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p-compact groups as subgroups of maximal rank
of Kac-Moody groups

By

Jaume Aguadé∗

1. Introduction

In [28], Kitchloo constructed a map f : BX → BK∧p where K is a certain
Kac-Moody group of rank two, X is a rank two mod p finite loop space and
f is such that it induces an isomorphism between even dimensional mod p
cohomology groups. Here B denotes the classifying space functor and (−)∧p
denotes the Bousfield-Kan Fp-completion functor ([8]).

This space X —or rather the triple (X∧p , BX∧p , e) where e : X � ΩBX—
is a particular example of what is known as a p-compact group. These objects
were introduced by Dwyer and Wilkerson in [15] as the homotopy theoretical
framework to study finite loop spaces and compact Lie groups from a homotopy
point of view. The foundational paper [15] together with its many sequels by
Dwyer-Wilkerson and other authors represent now an active, well established
research area which contains some of the most important recent advances in
homotopy theory.

While p-compact groups are nowadays reasonably well understood objects,
our understanding of Kac-Moody groups and their classifying spaces from a
homotopy point of view is far from satisfactory. The work of Kitchloo in [28]
started a project which has also involved Broto, Saumell, Ruiz and the present
author and has produced a series of results ([2], [3], [10]) which show interesting
similarities between this theory and the theory of p-compact groups, as well as
non trivial challenging differences.

The goal of this paper is to extend the construction of Kitchloo that we
have recalled above to produce rank-preserving maps BX → BK∧p for a wide
family of p-compact groups X. These maps can be understood as the homotopy
analogues to monomorphisms, in a sense that will be made precise in Section
13. We prove:

Theorem 1.1. Let p be a prime and let X be a simply connected p-
compact group with Weyl group WX . Assume that the order of WX is prime to
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p and WX is generated by pseudoreflections of order two. Then, there exists a
Kac-Moody group K of the same rank as X and a monomorphism from X to
K∧p .

Actually, this paper contains more information than what is contained in
this theorem. The proof of 1.1 is constructive and contains a concrete descrip-
tion of the groups K involved, and the properties of these groups are investi-
gated beyond what is strictly necessary to prove 1.1. Also, the main technical
ingredient in the proof (Theorem 8.2) —as well as our review of the classic work
of Coxeter and Shephard ([13], [35]) on reflection groups— may have some in-
dependent interest. It should be pointed out that we provide counterexamples
(see Section 15) which show that the hypothesis on WX in Theorem 1.1 cannot
be relaxed.

Our motivation for the research done in this paper has several aspects.
First of all, this paper can be viewed as a further step in understanding Kac-
Moody groups and their classifying spaces from a homotopy point of view.
Secondly, we think that it is interesting to relate p-compact groups —which
are purely “homotopical” objects which “live at a single prime”— to other
“analytical”, “integral” objects as are Kac-Moody groups. On the other hand,
the maps f : BX → BK∧p that we construct in Theorem 1.1 give rise to
new families of “homogeneous spaces” which may be interesting on their own.
For instance, the original map of Kitchloo in [28] produced a fibration which
looks like a particular case of the Anick fibration ([6]) —and which it has been
conjectured to be equal to the Anick fibration. In the same way, the maps in
1.1 yield fibrations which may be related to Anick’s work and could be worth
of a closer investigation.

The author would like to thank PIMS at the University of British Columbia
and the Department of Mathematics of Kyoto University where parts of this
work were completed.

2. Kac-Moody groups

Kac-Moody groups are certain connected topological groups whose con-
struction and basic properties can be read in [25], [26] and [32]. Simply con-
nected compact Lie groups are particular examples of Kac-Moody groups, but
most Kac-Moody groups are infinite dimensional. We review here very quickly
the basic facts about Kac-Moody groups that we will need in our study and we
refer to the works of Kac and Peterson for any further study of these objects.

A generalized Cartan matrix is a square matrix A = (aij) with aii = 2,
such that aij are non-positive integers for i �= j and aij = 0 implies aji = 0.
Such a matrix provides enough data to define a Lie algebra g(A) which is, in
general, infinite-dimensional. Actually, g(A) is finite dimensional if and only if
A is positive definite. These Lie algebras are called Kac-Moody Lie algebras
and Kac proved that they can be integrated in some way that we do not need
to discuss here to give rise to simply connected topological groups G(A) which
are just the complex semisimple Lie group associated to A if the Cartan matrix
A is positive definite. G(A) has a canonical involution and the unitary form
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K(A) is defined as the fixed point set of this involution. Along this paper, the
words “Kac-Moody group” refer to the topological group K(A) associated to
any generalized Cartan matrix A. The rank of K(A) is the size of the matrix A.
We point out that Kac-Moody groups are connected and simply connected by
construction. The center of a Kac-Moody group is well understood and we can
talk about “adjoint forms” of Kac-Moody groups. Other properties of these
groups will be introduced when needed.

Let us introduce the three families of Kac-Moody groups that we will study
in this paper. They depend on two positive integral parameters a, b. For any
n ≥ 2 we denote by K1

n(a, b) the Kac-Moody group of rank n associated to the
generalized Cartan matrix⎛

⎜⎜⎜⎝
2 −a
−b 2 −1
−1 2 −1

. . .
2 −1
−1 2 −1
−1 2

⎞
⎟⎟⎟⎠

The entries of this matrix are equal to 2 at the diagonal and equal to −1 at
the lines immediately above and below the diagonal, except for the first 2×2
block. All other entries are zero. We assume ab ≥ 4 so that this matrix is
never positive definite and K1

n(a, b) is not a Lie group. The groups K1
2 (a, b)

were studied thoroughly in [28], [3] and [2] where they were denoted K(a, b).
For n ≥ 3 we denote by K2

n(a, b) the Kac-Moody group of rank n associated
to the generalized Cartan matrix⎛

⎜⎜⎜⎜⎝

2 −a −1
−b 2 −1
−1 −1 2 −1

−1 2 −1

. . .
2 −1
−1 2 −1
−1 2

⎞
⎟⎟⎟⎟⎠

The entries of this matrix are equal to 2 at the diagonal and equal to −1 at
the lines immediately above and below the diagonal, except for the first 3×3
block. All other entries are zero. This matrix is never positive definite and so
K2

n(a, b) is not a Lie group.
For n ≥ 5, K3

n(a, b) is the Kac-Moody group of rank n associated to the
generalized Cartan matrix ⎛

⎜⎜⎜⎝
2 −a −1 −1
−b 2 −1 0
−1 −1 2 −1 0

−1 2 −1 0

. . .
−1 0 0 0 ··· 0 2

⎞
⎟⎟⎟⎠

consisting of the Cartan matrix for K2
n−1(a, b) with an extra row and column.

