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A note on homotopy normality of H-spaces

By

Osamu Nishimura

1. Introduction

Let X be an H-space, G a homotopy associative H-space, and f : X → G
an H-map. Let γ : G ∧ G → G be the commutator map. (As is well known, G
is group-like.) Recall that f is called to be homotopy normal (in the sense of
James) if there exists a map λ : G ∧ X → X such that f ◦ λ is homotopic to
γ ◦ (1 ∧ f). (See James [2].)

X

f

��
G ∧ X

1∧f
��

λ

��������������������
G ∧ G γ

�� G

Localizing spaces and maps concerned at a prime p, we may also consider mod
p homotopy normality.

The concept of (mod p) homotopy normality is closely related to that of
Samelson products of homotopy groups. In fact, if f : X → G is (mod p)
homotopy normal, then all Samelson products (localized at p) from πk(G) ×
f∗(πl(X)) ⊂ πk(G) × πl(G) to πk+l(G) lie in f∗(πk+l(X)). In [4], Kono and
the author studied mod p homotopy normality by using the mod p homology
map of the adjoint action on the space of loops, and showed that in many cases
for G a compact, 1-connected, simple, exceptional Lie group which has integral
p-torsion and H a Lie subgroup of G, the natural inclusion i : H ↪→ G is not
mod p homotopy normal.

In this paper, we give closer examination for mod p homotopy normality
of an H-map f : X → G restricting ourselves to the comparatively manageable
case that p = 3 and G = F4 where F4 is the compact, connected, simple,
exceptional Lie group of rank 4. We show the following theorem.

Theorem 1.1. Let X be a mod 3 H-space. If f : X → F4 is a mod 3
homotopy normal H-map and H19(X; F3) consists of decomposable elements,
then f∗ : H∗(F4; F3) → H∗(X; F3) is trivial or monomorphic.
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Here, note that the inclusion of the unit group ∗ ↪→ F4 and the identity map
1F4 : F4 → F4 satisfy the hypothesis in Theorem 1.1 and their mod 3 cohomol-
ogy maps are trivial and monomorphic respectively.

It is easy to determine γ∗ : H∗(F4; F3) → H∗(F4 ∧ F4; F3) and then, it is
easy to see that if f : X → F4 is a mod 3 homotopy normal H-map and f∗ is
neither trivial nor monomorphic, then (there exists an indecomposable element
in H19(X; F3) by Theorem 1.1 and) Im f∗ is isomorphic to one of the following
exterior algebras where |zj | = j:

∧ (z11),(1.1)
∧ (z11, z15),(1.2)
∧ (z3, z11),(1.3)
∧ (z3, z11, z15),(1.4)
∧ (z3, z7, z11, z15).(1.5)

Theorem 1.2. All these cases are realizable with f ’s being loop maps.

The study of this paper is inspired by that of the papers [5], [6] written
by Kudou and Yagita. They showed that if f : X → F4 is a mod 3 homotopy
normal H-map and there exist no primitive elements in H19(X; F3) (this hy-
pothesis is weaker than that in Theorem 1.1, see Milnor-Moore [7]), then one
of the following holds: (i) f∗ is trivial, (ii) f∗ is monomorphic, (iii) Im f∗ is
as (1.3) (in other words, Im f∗ ∼= H∗(G2; F3), see Mimura [8]), (iv) Im f∗ is as
(1.5) (in other words, Im f∗ ∼= H∗(Spin(9); F3), also see [8]). Here, G2 is the
compact, connected, simple, exceptional Lie group of rank 2. Also they asked
whether or not the natural inclusions G2 ↪→ F4 and Spin(9) ↪→ F4, of which
the mod 3 cohomology maps are epimorphic, are mod 3 homotopy normal.
Since H19(G2; F3) and H19(Spin(9); F3) are trivial, Theorem 1.1 implies the
following corollary.

Corollary 1.1. The natural inclusions Spin(9) ↪→ F4 and G2 ↪→ F4

are not mod 3 homotopy normal.

