J. Math. Kyoto Univ. (JMKYAZ) 46-4 (2006), 913–921

A note on homotopy normality of *H*-spaces

By

Osamu NISHIMURA

1. Introduction

Let X be an H-space, G a homotopy associative H-space, and $f: X \to G$ an H-map. Let $\gamma: G \land G \to G$ be the commutator map. (As is well known, G is group-like.) Recall that f is called to be homotopy normal (in the sense of James) if there exists a map $\lambda: G \land X \to X$ such that $f \circ \lambda$ is homotopic to $\gamma \circ (1 \land f)$. (See James [2].)

Localizing spaces and maps concerned at a prime p, we may also consider mod p homotopy normality.

The concept of (mod p) homotopy normality is closely related to that of Samelson products of homotopy groups. In fact, if $f: X \to G$ is (mod p) homotopy normal, then all Samelson products (localized at p) from $\pi_k(G) \times f_*(\pi_l(X)) \subset \pi_k(G) \times \pi_l(G)$ to $\pi_{k+l}(G)$ lie in $f_*(\pi_{k+l}(X))$. In [4], Kono and the author studied mod p homotopy normality by using the mod p homology map of the adjoint action on the space of loops, and showed that in many cases for G a compact, 1-connected, simple, exceptional Lie group which has integral p-torsion and H a Lie subgroup of G, the natural inclusion $i: H \hookrightarrow G$ is not mod p homotopy normal.

In this paper, we give closer examination for mod p homotopy normality of an H-map $f: X \to G$ restricting ourselves to the comparatively manageable case that p = 3 and $G = F_4$ where F_4 is the compact, connected, simple, exceptional Lie group of rank 4. We show the following theorem.

Theorem 1.1. Let X be a mod 3 H-space. If $f: X \to F_4$ is a mod 3 homotopy normal H-map and $H^{19}(X; \mathbb{F}_3)$ consists of decomposable elements, then $f^*: H^*(F_4; \mathbb{F}_3) \to H^*(X; \mathbb{F}_3)$ is trivial or monomorphic.

Partly supported by research fellowships at Faculty of Science, Kyoto University Received July 3, 2006

Here, note that the inclusion of the unit group $* \hookrightarrow F_4$ and the identity map $1_{F_4}: F_4 \to F_4$ satisfy the hypothesis in Theorem 1.1 and their mod 3 cohomology maps are trivial and monomorphic respectively.

It is easy to determine $\gamma^* \colon H^*(F_4; \mathbb{F}_3) \to H^*(F_4 \wedge F_4; \mathbb{F}_3)$ and then, it is easy to see that if $f \colon X \to F_4$ is a mod 3 homotopy normal *H*-map and f^* is neither trivial nor monomorphic, then (there exists an indecomposable element in $H^{19}(X; \mathbb{F}_3)$ by Theorem 1.1 and) Im f^* is isomorphic to one of the following exterior algebras where $|z_i| = j$:

- (1.1) $\wedge (z_{11}),$
- (1.2) $\wedge (z_{11}, z_{15}),$
- $(1.3) \qquad \qquad \wedge (z_3, z_{11}),$
- (1.4) $\wedge (z_3, z_{11}, z_{15}),$
- (1.5) $\wedge (z_3, z_7, z_{11}, z_{15}).$

Theorem 1.2. All these cases are realizable with f's being loop maps.

The study of this paper is inspired by that of the papers [5], [6] written by Kudou and Yagita. They showed that if $f: X \to F_4$ is a mod 3 homotopy normal *H*-map and there exist no primitive elements in $H^{19}(X; \mathbb{F}_3)$ (this hypothesis is weaker than that in Theorem 1.1, see Milnor-Moore [7]), then one of the following holds: (i) f^* is trivial, (ii) f^* is monomorphic, (iii) Im f^* is as (1.3) (in other words, Im $f^* \cong H^*(G_2; \mathbb{F}_3)$, see Mimura [8]), (iv) Im f^* is as (1.5) (in other words, Im $f^* \cong H^*(Spin(9); \mathbb{F}_3)$, also see [8]). Here, G_2 is the compact, connected, simple, exceptional Lie group of rank 2. Also they asked whether or not the natural inclusions $G_2 \hookrightarrow F_4$ and $Spin(9) \hookrightarrow F_4$, of which the mod 3 cohomology maps are epimorphic, are mod 3 homotopy normal. Since $H^{19}(G_2; \mathbb{F}_3)$ and $H^{19}(Spin(9); \mathbb{F}_3)$ are trivial, Theorem 1.1 implies the following corollary.