Again, K3
n(a, b) is never a Lie group.
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3. Coxeter diagrams and Weyl groups

Each Kac-Moody group K has a maximal torus of finite rank —which
is a maximal connected abelian subgroup of K and all such subgroups are
conjugate— and a corresponding Weyl group WK which is a Coxeter group.
WK is finite if and only if K is a Lie group. The entries in the Cartan matrix
(aij) give immediately a presentation for WK in the following way. If the rank
is n then WK has generators w1, . . . , wn and relations w2

i = 1 for all i and
(wiwj)mij = 1 where mij = 2, 3, 4, 6, 0 if aijaji = 0, 1, 2, 3 or > 3, respectively.
Then, the Coxeter diagram for K is defined as the graph with vertices 1, . . . , n,
the vertex i is joined by an edge to the vertex j if mij > 2 and this edge has a
label mij if mij > 3. If mij = 0 then we use ∞ as a label instead of 0.

The Coxeter diagrams for the groups K1
n, K2

n, K3
n are as follows. The

diagram for K1
n(a, b) is

� � � � � �· · ·
∞

The diagram for K2
n(a, b) is

� � � � � �· · ·

��
�

�
�

m
(n vertices)

m is the order of w1w2. In this diagram, we order the vertices in the way that
the vertices in the top row are 1, 3, 4, . . . , n and the bottom vertex is 2. The
diagram for K3

n(a, b) is

� � � � � �· · ·

��
�

�
�

m

The bottom vertex is 2 and the top left vertex is the last one.
The action of the Weyl group WK on the Lie algebra of the maximal torus

gives a well defined representation of WK in GLn(Z). Each generator wj acts
on a certain basis h1, . . . , hn as

(3.1) wjhi = hi − aijhj .

As an example, the three generators of the Weyl group of K2
3 (a, b) as elements

in GL3(Z) are given by

w1 =

⎛
⎝−1 b 1

0 1 0
0 0 1

⎞
⎠ , w2 =

⎛
⎝1 0 0

a −1 1
0 0 1

⎞
⎠ , w3 =

⎛
⎝1 0 0

0 1 0
1 1 −1

⎞
⎠ .
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4. Parabolic subgroups and a homotopy decomposition of BK

If K is any Kac-Moody group of rank n and I is a proper subset of
{1, . . . , n} we can consider the parabolic subgroup PI of K (see [25]). If I
is empty, then PI is just the standard maximal torus of K. We write PI(K) if
we want to indicate which Kac-Moody group we are considering.

A fundamental result in the homotopy theory of the classifying spaces of
Kac-Moody groups is the following result which follows from Mitchell’s theory
of topological Tits buildings ([29], see also [28] and [10]): If the Weyl group W
is infinite then there is a homotopy equivalence

BK � hocolim
I

BPI .

In this way, we have a kind of inductive way to study the spaces BK. Notice
that the groups PI are not, properly speaking, Kac-Moody groups but many of
the concepts of Kac-Moody groups can be applied as if PI were a Kac-Moody
group of rank n with Weyl group WI generated by the reflections wi, i ∈ I.
Also, if WI is infinite, then the homotopy colimit decomposition above holds
true for BPI and BPI is equivalent to the homotopy colimit of the spaces BPJ

for J � I. Hence, in the homotopy decomposition of BK given above, we
only need to consider the parabolic subgroups with finite Weyl group, i.e. the
parabolic subgroups of K which are Lie groups:

(4.1) BK � hocolim
WI finite

BPI .

Moreover ([10]), if WK is infinite, then we have homotopy equivalences

hocolim
I

BWI � BW, hocolim
I

WI\W � ∗

and

(4.2) hocolim
WI finite

BWI � BW, hocolim
WI finite

WI\W � ∗.

For a Kac-Moody group K we define its finiteness width by fw(K) = r if
there are exactly r maximal parabolic subgroups of K which are compact Lie
groups.

Notice that if K = Ki
n(a, b) is a Kac-Moody group belonging to the families

that we introduced in Section 2 and ab > 4 then the Weyl group WI of a
parabolic subgroup PI of K is finite if and only if {1, 2} is not a subset of I.
Hence, these Kac-Moody groups have always finiteness width equal to 2.

If fw(K) = 2, then in the homotopy decomposition of BK we only need
to consider two maximal parabolic subgroups PI and PJ and one sees easily
that BK is then a push out

BK � hocolim {BPI ← BPI∩J → BPJ} .
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5. The structure of the maximal parabolic subgroups

To study the structure of the parabolic subgroups of the Kac-Moody groups
Ki

n(a, b) we can use the presentation of Kac-Moody groups that is described in
[26]. If K has rank n, then there are group homomorphisms ϕi : SU(2) → K,
i = 1, . . . , n, such that their images generate K. If D is the unit disc in C and
we write

zi(u) = ϕi

(
u (1− ||u||2)1/2

−(1− ||u||2)1/2 ū

)

for u ∈ D, then K has a presentation with generators {zi(u) |u ∈ D, i =
1, . . . , n} and certain relations (see [25] for the full details). In particular, we
want to mention that the standard maximal torus in K is

TK = {z1(λ1) · · · zn(λn) |λ1, . . . , λn ∈ S1}

and the maximal torus centralizes each SU(2)i = ϕi(SU(2)) = 〈zi(u) |u ∈
D〉 ⊂ K. Moreover, the action of the maximal torus on each SU(2)i can be
explicitly read out from the Cartan matrix (aij) of K. We have:

zi(λ) zj(u) zi(λ)−1 = zj(λaij u) zj(λ−aij ), λ ∈ S1, u ∈ D.

We are interested in the structure of the maximal parabolic subgroups of
the Kac-Moody groups Ki

n(a, b) which are Lie groups. In each case, there are
only two such parabolic subgroups and if we denote by r the complement of {r}
in {1, . . . , n}, they are P1 and P2. It turns out that some of these groups are
isomorphic to the groups in a family of compact Lie groups that was studied
by Notbohm and Smith in their work on fake Lie groups ([31]) where they
described and classified all compact connected Lie groups locally isomorphic to
S1 × SU(n). Let us briefly review the results of [31] which we will use here.

For each n, s, k ≥ 1 with s dividing n, Notbohm-Smith define a Lie group
FUs,k(n) as a quotient

FUs,k(n) = (S1 × SU(n))
/
Cs

where Cs is the central cyclic subgroup generated by

(ω−k, ω · id), ω = exp(2πi/s).

These Lie groups have the following properties ([31]):
i) FUs,k(n) is a compact connected Lie group locally isomorphic to S1 ×

SU(n) and any compact connected Lie group locally isomorphic to S1×SU(n)
is isomorphic to some FUs,k(n), for some integers s, k.

ii) π1(FUs,k(n)) ∼= Z⊕ Z/rZ with r = (s, k).
iii) FUs,k(n) ∼= FUs′,k′(n) if and only if s = s′, (s, k) = (s′, k′) and k ≡ ±k′

(mod s).
iv) FU1,k(n) ∼= S1 × SU(n), FUn,1(n) ∼= U(n).
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v) These groups FUs,k(n) are determined by the representation

σs,k : Σn −→ GLn(Z)

given by the action of the Weyl group on the maximal torus. These represen-
tations are described in [31].

The structure of the parabolic subgroups of K1
2 (a, b) can be found in [2].

