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Positive continuous additive functionals of
multidimensional Brownian motion and the
Brownian local time

By

Hideaki UEMURA

1. Introduction

The local time of multidimensional Brownian motion was first introduced
by Imkeller and Weisz [7]. They showed the existence of the limit L(¢,x) of

fot pn (e, Ws — x)ds as a generalized Wiener functional unless x = 0, where
W, denotes the N-dimensional Brownian motion starting from the origin and
pn(s,y) the Gaussian kernel:

1

21s

N
pn(s,y) = ( ) W2 (s> 0,y e RV).

Let ¢ € D, a smooth function on RY with compact support, satisfy Jey)dy =
1. Put @E(y) = p(y/e)/eN. Then, using the same technique we also find that
fg ve(Ws — z)ds has the same limit. We note that the functions py(e,y — )
and ¢.(y — x) approximate the delta function at . We call the limit L(¢,x)
the local time of N-dimensional Brownian motion.

The local time is interpreted as a generalized Wiener functional corre-
sponding to the delta function. Now we are interested in the existence of a
generalized Wiener functional corresponding to another positive distribution 7.
To explain more rigorously, we determine the limit point of fg Txp.(Ws+x)ds
under some conditions. Here T * ¢(y f oy —x ,uT(dx) pr(dz) denoting
the corresponding measure of T', i.e., (T, ) = [(z)pr(dz). We also discuss
on the integral representation of this functlonal using this measure pp and the
Brownian local time. Details are discussed in Section 3.

Next we consider positive continuous additive functionals (PCAF in ab-
breviation) of N-dimensional Brownian motion. In the case where N = 1,
one of the most typical additive functional is the local time, and every PCAF
of the Brownian motion can be represented by the integral of the local time
with respect to the Revuz measure associated to the PCAF(see, for instance,
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Revuz and Yor [12]). On the other hand, many authors investigated on the
PCAF for given positive distribution 7" on RY. Appealing to Itd’s formula,
Fukushima [3] investigated on PCAF’s corresponding to 7' under some condi-
tions. Yamada [16] also studied on such PCAF’s and showed that these PCAF’s
satisfy the occupation time formula. Moreover he obtained that these PCAF’s
can be represented by one-dimensional Brownian local times on hypersurface
in the sense of distribution through Radon transform. It should be mentioned
that Bass [1] obtained the same representation in almost sure sense under a lit-
tle more restricted conditions. We also mention that, based on the occupation
time formula, Nakajima [10] discussed on PCAF’s corresponding to T' through
Fourier transform under milder conditions.

Now we are interested in the integral representations of PCAF with respect
to the associated Revuz measure. In the case where N > 2, we cannot apply
the argument developed in one-dimensional case, because there does not exist a
Brownian local time as a random variable. There exists, however, the Brownian
local time as a generalized Wiener functional, which had been introduced by
Imkeller and Weisz [7] as mentioned above.

The second aim of this paper is to obtain the integral representation of
square integrable PCAF using the associated Revuz measure and the Brown-
ian local time. We also clarify that, under some conditions, square integrable
PCAF of multidimensional Brownian motion is also identified with the general-
ized Wiener functional corresponding to the distribution defined by the Revuz
measure which is determined in Section 3. Details are discussed in Section 4.

2. Preliminaries

In this section we prepare some notation. Let (W{',F;, P) be the N-
dimensional standard Wiener space, i.e.,

WY ={W, = WA W2,..., W) :[0,00) = RY;
W is continuous and Wy = 0},
Fi=0{Ws;0<s<t}

and

P = the standard Wiener measure.

Definition 2.1. A = {A(t,z;W.);t > 0,7 € RV} is called a positive
continuous additive functional (PCAF) of the N-dimensional Brownian mo-
tion if and only if A(t,z) = A(t,z;W.) is an Fy-measurable continuous non-
decreasing process satisfying A(0,2) = 0 such that, almost surely,

(2.1) Alt+s,x; W) — A(t,x; W) = A(s,x + Wy; (0,W).),

where (915W)5 = Wt+5 — Wt.
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Remark 1. In Revuz and Yor [12], positive additive functionals are de-
fined as follows: Let {By;t > 0} be the N-dimensional Brownian motion. A =
{A(t);t > 0} is called a positive additive functional of the N-dimensional Brow-
nian motion if and only if (i) A(¢t) = A(¢t; B.) is an Fi-measurable non-decreasing
process satisfying A(0) = 0 and (ii) A(t+s; B.) — A(t; B.) = A(s; (7:B).) is sat-
isfied almost surely, where (7:B). = By4..