Corollary 1.1. The natural inclusions $Spin(9) \hookrightarrow F_4$ and $G_2 \hookrightarrow F_4$ are not mod 3 homotopy normal.

This was first proved in [4].

This paper is organized as follows. In Section 2, we study the mod 3 cohomology map $\tilde{\gamma}^*$ where $\tilde{\gamma}: F_4 \wedge F_4 \to \tilde{F}_4$ is a lift of γ to \tilde{F}_4 , the 3-connective cover of F_4 . In Section 3, we study the mod 3 cohomology map $\dot{\gamma}^*$ where $\dot{\gamma}: F_4 \wedge F_4 \to \dot{F}_4$ is a lift of γ to \dot{F}_4 , the homotopy fiber of a representative of the homotopy class corresponding to the generator $x_8 \in H^8(F_4; \mathbb{F}_3) \cong [F_4, K(\mathbb{F}_3, 8)]$. In Section 4, We use the results in Section 2 and Section 3 to prove Theorem 1.1. In Section 5, we prove Theorem 1.2.

All spaces and maps are localized at 3. Homology and cohomology are mod 3 unless otherwise stated. Let $IH^*(-)$ denote the module which consists of the positive degree elements of $H^*(-)$. Let $DH^*(-) = IH^*(-) \cdot IH^*(-)$, the decomposable module. Let $QH^*(-) = IH^*(-)/DH^*(-)$, the indecomposable module. If X is an H-space, then $QH^*(X)$ is dual to $PH_*(X)$, the module

which consists of the primitive elements of $H_*(X)$. The subscript integer of an element of a graded module designates the degree.

The author expresses gratitude to Professor Akira Kono for his helpful advices and suggestions.

2. A lift of the commutator map to the 3-connective cover

First we fix the notation and recall the data concerning F_4 . Let $\mu: F_4 \times F_4 \to F_4$, $\iota: F_4 \to F_4$, and $\Delta: F_4 \to F_4 \times F_4$ denote the multiplication, the inverse, and the diagonal map of F_4 respectively. Also let $q: F_4 \times F_4 \to F_4 \wedge F_4$ and $T: F_4 \wedge F_4 \to F_4 \wedge F_4$ denote the natural projection and the switching map respectively.

Recall that $H^*(F_4) = \mathbb{F}_3[x_8]/(x_8^3) \otimes \wedge (x_3, x_7, x_{11}, x_{15})$. The cohomology operations in $H^*(F_4)$ are given by $\wp^1 x_3 = x_7, \beta x_7 = x_8, \wp^1 x_{11} = x_{15}$, and others. Let $\bar{\mu}^*$ be the reduced coproduct of $H^*(F_4)$: $\bar{\mu}^*(x) = \mu^*(x) - x \otimes 1 - 1 \otimes x$ for $x \in H^*(F_4)$. The coalgebra structure of $H^*(F_4)$ is given by $\bar{\mu}^*(x_j) = 0$ for j = 3, 7, 8 and $\bar{\mu}^*(x_j) = x_8 \otimes x_{j-8}$ for j = 11, 15. (For the detail of the above, see Mimura [8].)

Recall that the commutator map $\gamma: F_4 \wedge F_4 \to F_4$ is given by

$$\gamma \circ q = \mu \circ (\mu \times 1) \circ (\mu \times 1 \times 1) \circ (1 \times 1 \times \iota \times \iota) \circ (1 \times T \times 1) \circ (\Delta \times \Delta).$$

By the usual computation, we can easily show that $\gamma^*(x_j) = 0$ for j = 3, 7, 8and $\gamma^*(x_j) = x_8 \otimes x_{j-8} - x_{j-8} \otimes x_8$ for j = 11, 15.