For the other groups introduced in Section 2, we have:

Proposition 5.1. There are isomorphisms P2(Ki
n(a, b)) ∼= FUs,k(n)

for i = 2, 3 and P1(K1
n(a, b)) ∼= FUs,k(n), where the integers s and k are

determined in the following way : l = (n, r), t = r/l, s = n/l, kt ≡ 1 (mod s)
and

r =

{
b + 2− n if i = 2, 3
a if i = 1.

Proof. To simplify the notation, let us write P2 = P2(Ki
n(a, b)) for i = 2, 3

and P1 = P1(K1
n(a, b)).

Using the presentation of K discussed at the beginning of this section, we
have that P2 is generated by z2(λ) for λ ∈ S1 and zi(u) for u ∈ D and i �= 2.
Hence, P2 is a semidirect product S1�SU(n) and, as said, the action of S1 on
SU(n) in this semidirect product is given by the entries in the Cartan matrix.
Explicitly, an elementary computation shows that P2 = S1�SU(n) with action

Aλ = MλAM−1
λ , A ∈ SU(n), λ ∈ S1

where Mλ is a diagonal matrix with diagonal entries λ−a, 1, λ, . . . , λ. A similar
analysis applies to P1 and we obtain that P1 can be described in exactly the
same way as P2, with Mλ now equal to the diagonal matrix with diagonal
entries λ−a, 1, . . . , 1.

We define a homomorphism

φ : S1 × SU(n) −→ S1 � SU(n)

φ(λ, A) = (λs, λtMλsA).

Then, the choices of s and t ensure that the matrix λtMλs has determinant one.
Also, it is straightforward to check that φ is a homomorphism and is surjective.
The kernel of φ is {(λ, λ−t · id) |λs = 1} and this coincides with the subgroup
Cs in the definition of FUs,k(n) above.

In particular, in the rank three case there are only two possibilities for the
groups FUs,k(3) and we have

P1(K2
3 (a, b)) ∼=

{
S1 × SU(3) if a ≡ 1 (3)
U(3) if a ≡ 0, 2 (3)

Since a and b can be interchanged in K2
n(a, b) we have also a description

of the parabolic P1(K2
n(a, b)). However, P2(K1

n(a, b)) and P1(K3
n(a, b)) do not
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admit a description in this way. These groups have the form S1 � (SU(2) ×
SU(n − 1)) and the action of S1 is such that S1 and SU(2) generate a group
U(2) while S1 and SU(n−1) generate a fake Fs,k(n−1) with s, k depending on
n and a (resp. b) like before. On the other side, the (non-maximal) parabolic
subgroup P1(K2

n(a, b)) ∩ P2(K2
n(a, b)) has an easier description:

Proposition 5.2. P1(K2
n(a, b)) ∩ P2(K2

n(a, b)) ∼= S1 × U(n− 1).

Proof. From the presentation of K described above, we see that the
parabolic in the statement is a semidirect product (S1 × S1) � SU(n − 1)
with action given by

Aλ = NλAN−1
λ , A ∈ SU(n− 1), λ ∈ S1 × S1

where Nλ is the diagonal matrix with diagonal entries λ−1, 1, . . . , 1. Then one
easily checks that

φ : S1 × U(n− 1) −→ (S1 × S1)� SU(n− 1)

φ(λ, A) = (λ, λ−1 det(A), Ndet AA)

is an isomorphism.

6. Reflections and pseudoreflections

If F is an integral domain, an element φ ∈ GLn(F ) is a pseudoreflection if
φ has finite order and φ− I has rank ≤ 1.

Pseudoreflections are important in invariant theory because if F is a field
and W is a finite subgroup of GLn(F ), then a necessary condition for the ring
of invariants F [t1, . . . , tn]W to be a polynomial algebra is that W is generated
by pseudoreflections. Moreover, if F has characteristic zero or prime to the
order of W , then this condition is also sufficient.

Pseudoreflections are important in the theory of Kac-Moody groups be-
cause equation (3.1) shows that the standard generators of the Weyl group of
a Kac-Moody group are pseudoreflections (of order two) in GLn(Z).

Pseudoreflections are important in homotopy theory because the Weyl
group of a p-compact group of rank n is a pseudoreflection group in GLn(Zp).
(Zp is the ring of p-adic integers.) We will explain this in more detail later.

The concept of a pseudoreflection is an obvious generalization of the classic
concept of an orthogonal or unitary reflection. Let V be an Euclidean (unitary)
space, i.e. a finite dimensional vector space over R (C) with a positive definite
quadratic (Hermitic) form. Then, a reflection on V is a linear map φ : V → V
such that there exists a vector v ∈ V and a root of unity θ such that φ is given
by

(6.1) φ(x) = x− (1− θ)
x · v
v · v v.

In the Euclidean case the order of a (non trivial) reflection is always two,
while in the unitary case a reflection can have order equal to any positive
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integer. It is clear that a reflection is an orthogonal (unitary) transformation
and it is also clear that a reflection is also a pseudoreflection. Conversely, if φ is
a pseudoreflection on V , then we can always find a positive definite form on V
such that φ leaves this form invariant and so φ is a reflection with respect to this
form. More in general, if W is a finite group generated by pseudoreflections in V
then, by averaging over W , we can find a positive definite form invariant by W
and so W is a group generated by true reflections. In this sense, over a Euclidean
or unitary space V , the concepts “finite group generated by pseudoreflections”
and “finite group generated by reflections” are equivalent. However, this is no
longer true if we consider infinite groups, like the Weyl groups of Kac-Moody
groups which are not Lie groups.

A square matrix is called symmetrizable if there is an invertible diagonal
matrix D and a symmetric matrix B such that A = DB. By comparing (3.1)
and (6.1) we observe that a necessary condition for the standard generators of
the Weyl group of a Kac-Moody group K to be reflections is that the Cartan
matrix of K is symmetrizable. In particular, if a �= b then the Weyl groups of
Ki

n(a, b), i = 2, 3, are not reflection groups, even if they certainly are pseudore-
flection groups, because one can easily check that the Cartan matrices of these
Kac-Moody groups are symmetrizable if and only if a = b.

7. Finite unitary reflection groups and p-compact groups

The irreducible finite unitary reflection groups were classified by Shephard
and Todd in 1954 ([36], see also [12], [11], [35], [13]). Their list contains three
infinite families of groups and 34 more groups: 19 groups in dimension 2, 5
groups in dimension 3, 5 groups in dimension 4, one group in each dimension 5,
7 and 8, and two groups in dimension 6. If necessary, we will denote by Ri the
finite unitary reflection group which appears as entry i in the list of Shephard
and Todd. Besides the classification theorem, the paper [36] contains a large
amount of information about all these groups.

In the list of Shephard and Todd of finite unitary reflection groups we can
also find the classic real reflection groups. Since a real reflection must have
order two, the real reflection groups are generated by reflections of order two.
But this property does not characterize the real reflection groups among the
unitary reflection groups, for there are some finite unitary reflection groups
which are generated by reflections of order two but are not real. They are
relevant for the purposes of the present paper and were studied by Coxeter in
[13].

