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A note on homotopy normality of H-spaces

By

Osamu NISHIMURA

1. Introduction

Let X be an H-space, G a homotopy associative H-space, and f: X — G
an H-map. Let v: G A G — G be the commutator map. (As is well known, G
is group-like.) Recall that f is called to be homotopy normal (in the sense of
James) if there exists a map A: G A X — X such that f o A is homotopic to
vyo (1A f). (See James [2].)

X
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G/\XWG/\G,Y—>G

Localizing spaces and maps concerned at a prime p, we may also consider mod
p homotopy normality.

The concept of (mod p) homotopy normality is closely related to that of
Samelson products of homotopy groups. In fact, if f: X — G is (mod p)
homotopy normal, then all Samelson products (localized at p) from 7, (G) x
fe(m(X)) C mx(G) x m(G) to m41(G) lie in fu(mp+(X)). In [4], Kono and
the author studied mod p homotopy normality by using the mod p homology
map of the adjoint action on the space of loops, and showed that in many cases
for G a compact, 1-connected, simple, exceptional Lie group which has integral
p-torsion and H a Lie subgroup of GG, the natural inclusion i: H — G is not
mod p homotopy normal.

In this paper, we give closer examination for mod p homotopy normality
of an H-map f: X — G restricting ourselves to the comparatively manageable
case that p = 3 and G = F, where Fj is the compact, connected, simple,
exceptional Lie group of rank 4. We show the following theorem.

Theorem 1.1.  Let X be a mod 3 H-space. If f: X — Fy is a mod 3
homotopy normal H-map and H'®(X;F3) consists of decomposable elements,
then f*: H*(Fy;F3) — H*(X;F3) is trivial or monomorphic.
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Here, note that the inclusion of the unit group * «— F; and the identity map
1p, : Fy — F, satisfy the hypothesis in Theorem 1.1 and their mod 3 cohomol-
ogy maps are trivial and monomorphic respectively.

It is easy to determine v*: H*(Fy;F3) — H*(Fy A Fy;F3) and then, it is
easy to see that if f: X — Fj is a mod 3 homotopy normal H-map and f* is
neither trivial nor monomorphic, then (there exists an indecomposable element
in H'%(X;F3) by Theorem 1.1 and) Im f* is isomorphic to one of the following
exterior algebras where |z;| = j:

(1.1) A (211),

(1.2) A (211, 215),
(1.3) A (23, 211),
(1.4) A (23,211, 215),
(1.5) A

23, 275 211, 215)'
Theorem 1.2.  All these cases are realizable with f’s being loop maps.

The study of this paper is inspired by that of the papers [5], [6] written
by Kudou and Yagita. They showed that if f: X — Fj is a mod 3 homotopy
normal H-map and there exist no primitive elements in H'9(X;F3) (this hy-
pothesis is weaker than that in Theorem 1.1, see Milnor-Moore [7]), then one
of the following holds: (i) f* is trivial, (ii) f* is monomorphic, (iii) Im f* is
as (1.3) (in other words, Im f* = H*(G2;F3), see Mimura [8]), (iv) Im f* is as
(1.5) (in other words, Im f* = H*(Spin(9);F3), also see [8]). Here, G5 is the
compact, connected, simple, exceptional Lie group of rank 2. Also they asked
whether or not the natural inclusions Go — F, and Spin(9) — Fy, of which
the mod 3 cohomology maps are epimorphic, are mod 3 homotopy normal.
Since H'(Gq;F3) and H(Spin(9);F3) are trivial, Theorem 1.1 implies the
following corollary.

Corollary 1.1.  The natural inclusions Spin(9) — Fy and Gy — Fy
are not mod 3 homotopy normal.

This was first proved in [4].

This paper is organized as follows. In Section 2, we study the mod 3 coho-
mology map ¥* where y: FyAF, — Fy is a lift of v to Fy, the 3-connective cover
of Fy. In Section 3, we study the mod 3 cohomology map #* where ¥: FyAFy —
Fy is a lift of v to Fy, the homotopy fiber of a representative of the homotopy
class corresponding to the generator zg € H8(Fy;F3) = [Fy, K(F3,8)]. In Sec-
tion 4, We use the results in Section 2 and Section 3 to prove Theorem 1.1. In
Section 5, we prove Theorem 1.2.

All spaces and maps are localized at 3. Homology and cohomology are
mod 3 unless otherwise stated. Let IH*(—) denote the module which consists
of the positive degree elements of H*(—). Let DH*(—) = IH*(-)-IH*(—), the
decomposable module. Let QH*(—) = IH*(—)/DH*(—), the indecomposable
module. If X is an H-space, then QH*(X) is dual to PH,(X), the module
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which consists of the primitive elements of H,(X). The subscript integer of an
element of a graded module designates the degree.