This was first proved in [4].
This paper is organized as follows. In Section 2, we study the mod 3 coho-

mology map γ̃∗ where γ̃ : F4∧F4 → F̃4 is a lift of γ to F̃4, the 3-connective cover
of F4. In Section 3, we study the mod 3 cohomology map γ́∗ where γ́ : F4∧F4 →
F́4 is a lift of γ to F́4, the homotopy fiber of a representative of the homotopy
class corresponding to the generator x8 ∈ H8(F4; F3) ∼= [F4, K(F3, 8)]. In Sec-
tion 4, We use the results in Section 2 and Section 3 to prove Theorem 1.1. In
Section 5, we prove Theorem 1.2.

All spaces and maps are localized at 3. Homology and cohomology are
mod 3 unless otherwise stated. Let IH∗(−) denote the module which consists
of the positive degree elements of H∗(−). Let DH∗(−) = IH∗(−) · IH∗(−), the
decomposable module. Let QH∗(−) = IH∗(−)/DH∗(−), the indecomposable
module. If X is an H-space, then QH∗(X) is dual to PH∗(X), the module
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which consists of the primitive elements of H∗(X). The subscript integer of an
element of a graded module designates the degree.

The author expresses gratitude to Professor Akira Kono for his helpful
advices and suggestions.

2. A lift of the commutator map to the 3-connective cover

First we fix the notation and recall the data concerning F4. Let µ : F4 ×
F4 → F4, ι : F4 → F4, and ∆: F4 → F4 × F4 denote the multiplication, the
inverse, and the diagonal map of F4 respectively. Also let q : F4×F4 → F4∧F4

and T : F4∧F4 → F4∧F4 denote the natural projection and the switching map
respectively.

Recall that H∗(F4) = F3[x8]/(x3
8) ⊗ ∧(x3, x7, x11, x15). The cohomology

operations in H∗(F4) are given by ℘1x3 = x7, βx7 = x8, ℘
1x11 = x15, and

others. Let µ̄∗ be the reduced coproduct of H∗(F4): µ̄∗(x) = µ∗(x)−x⊗1−1⊗x
for x ∈ H∗(F4). The coalgebra structure of H∗(F4) is given by µ̄∗(xj) = 0 for
j = 3, 7, 8 and µ̄∗(xj) = x8 ⊗ xj−8 for j = 11, 15. (For the detail of the above,
see Mimura [8].)

Recall that the commutator map γ : F4 ∧ F4 → F4 is given by

γ ◦ q = µ ◦ (µ × 1) ◦ (µ × 1 × 1) ◦ (1 × 1 × ι × ι) ◦ (1 × T × 1) ◦ (∆ × ∆).

By the usual computation, we can easily show that γ∗(xj) = 0 for j = 3, 7, 8
and γ∗(xj) = x8 ⊗ xj−8 − xj−8 ⊗ x8 for j = 11, 15.

Let xZ

3 ∈ H3(F4; Z) be the integral class of x3, which is also regarded as an
element in [F4, K(Z, 3)] through the identification H3(F4; Z) ∼= [F4, K(Z, 3)].
Let F̃4 be the homotopy fiber of a representative of the homotopy class xZ

3 ,
which is the 3-connective cover of F4, and π̃ : F̃4 → F4 the projection. Re-
call that the cohomology class xZ

3 is universally transgressive so that F̃4 is
a loop space with the classifying space BF̃4, the 4-connective cover of BF4.
Let µ̃ : F̃4 × F̃4 → F̃4, ι̃ : F̃4 → F̃4, and ∆̃: F̃4 → F̃4 × F̃4 denote the multi-
plication, the inverse, and the diagonal map of F̃4 respectively. Recall that
by the Serre spectral sequence of CP∞ → F̃4

π̃−→ F4, we have H∗(F̃4) =
F3[ỹ18] ⊗ ∧(x̃11, x̃15, ỹ19, ỹ23) where x̃j = π̃∗(xj). Then γ can be lifted to
γ̃ : F4 ∧ F4 → F̃4.