To simplify the notation, let us introduce the following terminology. A
group of type NCOT will be a finite group in GLn(C) for any n which is gener-
ated by reflections of order two and which does not satisfy the crystallographic
condition. Two such groups which are conjugate in GLn(C) will be considered
as equivalent. The irreducible groups of type NCOT are (see [13]):

1. The two real non-crystallographic groups usually denoted I4, I5. I4 =
R23 of order 120 is the symmetry group of the icosahedron, while I5 = R30 of
order 14,400 is the symmetry group of the the 120-cell in dimension 4.
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2. The groups G(m, m, n) in dimension n > 2 with m > 2, of order
mn−1n!, and the groups G(m, m, 2) in dimension 2 for m �= 2, 3, 4, 6, of order
2m, which are a particular case of the family R2 in the list of Shephard-Todd.

3. R24 of order 336 and R27 of order 2,160, both in dimension 3.
4. R29 of order 7680 in dimension 4, R33 of order 51,840 in dimension 5

and R34 of order 39,191,040 in dimension 6.
We will say more about these groups in Sections 9, 10.
Shephard ([35]) extended to unitary reflection groups the Coxeter graph

of a real reflection group. The Shephard graph of a unitary reflection group
contains:

1. A node for each generating reflection, with a label k if the reflection
has order k > 2.

2. An edge between any two non commuting reflections, with a label m if
the two reflections generate a group of order 2m > 6.

3. If the graph contains a circuit, this circuit has a certain label l (see [35]
for details).

Coxeter ([13]) changed the way to label the circuits in the Shephard graph.
Anyway, the only labeled circuit that we will use is a triangle with a label l
and in this case the meaning of l is as follows: If the nodes of the triangle
correspond to reflections R1, R2, R3 then l is the order of R1R2R3R2.

Then, Shephard shows ([35]) that the graph contains enough information
to uniquely determine the reflecting hyperplanes and so the graph determines
the reflection group up to equivalence (it is not, however, always possible to
find a set of reflections corresponding to a given graph).

Clark and Ewing studied ([11], see also [7]) the character fields and Schur
indices of each group in the Shephard-Todd list and in this way we know, for
each group Ri in the list, the smallest number field where we can realize the
representation of Ri. This is significant because it allows a classification of
non-modular pseudoreflection groups in GLn(Zp) and GLn(Fp):

Proposition 7.1 ([17]). Let p be an odd prime. Then for any positive
integers n and m with m prime to p the following sets are in bijective corre-
spondence:

1. Conjugacy classes of subgroups W ⊂ GLn(Fp) such that W is generated
by pseudoreflections and |W | = m.

2. Conjugacy classes of subgroups W ⊂ GLn(Zp) such that W is generated
by pseudoreflections and |W | = m.

3. Conjugacy classes of subgroups W ⊂ GLn(C) such that W is generated
by pseudoreflections, |W | = m and the character field of W can be embedded
in Qp.

The investigation of the homotopy properties of compact connected Lie
groups and their classifying spaces eventually led to the concept of p-compact
group (Dwyer and Wilkerson, [15]). Recall that a loop space X is a triple
(X, BX, e) in which X is a space, BX is a connected pointed space, and e :
X → ΩBX is a homotopy equivalence. Given a prime p, a p-compact group is
an Fp-complete loop space X with finite mod p cohomology and such that π0X
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is a finite p-group. In particular, the p-completion of a compact connected Lie
group is an example of a p-compact group, but there are examples of exotic p-
compact groups, i.e. p-compact groups which do not come from a compact Lie
group. It is remarkable that the complete classification of all p-compact groups
has been obtained recently ([4] for p odd and [5] for p = 2) as a culmination of
a long series of very relevant investigations in homotopy theory.

For a p-compact group X it is possible to define the concepts of maximal
torus TX and Weyl group WX . The action of WX on H2(BTX ;Zp) gives a
representation WX ⊂ GLn(Zp) and it turns out that WX is a pseudoreflection
group. In this paper, we do not need to get involved with the deepest theory
of p-compact groups, because we will only deal with the simplest case, namely
the non-modular p-compact groups, also called Clark-Ewing spaces ([11]). We
briefly discuss here the construction of these spaces.

Let p be an odd prime and let W be a unitary reflection group (i.e., W = Ri

for some i) of order prime to p, which can be realized in GLn(Zp). Let T be the
Fp-completion of a torus of rank n. Then, W acts on BT and the Clark-Ewing
space associated to p and W is defined as

BX(W, p) = (BT ×W EW )∧p .

This space (or, rather, the triple (X, BX, e)) is a p-compact group with maximal
torus T and Weyl group W . The mod p cohomology of BX(W, p) coincides with
the ring of invariants H∗(BT ;Fp)W which is a polynomial algebra Fp[x1, . . . , xn]
because W is generated by pseudoreflections and W has order prime to p. We
refer to [11] for the full details of this construction and to [17] for a deeper
study of these spaces.

8. The p-completed Weyl group

Let K be any Kac-Moody group with infinite Weyl group W ⊂ GLn(Z)
and let p be a prime. For any n > 0 we can consider the mod pi Weyl group
of K, Wpn ⊂ GLn(Z/pnZ) defined as the reduction mod pi of W . Using the
tower of finite groups {Wpi}i>0 we can define the p-completed Weyl group of
K as the inverse limit

W∧
p = lim← {Wpi}i>0 ⊂ GLn(Zp).

Example 8.1. If K = K1
2 (a, b) then both Wp and W∧

p can be explicitly
computed. See [28] and [2] for full details. Since we are assuming ab > 4, W is
an infinite dihedral group and Wp is a finite dihedral group of order 2k. If we
assume, for simplicity, that p is odd, then k is given as follows:

1. k = p if p|ab− 4;
2. k = 2p if p divides a or b but not both.
3. k is the multiplicative order of the roots of X2 − (ab− 2)X + 1 in Fp2

in all other cases.
From this we can also deduce the structure of W∧

p (see [3]): W∧
p is an extension

of Z/2Z by (W∧
p )+ = W∧

p ∩ SLn(Zp) and

(W∧
p )+ ∼= Zp × Z/lZ
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where l is given as follows:
1. l = 1 if p|ab− 4;
2. l = 2 if p divides a or b but not both.
3. l is the multiplicative order of the roots of X2 − (ab− 2)X + 1 in Fp2

in all other cases.

We observe that W ⊂ W∧
p and we see that in general W∧

p may be larger
than W . The homotopy theoretical relevance of the group W∧

p is due to The-
orem 8.1 below. Let us introduce first some notation. Let T be the standard
maximal torus of K and let us denote by Tp∞ and Tpi the p-torsion subgroup
of T and the subgroup of T of pi-th roots of unity, respectively. We denote by

Map1(BTp∞ , BK∧p )

the space of all maps f : BTp∞ → BK∧p such that, for all i, the restriction of f
to BTpi is homotopic to some map Bφi where φi is an injective homomorphism
φi : Tpi → K. We denote by

[BTp∞ , BK∧p ]1

the set of components of Map1(BTp∞ , BK∧p ). We extend these notations to
BTpi and we write Map1(BTpi , BK∧p ) and Map1(BTpi , BK∧p ) whose meaning
should now be obvious.