Noting that B; = By + Wy, we set A(t,x) = E[A(t)|Bg = z]. Then A(t, x)
(t > 0,7 € RY) is a random variable of W. and satisfies the conditions as in
Definition 2.1.

We introduce the Revuz measure associated to the PCAF (see McKean
and Tanaka [9], Fukushima, Oshima and Takeda [4] and Revuz and Yor [12]).

Definition 2.2. The Revuz measure v4 associated to an additive func-
tional A is the measure on RY such that

(2.2) - (z)va(dz) = /E{/O1 fWe + x)th(t,x)} dx

for all bounded Borel measurable function f.

Remark 2. Since dzx is an invariant measure of the Brownian motion,
(2.2) above is equivalent to the following:

a+h
[ Hawatas) = %/E[/ f(Wt—l—x)th(t,x)]dx
for any ¢ > 0 and h > 0.

We prepare some notation of Wiener chaos as is the main tool of our
consideration. For every n = (n1,nga,...,ny) € Zf, where Z, denotes the
totality of non-negative integers, we set |n| = ny; +ng + -+ - + ny. We denote
n-ple Wiener-It6 integral with a kernel function fp, by I, (fn) :

Jo = fulti,ta, o i) = G N L

In(fn) =/O / Fa @0t DN D),
thlm' 'thlu) "'thjym' 'thJ(VNw
1 ny 1

N

Lty

where (t1,t2,... 1)) = (tgl), . ,tﬁlll),...,th),...,tSva)) and f,, € L?([0, 00)I™

— R) is symmetric with respect to tgj), cey SZ} for all fixed j(j = 1,...,N).
We denote the totality of such functions by L2 or LZ(dt). Io(fo) represents
a constant and we also use the notation fo together with Io(fo). We remark
that multiple Wiener integrals admit the following equality:

0 if n #m,

N frn,gm)r2 ifn=m,

(2-3) E[In(fn>lm(gm>} = {
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where n! =[] n;! and (-, %) .2 denoting the L?(dt; ...dt,)-inner product.

With the notation above, we define Meyer-Watanabe’s Sobolev spaces D3
of square integrable type. It is well-known that every L?(P) function F admits
the Wiener chaos expansion (see It6 [8]):

F= " In(fn)

N
nEZJr

For s > 0 we define Dj C L?(P) as follows:

D5 =S F =% In(fn) € LX(P)|IFIZ =) _(1+ [n|)*n! ful* < o

N
nEZ+

where ||f|| denotes the L?norm of f. We note that D5 endowed with the
norm | - ||s forms a Banach space and that D5 ® is the dual space of D3, which
is considered as the totality of series of multiple Wiener integrals satisfying
|IF']=s < 00. D3 (s € R) is called Meyer-Watanabe’s Sobolev space. Note that
D3 above coincides with D in Ikeda and Watanabe [5] or D*? in Nualart
[11].

We now introduce local times L(t,z) of multidimensional Brownian mo-
tions (see Imkeller and Weisz [7]).

Proposition 2.1 ([7]).  Let x(# 0) € RY and t > 0 be given. Then
there exists L(t,x) € D5 such that

t
/ pn(e,Ws —x)ds — L(t,z) as e—0 in DS
0

forallaw<1— N/2.

Remark 3. In the proposition above, py(g,- — x) is used for a test
function converging to &,. This can be replaced by ¢.(-—z) = p((-—z)/e) /e
where ¢ € D.

Remark 4. Proposition 2.1 is shown by the H-derivatives of
fot pn (e, Ws—x)ds, and then Imkeller and Weisz also proved that L(¢, x) admits
the following It6-Wiener chaos expansions (cf. Imkeller and Weisz [7]):

t [n|
L(t,z) = Z/O %In ((%) Lio,e)(t1) X -+ % 1[o,s](t|n)>

< H, (%) P (s, 2)ds,

where, for z = (21,...,2n) € RN and n = (nq,...,ny) € Z¥,

Hy(x) = H Hy, (24),
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H,, denoting the Hermite polynomial;

dTL
H,(z)= (—1)"ex2/2d—ne_’”2/2, z €R.
x

From (2.3), we find that the above expansion coincides with the following one
(see Uemura [14], [15]);

LL’) = ZIn(fn(t7x)>
fn(t, ) :/0 gn(s,x)ds,

(2.4)

gn(s,r) = % (%)Inl Hp (%) PN (8, 2)p0,q(t1) X -+ X Lo g (t}n))-

Remark 5.  g,(s,z)(n € ZY) above are kernels in It6-Wiener expan-

sion of 4, (Wy), i.e.,
Ws) = Zln(gn(sax))
This is also obtained by the same way as in Remark 4.