Let J be the ideal of H∗(F4 ∧ F4) generated by IH∗(F4) ⊗ DH∗(F4) and
DH∗(F4) ⊗ IH∗(F4). (Here we think of the identification IH∗(F4 ∧ F4) ∼=
IH∗(F4)⊗ IH∗(F4).) It is clear that γ̃∗(ỹ19) is a linear combination of x8 ⊗x11

and x11 ⊗ x8 mod J . We can easily see that

(2.1) γ̃ ◦ T 	 ι̃ ◦ γ̃ : F4 ∧ F4 → F̃4.

Also we can easily see that ι̃∗(ỹ19) = −ỹ19 and that T ∗(J) ⊂ J . It follows from
these that if we put

γ̃∗(ỹ19) ≡ αx8 ⊗ x11 + α′x11 ⊗ x8 mod J
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where α, α′ ∈ F3 and apply the mod 3 cohomology maps of (2.1) to ỹ19, we
have

αx11 ⊗ x8 + α′x8 ⊗ x11 ≡ −αx8 ⊗ x11 − α′x11 ⊗ x8 mod J

and hence we have α′ = −α. Thus, we may put

γ̃∗(ỹ19) ≡ α(x8 ⊗ x11 − x11 ⊗ x8) mod J.

Let aj ∈ PH∗(F4), ãj ∈ PH∗(F̃4), and b̃j ∈ PH∗(F̃4) be the dual elements
of {xj} ∈ QH∗(F4), {x̃j} ∈ QH∗(F̃4), and {ỹj} ∈ QH∗(F̃4) respectively. By [9]
and by considering the natural inclusion F4 ↪→ E6 (or by [10] and by considering
the homology suspension σ : H∗(ΩF̃4) → H∗(F̃4)), we can choose ỹ19 so that
ãd∗(a8⊗ ã11) = b̃19 where ãd: F4 × F̃4 → F̃4 covers the adjoint action ad: F4 ×
F4 → F4. (See Kono-Kozima [3] and Hamanaka-Hara [1].) We can easily see
that

γ̃ ◦ q ◦ (1 × π̃) 	 µ̃ ◦ (ãd × ι̃) ◦ (1 × ∆̃) : F4 × F̃4 → F̃4.

Applying the mod 3 homology maps of these to a8 ⊗ ã11, we have from the left
hand side γ̃∗(a8 ⊗ a11) and from the right hand side

µ̃∗ ◦ (ãd∗ ⊗ ι̃∗)(a8 ⊗ ã11 ⊗ 1 + a8 ⊗ 1 ⊗ ã11) = µ̃∗(b̃19 ⊗ 1) = b̃19.

(Recall that ãd∗(a8 ⊗ 1) = 0 by the general property of the adjoint action.)
Thus, we have γ̃∗(a8 ⊗ a11) = b̃19. Taking the pairing of this with ỹ19, we have
from the left hand side

〈ỹ19, γ̃∗(a8⊗a11)〉 = 〈γ̃∗(ỹ19), a8⊗a11〉 = 〈α(x8⊗x11−x11 ⊗x8), a8⊗a11〉 = α

and from the right hand side 〈ỹ19, b̃19〉 = 1. (Note that the pairing of a8 ⊗ a11

with an element of J vanishes.) Thus, we have α = 1 and hence we have

(2.2) γ̃∗(ỹ19) ≡ x8 ⊗ x11 − x11 ⊗ x8 mod J.

We use this result later.

Remark 1. Making more efforts, we can determine γ̃∗ : H∗(F̃4) →
H∗(F4 ∧ F4) completely. In fact, we have γ̃∗(x̃j) = γ∗(xj), and in the same
way as above, we can determine γ̃∗(ỹj) mod J . Then, by algebraic computa-
tion based on the property of the commutator map, we can determine γ̃∗(ỹj)
without mod J . We omit the detail.