The linear group GLn(Z/piZ) acts on BTpi and the linear group GLn(Zp)
acts on BTp∞ . There is a map

Φ : GLn(Zp)→ [BTp∞ , BK∧p ]1

which sends a matrix M to the map B(i ◦ M) where i : Tp∞ → K is the
standard inclusion.

Now we can state the two main results of this section, Theorems 8.1 and
8.2, which I learned from N. Kitchloo.

Theorem 8.1. Φ factors through a bijection:

W∧
p

∖
GLn(Zp)

∼=−→ [BTp∞ , BK∧p ]1.

This theorem is a corollary of a more general result which gives information
about the homotopy type of the spaces Map1(BTp∞ , BK∧p ). Let us consider
the finite discrete orbit spaces

Di = Wpi

∖
GLn(Z/piZ),

i > 0, with the obvious maps D1 ← D2 ← D3 ← · · ·

Theorem 8.2. There is an inverse tower of pointed connected finite
complexes

Y1 ← Y2 ← Y3 ← · · ·
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such that there is a homotopy equivalence

Map1(BTp∞ , BK∧p ) � BT∧p × holim
i
{(Yi)∧p ×Di}.

This equivalence is compatible with the quotient map

GLn(Zp)→W∧
p

∖
GLn(Zp).

Proof of 8.1. The homotopy equivalence in Theorem 8.2 reduces the proof
of 8.1 to a computation of π0 of a homotopy limit. We have a surjection

[BTp∞ , BK∧p ]1 = π0 Map1(BTp∞ , BK∧p )→ lim←−
i

{Di}

whose fibres are in one-to-one correspondence to the set lim←−
1

i
{π1((Yi)∧p )}. The

spaces Yi may well be Fp-bad in the sense of Bousfield-Kan ([8]) but neverthe-
less these obstruction sets are trivial because of the following argument. Goerss
proved ([19]) that for spaces of finite type the (Bousfield-Kan) p-completion
has the same weak homotopy type as the Sullivan p-profinite completion ([40]).
Now, the homotopy groups of the p-profinite completion of a space are pro-p-
groups ([40]) and it is well known that lim←−

1 vanishes on towers of pro-p-groups.
Hence, the obstruction sets are trivial and the map above is a bijection. More-
over, an elementary argument using that {Wpi} is a tower of epimorphisms,
shows that lim←−{Di} = W∧

p

∖
GLn(Zp). The information contained in the last

sentence of 8.2 completes the proof.

The proof of 8.2 relies on an important result of Broto and Kitchloo which
extends to Kac-Moody groups some properties that were known for compact
Lie groups. In [10] Broto-Kitchloo define a certain class G of topological groups.
This class contains all (a) Kac-Moody groups; (b) parabolic subgroups of Kac-
Moody groups; (c) normalizers of maximal tori in (a) and (b); (c) the adjoint
forms of the groups in (a), (b), (c); (d) Weyl groups of Kac-Moody groups.
Then,

Theorem 8.3 (Broto-Kitchloo). If π is a finite p-group then
a) For any K ∈ G, there is a homotopy equivalence

∐
ρ∈Rep(π,K)

(BCK(ρ))∧p
	−→ Map(Bπ, BK∧p )

where CK(ρ) denotes the centralizer in K of the image of ρ. In particular,
[Bπ, BK∧p ] ∼= Rep(π, K).

b) If {PI} denotes the poset of parabolic subgroups of a Kac-Moody group
K, then there is a homotopy equivalence

(
hocolim
WI finite

Map(Bπ, BPI
∧
p )

)∧
p

	−→ Map(Bπ, BK∧p ).
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Part (a) of this result is theorem C in [10]. Part (b) is a consequence of
4.2 in [9], using the results of appendix 7 in [10].

Proof of 8.2. Let I be any index such that WI is finite. By 8.3 applied
to the Lie group PI we know that any map BTpi → BPI

∧
p is homotopic to Bρ

for some homomorphism ρ : Tpi → PI . It is a well known property of compact
connected Lie groups that if ρ injective and i is large enough, then ρ factorizes
through the maximal torus T and has centralizer equal to T . Hence, each com-
ponent of Map1(BTpi , BPI

∧
p ) for large i is BT∧p . Also, the set of components of

Map1(BTpi , BPI
∧
p ) is indexed by the automorphisms of Tpi modulo the action

of the Weyl group of PI which is WI . We have

Map1(BTpi , BPI
∧
p ) � BT∧p ×

(
WI

∖
GLn(Z/piZ)

)
.

Since we only consider indices I such thatWI is finite, we can assume that i
is large enough such that the composition WI ↪→W � Wpi is injective for all I.
Then, a choice of a set theoretical section of GLn(Z/piZ)→Wpi\GLn(Z/piZ)
gives a bijection

WI

∖
GLn(Z/piZ) ∼= (WI

∖
Wpi)× (Wpi

∖
GLn(Z/piZ)) = (WI

∖
Wpi)×Di

compatible with the maps corresponding to inclusions I ⊂ J . We obtain

hocolim
I
{WI

∖
GLn(Z/piZ)} = hocolim

I
{WI

∖
Wpi} ×Di.

Then we define

Yi = hocolim
I
{WI

∖
Wpi},

which is a finite complex. It is possible to give a description of these spaces Yi

as follows.

Lemma 8.1. Let Ni be the kernel of the projection W →Wpi . Assume
that i is large enough so that WI ↪→Wpi for all finite WI . Then Yi � BNi. In
particular, the spaces Yi are connected.

Proof. Let us first introduce some notation. Let I be the category of
indices I with WI finite, with a single map I → J if and only if I ⊂ J . For
any discrete group G, let us denote by C(G) the category with a single object
with endomorphism monoid equal to G. Let F be the functor from I to CAT
which sends the object I ∈ I to the category C(WI), and the map I ↪→ J to the
functor induced by the inclusion WI ⊂WJ . Let D = I ∫

F be the Grothendieck
construction as in [41]. In this particular instance, the category I ∫

F is quite
simple: its objects are the same as the objects of I and the morphisms are
given by

Map(I, J) =

{
∅ if I �⊂ J

WJ if WI ⊂WJ .
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If Y is any functor from D to spaces, we can use proposition 0.2 in [37] to
compute its homotopy colimit:

hocolim
D

Y � hocolim
I

hocolim
C(WI)

Y (I).

Let Z be the functor from C(Ni)×D to spaces which sends each object to
the discrete space W and the morphism (h, w), h ∈ Ni, w ∈ WJ , to the map
g �→ wgh−1, g ∈ W . Let us compute now the homotopy colimit of Z in two
different ways:

hocolim
C(Ni)×D

Z = hocolim
C(Ni)

hocolim
D

Z �

hocolim
C(Ni)

hocolim
I

(WI\W ) � hocolim
C(Ni)

∗ � BNi

Here we have used the colimit decomposition of BW for W infinite as seen in
formula 4.2 of Section 4. On the other side,

hocolim
C(Ni)×D

Z = hocolim
D

hocolim
C(Ni)

Z � hocolim
D

(W/Ni) � hocolim
I

(WI\Wpi) � Yi.

