A note on homotopy normality of H-spaces

By
Osamu Nishimura

1. Introduction

Let X be an H-space, G a homotopy associative H-space, and $f: X \rightarrow G$ an H-map. Let $\gamma: G \wedge G \rightarrow G$ be the commutator map. (As is well known, G is group-like.) Recall that f is called to be homotopy normal (in the sense of James) if there exists a map $\lambda: G \wedge X \rightarrow X$ such that $f \circ \lambda$ is homotopic to $\gamma \circ(1 \wedge f)$. (See James [2].)

Localizing spaces and maps concerned at a prime p, we may also consider mod p homotopy normality.

The concept of $(\bmod p)$ homotopy normality is closely related to that of Samelson products of homotopy groups. In fact, if $f: X \rightarrow G$ is $(\bmod p)$ homotopy normal, then all Samelson products (localized at p) from $\pi_{k}(G) \times$ $f_{*}\left(\pi_{l}(X)\right) \subset \pi_{k}(G) \times \pi_{l}(G)$ to $\pi_{k+l}(G)$ lie in $f_{*}\left(\pi_{k+l}(X)\right)$. In [4], Kono and the author studied $\bmod p$ homotopy normality by using the $\bmod p$ homology map of the adjoint action on the space of loops, and showed that in many cases for G a compact, 1-connected, simple, exceptional Lie group which has integral p-torsion and H a Lie subgroup of G, the natural inclusion $i: H \hookrightarrow G$ is not $\bmod p$ homotopy normal.

In this paper, we give closer examination for $\bmod p$ homotopy normality of an H-map $f: X \rightarrow G$ restricting ourselves to the comparatively manageable case that $p=3$ and $G=F_{4}$ where F_{4} is the compact, connected, simple, exceptional Lie group of rank 4 . We show the following theorem.

Theorem 1.1. Let X be a mod $3 H$-space. If $f: X \rightarrow F_{4}$ is a $\bmod 3$ homotopy normal H-map and $H^{19}\left(X ; \mathbb{F}_{3}\right)$ consists of decomposable elements, then $f^{*}: H^{*}\left(F_{4} ; \mathbb{F}_{3}\right) \rightarrow H^{*}\left(X ; \mathbb{F}_{3}\right)$ is trivial or monomorphic.
Partly supported by research fellowships at Faculty of Science, Kyoto University Received July 3, 2006

Here, note that the inclusion of the unit group $* \hookrightarrow F_{4}$ and the identity map $1_{F_{4}}: F_{4} \rightarrow F_{4}$ satisfy the hypothesis in Theorem 1.1 and their mod 3 cohomology maps are trivial and monomorphic respectively.

It is easy to determine $\gamma^{*}: H^{*}\left(F_{4} ; \mathbb{F}_{3}\right) \rightarrow H^{*}\left(F_{4} \wedge F_{4} ; \mathbb{F}_{3}\right)$ and then, it is easy to see that if $f: X \rightarrow F_{4}$ is a $\bmod 3$ homotopy normal H-map and f^{*} is neither trivial nor monomorphic, then (there exists an indecomposable element in $H^{19}\left(X ; \mathbb{F}_{3}\right)$ by Theorem 1.1 and) $\operatorname{Im} f^{*}$ is isomorphic to one of the following exterior algebras where $\left|z_{j}\right|=j$:

$$
\begin{align*}
& \wedge\left(z_{11}\right) \tag{1.1}\\
& \wedge\left(z_{11}, z_{15}\right) \tag{1.2}\\
& \wedge\left(z_{3}, z_{11}\right) \tag{1.3}\\
& \wedge\left(z_{3}, z_{11}, z_{15}\right) \tag{1.4}\\
& \wedge\left(z_{3}, z_{7}, z_{11}, z_{15}\right) \tag{1.5}
\end{align*}
$$

Theorem 1.2. All these cases are realizable with f 's being loop maps.
The study of this paper is inspired by that of the papers [5], [6] written by Kudou and Yagita. They showed that if $f: X \rightarrow F_{4}$ is a mod 3 homotopy normal H-map and there exist no primitive elements in $H^{19}\left(X ; \mathbb{F}_{3}\right)$ (this hypothesis is weaker than that in Theorem 1.1, see Milnor-Moore [7]), then one of the following holds: (i) f^{*} is trivial, (ii) f^{*} is monomorphic, (iii) $\operatorname{Im} f^{*}$ is as (1.3) (in other words, $\operatorname{Im} f^{*} \cong H^{*}\left(G_{2} ; \mathbb{F}_{3}\right)$, see Mimura [8]), (iv) $\operatorname{Im} f^{*}$ is as (1.5) (in other words, $\operatorname{Im} f^{*} \cong H^{*}\left(\operatorname{Spin}(9) ; \mathbb{F}_{3}\right)$, also see [8]). Here, G_{2} is the compact, connected, simple, exceptional Lie group of rank 2. Also they asked whether or not the natural inclusions $G_{2} \hookrightarrow F_{4}$ and $\operatorname{Spin}(9) \hookrightarrow F_{4}$, of which the mod 3 cohomology maps are epimorphic, are mod 3 homotopy normal. Since $H^{19}\left(G_{2} ; \mathbb{F}_{3}\right)$ and $H^{19}\left(\operatorname{Spin}(9) ; \mathbb{F}_{3}\right)$ are trivial, Theorem 1.1 implies the following corollary.

