@)

¢ ni
<Jo 1) Lo Grm)
R» R t+[x —y

1/2
19 = 21 B 1 (A2, 2SN dydt
< (PR womails) o

[Bin 1 (A5 2, 2) || f(2)]

<C
~ Jrn |z — 2™
. 1/2
. /00/ t A Xr(z) (Y1) dydt|
0 Jj—ylze \tHl—yl)  (Jw— 2| = 3t)nm20m2 gt
+ C ‘Rm—i-l(A;xa Z)||f(Z)|
R™ ‘x - Zlm
) n —n—: 1/2
" /OO Z/ ( t ) A XF(z)(yat)t ddydt dz
0 L—oY2Ft<|z—y|<2k 1t t+ |z —yl (lz — 2| — 2k+3¢)2n—20-2
1/2
<C |Rini1(A; 2, 2)| f(2)] /Oo dt dz
- Rn |1' — Z|m+1/2 |z—z|/2 (|$ - Z| - 3t)2n_26
Rn |z — z|m+1/2
N 1/2
o0 2k dt
2—k:n)\ th ng=n d
X kz_:o/g—2—k|w—z ( ) (|.23 . Z| _ 2k+3t)2n—26‘| z

Ry |z — z|mtn—o

- 1/2
|Rin1(As 2, 2) || f(2)] kn(1=))
2 n
+C - [ — 2= dz kz_o

‘R’rn-i-l(A;‘r? Z)' |f(Z)‘dZ

=C

g |T— 2mAn—d

Thus, the lemma follows from [7]. O

Proof of Theorem 1. From Lemma 3, we know that g and p are bounded
from LP(R™) to LY(R"™) for 1 <p <n/d and 1/¢ = 1/p — §/n. Now, it suffices
to verify that gf} and uf\‘ satisfy the cancellation condition in Main Theorem,
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that is

< C|fllps for j =1,2.

Let suppf C (2Q(0,d))¢ and A(z) = A(z) — |,3\z—: L(DPA)ga”.

Q|

For g;\“, we write, for = € Q,

(t__y>“k/2}§ﬁ(f?(m,y)~— ( ! )nx/Qlﬁﬁ(jj(O’y)

t+ |z t+yl

_ (t>"w [ [ - o] et - ARz 15200

t+]r -y [z — 2™z

t nA/2 Uiy — 2)f(2) - -
() o ) R,

o ( t )"”l( t )"*/T Yely = )R (4:0,2)f(2) |
e

t+ |z —y t+ lyl |2|™
B ) T )
w:mﬂ! n |\t + |z =yl |z — z|™ t+ |yl |2|™

x i (y — z)Dﬁfl(z)f(z)dz
= I (z) + IL(x) + Ii(x) + Ii(x).

Note that |z — z| ~ |z] for x € @ and z € R" \ 2Q, by Lemma 2 and the
following inequality(see[14])

b@, — ba,| < Clog(|Q2|/[Q1N)[Ibll Bro, forQy C Q2,

we know that, for z € Q and y € 2871Q \ 2FQ,

|Rin(A;2,y)| < Cle —y™ D (IDAllsao + (D A) gy — (D7 A)ql)
|8l=m
< Cklz—y|™ D ID°Alsmo-
|B|=m
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Thus, similar to the proof of Lemma 3, we obtain

z||f(z -
L@ < C/ \2Q |z||”L|-m+3| 5 1Bm (A; 2, 2)|dz
2l
- CZ »/2k+1Q\2kQ W'RWL(A?JC’ Z)|d2

ey HDﬂAHBMoZ s N

1= TNt

<C Z HDﬁAHBMOZ:k2 (28d) =20 fxonglle
|Bl=

<0 Y 1D Also S k2Kl

|Bl=m k=1

<C Y 1D Allsaolflz;.
|B]l=m

For Ii(z), by the formula (see [5]):

and Lemma 2, we get

<C Y ID?Allumo [z =™+ Y Jwo— 2™ Ma — x|

|B]=m 0<|y|<m

thus, similar to the estimates of If(x) and Lemma 3, we get, for x € Q

I@l<c Y HDﬂAnBMoZ / el p

= 2z |2

<C Y 1D Allgmollf s
|Bl=m

For I%(x), by the inequality: a'/? — b'/2 < (a — b)"/? for a > b > 0, we obtain,
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similar to the estimate of Lemma 3 and Iy,
125 (2)

1/2
$7N/2) | 1/2 _ 3 2 ot

<c / / [ 2] |¢t(<yk+1;>2||f<z>|Rm(A;O7Z)@ vt) .
R\2Q \JRIH! (t+ |z —y|)» |2|m m

/()22 R (4; 0, 2)]