3. A lift of the commutator map to another space

Recall that we have the cohomology class x8 ∈ H8(F4), which is also re-
garded as an element in [F4, K(F3, 8)] through the identification H8(F4) ∼=
[F4, K(F3, 8)]. Let F́4 be the homotopy fiber of a representative of the homo-
topy class x8 and π́ : F́4 → F4 the projection. Let u3 ∈ H3(K(Z, 3)) be the
fundamental class. Then we have β℘1u3 ∈ H8(K(Z, 3)) ∼= [K(Z, 3), K(F3, 8)]
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and β℘1u3 ◦ xZ

3 = β℘1x3 = x8 where we regard the elements as the appropri-
ate homotopy classes. Also note that the cohomology class x8 as well as xZ

3 is
universally transgressive. Thus, we have the following homotopy commutative
diagram of loop spaces and loop maps. (Representatives of xZ

3 , x8, and β℘1u3

are denoted by the same symbols respectively, and the maps π, h̃, and h́ are
defined in a obvious way.)

CP∞ h̃ ��

∗
��

F̃4
π̃ ��

π

��

F4

xZ

3 �� K(Z, 3)

β℘1u3

��
K(F3, 7)

h́

�� F́4 π́
�� F4 x8

�� K(F3, 8)

K(F3, 7) K(F3, 7)

h́

��

∗
�� ∗

∗
��

∗
�� K(F3, 8)

Here the horizontal arrows form homotopy fiber sequences.
Let uj ∈ H∗(K(F3, j)) be the fundamental classes for j = 7, 8. We can

easily see that ℘3u7 is a permanent cycle in the Serre spectral sequence of

K(F3, 7) h́−→ F́4
π́−→ F4. Hence we can take ý19 ∈ H∗(F́4) so that h́∗(ý19) = ℘3u7.

Moreover, it is easy to see that ý19 can be taken also to be transgressive and
τ (ý19) = ℘3u8 in the Serre spectral sequence of F́4

π́−→ F4
x8−→ K(F3, 8). Here,

note that π∗(ý19) is a scalar multiple of ỹ19 and observe that ỹ19 is transgressive
and τ (ỹ19) = ±β℘3℘1u3 = ±℘3β℘1u3 
= 0 in the Serre spectral sequence of

F̃4
π̃−→ F4

xZ

3−→ K(Z, 3). Hence π∗(ý19) is transgressive and τ (π∗(ý19)) is a scalar
multiple of ℘3β℘1u3. Moreover, π∗(ý19) is non-zero if and only if τ (π∗(ý19))
is non-zero. Then, τ (π∗(ý19)) is the image of τ (ý19) = ℘3u8 under the mod 3
cohomology map of β℘1u3 : K(Z, 3) → K(F3, 8), and hence is ℘3β℘1u3 
= 0.
Thus, we have π∗(ý19) = ±ỹ19.

Put γ́ = π ◦ γ̃ : F4 ∧ F4 → F́4, which is a lift of γ to F́4. By (2.2), we have

γ́∗(ý19) = γ̃∗ ◦ π∗(ý19)
= ±γ̃∗(ỹ19)
≡ ±(x8 ⊗ x11 − x11 ⊗ x8) mod J.

(3.1)

4. Proof of Theorem 1.1

First, for any map g : Y → F4, we have ℘1g∗(x3) = g∗(x7), βg∗(x7) =
g∗(x8), and ℘1g∗(x11) = g∗(x15). Thus, g∗(x3) = 0 implies g∗(x7) = 0,
g∗(x7) = 0 implies g∗(x8) = 0, and g∗(x11) = 0 implies g∗(x15) = 0.

Next, let f : X → F4 be a mod 3 homotopy normal H-map. We have a
map λ : F4∧X → X such that f ◦λ 	 γ ◦ (1∧f) : F4∧X → F4. For j = 11, 15,
we have
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λ∗ ◦ f∗(xj) = (1 ∧ f)∗ ◦ γ∗(xj)
= (1 ∧ f)∗(x8 ⊗ xj−8 − xj−8 ⊗ x8)
= x8 ⊗ f∗(xj−8) − xj−8 ⊗ f∗(x8).