The author expresses gratitude to Professor Akira Kono for his helpful
advices and suggestions.

2. A lift of the commutator map to the 3-connective cover

First we fix the notation and recall the data concerning Fy. Let p: Fy X
Fy, — Fy, 1: Fy — Fy, and A: Fy — F, x F; denote the multiplication, the
inverse, and the diagonal map of Fj respectively. Also let q: Fy x Fy — Fy A Fy
and T: Fy NFy — F4 A\ F, denote the natural projection and the switching map
respectively.

Recall that H*(Fy) = Fs[zs]/(z3) ® A(z3,27,211,715). The cohomology
operations in H*(Fy) are given by plxg = x7,0x7 = xg,plxu = x15, and
others. Let i* be the reduced coproduct of H*(Fy): a*(z) = p*(2)—2®1-1®z
for x € H*(Fy). The coalgebra structure of H*(F}) is given by i*(x;) = 0 for
j=3,7,8and o*(x;) = xs ® zj_g for j = 11,15. (For the detail of the above,
see Mimura [8].)

Recall that the commutator map ~: Fy A Fy — F}y is given by

yog=po(px1)o(pxIx1)o(lx1lxexe)o(lxTx1)o(AxA).

By the usual computation, we can easily show that v*(z;) = 0 for j = 3,7,8
and v*(z;) = v @ xj_g — xj_s ® xg for j =11, 15.

Let 2% € H?(Fy;Z) be the integral class of z3, which is also regarded as an
element in [Fy, K(Z,3)] through the identification H?(Fy;Z) = [Fy, K(Z,3)].
Let Fy be the homotopy fiber of a representative of the homotopy class %,
which is the 3-connective cover of Fy, and 7: Fy — F, the projection. Re-
call that the cohomology class 2% is universally transgressive so that Fy is
a loop space with the classifying space BF}, the 4-connective cover of BFy.
Let f: Fyx Fy — Fy, i: Fy — Fy, and A: Fy — F, x Fy denote the multi-
plication, the inverse, and the diagonal map of Fj respectively. Recall that
by the Serre spectral sequence of CP>® — F; - Fj, we have H*(ﬁ};) =
F3lg1s] ® A(Z11, %15, U19, J23) where &; = 7*(x;). Then v can be lifted to
v: FyNFy — F4.

Let J be the ideal of H*(Fy A Fy) generated by IH*(Fy) ® DH*(Fy) and
DH*(Fy) ® IH*(Fy). (Here we think of the identification IH*(Fy A Fy) =
IH*(Fy) @ IH*(Fy).) It is clear that *(g19) is a linear combination of zg ® x11
and z11 ® xg mod J. We can easily see that

(2.1) FoT ~ioA: FyNFy — Fy.

Also we can easily see that i*(g19) = —19 and that T*(J) C J. It follows from
these that if we put

¥ (919) = axg ® 11 + o'r11 @ x5 MoOd J
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where a, o’ € F3 and apply the mod 3 cohomology maps of (2.1) to 719, we
have

! — /
ar11 Qrg+arg R®x11 = —axrg @ r11 — 'x11 @ xg mod J

and hence we have o’ = —«. Thus, we may put
¥ (Th9) = a(rg @ x11 — 211 ® 28) mod J.

Let a; € PH.(Fy), a; € PH,(Fy), and b; € PH,(F}) be the dual elements
of {z;} € QH*(Fy), {#;} € QH*(Fy), and {§j;} € QH*(F}) respectively. By [9]
and by considering the natural inclusion F; — FEj (or by [10] and by considering
the homology suspension o: H,(QF,) — H,(F})), we can choose 19 so that
aa* (ag®aq1) = 519 where ad: Fy x ﬁ'4 — F4 covers the adjoint action ad: Fy x
F, — Fy. (See Kono-Kozima [3] and Hamanaka-Hara [1].) We can easily see
that

Fogo(lx7)~jo(adxi)o(lxA): Fyx Fy — Fj.

Applying the mod 3 homology maps of these to ag ® @11, we have from the left
hand side 9, (ag ® a11) and from the right hand side

fis o (ady ® i) (as ® @11 ® 1+ as ® 1 @ a11) = fix(bro ® 1) = big.

(Recall that ad,(as ® 1) = 0 by the general property of the adjoint action.)
Thus, we have 7, (ag ® a11) = bg. Taking the pairing of this with g9, we have
from the left hand side

(T19, 7« (ag®@a11)) = (Y (F19), a8 ®a11) = (a(xs @11 — 211 ®28), a8 D a11) = «

and from the right hand side (g9, 519> = 1. (Note that the pairing of ag ® a1
with an element of .J vanishes.) Thus, we have o = 1 and hence we have

(2.2) ¥ (f10) = 28 @ 11 — 11 @ 18 mod J.
We use this result later.