Corollary 1.1. The natural inclusions $\operatorname{Spin}(9) \hookrightarrow F_{4}$ and $G_{2} \hookrightarrow F_{4}$ are not mod 3 homotopy normal.

This was first proved in [4].
This paper is organized as follows. In Section 2, we study the mod 3 cohomology map $\tilde{\gamma}^{*}$ where $\tilde{\gamma}: F_{4} \wedge F_{4} \rightarrow \tilde{F}_{4}$ is a lift of γ to \tilde{F}_{4}, the 3 -connective cover of F_{4}. In Section 3 , we study the $\bmod 3$ cohomology map $\hat{\gamma}^{*}$ where $\dot{\gamma}: F_{4} \wedge F_{4} \rightarrow$ \dot{F}_{4} is a lift of γ to \dot{F}_{4}, the homotopy fiber of a representative of the homotopy class corresponding to the generator $x_{8} \in H^{8}\left(F_{4} ; \mathbb{F}_{3}\right) \cong\left[F_{4}, K\left(\mathbb{F}_{3}, 8\right)\right]$. In Section 4, We use the results in Section 2 and Section 3 to prove Theorem 1.1. In Section 5, we prove Theorem 1.2.

All spaces and maps are localized at 3. Homology and cohomology are mod 3 unless otherwise stated. Let $\mathrm{I} H^{*}(-)$ denote the module which consists of the positive degree elements of $H^{*}(-)$. Let $\mathrm{D} H^{*}(-)=\mathrm{I} H^{*}(-) \cdot \mathrm{I} H^{*}(-)$, the decomposable module. Let $\mathrm{Q} H^{*}(-)=\mathrm{I} H^{*}(-) / \mathrm{D} H^{*}(-)$, the indecomposable module. If X is an H-space, then $\mathrm{Q} H^{*}(X)$ is dual to $\mathrm{P} H_{*}(X)$, the module
which consists of the primitive elements of $H_{*}(X)$. The subscript integer of an element of a graded module designates the degree.

The author expresses gratitude to Professor Akira Kono for his helpful advices and suggestions.

2. A lift of the commutator map to the 3 -connective cover

First we fix the notation and recall the data concerning F_{4}. Let $\mu: F_{4} \times$ $F_{4} \rightarrow F_{4}, \iota: F_{4} \rightarrow F_{4}$, and $\Delta: F_{4} \rightarrow F_{4} \times F_{4}$ denote the multiplication, the inverse, and the diagonal map of F_{4} respectively. Also let $q: F_{4} \times F_{4} \rightarrow F_{4} \wedge F_{4}$ and $T: F_{4} \wedge F_{4} \rightarrow F_{4} \wedge F_{4}$ denote the natural projection and the switching map respectively.

Recall that $H^{*}\left(F_{4}\right)=\mathbb{F}_{3}\left[x_{8}\right] /\left(x_{8}^{3}\right) \otimes \wedge\left(x_{3}, x_{7}, x_{11}, x_{15}\right)$. The cohomology operations in $H^{*}\left(F_{4}\right)$ are given by $\wp^{1} x_{3}=x_{7}, \beta x_{7}=x_{8}, \wp^{1} x_{11}=x_{15}$, and others. Let $\bar{\mu}^{*}$ be the reduced coproduct of $H^{*}\left(F_{4}\right): \bar{\mu}^{*}(x)=\mu^{*}(x)-x \otimes 1-1 \otimes x$ for $x \in H^{*}\left(F_{4}\right)$. The coalgebra structure of $H^{*}\left(F_{4}\right)$ is given by $\bar{\mu}^{*}\left(x_{j}\right)=0$ for $j=3,7,8$ and $\bar{\mu}^{*}\left(x_{j}\right)=x_{8} \otimes x_{j-8}$ for $j=11,15$. (For the detail of the above, see Mimura [8].)

Recall that the commutator map $\gamma: F_{4} \wedge F_{4} \rightarrow F_{4}$ is given by

$$
\gamma \circ q=\mu \circ(\mu \times 1) \circ(\mu \times 1 \times 1) \circ(1 \times 1 \times \iota \times \iota) \circ(1 \times T \times 1) \circ(\Delta \times \Delta)
$$

By the usual computation, we can easily show that $\gamma^{*}\left(x_{j}\right)=0$ for $j=3,7,8$ and $\gamma^{*}\left(x_{j}\right)=x_{8} \otimes x_{j-8}-x_{j-8} \otimes x_{8}$ for $j=11,15$.