Thus, f∗(xj) = 0 implies f∗(xj−8) = 0 for j = 11, 15. Hence we can see that f∗

is trivial if and only if f∗(x11) = 0. Moreover, considering the elementary theory
of Hopf algebras (see Milnor-Moore [7]), we can see that f∗ is monomorphic if
and only if f∗(xj) 
= 0 for any j if and only if f∗(x8) 
= 0.

Now, suppose that H19(X) = DH19(X) (in other words, QH19(X) = 0),
f∗(x11) 
= 0, and f∗(x8) = 0. We show a contradiction. Since f∗(x8) = 0, we
have a lift f́ : X → F́4 of f .

F́4
π́ �� F4

x8 �� K(F3, 8)

X

f́

����������
f

��

∗

�����������

Then, since we have two lifts f́ ◦ λ and γ́ ◦ (1 ∧ f) of f ◦ λ 	 γ ◦ (1 ∧ f) to F́4,
there exists a map η : F4 ∧ X → K(F3, 7) such that γ́ ◦ (1 ∧ f) 	 f́ ◦ λ + h́ ◦ η.

K(F3, 7) h́ �� F́4
π́ �� F4

X

f́

�� f
�������������

F4 ∧ X

η

��

λ

��

1∧f
�� F4 ∧ F4

γ́

������������������

γ

��

In particular, we have

(4.1) (1 ∧ f)∗ ◦ γ́∗(ý19) = λ∗ ◦ f́∗(ý19) + η∗ ◦ h́∗(ý19).

Let J ′ be the ideal of H∗(F4 ∧ X) generated by IH∗(F4) ⊗ DH∗(X) and
DH∗(F4) ⊗ IH∗(X). Note that (1 ∧ f)∗(J) ⊂ J ′. Hence by (3.1) and by
f∗(x8) = 0, we have

(4.2) (1 ∧ f)∗ ◦ γ́∗(ý19) ≡ ±(x8 ⊗ f∗(x11)) mod J ′.

Also note that λ∗(DH∗(X)) ⊂ DH∗(F4 ∧ X) ⊂ J ′. Since f́∗(ý19) ∈ H19(X) =
DH19(X), we have

(4.3) λ∗ ◦ f́∗(ý19) ∈ J ′.

We may put η∗(u7) = x3 ⊗ ζ ∈ H3(F4) ⊗ H4(X) = H7(F4 ∧ X). Since
h́∗(ý19) = ℘3u7, we have

(4.4) η∗ ◦ h́∗(ý19) = ℘3η∗(u7) = ℘3(x3 ⊗ ζ) = x7 ⊗ ζ3 ∈ J ′.
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Thus by (4.1), (4.2), (4.3), and (4.4), we have x8 ⊗ f∗(x11) ∈ J ′. However,
f∗(x11) 
= 0 is primitive (recall that f is an H-map and that f∗(x8) = 0) and
hence is indecomposable (see Milnor-Moore [7]). It follows that x8 ⊗ f∗(x11) /∈
J ′. This is a contradiction.

5. Proof of Theorem 1.2

Let f : X → F4 be a mod 3 homotopy normal H-map. Because of the
argument in the first two paragraphs of Section 4, and of the elementary theory
of Hopf algebras (see Milnor-Moore [7]), we can see that if f∗(x11) 
= 0 and
f∗(x8) = 0, then Im f∗ is isomorphic to one of (1.1)–(1.5) where zj = f∗(xj) 
=
0. We exhibit an example for each case with f being a loop map.

For (1.2) and (1.5), we have π̃ : F̃4 → F4 and π́ : F́4 → F4, respectively,
which are loop maps. These are homotopy normal since γ has a lift γ̃ to F̃4

and a lift γ́ to F́4. (See Kudou-Yagita [6].)

F̃4

π̃

��

F́4

π́

��
F4 ∧ F̃4 1∧π̃

�� F4 ∧ F4

γ̃

		���������

γ
�� F4 F4 ∧ F́4 1∧π́

�� F4 ∧ F4

γ́

		���������

γ
�� F4

We know that π̃∗(xj) = 0 for j = 3, 7, 8 and that π̃∗(xj) = x̃j 
= 0 for j =
11, 15. By definition, we have π́∗(x8) = 0 and by the Serre spectral sequence

of K(F3, 7) h́−→ F́4
π́−→ F4, we can easily see that π́∗(xj) 
= 0 for j = 3, 7, 11, 15.