Proposition 2.2.  The local time L(t,x) of N-dimensional Brownian
motion is continuous with respect to x(# 0) in DS where o <1 — N/2.

Proof. L(t,z)— L(t,y) admits the following chaos expansion:

L(t $ ZI fn t 1' fn(tvy))'

Let B(xz,r) be the closed ball centered at « with radius . We set r < |z|. Note
that for 6 € [1/4,1/2]

(2.5) sup |H,( _55 ’< CV/nlp=(89-1/12
£eER

and that, for every fixed a > 0, s—ae~(1=20)ly1*/2s ig bounded uniformly in
(0,t) x B(x,r) (see Imkeller et al. [6] and Szego [13]). Thus a slight computation
gives that, if y € B(,7), 30 5 (1 + [n))*n!|[ fn(t,y)||? < € for all € > 0 and
M large enough. Therefore it suffices to show that lim,_., fr(t,y) = fu(t, )
in L2,

[ fnt,y) = fu(t,2)]

ni) /0 /0 dty ... dtp,
In| Y pn(s,y) — Ho [ 22 ) pu(s,2) 1 Lo,s)(t;) ds
(&) 1= (%) (G5) e}

Jj=

!
/

%|
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YL
(/( ) /{ (“555 D) oo+ 6ty - | de

In|

X H 10,4 (t;) ds
j=1

x /O1 <y 0 Hoe (%) P (5,5 + £y — z>)> ¢

In|

X H 1[0,3](15]) ds

j=1

1 2 roo 0o
§|y—m|2<—') / / dty ... dtp,
n. O O

g )'"' < 1 > 2
T sup = Hn e<>p 5,2
| (f e \Js) Hrnre 5 P2

k

\
where Hyte(z) = (Hpte, (), ..., Hntey(x)) and e, = (0,...,0,1,0,...,0) €
Zf (k=1,2,...,N). Since the last term goes to 0 as y tends to x, the proof
is completed. 1

In|

I 10 ds |

Jj=1

3. Generalized Wiener functionals corresponding to distributions

Let T € D' be a positive distribution and 2 € RY be fixed, where D’
denotes the dual space of D. In this section we discuss on the existence of
the generalized Wiener functional corresponding to 7. We denote the Radon
measure corresponding to T by pur, i.e., (T, ) = [on @(y)pr(dy) for all ¢ € D.
To state our claims, we prepare three conditions on measure p on RY.

Condition 3.1. sup,ern 1(B(y, 7)) < oo for all r > 0.
Condition 3.2.  For all § > 0 and for all n > 0,7 > 0 small enough,

sup / ly — 2PN 7e 0= dy) < o
z€B(x,r)

Condition 3.3.  For all 6 > 0 and for all > 0 small enough,

/ ly — 2>~V e (dy) < oo
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Our first assertion is as follows:

Theorem 3.1.  Let T € D' be a positive distribution and pur be the cor-
responding Radon measure. Let & <1 — N/2. Suppose ur satisfies Conditions
3.1 and 3.2. Then it holds that

t
(3.1) lim [ Txp.(Ws+x)ds=Ar(t,z) in DY,

e—0 Jo

where

> I
(3.2)
7t T) / In(s x)pr(dz)ds,

gn(s,z—x) is as in (2.4), p(y) = (y/e)/eN, ¢ € D satisfying [on o(y)dy =1

and T+ p(y) — [ oy — Dpr(dz).

Remark 6. If we set T = §p and = # 0, then we obtain the local
time L(t,x) of N-dimensional Brownian motion as Ar(t,—z). If 2 = 0, then
Condition 3.2 is not satisfied and we do not have any limit point in (3.1).