Let $x_3^{\mathbb{Z}} \in H^3(F_4; \mathbb{Z})$ be the integral class of x_3 , which is also regarded as an element in $[F_4, K(\mathbb{Z}, 3)]$ through the identification $H^3(F_4; \mathbb{Z}) \cong [F_4, K(\mathbb{Z}, 3)]$. Let \tilde{F}_4 be the homotopy fiber of a representative of the homotopy class $x_3^{\mathbb{Z}}$, which is the 3-connective cover of F_4 , and $\tilde{\pi} \colon \tilde{F}_4 \to F_4$ the projection. Recall that the cohomology class $x_3^{\mathbb{Z}}$ is universally transgressive so that \tilde{F}_4 is a loop space with the classifying space $B\tilde{F}_4$, the 4-connective cover of BF_4 . Let $\tilde{\mu} \colon \tilde{F}_4 \times \tilde{F}_4 \to \tilde{F}_4$, $\tilde{\iota} \colon \tilde{F}_4 \to \tilde{F}_4$, and $\tilde{\Delta} \colon \tilde{F}_4 \to \tilde{F}_4 \times \tilde{F}_4$ denote the multiplication, the inverse, and the diagonal map of \tilde{F}_4 respectively. Recall that by the Serre spectral sequence of $\mathbb{C}P^{\infty} \to \tilde{F}_4 \xrightarrow{\tilde{\pi}} F_4$, we have $H^*(\tilde{F}_4) = \mathbb{F}_3[\tilde{y}_{18}] \otimes \wedge(\tilde{x}_{11}, \tilde{x}_{15}, \tilde{y}_{19}, \tilde{y}_{23})$ where $\tilde{x}_j = \tilde{\pi}^*(x_j)$. Then γ can be lifted to $\tilde{\gamma} \colon F_4 \wedge F_4 \to \tilde{F}_4$.

Let J be the ideal of $H^*(F_4 \wedge F_4)$ generated by $IH^*(F_4) \otimes DH^*(F_4)$ and $DH^*(F_4) \otimes IH^*(F_4)$. (Here we think of the identification $IH^*(F_4 \wedge F_4) \cong IH^*(F_4) \otimes IH^*(F_4)$.) It is clear that $\tilde{\gamma}^*(\tilde{y}_{19})$ is a linear combination of $x_8 \otimes x_{11}$ and $x_{11} \otimes x_8 \mod J$. We can easily see that

(2.1)
$$\tilde{\gamma} \circ T \simeq \tilde{\iota} \circ \tilde{\gamma} \colon F_4 \wedge F_4 \to F_4.$$

Also we can easily see that $\tilde{\iota}^*(\tilde{y}_{19}) = -\tilde{y}_{19}$ and that $T^*(J) \subset J$. It follows from these that if we put

$$\tilde{\gamma}^*(\tilde{y}_{19}) \equiv \alpha x_8 \otimes x_{11} + \alpha' x_{11} \otimes x_8 \mod J$$

where $\alpha, \alpha' \in \mathbb{F}_3$ and apply the mod 3 cohomology maps of (2.1) to \tilde{y}_{19} , we have

$$\alpha x_{11} \otimes x_8 + \alpha' x_8 \otimes x_{11} \equiv -\alpha x_8 \otimes x_{11} - \alpha' x_{11} \otimes x_8 \mod J$$

and hence we have $\alpha' = -\alpha$. Thus, we may put

$$\tilde{\gamma}^*(\tilde{y}_{19}) \equiv \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8) \mod J.$$