Let us continue now with the proof of 8.2. By 8.3 we have

Map1(BTpi , BK∧p ) �(hocolim
I
{Map1(BTpi , BPI

∧
p )})∧p

�BT∧p × (hocolim
I
{WI\GLn(Z/piZ)})∧p

�BT∧p × ((Yi)∧p ×Di).

Finally, we notice that BTp∞ = hocolimi{BTpi} and we can complete the
proof as follows:

Map1(BTp∞ , BK∧p ) = holim
i
{Map1(BTpi , BK∧p )}

�BT∧p × (holim
i
{(Yi)∧p ×Di}).

To check that the last sentence in the theorem is true is not difficult if we
follow the behavior of GLn(Zp) along each step of the proof.

9. The groups G(m, m, n)

For n, m ≥ 2, G(m, m, n) is defined as the group of linear transformations
of Cn given by

xi �→ θrixσ(i) i = 1, . . . , n,

where x1, . . . , xn is the standard basis of Cn, σ ∈ Σn is any permutation of
{1, . . . , n}, θ = exp(2πi/m) and the integers ri satisfy r1 + . . .+ rn ≡ 0 mod m.
As an abstract group, it is isomorphic to a semidirect product Σn�(Z/mZ)n−1.
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If n = 2 then G(m, m, 2) is a dihedral group. Clearly, G(m, m, n) does not
depend on the choice of θ, which can be any primitive m-th root of unity.

G(m, m, n) is generated by unitary reflections of order two with respect to
the hyperplanes

xi − xi−1 = 0, i = 2, . . . , n

x1 − θx2 = 0,

and so it is a finite unitary reflection group. Its Shephard graph with respect
to these generating reflections is as follows:

� � � � � �· · ·

��
�

�
�

m 3
(n nodes)

Assume now n > 2. The group G(m, m, n) admits another description
which will be more useful to us. Let c = −1− θ−1 and consider the pseudore-
flections w1, . . . , wn on Cn given by

wj(xi) = xi − aijxj , i, j = 1, . . . , n

where (aij) is the matrix⎛
⎜⎜⎜⎜⎜⎝

2 −c −1
−c̄ 2 −1
−1 −1 2 −1

−1 2 −1

. . .
2 −1
−1 2 −1
−1 2

⎞
⎟⎟⎟⎟⎟⎠

To prove that w1, . . . , wn generate a group which is equivalent to G(m, m, n) we
could prove that w1, . . . , wn leave invariant a positive definite Hermitic form,
show that the graph associated to w1, . . . , wn is the same as the Shephard
graph of G(m, m, n) discussed above and then use the result of Shephard that
the graph determines the group. Or we can provide an explicit equivalence
between the two representations, as follows. Let us consider the basis v1, . . . , vn

of Cn given by

v1 = (1,−1, 0, . . . , 0),
v2 = (θ,−1, 0, . . . , 0),
vi = (θ,−1, θ − 1, . . . , θ − 1, 0, . . . , 0), i = 3, . . . , n, (n− i zeroes).

It is easy to check that these vectors have the following properties:
1. v2 = w1(v1), vi = wi(vi−1) for i = 3 . . . , n.
2. wi(v1) = v1 for i �= 1, 2.
3. w2(v1) = θ−1v2.
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4. w1(vj) = vj = w2(vj) for j �= 1, 2.
5. wi(vj) = vj for i �= 1, 2, j �= i, i− 1.

It follows that, in the basis v1, . . . , vn, the pseudoreflections w1, . . . , wn behave
as the generating reflections of G(m, m, n).

If n > 2 then the character field for G(m, m, n) is Q(θ) and this group can
be realized over the p-adic integers if and only if Zp contains an m-th root of
unity. We have thus a Clark-Ewing p-compact group BX(G(m, m, n), p) for
any p > n > 2 and any m|p− 1. The restriction p > n is necessary because the
Clark-Ewing space BX(G, p) is only defined when p does not divide the order
of W which in this case is equal to mn−1n!. Actually, if p < n (and m|p− 1),
there is also a p-compact group with Weyl group equal to G(m, m, n), but it
has to be constructed by different methods (see [30]).

The case n = 2 is special because the character field is Q(θ + θ−1) ([11])
and the Clark-Ewing p-compact group BX(G(m, m, 2), p) exists for any m and
any odd p ≡ ±1 mod m ([11]). When n = 2 we can choose the basis of C2 given
by v1 = (1,−1), v2 = (1 + θ,−1− θ̄) and the generating reflections become

w1 =
(−1 c

0 1

)
, w2 =

(
1 0
−1 −1

)

with c = −2− θ − θ̄.

10. The remaining irreducible groups of type NCOT

We use the classic notation τ = (1 +
√

5)/2, ω = (−1 + i
√

3)/2. Let us
discuss the five non-real groups first. In dimension 3 we have the groups R24

and R27 of orders 336 and 2.160, respectively. According to Coxeter ([13]),
these groups are generated by three pseudoreflections of order two in C3 given
by the matrices

w1 =

⎛
⎝−1 c̄ 1

0 1 0
0 0 1

⎞
⎠ , w2 =

⎛
⎝1 0 0

c −1 1
0 0 1

⎞
⎠ , w3 =

⎛
⎝1 0 0

0 1 0
1 1 −1

⎞
⎠

where c is the complex number

R24 : c = (−1 + i
√

7)/2
R27 : c = −1− τω2

It is easy to check that the Shephard graphs for these groups are as follows:

R24:

� �

��
�

�
�

4 4 R27:

� �

��
�

�
�

4 5
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In the case of R24 the above representation is defined over Zp if and only if
−7 is a quadratic residue mod p and this happens if and only if p ≡ 1, 2, 4 mod 7.
In the case of R27 we notice that c+ c̄ = −2+τ and so the above representation
is defined over Zp if and only if both 5 and −3 are quadratic residues mod p.
This happens if and only if p ≡ 1, 4 mod 15. This coincides with the results of
[11] about existence of Clark-Ewing p-compact groups associated to the finite
reflection groups R24 and R27: BX(R24, p) exists for p ≡ 1, 2, 4 mod 7 and
BX(R27, p) exists for p ≡ 1, 4 mod 15.

The Shephard graphs for the groups R29, R33 and R34 have the form of a
triangle with “tails”:

R29:

� � �

��
�

�
�

4 R33:

� � � �

��
�

�
�

3

R34:

� � � � �

��
�

�
�

3

and the representations can be given as in the case of dimension three, with
some appropriate values for the complex parameter c (see [13]):

R29 : c = i

R33, R34 : c = ω.