Proof of Theorem 3.1. From Condition 3.1 we have T * ¢. € C°(RY),

the totality of smooth functions which and whose derivatives of any orders are
bounded. Thus fot T#p.(Ws+x)ds admits the following It6-Wiener expansion:

/T*@E(W —|—l‘dS—ZI o(t, 1)),

n(t @) / // 0 (y — 2)pr(dz)gn(s, y — x)dyds.

Let y € RN, § € [1/4,1/2) and n > 0. From (2.5) and that

e~ (1=20)yl*/2s < C(\/E)N—Hn‘y|—N+2—ne—(1—25)ly|2/4t’
we see that
(3.3)

’H (\[) (s, y)’ < CVnln~=BI-D/12g=14n/2)) | = N+2=ne= (1= 20)lyl* /4t

and therefore

0 (y — 2)gn(s,y — )| < OVnln=E=D/125(ZInl=24m)/2 )y, _ g =N+2=n
x e U2Dly=l/40 5 110 G (t1) X -+ X 10,6 (Hn)) 1B (0,00 (¥ — 2),
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where n® = Hn‘; and p > 0 is a constant such that the support of ¢ is
included in B(0,p). By taking n < 2, the right-hand side above belongs to
L' (dsdyur(dz)) from Condition 3.1. Therefore, from Fubini’s theorem,

/Ot // 0 (y — 2)pur(d2)gn (s, y — x)dyds
/ // ey = 2)gn(s,y — x)dypr(dz)ds
/ / / w)gn (s, ew + z — x)dwpr(dz)ds.

By a similar argument as above, we get

lo(W)gn(s,ew + z — )| < CVnln=GI=D/124(Inl=240)/2 |0 4 o p|=N+2-m
— — EWTZ—T 2
x e~ (m20)lewt=malt At ) (1) X -+ X Lo g (b)) LB(0,0) (W),

which belongs to L!(dsdwpr(dz)) from Condition 3.2. Thus we have

o(t,x) // / W)gn (8, ew + z — x) pr(dz)dsdw.
Therefore

laz, (8, 2) — ap(t,2)|>

- (%)2 w) (%)lnl ﬁl[o,s](tj)

J

{/ Hy, (%) pn(s,ew + 2z — x)pr(dz)

—/Hn <%) (s, 2 — z)uT(dz)} dsdw

1 2
- (E) {I(e,€) + 1(0,0) — 2I(¢,0)},

2

where
I(e1,e2

L e ()

J

/Hn (%) pr (s, eqwr + 21 — x)MT(dZI)dewl)

(] ot ()" Tl 10t
(f [ e ()

j=1
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/H <W#) pN (U, E0wa + 29 — x)uT(sz)dudwg) dty - dt)p

o [ oo (2255 e

H, fWat 2% PN (sv,e0wa + 22 — &) pr(dz1 ) pur (dza)dvdsdw dws.
V/sv

From (2.5) and (3.3) it holds that sup,, ., >, 1/n!(e1,2) < C(1+
n)N1=(8-1/6)=2 " where C' is a constant independent of n (see Imkeller and
Weisz [7]). Thus, by setting a <1—N(1—(80—1)/6), || 3o}, >x In(an(t,z) —
al (t,7))||o is small enough uniformly in ¢ if K is large enough. Therefore it
suffices to show that lim._ I(g,¢) = lim._ I(g,0) = 1(0,0).

Set Ago = {(21,22); |21 —@| < M, |20 — x| < M}, Aoy = {(21, 22); |21 — 2| <
M, |z — x| > M} and Ay = {(#1, 22); |21 — x| > M} for M > 1. From (3.3) we

have
EW+z—x
H,| ——
( Vs >

/|za:|>]\/[

< Csfl+n/2/ ‘8w 42— x‘7N+2fnef(176)|5w+z7m\2/4tuT(dZ)
|z—x|>M

PN (s,ew + z — z)ur(dz)

S CS—1+17/2/ |EU} 4z $|_N+2_ne_(1_5)|6w+z_m|2/4t/J/T(dZ)
lew+z—z|>M—1
< C(M_ 1)—77/28—1+17/2 sup /lz_y|_N+2_n/2€_(1_6)lz_y|2/4tﬂT(dZ)
y€B(z,1)

for any € < 1/p. Therefore

‘///Ot/ol/élw(wl)@(wz)svnl/?Hn (%) (s, exwr + 21 — 2)

x Hp (M> PN (8v, E2wa + 22 — @) pr (dz1) pr (dze ) dvdsdw, dws

M—1) n/z//// (11) g (wp) s~ HHpinl/2=14n/2

X sup / Iy — |-+ 2= (A= Dler =/t
yleB(rvl)