R™M\2Q |z|™

n 1/2
y / / ( t > Al t=dydt o
rr+t \T+ |z —y (t+ |y — 2|)2n+2-20

1/2 A. 0o 1/2
< C/ [f ()| Rm (40, )| </ dt ) .
 JrRm2qQ |2|™ o (t+ |z —z[)2t2-20

-0 [F@)2]* | Rin(A50,2)]
> R™\20 |Z|m+n+1/2—5

<C

<C Y IDPAllpmo Y272 (@28d) TP g e
|81=m k=1

<C Y ID°Allsmol|f 11 ss-
|Bl=m

For I}(z), similar to the estimates of I}(z) and Ii(z), by Holder’s inequality,
we get

It@i<c Y 2/2

|Bl=m k=1"2"11@\2"Q (

<C > i(r’“ +2772)(28q) /P

] 2] /2 -
s+ s ) 127 AW W)y

|B]=m k=1
1 5 5 , 1/p'
% (M 2k+1Q |D A(y) N (D A)Q|p dy) ||fX2k'+1Q||LP
o0
<C Z ||DﬁAHBMo Z(Qik + 27k/2)(2kd)*”(1/1’*5/n) HfX2k+1QHLP
<C Y ID°Allsrol £ ss-
|B]=m

Thus

||(t+|t>"mptﬁ<f><x,y>—( t )nA/Qth‘l(f)(o,y)

—_— <CO|fllgs-
z —yl t+yl B
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For Mf, we write, for z € Q,

(Hé_y')/ FA () — (tfw)/ FAN0.9)

/ [ 1 ]< t )"*/2 Qy = 2)Ru(diz,2)f(2)
w—si<t Ll =2 [z ]\t + |z — g e

n\/2 Qy — 2)f(2) - .
/y z|<t (t +lz— y|) —1- [Rim(A;2,2) — Rip(4;0, 2)]dz

ly — z[*7 1700

/ ( )"”{( t )“*/2 Oy = 2)Rn(A30,2)f(2) |
ly—z1<t |\t + |z =y t+ ly| ly — 2|10 2™
S ) )
|=m ly—z|<t t+‘$—y| |x_z|m t+|y| |Z|m
0l - DA ]
[y— a5
= Ji(x) + J3(x) + J5(2) + Ji(@).
Similar to the proof of Lemma 3 and g{', we obtain
{2)ll<C G g (Aiw2)dz <0 Y DA
1@l < | Ru(Aiz,2)ldz < C Y D% Allarollf s
R™\2Q || \B/=m
and
|z
|B@I<C 3 1D Ao / 7()ld
’ ﬂz—m Z preiguarg [0

<C Z ||DﬁA||BMO||fHBg~
|Bl=m

For Ji(z), similar to the estimates of Lemma 3 and I%(x), we obtain

(@)l < C [ P
r2Q \Jrrt L(E+ |z —yl)

IR = e @) rdydt>”2dz

= 0 G

|f(2)||Rin (450, 2) || /2
R™\2Q |z|™

ni+1 ,—n 1/2
t t 2y, t

x // < ) XF;’%’ 2)5dydt dz
AN ] ly — 2?2

<C
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S B (430, 2) ]2

<C
R™\20 |Z|m+n+1/275
<C > ID’Alsyoll ;-
|B]=m

For J}(z), similar to the proof of J{(z), Ji(z) and I}(x), we obtain

i@l <c Y Z/

( || j|'/2
|B]=m k=172 Q\2"Q

I
|y‘n+175 + |y|”+1/2—5> |D”A(y) | f(y)|dy

(oo}
<C Y IDPAllpmo Y k(QR7F 4+ 2752)(28d) AP el e

|B]=m k=1
<C Y ID°Allsmollf | s5-
|Bl=m
Thus
¢ nA/2 B ¢ n\/2 B
H () F0en - (5m)  FANOD)| < Clflag
These yield the desired results and complete the proof of Theorem 1. O

Proof of Theorem 2. We only give the proof on homogeneous weighted
Herz and Herz Hardy space. To be simply, we denote T)‘f‘ = gf or /lf\‘. Let
f € HK,(R"), by Lemma 1, f = Z;i_oo Ajaj, where ajs are the central
(n(1 —1/p),p)-atom with suppa; C B; = B(0,2) and || fll 55, = >_; [;]. We
write

I3 ()l s = Z 25|\ T () | o

k=—oc0
< Z ke Z INRT (@) || e + Z Q’WZM w5 (a;)]| Lo
k=—o00 j=—o00 k=—o00

=L+ LL.