Let $x_{3}^{\mathbb{Z}} \in H^{3}\left(F_{4} ; \mathbb{Z}\right)$ be the integral class of x_{3}, which is also regarded as an element in $\left[F_{4}, K(\mathbb{Z}, 3)\right]$ through the identification $H^{3}\left(F_{4} ; \mathbb{Z}\right) \cong\left[F_{4}, K(\mathbb{Z}, 3)\right]$. Let \tilde{F}_{4} be the homotopy fiber of a representative of the homotopy class $x_{3}^{\mathbb{Z}}$, which is the 3 -connective cover of F_{4}, and $\tilde{\pi}: \tilde{F}_{4} \rightarrow F_{4}$ the projection. Recall that the cohomology class $x_{3}^{\mathbb{Z}}$ is universally transgressive so that \tilde{F}_{4} is a loop space with the classifying space $B \tilde{F}_{4}$, the 4 -connective cover of $B F_{4}$. Let $\tilde{\mu}: \tilde{F}_{4} \times \tilde{F}_{4} \rightarrow \tilde{F}_{4}, \tilde{\iota}: \tilde{F}_{4} \rightarrow \tilde{F}_{4}$, and $\tilde{\Delta}: \tilde{F}_{4} \rightarrow \tilde{F}_{4} \times \tilde{F}_{4}$ denote the multiplication, the inverse, and the diagonal map of \tilde{F}_{4} respectively. Recall that by the Serre spectral sequence of $\mathbb{C} P^{\infty} \rightarrow \tilde{F}_{4} \xrightarrow{\tilde{\pi}} F_{4}$, we have $H^{*}\left(\tilde{F}_{4}\right)=$ $\mathbb{F}_{3}\left[\tilde{y}_{18}\right] \otimes \wedge\left(\tilde{x}_{11}, \tilde{x}_{15}, \tilde{y}_{19}, \tilde{y}_{23}\right)$ where $\tilde{x}_{j}=\tilde{\pi}^{*}\left(x_{j}\right)$. Then γ can be lifted to $\tilde{\gamma}: F_{4} \wedge F_{4} \rightarrow \tilde{F}_{4}$.

Let J be the ideal of $H^{*}\left(F_{4} \wedge F_{4}\right)$ generated by $\mathrm{I} H^{*}\left(F_{4}\right) \otimes \mathrm{D} H^{*}\left(F_{4}\right)$ and $\mathrm{D} H^{*}\left(F_{4}\right) \otimes \mathrm{I} H^{*}\left(F_{4}\right)$. (Here we think of the identification $\mathrm{IH}^{*}\left(F_{4} \wedge F_{4}\right) \cong$ $\mathrm{I} H^{*}\left(F_{4}\right) \otimes \mathrm{I} H^{*}\left(F_{4}\right)$.) It is clear that $\tilde{\gamma}^{*}\left(\tilde{y}_{19}\right)$ is a linear combination of $x_{8} \otimes x_{11}$ and $x_{11} \otimes x_{8} \bmod J$. We can easily see that

$$
\begin{equation*}
\tilde{\gamma} \circ T \simeq \tilde{\iota} \circ \tilde{\gamma}: F_{4} \wedge F_{4} \rightarrow \tilde{F}_{4} . \tag{2.1}
\end{equation*}
$$

Also we can easily see that $\tilde{\iota}^{*}\left(\tilde{y}_{19}\right)=-\tilde{y}_{19}$ and that $T^{*}(J) \subset J$. It follows from these that if we put

$$
\tilde{\gamma}^{*}\left(\tilde{y}_{19}\right) \equiv \alpha x_{8} \otimes x_{11}+\alpha^{\prime} x_{11} \otimes x_{8} \quad \bmod J
$$

where $\alpha, \alpha^{\prime} \in \mathbb{F}_{3}$ and apply the $\bmod 3$ cohomology maps of (2.1) to \tilde{y}_{19}, we have

$$
\alpha x_{11} \otimes x_{8}+\alpha^{\prime} x_{8} \otimes x_{11} \equiv-\alpha x_{8} \otimes x_{11}-\alpha^{\prime} x_{11} \otimes x_{8} \quad \bmod J
$$

and hence we have $\alpha^{\prime}=-\alpha$. Thus, we may put

$$
\tilde{\gamma}^{*}\left(\tilde{y}_{19}\right) \equiv \alpha\left(x_{8} \otimes x_{11}-x_{11} \otimes x_{8}\right) \quad \bmod J .
$$