Notice that i is a p-adic integer if and only if p ≡ 1 mod 4 and ω ∈ Zp if and only
if p ≡ 1 mod 3. Hence, we know for which primes p the given representation of
these reflection groups is defined over Zp (this is in accordance to the results
of [11]). For these primes, we can construct the corresponding Clark-Ewing
p-compact groups, except that in the case of R29 we have to exclude the prime
5 because it divides the order of R29 and in the case of R34 we have to exclude
the prime 7 for the same reason. Thus, the Clark-Ewing space BX(R29, p)
exists for p ≡ 1 mod 4, p �= 5, the Clark-Ewing space BX(R33, p) exists for
p ≡ 1 mod 3 and the Clark-Ewing space BX(R34, p) exists for p ≡ 1 mod 3,
p �= 7.

Actually, there is a 5-compact group with Weyl groupR29 and a 7-compact
group with Weyl group R34 (see [1]), but they cannot be constructed by the
Clark-Ewing method as explained above and will not be used in this paper,
except for the proof of 15.1.

It only remains to discuss the two real reflection groups R23 and R30. The
reader can find an explicit description of the generating reflections of these
groups in page 71 of the book [20]. R30 is the symmetry group of the regular
polytope in dimension four known as the 120-cell and it can be generated by
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orthogonal reflections with respect to the hyperplanes

(τ + 1)x1 + x2 − τx3 = 0
−(τ + 1)x1 + x2 + τx3 = 0

τx1 − (τ + 1)x2 + x3 = 0
−τx1 − (τ + 1)x3 + x4 = 0

R23 is the symmetry group of the icosahedron and can be generated by
orthogonal reflections with respect to the first three hyperplanes above. In both
cases, if we take a basis consisting of unitary normal vectors to the reflecting
hyperplanes, we obtain the following generators for R23 and R30:

R23 =
〈(−1 τ 0

0 1 0
0 0 1

)
,
(

1 0 0
τ −1 1
0 0 1

)
,
(

1 0 0
0 1 0
0 1 −1

)〉
,

R30 =
〈(−1 τ 0 0

0 1 0 0
0 0 1 0
0 0 0 1

)
,

(
1 0 0 0
τ −1 1 0
0 0 1 0
0 0 0 1

)
,

(
1 0 0 0
0 1 0 0
0 1 −1 1
0 0 0 1

)
,

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 −1

)〉
.

We see that these representations can be realized over Zp if and only if
τ ∈ Zp and this happens if and only if p ≡ ±1 mod 5. Hence, for these primes
we have the Clark-Ewing spaces BX(R23, p) and BX(R30, p).

For each group Ri in this section, we see that the inclusion Ri ↪→ GLn(Zp)
depends on some choice of elements in Zp like

√−7,
√

5 or
√−1. These choices

are not unique but different choices produce conjugate groups inside GLn(Zp),
but not necessarily conjugate representations. This can be checked directly or
using Proposition 7.1.

11. Cohomology of BK

Let K be a Kac-Moody group with standard maximal torus T and Weyl
group W . Recall from Section 4 that fw(K) is the number of maximal parabolic
subgroups of K which are compact Lie groups.

Let us fix a prime p. In this section we want to compute H∗(BK;Fp)
under some suitable hypothesis. For simplicity, we write H∗(−) = H∗(−;Fp)
throughout the remainder of this paper.

We say that K is non-modular if the order of the mod p Weyl group Wp

of K is prime to p. Notice that the action of W on T gives an action of the
finite group Wp ⊂ GLn(Fp) on H∗(BT ). As usual, we denote by H∗(BT )Wp

the subalgebra of invariant elements. Then,

Theorem 11.1. Let p be a prime and let K be a non-modular Kac-
Moody group which is a product of Kac-Moody groups with fw(K) = 2. Then,

1. Heven(K) is a polynomial algebra.
2. BT → BK induces an isomorphism Heven(BK) ∼= H∗(BT )Wp .
3. H∗(BK) is a finitely generated free H∗(BT )Wp-module.

Proof. Clearly, it is enough to prove the theorem for a single Kac-Moody
group K with fw(K) = 2. First of all, Wp is a subgroup of GLn(Fp) generated
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by pseudoreflections of order two and the non-modularity hypothesis implies
that p is odd and H∗(BT )Wp is a polynomial algebra. Hence, (1) follows from
(2). To simplify the notation, let us write S = H∗(BT ), I = H∗(BT )Wp .

Since fw(K) = 2 the colimit decomposition of Section 4 reduces to a
homotopy push out:

(11.1) BK � hocolim {BPI ← BPI∩J → BPJ}
which yields a Mayer-Vietoris exact sequence in cohomology. In this push out
the groups PI , PJ are compact connected Lie groups with Weyl groups WI ,
WJ respectively.

Let L denote any of the indices I, J, I ∩ J . The finite group WL satisfies
the following properties:

(a) WL is a finite group of order prime to p.
(b) SWL is a polynomial algebra SWL � Fp[xL

1 , . . . , xL
n ].

(c) Fp ⊗I SWL = (Fp ⊗I S)WL .
(d) SWL is a finitely generated free I-module.
(e) H∗(BPL)

∼=−−→ SWL .
(a) follows from the well known fact that the kernel of the mod p reduc-

tion homomorphism GLn(Zp) → GLn(Fp) is torsion free for all odd primes p.
Hence, the homomorphism WL ↪→W � Wp is a monomorphism.

(b) follows from the theory of pseudoreflection groups: WL is a finite
pseudoreflection group of order prime to p and so its ring of (modular) invariants
is a polynomial algebra.

To obtain (c) we just need to use the averaging homomorphism A : S →
SWL defined by A(x) = (1/|WL|)Σg∈WL

gx which is I-linear.
(d) is also well known (see, for instance, [38, 6.7.11]).
(e) is a well known consequence of the existence of the transfer (see [18]).
The Mayer-Vietoris cohomology exact sequence induced by the push out

(11.1) reads:

0→ Heven(BK)→ SWI ⊕ SWJ → SWI∩J → Hodd(BK)→ 0.

Notice that this is an exact sequence of I-modules. Part (2) of the theorem
follows immediately because WI and WJ generate W .

Since SWI∩J is a finitely generated I-module by (d), so is Hodd(BK).
It remains to prove that Hodd(BK) is a free I-module. By [38, 6.1.1], it is
enough to prove that TorI1 (Fp, H

odd(BK)) = 0. By [38, 6.7.11], the above
exact sequence is a free resolution of Hodd(BK) as an I-module, and thus it
can be used to compute TorI(−, Hodd(BK)). We obtain

TorI1 (Fp, H
odd(BK)) =

Ker
(
Fp ⊗I (SWI ⊕ SWJ )→ Fp ⊗I SWI∩J

)
Im

(
Fp ⊗I I → Fp ⊗I (SWI ⊕ SWJ )

) .

Then, Fp ⊗I I → Fp ⊗I (SWI ⊕ SWJ ) is a monomorphism and property
(c) above shows that

Ker
(
Fp ⊗I (SWI ⊕ SWJ )→ Fp ⊗I SWI∩J

)
= (Fp ⊗I S)Wp .
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The fact that the order of Wp is prime to p implies ([38, 7.5.2]) that the Wp

representation Fp⊗IS is the regular representation of Wp. Hence (Fp⊗IS)W =
Fp and TorI1 (Fp, H

odd) = 0. Part (3) of the theorem follows.