X / leaws + 29 — m|_N+2_"e_(1_6)|52“’+Z2_x|2/4t,uT(dz2)dvdsdw1dw2

<C(M-1)""2 sup /|Z1 | N2 2= (=) s Pty
y1€B(z,1)

X sup /|Z2—y2|_N+2_ne_(1_6)|z2_y2| i (dzs),
y2€B(x,1)

which converges to 0 uniformly as M tends to infinity. We also see that the
integral on Ag; converges to 0 uniformly as M tends to infinity by the same
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computation. We finally consider the integral on Agy. Note that

Lo, (21, 22) 10,41 (8) 10,1 (V) p(w1)p(w2 ) pr (dz1) pr (dz2 ) dvdsdwy dw,

is a finite measure. From (3.3) and Condition 3.2, it is easy to see that

solml2p (%) (5,11 + 21 — )

EoWo + 29 — X
x H, (“2) PN (sv, Eaws + 29 — )

e

is uniformly integrable with respect to this measure. Therefore

hméo///ot/ol//A (w1 ) (ws)sv™/?

x Hp <M> pN(s,e1w1 + 21 — )

NE

x H, <M> PN (v, €2w2 + 22 — @) pir (dz1) pr (dzz ) dudsdw: dws

Yo

" sv
/t/l// svl™2 g (Zl_x>19 (s,21 — x)
= n| —F— ) PN(S, 21 —
o Jo Aoo Vs

x Hp, (Zi/;_;f) pn (sv, 29 — @) pr(dzy)pr(dze)dvds.

Hence we conclude that lim._o I(e,e) = lim._ I(g,0) = I(0,0), which com-
pletes the proof. (I

Remark 7.  Ap(t,x) admits the It6-Wiener expansion as in (3.2). Since
this chaos expansion belongs to D§ under Condition 3.3, Ar(t,x) exists as an
element of Dg under Condition 3.3.

By the same estimate as above, we obtain that
(3.4) IL(t,y — 2)||a < CtV2|y — x‘—N+2—ne—(1—25)|y—w\2/4t7

where 7/8 —3(1 — a)/(4N) < § < 1/2. Since L(t,y — x) is continuous in D
with respect to y by Proposition 2.2, L(t,y — z) is Bochner integrable with
respect to pr(dy) in D5, and we obtain the following theorem.

Theorem 3.2. Under Condition 3.3, it holds that

Ar(t,z) = / L(t,y — z)pur(dy).

4. Brownian local time representation of PCAF

In this section we first consider a PCAF A = {A(t,x; W.);t > 0,z € RV},
We denote the associated Revuz measure by v4. We assume the following
conditions:
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Condition 4.1.  For all (¢,z), E[A(t,z)?] < oco.

Condition 4.2. Forall R>0and 0 <7 <t

[e[([ s @duA(u,m)ﬂ e

where xg(z) is a [0, 1]-valued smooth function such that

(2) = 1, if || <R,
XRWEI =Y 0, iffa| > R+ 1.

Our assertion is as follows:

Theorem 4.1.  Let A = {A(t,z;W.);t > 0,z € RN} be a PCAF sat-
isfying Conditions 4.1 and 4.2. Suppose va satisfies Condition 3.3. Then
J L(t,y — z)va(dy) exists in D§ (o <1— N/2) and moreover

A(t,z) = /L(t7y —z)va(dy).

Combined Theorem 3.2 and the theorem above, we obtain the following
corollary.

Corollary 4.1.  Let A= {A(t,z;W.);t > 0,2 € RV} be a PCAF satis-
fying Conditions 4.1 and 4.2. Let T be a positive distribution corresponding to

the Revuz measure va. Assume vy satisfies Condition 3.3. Then it holds that
A(t,z) = Ap(t, x).

In the rest of this section, we prove Theorem 4.1 with several lemmas.
Without loss of generality we assume ¢t = 1 for the simplicity of the proof.