Let $a_{j} \in \mathrm{P} H_{*}\left(F_{4}\right), \tilde{a}_{j} \in \mathrm{P} H_{*}\left(\tilde{F}_{4}\right)$, and $\tilde{b}_{j} \in \mathrm{P} H_{*}\left(\tilde{F}_{4}\right)$ be the dual elements of $\left\{x_{j}\right\} \in \mathrm{Q} H^{*}\left(F_{4}\right),\left\{\tilde{x}_{j}\right\} \in \mathrm{Q} H^{*}\left(\tilde{F}_{4}\right)$, and $\left\{\tilde{y}_{j}\right\} \in \mathrm{Q} H^{*}\left(\tilde{F}_{4}\right)$ respectively. By [9] and by considering the natural inclusion $F_{4} \hookrightarrow E_{6}$ (or by [10] and by considering the homology suspension $\left.\sigma: H_{*}\left(\Omega \tilde{F}_{4}\right) \rightarrow H_{*}\left(\tilde{F}_{4}\right)\right)$, we can choose \tilde{y}_{19} so that $\tilde{\operatorname{ad}}_{*}\left(a_{8} \otimes \tilde{a}_{11}\right)=\tilde{b}_{19}$ where ad: $F_{4} \times \tilde{F}_{4} \rightarrow \tilde{F}_{4}$ covers the adjoint action ad: $F_{4} \times$ $F_{4} \rightarrow F_{4}$. (See Kono-Kozima [3] and Hamanaka-Hara [1].) We can easily see that

$$
\tilde{\gamma} \circ q \circ(1 \times \tilde{\pi}) \simeq \tilde{\mu} \circ(\tilde{a d} \times \tilde{\iota}) \circ(1 \times \tilde{\Delta}): F_{4} \times \tilde{F}_{4} \rightarrow \tilde{F}_{4}
$$

Applying the mod 3 homology maps of these to $a_{8} \otimes \tilde{a}_{11}$, we have from the left hand side $\tilde{\gamma}_{*}\left(a_{8} \otimes a_{11}\right)$ and from the right hand side

$$
\tilde{\mu}_{*} \circ\left(\tilde{\mathrm{ad}}_{*} \otimes \tilde{\iota}_{*}\right)\left(a_{8} \otimes \tilde{a}_{11} \otimes 1+a_{8} \otimes 1 \otimes \tilde{a}_{11}\right)=\tilde{\mu}_{*}\left(\tilde{b}_{19} \otimes 1\right)=\tilde{b}_{19}
$$

(Recall that $\tilde{\mathrm{ad}}_{*}\left(a_{8} \otimes 1\right)=0$ by the general property of the adjoint action.) Thus, we have $\tilde{\gamma}_{*}\left(a_{8} \otimes a_{11}\right)=\tilde{b}_{19}$. Taking the pairing of this with \tilde{y}_{19}, we have from the left hand side

$$
\left\langle\tilde{y}_{19}, \tilde{\gamma}_{*}\left(a_{8} \otimes a_{11}\right)\right\rangle=\left\langle\tilde{\gamma}^{*}\left(\tilde{y}_{19}\right), a_{8} \otimes a_{11}\right\rangle=\left\langle\alpha\left(x_{8} \otimes x_{11}-x_{11} \otimes x_{8}\right), a_{8} \otimes a_{11}\right\rangle=\alpha
$$

and from the right hand side $\left\langle\tilde{y}_{19}, \tilde{b}_{19}\right\rangle=1$. (Note that the pairing of $a_{8} \otimes a_{11}$ with an element of J vanishes.) Thus, we have $\alpha=1$ and hence we have

$$
\begin{equation*}
\tilde{\gamma}^{*}\left(\tilde{y}_{19}\right) \equiv x_{8} \otimes x_{11}-x_{11} \otimes x_{8} \quad \bmod J \tag{2.2}
\end{equation*}
$$

We use this result later.
Remark 1. Making more efforts, we can determine $\tilde{\gamma}^{*}: H^{*}\left(\tilde{F}_{4}\right) \rightarrow$ $H^{*}\left(F_{4} \wedge F_{4}\right)$ completely. In fact, we have $\tilde{\gamma}^{*}\left(\tilde{x}_{j}\right)=\gamma^{*}\left(x_{j}\right)$, and in the same way as above, we can determine $\tilde{\gamma}^{*}\left(\tilde{y}_{j}\right) \bmod J$. Then, by algebraic computation based on the property of the commutator map, we can determine $\tilde{\gamma}^{*}\left(\tilde{y}_{j}\right)$ without $\bmod J$. We omit the detail.