Let $a_j \in PH_*(F_4)$, $\tilde{a}_j \in PH_*(\tilde{F}_4)$, and $\tilde{b}_j \in PH_*(\tilde{F}_4)$ be the dual elements of $\{x_j\} \in QH^*(F_4)$, $\{\tilde{x}_j\} \in QH^*(\tilde{F}_4)$, and $\{\tilde{y}_j\} \in QH^*(\tilde{F}_4)$ respectively. By [9] and by considering the natural inclusion $F_4 \hookrightarrow E_6$ (or by [10] and by considering the homology suspension $\sigma \colon H_*(\Omega \tilde{F}_4) \to H_*(\tilde{F}_4)$), we can choose \tilde{y}_{19} so that $\tilde{ad}_*(a_8 \otimes \tilde{a}_{11}) = \tilde{b}_{19}$ where $\tilde{ad} \colon F_4 \times \tilde{F}_4 \to \tilde{F}_4$ covers the adjoint action $\tilde{ad} \colon F_4 \times F_4 \to F_4$. (See Kono-Kozima [3] and Hamanaka-Hara [1].) We can easily see that

$$\tilde{\gamma} \circ q \circ (1 \times \tilde{\pi}) \simeq \tilde{\mu} \circ (\tilde{ad} \times \tilde{\iota}) \circ (1 \times \tilde{\Delta}) \colon F_4 \times \tilde{F}_4 \to \tilde{F}_4.$$

Applying the mod 3 homology maps of these to $a_8 \otimes \tilde{a}_{11}$, we have from the left hand side $\tilde{\gamma}_*(a_8 \otimes a_{11})$ and from the right hand side

$$\tilde{\mu}_* \circ (\mathrm{ad}_* \otimes \tilde{\iota}_*)(a_8 \otimes \tilde{a}_{11} \otimes 1 + a_8 \otimes 1 \otimes \tilde{a}_{11}) = \tilde{\mu}_*(b_{19} \otimes 1) = b_{19}$$

(Recall that $\operatorname{ad}_*(a_8 \otimes 1) = 0$ by the general property of the adjoint action.) Thus, we have $\tilde{\gamma}_*(a_8 \otimes a_{11}) = \tilde{b}_{19}$. Taking the pairing of this with \tilde{y}_{19} , we have from the left hand side

$$\langle \tilde{y}_{19}, \tilde{\gamma}_*(a_8 \otimes a_{11}) \rangle = \langle \tilde{\gamma}^*(\tilde{y}_{19}), a_8 \otimes a_{11} \rangle = \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8 \otimes x_{11} - x_{11} \otimes x_8), a_8 \otimes a_{11} \rangle = \alpha \langle \alpha(x_8$$

and from the right hand side $\langle \tilde{y}_{19}, \tilde{b}_{19} \rangle = 1$. (Note that the pairing of $a_8 \otimes a_{11}$ with an element of J vanishes.) Thus, we have $\alpha = 1$ and hence we have

(2.2)
$$\tilde{\gamma}^*(\tilde{y}_{19}) \equiv x_8 \otimes x_{11} - x_{11} \otimes x_8 \mod J$$

We use this result later.

Remark 1. Making more efforts, we can determine $\tilde{\gamma}^* \colon H^*(\tilde{F}_4) \to H^*(F_4 \wedge F_4)$ completely. In fact, we have $\tilde{\gamma}^*(\tilde{x}_j) = \gamma^*(x_j)$, and in the same way as above, we can determine $\tilde{\gamma}^*(\tilde{y}_j) \mod J$. Then, by algebraic computation based on the property of the commutator map, we can determine $\tilde{\gamma}^*(\tilde{y}_j)$ without mod J. We omit the detail.