Lemma 4.1.  Assume Condition 3.3. Then the following holds in DS
(o <1—N/2):

lim [ L(r,y — z)va(dy) = 0.

r—0

Proof. From (3.4) and Condition 3.3, it follows that

lim

r—0

[ vty = owatan)| <t [ 1260l vata
@
< lim O/ / ly — | N2 (== /4y, gy —
T r—0

which completes the proof. [l

Thus our target turns to [{L(1,y —x) — L(r,y — x)}ra(dy) for r small
enough.
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Lemma 4.2.  Assume Condition 3.3. Set s;, =r+(i—1)(1—7r)/m (i =
1,2,...,m+1). Then the following approzimation holds in Dy~ * (o < 1—-N/2):

lim

m—>oo|

/ {L(Ly— ) — L(ry — 2)}va(dy)

1_
_Z T/(Syx va(dy)

Proof. By the same computation as in (3.4) we get

=0.

a—2

(4.1) [18y—2(We)lae1 < Cly — x| N+271e= (=20 ly—al*/4

where 7/8 — 3(1 — a)/(4N) < § < 1/2, and therefore [, (Ws,)va(dy) ex-

ists in DS, For the later use we remark that the constant C above is in-

dependent of s. Moreover [{L(l,y — z) — L(r,y — z)}va(dy) — Y1~ (1 —
r)/m [ 6y (W, )va(dy) admits the following It6-Wiener expansion:

J120.y =) = Ly = 2)}vatay) - Z T [ 6 watay)
1 1—r

= I, n(s,y —x)ds — n(Si,y —x) pva(d .

3 (/{/gu/ ) ;mmy )}Am))

Note that

m

1
1—r
n,fd* - Yn\oi Y —
/Tg(sy m)sg mg(sy x)

=1

ARG

x (H 10,4 (t5) — H 1[O,si](tj)) ds

R (e

_(\;s_i)lan (y\/—s_zx)pN sy }Hlo&]

:gg)(m,yfx)Jrgg)(m,yfm)

and set
=St ([~ 2atan))

and

=St ([ 2 e aata)).
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We first estimate ||A(Al)(m)||a_1. Since

o] 2

AL, =S 1 met 3 M|/ 50 (m, y — )valdy)
n=0 inl=
<N (1 4n)t ! G5 (m,y — 2)|[va(dy) )
<nz:%1+ T;Hn (/Hg y HA y)

it suffices to estimate Hgs)(m,y —z)||. From (2.5) we have
\nl y—
<7) (s, y— (H 1j0,4(t Hl[O,si](tj)>

={<ﬁ>""ﬂn e

< C$—|n\n!n—(86—1)/GS—Ne—(1—26)|y—m\2/s(S _ Si)|n|3\n|—l

2

< On!n—(S&—l)/G‘nllT—N—le—(1—26)|y—x\2.
- m
Thus it holds that

155 (m, y— x)||<C\/_ (8- 1/12\/|n,/ pm(NHD/2(1 o= (1=20)ly—al*/2

and that
H/gﬁf)(m y:v)VA(dy)H

< O\/%n—(&s-l)/lz\/m\/gT—(NH)/z(l —r)/e_(l_%)ly_’”‘z/zuA(dy),
which is finite under Condition 3.3. Hence it holds that
(42) 1A < AR 3y < O (om0 )
We next estimate ||A(§)(m)|\a_2. Note that

(%)lnl H, (%) o (s,y— ) — (\/%)lnl H, (%) pu(siy — @)

Co 1
/ 5.0y o (uyy — z)du = / g A0y P (u,y — x)du

[ % ZN: (%) o Hrzer (%) pn(u,y — x)du,

i %=1
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where 0)} = 9™ /Oyy"* --- 0" /Oy and A denotes the Laplacian. Therefore
it holds that

(&) () v
- (x/ls_i)lan" (y\/_;)p Sisy — }Hl[osl
= C/s i V(n + 2er)!(n + 2e;,)~ B0 1/12 (i) i uN/2
i k=1

NG

« e~ (1=20)|y==|?/2u g, sLn|/2

<C

M=

(n + 2ex)!(n + 2e;)” (86-1)/12 /S u~(N+2)/2g=(1=20)ly—a*/2u gy,

1 i

~
Il

and that
1352 (m,y — )|

N m )
V(n+ 2ep)! s Sit1 S
<C E T(n+26k) (85 1)/12§ : u—(V+2)/2
k=1 i=1"Si Si

x e~ (1=20)ly=al*/2u gy, s

1
< C’Z Vint2e)! Qe’f (4 2e)-®-0/12 L [0~ (V42 /2-0-29) sl /20,

m T
2ey,)! 1
<c Z 7\/(":;616(n + 20,000/ Lpm v pye-mmivate
Since e~(1=20)ly=2*/2 j5 integrable with respect to v4(dy) under Condition 3.3

and (n + 2e;)!/n! x (n + 2e;,)~E-D/12 < (In| + 1)(|n| + 2)n=E-D/12 ] we
easily see that