3. A lift of the commutator map to another space

Recall that we have the cohomology class $x_{8} \in H^{8}\left(F_{4}\right)$, which is also regarded as an element in $\left[F_{4}, K\left(\mathbb{F}_{3}, 8\right)\right]$ through the identification $H^{8}\left(F_{4}\right) \cong$ $\left[F_{4}, K\left(\mathbb{F}_{3}, 8\right)\right]$. Let \dot{F}_{4} be the homotopy fiber of a representative of the homotopy class x_{8} and $\pi: \dot{F}_{4} \rightarrow F_{4}$ the projection. Let $u_{3} \in H^{3}(K(\mathbb{Z}, 3))$ be the fundamental class. Then we have $\beta_{\wp}{ }^{1} u_{3} \in H^{8}(K(\mathbb{Z}, 3)) \cong\left[K(\mathbb{Z}, 3), K\left(\mathbb{F}_{3}, 8\right)\right]$
and $\beta \wp^{1} u_{3} \circ x_{3}^{\mathbb{Z}}=\beta_{\wp}{ }^{1} x_{3}=x_{8}$ where we regard the elements as the appropriate homotopy classes. Also note that the cohomology class x_{8} as well as $x_{3}^{\mathbb{Z}}$ is universally transgressive. Thus, we have the following homotopy commutative diagram of loop spaces and loop maps. (Representatives of $x_{3}^{\mathbb{Z}}, x_{8}$, and $\beta_{\wp}{ }^{1} u_{3}$ are denoted by the same symbols respectively, and the maps π, \tilde{h}, and \hat{h} are defined in a obvious way.)

Here the horizontal arrows form homotopy fiber sequences.
Let $u_{j} \in H^{*}\left(K\left(\mathbb{F}_{3}, j\right)\right)$ be the fundamental classes for $j=7,8$. We can easily see that $\wp^{3} u_{7}$ is a permanent cycle in the Serre spectral sequence of $K\left(\mathbb{F}_{3}, 7\right) \xrightarrow{\dot{h}} \dot{F}_{4} \xrightarrow{\dot{\pi}} F_{4}$. Hence we can take $\dot{y}_{19} \in H^{*}\left(\dot{F}_{4}\right)$ so that $\dot{h}^{*}\left(\dot{y}_{19}\right)=\wp^{3} u_{7}$. Moreover, it is easy to see that y_{19} can be taken also to be transgressive and $\tau\left(\dot{y}_{19}\right)=\wp^{3} u_{8}$ in the Serre spectral sequence of $\dot{F}_{4} \xrightarrow{\frac{\pi}{\longrightarrow}} F_{4} \xrightarrow{x_{8}} K\left(\mathbb{F}_{3}, 8\right)$. Here, note that $\pi^{*}\left(y_{19}\right)$ is a scalar multiple of \tilde{y}_{19} and observe that \tilde{y}_{19} is transgressive and $\tau\left(\tilde{y}_{19}\right)= \pm \beta \wp^{3} \wp^{1} u_{3}= \pm \wp^{3} \beta \wp^{1} u_{3} \neq 0$ in the Serre spectral sequence of $\tilde{F}_{4} \xrightarrow{\tilde{\pi}} F_{4} \xrightarrow{x_{3}^{Z}} K(\mathbb{Z}, 3)$. Hence $\pi^{*}\left(y_{19}\right)$ is transgressive and $\tau\left(\pi^{*}\left(y_{19}\right)\right)$ is a scalar multiple of $\wp^{3} \beta \wp^{1} u_{3}$. Moreover, $\pi^{*}\left(y_{19}\right)$ is non-zero if and only if $\tau\left(\pi^{*}\left(y_{19}\right)\right)$ is non-zero. Then, $\tau\left(\pi^{*}\left(y_{19}\right)\right)$ is the image of $\tau\left(\dot{y}_{19}\right)=\wp^{3} u_{8}$ under the $\bmod 3$ cohomology map of $\beta \wp^{1} u_{3}: K(\mathbb{Z}, 3) \rightarrow K\left(\mathbb{F}_{3}, 8\right)$, and hence is $\wp^{3} \beta_{\wp}{ }^{1} u_{3} \neq 0$. Thus, we have $\pi^{*}\left(\dot{y}_{19}\right)= \pm \tilde{y}_{19}$.