Thus, Im π̃∗ is as (1.2) and Im π́∗ is as (1.5).
For (1.1), let X1 be the homotopy fiber of a representative of the homotopy

class x̃15 ∈ H15(F̃4) ∼= [F̃4, K(F3, 15)] and i1 : X1 → F̃4 the projection. Put
f1 = π̃ ◦ i1 : X1 → F4, which is a loop map. (Note that the cohomology class
x̃15 is universally transgressive.) Since

(1 ∧ f1)∗ ◦ γ̃∗(x̃15) = (1 ∧ i1)∗ ◦ (1 ∧ π̃)∗(x8 ⊗ x7 − x7 ⊗ x8) = 0,

the map γ̃ ◦ (1∧f1) : F4∧X1 → F̃4, which is a lift of γ ◦ (1∧f1) : F4∧X1 → F4,
has a lift to X1.

X1

i1
��

f1





F̃4

π̃

��
F4 ∧ X1 1∧i1

��

1∧f1

��

������������������������������������
F4 ∧ F̃4 1∧π̃

�� F4 ∧ F4 γ
��

γ̃

�����������
F4
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Thus, f1 is homotopy normal. It is easy to see that f∗
1 (xj) = 0 for j 
= 11 and

that f∗
1 (x11) 
= 0. Thus, Im f∗

1 is as (1.1).
For (1.4), let X2 be the homotopy fiber of a representative of the homotopy

class x7 ∈ H7(F4) ∼= [F4, K(F3, 7)] and f2 : X2 → F4 the projection, which is
a loop map since the cohomology class x7 is universally transgressive. Then
γ∗(x7) = 0 implies that γ has a lift γ̀ : F4 ∧ F4 → X2. Thus f2 is homotopy
normal.

X2

f2

��
F4 ∧ X2

1∧f2

�� F4 ∧ F4

γ̀
�����������

γ
�� F4

By the Serre spectral sequence of the fibering K(F3, 6) h−→ X2
f2−→ F4, we can

see that f∗
2 (xj) = 0 for j = 7, 8 and that f∗

2 (xj) 
= 0 for j = 3, 11, 15. Thus,
Im f∗

2 is as (1.4). We can also see that H∗(X2) = ∧(f∗
2 (x3))⊗F3[ξ10] for ∗ ≤ 10

where h∗(ξ10) 
= 0.
Finally, for (1.3), let X3 be the homotopy fiber of a representative of the

homotopy class f∗
2 (x15) ∈ H15(X2) ∼= [X2, K(F3, 15)] and i3 : X3 → X2 the

projection. Put f3 = f2 ◦ i3 : X3 → F4. By the Serre spectral sequence of
X2 → ∗ → BX2, we know that H∗(BX2) = F3[τ (f∗

2 (x3))] for ∗ ≤ 10. Then we
know that the cohomology class f∗

2 (x11) ∈ H∗(X2) is universally transgressive,
and hence so is f∗

2 (x15) = ℘1f∗
2 (x11). It follows that i3 is a loop map, and

hence so is f3. By

(1 ∧ f3)∗ ◦ γ̀∗ ◦ f∗
2 (x15) = (1 ∧ i3)∗ ◦ (1 ∧ f2)∗ ◦ γ∗(x15) = 0

and by the same argument as that for f1, the loop map f3 is homotopy normal.

X3

i3

��
f3





X2

f2

��
F4 ∧ X3 1∧i3

��

1∧f3

��

������������������������������������
F4 ∧ X2

1∧f2

�� F4 ∧ F4 γ
��

γ̀
�����������
F4

It is easy to see that f∗
3 (xj) = 0 for j = 7, 8, 15 and that f∗

3 (xj) 
= 0 for
j = 3, 11. Thus, Im f∗

3 is as (1.3).
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