3. A lift of the commutator map to another space

Recall that we have the cohomology class $x_8 \in H^8(F_4)$, which is also regarded as an element in $[F_4, K(\mathbb{F}_3, 8)]$ through the identification $H^8(F_4) \cong$ $[F_4, K(\mathbb{F}_3, 8)]$. Let \acute{F}_4 be the homotopy fiber of a representative of the homotopy class x_8 and $\acute{\pi} \colon \acute{F}_4 \to F_4$ the projection. Let $u_3 \in H^3(K(\mathbb{Z}, 3))$ be the fundamental class. Then we have $\beta \wp^1 u_3 \in H^8(K(\mathbb{Z}, 3)) \cong [K(\mathbb{Z}, 3), K(\mathbb{F}_3, 8)]$

and $\beta \wp^1 u_3 \circ x_3^{\mathbb{Z}} = \beta \wp^1 x_3 = x_8$ where we regard the elements as the appropriate homotopy classes. Also note that the cohomology class x_8 as well as $x_3^{\mathbb{Z}}$ is universally transgressive. Thus, we have the following homotopy commutative diagram of loop spaces and loop maps. (Representatives of $x_3^{\mathbb{Z}}$, x_8 , and $\beta \wp^1 u_3$ are denoted by the same symbols respectively, and the maps π , \tilde{h} , and \hat{h} are defined in a obvious way.)

Here the horizontal arrows form homotopy fiber sequences.

Let $u_j \in H^*(K(\mathbb{F}_3, j))$ be the fundamental classes for j = 7, 8. We can easily see that $\wp^3 u_7$ is a permanent cycle in the Serre spectral sequence of $K(\mathbb{F}_3,7) \xrightarrow{\acute{h}} \acute{F}_4 \xrightarrow{\acute{\pi}} F_4$. Hence we can take $\acute{y}_{19} \in H^*(\acute{F}_4)$ so that $\acute{h}^*(\acute{y}_{19}) = \wp^3 u_7$. Moreover, it is easy to see that \acute{y}_{19} can be taken also to be transgressive and $\tau(\acute{y}_{19}) = \wp^3 u_8$ in the Serre spectral sequence of $\acute{F}_4 \xrightarrow{\acute{\pi}} F_4 \xrightarrow{x_8} K(\mathbb{F}_3, 8)$. Here, note that $\pi^*(\hat{y}_{19})$ is a scalar multiple of \tilde{y}_{19} and observe that \tilde{y}_{19} is transgressive and $\tau(\tilde{y}_{19}) = \pm \beta \beta^3 \beta^1 u_3 = \pm \beta^3 \beta \beta^1 u_3 \neq 0$ in the Serre spectral sequence of $\tilde{F}_4 \xrightarrow{\tilde{\pi}} F_4 \xrightarrow{x_3^{\mathbb{Z}}} K(\mathbb{Z}, 3)$. Hence $\pi^*(\acute{y}_{19})$ is transgressive and $\tau(\pi^*(\acute{y}_{19}))$ is a scalar multiple of $\wp^3 \beta \wp^1 u_3$. Moreover, $\pi^*(\acute{y}_{19})$ is non-zero if and only if $\tau(\pi^*(\acute{y}_{19}))$ is non-zero. Then, $\tau(\pi^*(\acute{y}_{19}))$ is the image of $\tau(\acute{y}_{19}) = \wp^3 u_8$ under the mod 3 cohomology map of $\beta \wp^1 u_3 \colon K(\mathbb{Z},3) \to K(\mathbb{F}_3,8)$, and hence is $\wp^3 \beta \wp^1 u_3 \neq 0$. Thus, we have $\pi^*(\acute{y}_{19}) = \pm \widetilde{y}_{19}$. Put $\acute{\gamma} = \pi \circ \widetilde{\gamma} : F_4 \wedge F_4 \to \acute{F}_4$, which is a lift of γ to \acute{F}_4 . By (2.2), we have

(3.1)

$$\begin{aligned}
\dot{\gamma}^*(\dot{y}_{19}) &= \tilde{\gamma}^* \circ \pi^*(\dot{y}_{19}) \\
&= \pm \tilde{\gamma}^*(\tilde{y}_{19}) \\
&\equiv \pm (x_8 \otimes x_{11} - x_{11} \otimes x_8) \mod J. \end{aligned}$$

Proof of Theorem 1.1 4.