Remark 1. Making more efforts, we can determine 4*: H*(F;) —
H*(Fy N Fy) completely. In fact, we have ¥*(Z;) = v*(x;), and in the same
way as above, we can determine *(g;) mod J. Then, by algebraic computa-
tion based on the property of the commutator map, we can determine ¥*(g;)
without mod J. We omit the detail.

3. A lift of the commutator map to another space

Recall that we have the cohomology class g € H®(F},), which is also re-
garded as an element in [Fy, K(F3,8)] through the identification H®(Fy) =
[Fy, K (F3,8)]. Let 4 be the homotopy fiber of a representative of the homo-
topy class zg and #: Fy — Fy the projection. Let us € H?*(K(Z,3)) be the
fundamental class. Then we have Bplus € H8(K(Z,3)) = [K(Z,3), K (F3,8)]
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and Bpluz o 2% = Bplrs = x3 where we regard the elements as the appropri-
ate homotopy classes. Also note that the cohomology class xg as well as 2% is
universally transgressive. Thus, we have the following homotopy commutative
diagram of loop spaces and loop maps. (Representatives of 2%, xg, and Bptus

are denoted by the same symbols respectively, and the maps m, h, and h are
defined in a obvious way.)

cpe—" s — " > F— "% K(Z,3)
T
K(F3,7) ; E, i K(F3,8)
R
K(F3,7) == K(F5,7) > —> K(F3,8)

Here the horizontal arrows form homotopy fiber sequences.
Let u; € H*(K(F3,7)) be the fundamental classes for j = 7,8. We can
easily see that p3u; is a permanent cycle in the Serre spectral sequence of

K(F3,7) LR £ A, F4. Hence we can take 919 € H*(F4) so that h* (Y10) = p3uy.
Moreover, it is easy to see that 719 can be taken also to be transgressive and
7(%19) = p3ug in the Serre spectral sequence of J N LN K(F5,8). Here,
note that 7*(¢19) is a scalar multiple of §;9 and observe that g9 is transgressive
and 7(J19) = £Bp3plus = £p3Bplus # 0 in the Serre spectral sequence of

~ Z
A AR K(Z,3). Hence 7*(¢19) is transgressive and 7(7*(¢19)) is a scalar
multiple of E®Bplus. Moreover, 7*(i19) is non-zero if and only if 7(7*(919))
is non-zero. Then, 7(7*(119)) is the image of 7(¢19) = p*ug under the mod 3
cohomology map of Bptus: K(Z,3) — K(Fs3,8), and hence is p3Bptus # 0.
Thus, we have W*(ylg) = iglg.

Put 4 =moAd: Fy ANFy — F,, which is a lift of v to Fy. By (2.2), we have

¥ (H19) = 7" o T (19)
(3.1) = £5"(%h9)
=+(rs ®x11 — 211 ®xg) mod J.

4. Proof of Theorem 1.1

First, for any map g: Y — Fy, we have p'g*(z3) = g*(27), Bg*(x7)
(rg), and p'g*(z11) = g¢*(w15). Thus, ¢g*(x3) = 0 implies g*(z7) =
(z7) = 0 implies g*(xg) = 0, and ¢g*(x11) = 0 implies g*(z15) = 0.

Next, let f: X — F,; be a mod 3 homotopy normal H-map. We have a
map A: FyAX — X such that fod~~o(1Af): F;AX — Fy. For j = 11,15,

we have

=

)

g*
g*
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Ao ff(xj) = (LA )" o ()
=(AANf)(rs®@xj8 —Tj_8 @ T8)
=z ® [ (xj—8) — 28 ® [ (xs).

Thus, f*(x;) = 0 implies f*(z;_s) = 0 for j = 11,15. Hence we can see that f*
is trivial if and only if f*(x11) = 0. Moreover, considering the elementary theory
of Hopf algebras (see Milnor-Moore [7]), we can see that f* is monomorphic if
and only if f*(z;) # 0 for any j if and only if f*(zs) # 0.

Now, suppose that H?(X) = DH'(X) (in other words, QH'?(X) = 0),
f*(z11) # 0, and f*(xg) = 0. We show a contradiction. Since f*(zg) = 0, we
have a lift f X — Fy of f.

F4$F4$K(]F378)

N A

X

Then, since we have two lifts fo/\ and Yo (LA f)of fod~~vo(1Af)to Fy,
there exists a map n: Fy A X — K(F3,7) such that 5o (1A f) =~ fol+hon.

K(F3,7) —"> f — > F,
N f
A
n’ . X ¥

In particular, we have

(4.1) (LA £)* o 4% (g1o) = A" o f*(g10) + 1% 0 h* ().

Let J’ be the ideal of H*(Fy; A X) generated by IH*(F,) ® DH*(X) and
DH*(Fy) ® IH*(X). Note that (1 A f)*(J) C J'. Hence by (3.1) and by
f*(zs) = 0, we have

(4.2) (LA ) 04" (o) = (28 ® f*(11)) mod J'.