1
(4.3) HA(AQ)<m)||a—2 < CE /e—(l—zé)ly—xP/QVA(dy).
From (4.2) and (4.3) above, we obtain the desired result. O

We consider (1—7)/mx Y 1" [ 8y—(Ws,)va(dy). We claim the following:
Lemma 4.3.  Assume Condition 3.3. Let o < 1 — N/2. Then it holds

(/&, +(Ws,)va(dy)

-/ m(y)amwsi)m(dy))

that

hm sup

R—o0 m

=0.

a—1
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Proof. From (4.1) we easily have

1—r —

w2 ([ brewati) — [xat@s, a0 sty
T3 IS

< C(]. B 7“)/ ‘y . 1,|—N+2—ne—(1—25)|y—w|2/4VA(dy)
ly—z|>R—|z|

<

a—1

aflyA(dy)

where 7/8 — 3(1 — a)/(4N) < § < 1/2. The right-hand side above vanishes as
R tends to infinity by Condition 3.3, which completes the proof.

U
Thus we consider (1—7)/mx>"" | [ xr(Y)dy—z(Ws,)va(dy), which admits
the It6-Wiener expansion

k3

doIn <1mr Z/XR(y)gn(si,y - x)VA(dy)> :
i=1

From the definition of Revuz measure, we have

1

;Lr Z/XR(y)gn(si,y — z)va(dy)

m . Sit1 . . .
:Z/E [/ XR(Wquz)gn(si,Wquzx)duA(u,z)] dz,
i=1 Si

where (W, /1,]5) denotes the independent copy of (W., A, P).

Lemma 4.4. Assume Condition 4.2. Then it holds that

é/E [/sm{gn(Si’Wu +2—) = gnl(si, We, + 2 — )}

S

lim
m— 00

X Xr(Wy + 2)dyA(u, 2) | dz| = 0.

Proof. We first note that

|gn(si,y) - gn(si’ Z)'

% (\/%) " {Hn (%) pn(si,y) — Hn (%) PN(Siaz)}‘ [Tt

N 1/2
1

< o (St o) o= =TT 2t
. w k=1
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1

/2
ly =2 [] Lo, (t5)

< Ol + 10 (%)NH jy— (%) om0

Thus we can write

" Si+1 . R
> |E U {gn (56, Wy + 2 — &) — gn(si, Wy, + 2 — 2)}

X Xr(Way + 2)dy A(u, z)} dz

m R Sit1 R R
< Z/E [/ lgn (s, Wa + 2 = 2) — g (55, Wi, + 2 — )|
Sq

x Xr(Wy + z)dufl(u,z)} dz

m R . R Sit1 R R
X Z/E { sup |W, — Ws7|/ xr(Wy +Z)duA(7.L,Z):| dz

S <u<S;41

1 1 N+1
< C—=(n| + 1)n~1/4 (W)

X /E [ max  sup |Wu — WS

1<i<m $i<u<Sit1

/Tl Xr(Wa + 2)d, Alu, 2)} dz

1/2
]

AN+ . .
< C—(|n|+1)n"1/* (W) E [ max  sup W, — Wy,

1<i<m $i<u<Sit1
1 271/2
X/E (/ XR(Wquz)dufl(u,z)) 1 dz.
p o2 7 P2 _
sup |[W, — W, |= max sup [W, — W] } (k=1,...,m).

Sp<U<SK+1 1<isSm s, <u<sipr

Set

My =

——

Then it is easy to see that

E[ max  sup |VAVu—VAVSi|2} —ZE[IMk sup |VAVu—VAVS,€|2}

1<iSm g, <u<sitr k=1 Sk <u<Sk41

m 1/2
. . o 1
< I;P[Mk]l/zE[ sup W, — Wi, 4} <0y

Sk <u<Sk+1
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Hence, from Condition 4.2, we conclude the assertion. 1

Remark 8. By setting Ag(¢, ) fo Xr(Ws + z)dsA(s, x), clearly Ap
is also a PCAF. Since dx is an invariant measure, we have

Z/ U . (80, Ws, + 2 — 2)xr(Wy + 2)duA(u, 2) | dz

- Z/gn(siv 2)E[AR(sip1 — si,2 + 7)]dz.