First, for any map $g: Y \to F_4$, we have $\wp^1 g^*(x_3) = g^*(x_7), \ \beta g^*(x_7) =$ $g^*(x_8)$, and $\wp^1 g^*(x_{11}) = g^*(x_{15})$. Thus, $g^*(x_3) = 0$ implies $g^*(x_7) = 0$, $g^*(x_7) = 0$ implies $g^*(x_8) = 0$, and $g^*(x_{11}) = 0$ implies $g^*(x_{15}) = 0$.

Next, let $f: X \to F_4$ be a mod 3 homotopy normal *H*-map. We have a map $\lambda: F_4 \wedge X \to X$ such that $f \circ \lambda \simeq \gamma \circ (1 \wedge f): F_4 \wedge X \to F_4$. For j = 11, 15, we have

$$\lambda^* \circ f^*(x_j) = (1 \land f)^* \circ \gamma^*(x_j) = (1 \land f)^*(x_8 \otimes x_{j-8} - x_{j-8} \otimes x_8) = x_8 \otimes f^*(x_{j-8}) - x_{j-8} \otimes f^*(x_8).$$

Thus, $f^*(x_j) = 0$ implies $f^*(x_{j-8}) = 0$ for j = 11, 15. Hence we can see that f^* is trivial if and only if $f^*(x_{11}) = 0$. Moreover, considering the elementary theory of Hopf algebras (see Milnor-Moore [7]), we can see that f^* is monomorphic if and only if $f^*(x_j) \neq 0$ for any j if and only if $f^*(x_8) \neq 0$. Now, suppose that $H^{19}(X) = DH^{19}(X)$ (in other words, $QH^{19}(X) = 0$),

Now, suppose that $H^{19}(X) = DH^{19}(X)$ (in other words, $QH^{19}(X) = 0$), $f^*(x_{11}) \neq 0$, and $f^*(x_8) = 0$. We show a contradiction. Since $f^*(x_8) = 0$, we have a lift $f: X \to F_4$ of f.

Then, since we have two lifts $\hat{f} \circ \lambda$ and $\hat{\gamma} \circ (1 \wedge f)$ of $f \circ \lambda \simeq \gamma \circ (1 \wedge f)$ to \hat{F}_4 , there exists a map $\eta \colon F_4 \wedge X \to K(\mathbb{F}_3, 7)$ such that $\hat{\gamma} \circ (1 \wedge f) \simeq \hat{f} \circ \lambda + \hat{h} \circ \eta$.

In particular, we have

(4.1)
$$(1 \wedge f)^* \circ \dot{\gamma}^*(\dot{y}_{19}) = \lambda^* \circ \dot{f}^*(\dot{y}_{19}) + \eta^* \circ \dot{h}^*(\dot{y}_{19}).$$

Let J' be the ideal of $H^*(F_4 \wedge X)$ generated by $IH^*(F_4) \otimes DH^*(X)$ and $DH^*(F_4) \otimes IH^*(X)$. Note that $(1 \wedge f)^*(J) \subset J'$. Hence by (3.1) and by $f^*(x_8) = 0$, we have

(4.2)
$$(1 \wedge f)^* \circ \acute{\gamma}^*(\acute{y}_{19}) \equiv \pm (x_8 \otimes f^*(x_{11})) \mod J'$$

Also note that $\lambda^*(\mathrm{D}H^*(X)) \subset \mathrm{D}H^*(F_4 \wedge X) \subset J'$. Since $f^*(\acute{y}_{19}) \in H^{19}(X) = \mathrm{D}H^{19}(X)$, we have

(4.3)
$$\lambda^* \circ f^*(\acute{y}_{19}) \in J'.$$

We may put $\eta^*(u_7) = x_3 \otimes \zeta \in H^3(F_4) \otimes H^4(X) = H^7(F_4 \wedge X)$. Since $\hat{h}^*(\hat{y}_{19}) = \wp^3 u_7$, we have

(4.4)
$$\eta^* \circ \acute{h}^*(\acute{y}_{19}) = \wp^3 \eta^*(u_7) = \wp^3(x_3 \otimes \zeta) = x_7 \otimes \zeta^3 \in J'.$$

Thus by (4.1), (4.2), (4.3), and (4.4), we have $x_8 \otimes f^*(x_{11}) \in J'$. However, $f^*(x_{11}) \neq 0$ is primitive (recall that f is an H-map and that $f^*(x_8) = 0$) and hence is indecomposable (see Milnor-Moore [7]). It follows that $x_8 \otimes f^*(x_{11}) \notin J'$. This is a contradiction.