For LL, by the following equality

(@~ y)?(D° A(x) - DP A(y),

Qmi1(A;z,y) = Rppa (A, y) + Y 3!

|Bl=m

we have, similar to the proof of Lemma 3,

B A(x) — DB
D7 A() yﬁ_g“(y)'u(y)uy,
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thus, 75! is bounded from LP(R") to LY(R") for 1 < p < n/§ with 1/q =
1/p —d/n by Lemma 3 and [1]. We see that

sy 2’“‘Z|A oyl < 32 2001/ S g jp-an1-1/0
j=k

k=—o0 k=—00

<C Z Al Z k=n1=1/n) < ¢ Z NI < Clfllpk,-

j=o0  k=—o0 j=—oo

To estimate L, we denote that A(x) = A(z) — 2 181=m %(DBA)QBJLEE. Then
y)?DP A(x).

For gf}, we write, by the vanishing moment of a and for x € By with
k>j41,

Ffi(aj)(@,y) = - Yely ;c)— Z|EnA - Z)aj(z)dz
by — 2)DPA() (@ — 2)°
w\ 7, P! / o — 2™ %3(2)dz
_ / l%(y — Z)Rm(jl;m,z) 3 ’(/)t(y)Rm(A;l‘,O)] 0, (2)dz
n |l — z|™ |2z|™ J

> ﬂ'/ s - - Blne ﬁ]D"Au)aj(z)dz,

1Bl=

similar to the proof of Lemma 3 and Theorem 1, we obtain

154 (a5) (2, )]

|2 |2|1/? _
<C || mtntl + [tz |Ry(4; 2, 2)||aj(2)|dz

2 22 7, sa
+C Z e+ igeris | ID7A@)les(2)1d

3 2J 93/2
< CWZ | D" Al Bamo [2k<n+15) + 2k(n+1/25)}

27 21/2 .
B
+C Z [2k(n+1—6) + 2k(n+1/2_5):| |D”A()],
|Bl=m
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thus
0o k—1
L<C Y [DPAlsuo Y, 201 N |
|Bl=m k=—oc0 j=—o00
) o
[ 97 N 23/ } e
ok(n+1-6) | 9k(n+1/2-5)
0o k—1
LD SEEETD wi
|B|l=m k=—o0 j=—o00

9J 2i/2 830 \ia 1/q
x [Qk(n+15) + 2k(n+1/25):| (/Bk |D" A(z)] dx)

00 k—1 P ;
2J 27/2
B kn(1—6/n .
<C > ID%Allswo Y, 20 | {Qk(m& + ST

|B]=m k=—oc0 j=—o00
<C Z |DP Al garo Z I\ Z [29—k 4 2 =k)/2]
18]= j=—o00 k=j+1
<C Z ||DBAHBMO Z A <C Z ”DﬁA”BMO”f”HKP-
|Bl=m j=—o0 [B|l=m

A same argument as in the proof of Theorem 1 will give the proof of ﬁf, we
omit the details. This completes the proof of Theorem 2. O

Proof of Theorem 3. We only give the proof of g;“. For any cube Q =
Q(0,d) with d > 1, let f € By(w) and A(z) = A(z) — > é(DﬁA)Q:UB. We
|Bl=m
write, for f = fxaq + fXug) = f1 + f2 and u € 3Q \ 20,

~ ~ Rm(fl; x,z)

F{f‘l(f)(x, y) = FA(A)(,y) + T Uiy — 2) fo(2)dz

_ ey a (x_z)a_(u_z) — 2
> Lwraw-wrao) [ | 2ty - 210

[z — 2™ Ju—

1 « o (U—Z)
- 3 S0t - D) [ =i - ) h(e

(@) — s (Wf) (0)

¢ n\/2 ~
= |H <t+|x—y|> FA(f)(x,y)
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t\"™Y? Ry (4;0,-)
"(mm) F( BE f2>(°)|
tN t O\ Ru(430,)
§’<t+|x_y|> A - (57 F( = f2><o>

¢ ni/2
< ‘ <t—|—|:v—y|> tl(fl)(x Y)
+

t ni/2 Rm (/L .. Z)

(t+xy|) /n th(y —2)
t ni/2 Rm(A7 072)

B (H—y|) Rn |Z|mwt(_z)] f2(2)dz

¢ n\/2 1 5 5
(=) 3 (0% - (D410

A =i e

_|_

" L ipa DPA
+ <+|x—y|) 3 D7) - (DA
x /n |u—z|m (v = 2)fa(2)dz

= My (z) + Ma(x) + Ms(z, u) + Ma(z, ).

By the the LP(R™) to L(R"™)-boundedness of g§ for 1 < p < n/§ with 1/q =
1/p—d/n, we get

1/q
q
|@|/M1 dm<c<|@|/'” f dw)

< ClRI™V 4| fillzr < Cllfllss;

Similar to the proof of Theorem 1, we obtain
1
o [ Maa)de < €l
Q| Q P
and
1
o [ Malz,u)de < Ol
QI Jq
Thus, using the estimates of My(z,w), we obtain

(@) — o1 (Wf) ()| dz < Clflns.
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This completes the proof of Theorem 3. O
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