Therefore the proof above gives

. -
n}gnoo Z / XR(Y)8y—= (W, )va(dy)
fZZI (/gn si,2)E[AR(sit1 si,z+x)]dz) = 0.
a—1
Proposition 4.1.  Let F(y) be a measurable function on RN such that

JIF(y)le” 31y dy < oo for all § > 0 and E[F(W})?] < co. Then F(W,) admits
the following Ité- Wiener expansion:

(4.4) FW) =) In (/ F(y)gn(t,y)dy> :
Proof. From (2.5) it is easy to see that
) 1\
lgn(t,9)] < CVmln= (07D tzem Um0/ (%) [T 104
for 6 € [1/4,1/2), and therefore

> In </F(y)gn(t, y)dy) e Dot

for o < 1 — N(1—(85—1)/6), which is identified by the It6-Wiener expansion
of [ F(y)é,(W;)dy. On the other hand, since F(W;) € L*(P) c Dy ",

(F(W,),G) = E[F(W,)G] = / E[F(4)GIW: = ylpw (t,y)dy
— [ P 6,00, G)dy = < / F<y>6y<wt>dy,c>

holds for any G € D , where (F, G> denotes the couphng of F e DS~ L and
GeDy™® Therefore F Wt f F(y)oy(Wy)dy in DS, which completes the
proof. O
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Remark 9. Since F(W;) € L*(P), the right-hand side of (4.4) con-
verges in L?(P).

Under Condition 3.3, it is easy to see that

/E[AR(si+1 — 8,z +a)]dz = m/XR(z + 2)va(dz) < oo.
Since Ag is a PCAF and (W, W) = (Ws,, 05, W) in law,
E[ARr(sit1 — 51, Wy, +2)] = E[AR(sip1,2) — Ar(si, )| Fs,]
and therefore
E[E[AR(siH — 8, Wy, + x)]Q} < E[(Agr(sit1,x) — AR(si,m))Q] < 0.

Thus, applying Proposition 4.1 to E[Ag(s;41 — i, 2 4+ 2)], we obtain that

m

ZZIn (/gn(si,z — x)E[/AlR(siH — si,z)]dz>
= ZE[AR(SiJrl — 8i7W5i + (E)]

= ZE[AR(SH.l,l') - AR(Shm)'fSi]'

Proposition 4.2.  Let A be a PCAF satisfying Condition 4.1. Let A =

{0 =59 < 81 < -+ < 8y < Spy1 = 1} be a partition of [0,1], and put
|A| = max|s;11 — s;|. Then we obtain

n 2
lim F | A(l,z) — ElA(si+1,2) — A(ss, x)| Fs, =0.
lim {( )= D BlAsin,2) ~ Al ]}
Proof. Since

BlA(si11,2) = Alsi, )| Fo) = E[A(si1 = 502+ 9)]|

b
y=Ws,

this proposition immediately follows from Dynkin [2, Theorem 6.3]. O

Proof of Theorem 4.1. From (3.4) and Condition 3.3, it is clear that
[ L(r,y — x)va(dy) exists as an element of DY

Let € > 0 be arbitrary. From Lemma 4.1 there exists an > 0 such that

| [ 20— awatan)

Simultaneously this r can be taken such that

<e/T.

@

E[A(r,z)%] < ¢/T.
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Let R be taken such that

E[([Ar(1,2) = Ar(r,2)] = [A(L,2) — A(r,2))*] <&/7

(/ Sy—z(Ws, )va(dy) — /XR(y)(Sy—a:(Wsi)VA(dy)>

which is ensured by Lemma 4.3. If m is large enough,

from Lemma 4.2,

1_TZ/XR Sy—z(Ws, )va(dy)
_ZZI (/gn si,2) E[AR(si _3i72+$)]d2)

from Remark 8 and

and that

<e/7,

sup
m

a—1

<e/7
a—2

Jirt =)= pte - patin -3

/63,/ a: VA dy)

<e/7

a—1

m 2
E (AR(l,as) — Agp(r,z) — ZE[AR(5i+17x) - AR(Siax”‘Fsi]) <e/T

from Proposition 4.2. Therefore

<eg,

a—2

a0 [0y apatan

which completes the proof. O
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