5. Proof of Theorem 1.2

Let $f: X \to F_4$ be a mod 3 homotopy normal *H*-map. Because of the argument in the first two paragraphs of Section 4, and of the elementary theory of Hopf algebras (see Milnor-Moore [7]), we can see that if $f^*(x_{11}) \neq 0$ and $f^*(x_8) = 0$, then Im f^* is isomorphic to one of (1.1)-(1.5) where $z_j = f^*(x_j) \neq 0$. We exhibit an example for each case with f being a loop map.

For (1.2) and (1.5), we have $\tilde{\pi} \colon \tilde{F}_4 \to F_4$ and $\hat{\pi} \colon \hat{F}_4 \to F_4$, respectively, which are loop maps. These are homotopy normal since γ has a lift $\tilde{\gamma}$ to \tilde{F}_4 and a lift $\tilde{\gamma}$ to \tilde{F}_4 . (See Kudou-Yagita [6].)

$$F_{4} \wedge \tilde{F}_{4} \xrightarrow{\tilde{\gamma}} F_{4} \wedge F_{4} \xrightarrow{\tilde{\gamma}} F_{4} \qquad F_{4} \wedge \tilde{F}_{4} \xrightarrow{\tilde{\gamma}} F_{4} \qquad F_{4} \wedge \tilde{F}_{4} \xrightarrow{\tilde{\gamma}} F_{4} \wedge F_{4} \xrightarrow{\tilde{\gamma}} F_{4}$$

We know that $\tilde{\pi}^*(x_j) = 0$ for j = 3, 7, 8 and that $\tilde{\pi}^*(x_j) = \tilde{x}_j \neq 0$ for j = 11, 15. By definition, we have $\hat{\pi}^*(x_8) = 0$ and by the Serre spectral sequence of $K(\mathbb{F}_3, 7) \xrightarrow{\hat{h}} \hat{F}_4 \xrightarrow{\hat{\pi}} F_4$, we can easily see that $\hat{\pi}^*(x_j) \neq 0$ for j = 3, 7, 11, 15. Thus, $\operatorname{Im} \tilde{\pi}^*$ is as (1.2) and $\operatorname{Im} \hat{\pi}^*$ is as (1.5).

For (1.1), let X_1 be the homotopy fiber of a representative of the homotopy class $\tilde{x}_{15} \in H^{15}(\tilde{F}_4) \cong [\tilde{F}_4, K(\mathbb{F}_3, 15)]$ and $i_1: X_1 \to \tilde{F}_4$ the projection. Put $f_1 = \tilde{\pi} \circ i_1: X_1 \to F_4$, which is a loop map. (Note that the cohomology class \tilde{x}_{15} is universally transgressive.) Since

$$(1 \wedge f_1)^* \circ \tilde{\gamma}^*(\tilde{x}_{15}) = (1 \wedge i_1)^* \circ (1 \wedge \tilde{\pi})^*(x_8 \otimes x_7 - x_7 \otimes x_8) = 0,$$

the map $\tilde{\gamma} \circ (1 \wedge f_1) \colon F_4 \wedge X_1 \to \tilde{F}_4$, which is a lift of $\gamma \circ (1 \wedge f_1) \colon F_4 \wedge X_1 \to F_4$, has a lift to X_1 .

Thus, f_1 is homotopy normal. It is easy to see that $f_1^*(x_j) = 0$ for $j \neq 11$ and that $f_1^*(x_{11}) \neq 0$. Thus, $\text{Im } f_1^*$ is as (1.1).