Put $\dot{\gamma}=\pi \circ \tilde{\gamma}: F_{4} \wedge F_{4} \rightarrow \dot{F}_{4}$, which is a lift of γ to \dot{F}_{4}. By (2.2), we have

$$
\begin{align*}
\dot{\gamma}^{*}\left(\dot{y}_{19}\right) & =\tilde{\gamma}^{*} \circ \pi^{*}\left(y_{19}\right) \\
& = \pm \tilde{\gamma}^{*}\left(\tilde{y}_{19}\right) \tag{3.1}\\
& \equiv \pm\left(x_{8} \otimes x_{11}-x_{11} \otimes x_{8}\right) \quad \bmod J .
\end{align*}
$$

4. Proof of Theorem 1.1

First, for any map $g: Y \rightarrow F_{4}$, we have $\wp^{1} g^{*}\left(x_{3}\right)=g^{*}\left(x_{7}\right), \beta g^{*}\left(x_{7}\right)=$ $g^{*}\left(x_{8}\right)$, and $\wp^{1} g^{*}\left(x_{11}\right)=g^{*}\left(x_{15}\right)$. Thus, $g^{*}\left(x_{3}\right)=0$ implies $g^{*}\left(x_{7}\right)=0$, $g^{*}\left(x_{7}\right)=0$ implies $g^{*}\left(x_{8}\right)=0$, and $g^{*}\left(x_{11}\right)=0$ implies $g^{*}\left(x_{15}\right)=0$.

Next, let $f: X \rightarrow F_{4}$ be a $\bmod 3$ homotopy normal H-map. We have a map $\lambda: F_{4} \wedge X \rightarrow X$ such that $f \circ \lambda \simeq \gamma \circ(1 \wedge f): F_{4} \wedge X \rightarrow F_{4}$. For $j=11,15$, we have

$$
\begin{aligned}
\lambda^{*} \circ f^{*}\left(x_{j}\right) & =(1 \wedge f)^{*} \circ \gamma^{*}\left(x_{j}\right) \\
& =(1 \wedge f)^{*}\left(x_{8} \otimes x_{j-8}-x_{j-8} \otimes x_{8}\right) \\
& =x_{8} \otimes f^{*}\left(x_{j-8}\right)-x_{j-8} \otimes f^{*}\left(x_{8}\right)
\end{aligned}
$$

Thus, $f^{*}\left(x_{j}\right)=0$ implies $f^{*}\left(x_{j-8}\right)=0$ for $j=11,15$. Hence we can see that f^{*} is trivial if and only if $f^{*}\left(x_{11}\right)=0$. Moreover, considering the elementary theory of Hopf algebras (see Milnor-Moore [7]), we can see that f^{*} is monomorphic if and only if $f^{*}\left(x_{j}\right) \neq 0$ for any j if and only if $f^{*}\left(x_{8}\right) \neq 0$.

Now, suppose that $H^{19}(X)=\mathrm{D} H^{19}(X)$ (in other words, $\mathrm{Q} H^{19}(X)=0$), $f^{*}\left(x_{11}\right) \neq 0$, and $f^{*}\left(x_{8}\right)=0$. We show a contradiction. Since $f^{*}\left(x_{8}\right)=0$, we have a lift $f: X \rightarrow \dot{F}_{4}$ of f.

Then, since we have two lifts $\dot{f} \circ \lambda$ and $\dot{\gamma} \circ(1 \wedge f)$ of $f \circ \lambda \simeq \gamma \circ(1 \wedge f)$ to \dot{F}_{4}, there exists a map $\eta: F_{4} \wedge X \rightarrow K\left(\mathbb{F}_{3}, 7\right)$ such that $\dot{\gamma} \circ(1 \wedge f) \simeq \dot{f} \circ \lambda+h \circ \eta$.

In particular, we have

$$
\begin{equation*}
(1 \wedge f)^{*} \circ \hat{\gamma}^{*}\left(\dot{y}_{19}\right)=\lambda^{*} \circ \dot{f}^{*}\left(\dot{y}_{19}\right)+\eta^{*} \circ \hat{h}^{*}\left(\dot{y}_{19}\right) . \tag{4.1}
\end{equation*}
$$

Let J^{\prime} be the ideal of $H^{*}\left(F_{4} \wedge X\right)$ generated by $\mathrm{I} H^{*}\left(F_{4}\right) \otimes \mathrm{D} H^{*}(X)$ and $\mathrm{D} H^{*}\left(F_{4}\right) \otimes \mathrm{I} H^{*}(X)$. Note that $(1 \wedge f)^{*}(J) \subset J^{\prime}$. Hence by (3.1) and by $f^{*}\left(x_{8}\right)=0$, we have

$$
\begin{equation*}
(1 \wedge f)^{*} \circ \hat{\gamma}^{*}\left(y_{19}\right) \equiv \pm\left(x_{8} \otimes f^{*}\left(x_{11}\right)\right) \quad \bmod J^{\prime} . \tag{4.2}
\end{equation*}
$$

Also note that $\lambda^{*}\left(\mathrm{D} H^{*}(X)\right) \subset \mathrm{D} H^{*}\left(F_{4} \wedge X\right) \subset J^{\prime}$. Since $f^{*}\left(\dot{y}_{19}\right) \in H^{19}(X)=$ $\mathrm{D} H^{19}(X)$, we have

$$
\begin{equation*}
\lambda^{*} \circ f^{*}\left(y_{19}\right) \in J^{\prime} \tag{4.3}
\end{equation*}
$$