Also note that \*(DH*(X)) € DH*(Fy A X) C J'. Since f*(j19) € HO(X) =
DH'Y(X), we have

(4.3) Ao f* (o) € J'.

We may put n*(uy) = 23 ® ( € H3(F,) ® HY(X) = H'(Fy A X). Since
h*(919) = p3uy, we have

(4.4) n* o h* (o) = p°n* (ur) = PP(e3 @) =27 @ P € J'.
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Thus by (4.1), (4.2), (4.3), and (4.4), we have 23 ® f*(x11) € J'. However,
f*(x11) # 0 is primitive (recall that f is an H-map and that f*(xg) = 0) and
hence is indecomposable (see Milnor-Moore [7]). It follows that zs ® f*(x11) ¢
J'. This is a contradiction. O

5. Proof of Theorem 1.2

Let f: X — F; be a mod 3 homotopy normal H-map. Because of the
argument in the first two paragraphs of Section 4, and of the elementary theory
of Hopf algebras (see Milnor-Moore [7]), we can see that if f*(x11) # 0 and
f*(xg) = 0, then Im f* is isomorphic to one of (1.1)—(1.5) where z; = f*(x;) #
0. We exhibit an example for each case with f being a loop map.

For (1.2) and (1.5), we have 7: I}y, — Fj and 7: F;, — Fj, respectively,
which are loop maps. These are homotopy normal since v has a lift ¥ to Fy
and a lift 4 to . (See Kudou-Yagita [6].)

F4 F4
F4/\F4W>F4/\F47—>F4 F4/\F'4W>F4/\F4,Y—>F4

We know that 7#*(z;) = 0 for j = 3,7,8 and that #*(z;) = &; # 0 for j =
11,15. By definition, we have 7*(xg) = 0 and by the Serre spectral sequence
of K(F3,7) LN Fy 55 Fy, we can easily see that 7*(x;) # 0 for j = 3,7,11,15.
Thus, Im7* is as (1.2) and Im 7* is as (1.5).

For (1.1), let X; be the homotopy fiber of a representative of the homotopy
class #15 € H'(F,) = [Fy, K(F3,15)] and i1: X; — Fj the projection. Put
fi =7 oiy: X3 — Fy, which is a loop map. (Note that the cohomology class
Z15 is universally transgressive.) Since

(1 A fl)* o ﬁ/*(i‘m) = (1 A il)* o (1 A ﬁ)*(fs Ry —27Q $8) =0,

the map Yo (1A f1): FAnX1 — Fy, which is a lift of yo(1A f1): FyNXy — Fy,
has a lift to X;.

X1

F4 f1
b
FynXy 1/\—)1‘1 F4/\F4—>1/\ﬁ- F4/\F4—>’Y Fy

INf1
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Thus, f1 is homotopy normal. It is easy to see that f;(z;) =0 for j # 11 and
that fi(z11) # 0. Thus, Im f5 is as (1.1).

For (1.4), let X5 be the homotopy fiber of a representative of the homotopy
class 7 € H'(Fy) = [Fy, K(F3,7)] and fo: Xo — Fj the projection, which is
a loop map since the cohomology class z7 is universally transgressive. Then
~v*(xz7) = 0 implies that v has a lift 4: Fy A Fy — Xo. Thus fo is homotopy
normal.

Xo

Sl

F4/\XQTf2>F4/\F4»y—>F4

By the Serre spectral sequence of the fibering K (Fs, 6) LN X ELN F,, we can
see that fy(x;) = 0 for j = 7,8 and that f5(z;) # 0 for j = 3,11,15. Thus,
Im f5 is as (1.4). We can also see that H*(X2) = A(f5(x3)) ®F3[&10] for * < 10
where h*(&19) # 0.

Finally, for (1.3), let X3 be the homotopy fiber of a representative of the
homotopy class f;(ljs) S HlS(XQ) = [XQ,K(]Fg, 15)} and i3: X3 — XQ the
projection. Put f3 = fo 0oig: X3 — Fy. By the Serre spectral sequence of
Xy — * — BXs, we know that H*(BXz3) = Fs[r(f5(x3))] for * < 10. Then we
know that the cohomology class f3(x11) € H*(X2) is universally transgressive,
and hence so is fi(z15) = ' f5(w11). It follows that iz is a loop map, and
hence so is f3. By

(LA f3) 0¥ o f3(w15) = (L Ad3)" o (1A f2)" oy"(215) =0

and by the same argument as that for f;, the loop map f3 is homotopy normal.

It is easy to see that fj(x;) = 0 for j = 7,8,15 and that f5(z;) # 0 for
j =3,11. Thus, Im f5 is as (1.3). O
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