For (1.4), let X_2 be the homotopy fiber of a representative of the homotopy class $x_7 \in H^7(F_4) \cong [F_4, K(\mathbb{F}_3, 7)]$ and $f_2: X_2 \to F_4$ the projection, which is a loop map since the cohomology class x_7 is universally transgressive. Then $\gamma^*(x_7) = 0$ implies that γ has a lift $\dot{\gamma}: F_4 \wedge F_4 \to X_2$. Thus f_2 is homotopy normal.

By the Serre spectral sequence of the fibering $K(\mathbb{F}_3, 6) \xrightarrow{h} X_2 \xrightarrow{f_2} F_4$, we can see that $f_2^*(x_j) = 0$ for j = 7, 8 and that $f_2^*(x_j) \neq 0$ for j = 3, 11, 15. Thus, Im f_2^* is as (1.4). We can also see that $H^*(X_2) = \wedge (f_2^*(x_3)) \otimes \mathbb{F}_3[\xi_{10}]$ for $* \leq 10$ where $h^*(\xi_{10}) \neq 0$.

Finally, for (1.3), let X_3 be the homotopy fiber of a representative of the homotopy class $f_2^*(x_{15}) \in H^{15}(X_2) \cong [X_2, K(\mathbb{F}_3, 15)]$ and $i_3 \colon X_3 \to X_2$ the projection. Put $f_3 = f_2 \circ i_3 \colon X_3 \to F_4$. By the Serre spectral sequence of $X_2 \to * \to BX_2$, we know that $H^*(BX_2) = \mathbb{F}_3[\tau(f_2^*(x_3))]$ for $* \leq 10$. Then we know that the cohomology class $f_2^*(x_{11}) \in H^*(X_2)$ is universally transgressive, and hence so is $f_2^*(x_{15}) = \wp^1 f_2^*(x_{11})$. It follows that i_3 is a loop map, and hence so is f_3 . By

$$(1 \wedge f_3)^* \circ \dot{\gamma}^* \circ f_2^*(x_{15}) = (1 \wedge i_3)^* \circ (1 \wedge f_2)^* \circ \gamma^*(x_{15}) = 0$$

and by the same argument as that for f_1 , the loop map f_3 is homotopy normal.

It is easy to see that $f_3^*(x_j) = 0$ for j = 7, 8, 15 and that $f_3^*(x_j) \neq 0$ for j = 3, 11. Thus, Im f_3^* is as (1.3).

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE KYOTO UNIVERSITY e-mail: osamu@math.kyoto-u.ac.jp

References

- H. Hamanaka and S. Hara, The mod 3 homology of the space of loops on the exceptional Lie groups and the adjoint action, J. Math. Kyoto Univ. 37-3 (1997), 441–453.
- [2] I. M. James, On the homotopy theory of the classical groups, An. Acad. Brasil. Ci. 39 (1967) 39–44.
- [3] A. Kono and K. Kozima, The adjoint action of a Lie group on the space of loops, J. Math. Soc. Japan 45-3 (1993), 495–510.
- [4] A. Kono and O. Nishimura, Homotopy normality of Lie groups and the adjoint action, J. Math. Kyoto Univ. 43-3 (2003), 641–650.
- [5] K. Kudou and N. Yagita, Modulo odd prime homotopy normality for Hspaces, J. Math. Kyoto Univ. 38-4 (1998), 643–651.
- [6] _____, Note on homotopy normality and the n-connected fiber space, Kyushu J. Math. 55 (2001), 119–129.
- [7] J. Milnor and C. Moore, On the structure of Hopf algebras, Ann. of Math.
 (2) 81 (1965), 211–264.
- [8] M. Mimura, *Homotopy theory of Lie groups*, Handbook of algebraic topology, 951–991, North-Holland, Amsterdam, 1995.
- [9] O. Nishimura, On the Hopf algebra structure of the mod 3 cohomology of the exceptional Lie group of type E₆, J. Math. Kyoto Univ. **39**-4 (1999), 697–704.
- [10] _____, On the homology of the Kac-Moody groups and the cohomology of the 3-connective covers of Lie groups, J. Math. Kyoto Univ. 42-1 (2002), 175–180.