We may put $\eta^{*}\left(u_{7}\right)=x_{3} \otimes \zeta \in H^{3}\left(F_{4}\right) \otimes H^{4}(X)=H^{7}\left(F_{4} \wedge X\right)$. Since $\hat{h}^{*}\left(\dot{y}_{19}\right)=\wp^{3} u_{7}$, we have

$$
\begin{equation*}
\eta^{*} \circ \hat{h}^{*}\left(\dot{y}_{19}\right)=\wp^{3} \eta^{*}\left(u_{7}\right)=\wp^{3}\left(x_{3} \otimes \zeta\right)=x_{7} \otimes \zeta^{3} \in J^{\prime} \tag{4.4}
\end{equation*}
$$

Thus by (4.1), (4.2), (4.3), and (4.4), we have $x_{8} \otimes f^{*}\left(x_{11}\right) \in J^{\prime}$. However, $f^{*}\left(x_{11}\right) \neq 0$ is primitive (recall that f is an H-map and that $f^{*}\left(x_{8}\right)=0$) and hence is indecomposable (see Milnor-Moore [7]). It follows that $x_{8} \otimes f^{*}\left(x_{11}\right) \notin$ J^{\prime}. This is a contradiction.

5. Proof of Theorem 1.2

Let $f: X \rightarrow F_{4}$ be a mod 3 homotopy normal H-map. Because of the argument in the first two paragraphs of Section 4, and of the elementary theory of Hopf algebras (see Milnor-Moore [7]), we can see that if $f^{*}\left(x_{11}\right) \neq 0$ and $f^{*}\left(x_{8}\right)=0$, then $\operatorname{Im} f^{*}$ is isomorphic to one of (1.1)-(1.5) where $z_{j}=f^{*}\left(x_{j}\right) \neq$ 0 . We exhibit an example for each case with f being a loop map.

For (1.2) and (1.5), we have $\tilde{\pi}: \tilde{F}_{4} \rightarrow F_{4}$ and $\dot{\pi}: \dot{F}_{4} \rightarrow F_{4}$, respectively, which are loop maps. These are homotopy normal since γ has a lift $\tilde{\gamma}$ to \tilde{F}_{4} and a lift $\dot{\gamma}$ to \dot{F}_{4}. (See Kudou-Yagita [6].)

We know that $\tilde{\pi}^{*}\left(x_{j}\right)=0$ for $j=3,7,8$ and that $\tilde{\pi}^{*}\left(x_{j}\right)=\tilde{x}_{j} \neq 0$ for $j=$ 11,15 . By definition, we have $\pi^{*}\left(x_{8}\right)=0$ and by the Serre spectral sequence of $K\left(\mathbb{F}_{3}, 7\right) \xrightarrow{\dot{h}} \dot{F}_{4} \xrightarrow{\dot{\pi}} F_{4}$, we can easily see that $\dot{\pi}^{*}\left(x_{j}\right) \neq 0$ for $j=3,7,11,15$. Thus, $\operatorname{Im} \tilde{\pi}^{*}$ is as (1.2) and $\operatorname{Im} \tilde{\pi}^{*}$ is as (1.5).

For (1.1), let X_{1} be the homotopy fiber of a representative of the homotopy class $\tilde{x}_{15} \in H^{15}\left(\tilde{F}_{4}\right) \cong\left[\tilde{F}_{4}, K\left(\mathbb{F}_{3}, 15\right)\right]$ and $i_{1}: X_{1} \rightarrow \tilde{F}_{4}$ the projection. Put $f_{1}=\tilde{\pi} \circ i_{1}: X_{1} \rightarrow F_{4}$, which is a loop map. (Note that the cohomology class \tilde{x}_{15} is universally transgressive.) Since

$$
\left(1 \wedge f_{1}\right)^{*} \circ \tilde{\gamma}^{*}\left(\tilde{x}_{15}\right)=\left(1 \wedge i_{1}\right)^{*} \circ(1 \wedge \tilde{\pi})^{*}\left(x_{8} \otimes x_{7}-x_{7} \otimes x_{8}\right)=0
$$

the map $\tilde{\gamma} \circ\left(1 \wedge f_{1}\right): F_{4} \wedge X_{1} \rightarrow \tilde{F}_{4}$, which is a lift of $\gamma \circ\left(1 \wedge f_{1}\right): F_{4} \wedge X_{1} \rightarrow F_{4}$, has a lift to X_{1}.

Thus, f_{1} is homotopy normal. It is easy to see that $f_{1}^{*}\left(x_{j}\right)=0$ for $j \neq 11$ and that $f_{1}^{*}\left(x_{11}\right) \neq 0$. Thus, $\operatorname{Im} f_{1}^{*}$ is as (1.1).

For (1.4), let X_{2} be the homotopy fiber of a representative of the homotopy class $x_{7} \in H^{7}\left(F_{4}\right) \cong\left[F_{4}, K\left(\mathbb{F}_{3}, 7\right)\right]$ and $f_{2}: X_{2} \rightarrow F_{4}$ the projection, which is a loop map since the cohomology class x_{7} is universally transgressive. Then $\gamma^{*}\left(x_{7}\right)=0$ implies that γ has a lift $\grave{\gamma}: F_{4} \wedge F_{4} \rightarrow X_{2}$. Thus f_{2} is homotopy normal.

By the Serre spectral sequence of the fibering $K\left(\mathbb{F}_{3}, 6\right) \xrightarrow{h} X_{2} \xrightarrow{f_{2}} F_{4}$, we can see that $f_{2}^{*}\left(x_{j}\right)=0$ for $j=7,8$ and that $f_{2}^{*}\left(x_{j}\right) \neq 0$ for $j=3,11,15$. Thus, $\operatorname{Im} f_{2}^{*}$ is as (1.4). We can also see that $H^{*}\left(X_{2}\right)=\wedge\left(f_{2}^{*}\left(x_{3}\right)\right) \otimes \mathbb{F}_{3}\left[\xi_{10}\right]$ for $* \leq 10$ where $h^{*}\left(\xi_{10}\right) \neq 0$.

Finally, for (1.3), let X_{3} be the homotopy fiber of a representative of the homotopy class $f_{2}^{*}\left(x_{15}\right) \in H^{15}\left(X_{2}\right) \cong\left[X_{2}, K\left(\mathbb{F}_{3}, 15\right)\right]$ and $i_{3}: X_{3} \rightarrow X_{2}$ the projection. Put $f_{3}=f_{2} \circ i_{3}: X_{3} \rightarrow F_{4}$. By the Serre spectral sequence of $X_{2} \rightarrow * \rightarrow B X_{2}$, we know that $H^{*}\left(B X_{2}\right)=\mathbb{F}_{3}\left[\tau\left(f_{2}^{*}\left(x_{3}\right)\right)\right]$ for $* \leq 10$. Then we know that the cohomology class $f_{2}^{*}\left(x_{11}\right) \in H^{*}\left(X_{2}\right)$ is universally transgressive, and hence so is $f_{2}^{*}\left(x_{15}\right)=\wp^{1} f_{2}^{*}\left(x_{11}\right)$. It follows that i_{3} is a loop map, and hence so is f_{3}. By

$$
\left(1 \wedge f_{3}\right)^{*} \circ \grave{\gamma}^{*} \circ f_{2}^{*}\left(x_{15}\right)=\left(1 \wedge i_{3}\right)^{*} \circ\left(1 \wedge f_{2}\right)^{*} \circ \gamma^{*}\left(x_{15}\right)=0
$$

and by the same argument as that for f_{1}, the loop map f_{3} is homotopy normal.

It is easy to see that $f_{3}^{*}\left(x_{j}\right)=0$ for $j=7,8,15$ and that $f_{3}^{*}\left(x_{j}\right) \neq 0$ for $j=3,11$. Thus, $\operatorname{Im} f_{3}^{*}$ is as (1.3).

Department of Mathematics
Faculty of Science
Kyoto University
e-mail: osamu@math.kyoto-u.ac.jp

References

[1] H. Hamanaka and S. Hara, The mod 3 homology of the space of loops on the exceptional Lie groups and the adjoint action, J. Math. Kyoto Univ. 37-3 (1997), 441-453.
[2] I. M. James, On the homotopy theory of the classical groups, An. Acad. Brasil. Ci. 39 (1967) 39-44.
[3] A. Kono and K. Kozima, The adjoint action of a Lie group on the space of loops, J. Math. Soc. Japan 45-3 (1993), 495-510.
[4] A. Kono and O. Nishimura, Homotopy normality of Lie groups and the adjoint action, J. Math. Kyoto Univ. 43-3 (2003), 641-650.
[5] K. Kudou and N. Yagita, Modulo odd prime homotopy normality for H spaces, J. Math. Kyoto Univ. 38-4 (1998), 643-651.
[6] _, Note on homotopy normality and the n-connected fiber space, Kyushu J. Math. 55 (2001), 119-129.
[7] J. Milnor and C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264.
[8] M. Mimura, Homotopy theory of Lie groups, Handbook of algebraic topology, 951-991, North-Holland, Amsterdam, 1995.
[9] O. Nishimura, On the Hopf algebra structure of the mod 3 cohomology of the exceptional Lie group of type E_{6}, J. Math. Kyoto Univ. 39-4 (1999), 697-704.
[10] , On the homology of the Kac-Moody groups and the cohomology of the 3-connective covers of Lie groups, J. Math. Kyoto Univ. 42-1 (2002), 175-180.