Therefore, the mod p cohomology of BK as a H∗(BT )Wp-module is well
understood, under the hypothesis of non-modularity and finiteness width equal
to two. To obtain the degrees of a set of free H∗(BT )Wp-generators of H∗(BK)
we just need to perform a Poincaré series computation. For a graded Fp-vector
space V , let us denote its Poincaré series as

P(V ) =
∞∑

i=0

(dim(V i)) zi.

The Mayer-Vietoris exact sequence that we have used in the proof of the the-
orem above yields the identity

P(Σ−1Hodd(BK)) = P(I) + P(SWI∩J )− P(SWI )− P(SWJ )

and we get that if {ei} is a set of free generators of Hodd(BK) over I, and each
ei has degree |ei|, then

∑
z|ei| = z

[
1 +
P(SWI∩J )− P(SWI )− P(SWJ )

P(I)

]
.

Example 11.1. Let us consider the Kac-Moody groups K2
n(a, b) with

parameters a, b such that the mod p Weyl group is equal to G(m, m, n). Then,
the degrees of the generators of the rings of invariants I, SWI , SWJ , SWI∩J are
well known:

I has generators in degrees 2m, 4m, . . . , 2(n− 1)m, 2n

SWI and SWJ have generators in degrees 2, 4, . . . , 2n

SWI∩J has generators in degrees 2, 2, 4, . . . , 2n− 2.

Then,

P(Hodd(BK))/P(I) =

z
[
qm−1(z2) qm−1(z4) · · · qm−1(z2(n−1))

(
qn−1(z2)− 2

)
+ 1

]
,

where qs(z) = 1 + z + z2 + · · · + zs. We see that, in general, the rank of
H∗(BK) over H∗(BT )Wp is very large. The problem of completely determining
the algebraic structure of H∗(BK2

n(a, b)) seems to be approachable only when
and n = 2 and indeed this structure was elucidated in [2].

12. Mod p Weyl groups

In this section we denote Wp(K) the mod p Weyl group of a Kac-Moody
group K. The following theorem computes the mod p Weyl groups of the
Kac-Moody groups Ki

n(a, b) that we have introduced in Section 2, under some
suitable condition on the integral parameters a and b.
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Theorem 12.1. Let p be an odd prime and let a, b be positive integers.
1. If (a + 1)(b + 1) ≡ 1 (p), then for m equal to the order of −a− 1 in F∗p

we have Wp(K2
n(a, b)) = G(m, m, n) and Wp(K1

2 (a, b)) = G(m, m, 2).
2. If a + 1 ≡ 0 (p) and P (X) = X2 + (b + 2)X + 1 is irreducible over

Fp, then Wp(K1
2 (a, b)) = G(m, m, 2) where m is the order in F∗p of the roots of

P (X). The same conclusion holds if we interchange a and b.
3. If ab ≡ 2 (p) and a+b ≡ −1 (p), then p ≡ 1, 2, 4 (7) and Wp(K2

3 (a, b)) =
R24.

4. If d = a + b + 2 satisfies d2− d− 1 ≡ 0 (p) and e = (−1− b)/d satisfies
e2 + e + 1 ≡ 0 (p), then p ≡ 1, 4 (15) and Wp(K2

3 (a, b)) = R27.
5. If ab ≡ 1 (p) and a2 ≡ −1 (p), then p ≡ 1 (4) and Wp(K2

4 (a, b)) = R29.
6. If ab ≡ 1 (p) and a2 +a+1 ≡ 0 (p), then p ≡ 1 (3), Wp(K3

5 (a, b)) = R33

and Wp(K3
6 (a, b)) = R34.

7. If a ≡ b (p) and a2−a−1 ≡ 0 (p), then p ≡ ±1 (5) and Wp(K1
3 (a, b)) =

R23 and Wp(K1
4 (a, b)) = R30.

Since the p-adic reflection groups G(m, m, n) and Ri are only defined up
to conjugation, the notation Wp = Ri should be understood as saying that the
groups Wp and Ri are conjugate.

Proof. The theorem follows from inspection of the generators of groups
of type NCOT given in Sections 9 and 10 and comparison to the generators
of W (K) as described in Section 3, and using 7.1. All further details are
straightforward and are left to the reader.

What we will use in the proof of the main theorem of this paper is the
following corollary:

Corollary 12.1. Let p be a prime and let R ⊂ GLn(Zp) be a finite pseu-
doreflection group of order prime to p generated by pseudoreflections of order
two. Then, there exist a Kac-Moody group K of rank n such that Wp(K) = R.
K can be chosen to be a direct product of Kac-Moody groups with finiteness
width equal to two.

Proof. By 7.1 and the Shephard-Todd classification of finite unitary re-
flection groups, R decomposes as a direct product of the Weyl group of a
compact connected Lie group and irreducible groups of type NCOT. The irre-
ducible groups of type NCOT are G(m, m, r), R23, R24, R27, R29, R30, R33

and R34 and each of these irreducible groups can only appear if the prime p
satisfies some congruences that were made explicit in Sections 9 and 10. Now
we can use Theorem 12.1 to see that in each case we can find suitable param-
eters a, b such that we can define K as the direct product of a Lie group and
Kac-Moody groups of type Ki

r(a, b). We only comment the case of G(m, m, 2)
for m|p + 1. Let θ ∈ Fp2 be a primitive m-th root of unity. Since m|p + 1 we
see that the Frobenius automorphism of Fp2 fixes η = θ + θ−1. Hence, η ∈ Fp.
Take any positive integers a, b such that a ≡ −1 (p), b ≡ −2 − η (p), ab > 4.
Then Wp(K1

2 (a, b)) = G(m, m, 2) by 12.1(2).
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13. Monomorphisms from a homotopy point of view

A fundamental step in the study of finite loop spaces by Dwyer-Wilkerson
([15]) and others is a homotopical interpretation of some group-theoretical con-
cepts. For instance, in the theory of p-compact groups (see [15]), a homomor-
phism from X to Y is a pointed map BX → BY , an element of order p in
X is a pointed map BZ/pZ → BX and a monomorphism is a homomorphism
BX → BY whose homotopy fibre is Fp-finite. We use the same ideas to de-
fine a notion of monomorphism which is appropriate when we deal with both
Kac-Moody groups and p-compact groups. We need a concept from the Dror
Farjoun theory of localization (see [14]):

Definition 13.1 ([14]). A space X is BZ/pZ-null if the evaluation map

e : Map(BZ/pZ, X)→ X

is a weak equivalence. This is the same as saying that the space of pointed
maps Map∗(BZ/pZ, X) is weakly contractible.

As a consequence of the theorem of Miller solving the Sullivan conjecture,
the fact that a space is BZ/pZ-null can be decided, under some mild hypothesis,
by just checking the mod p cohomology of this space:

Proposition 13.1 ([34, 8.6.2]). If X is a connected nilpotent space
such that H∗(X) is of finite type and π1X is finite, then the following two
conditions are equivalent :

1. H∗(X) is locally finite as a module over the Steenrod algebra.
2. X is BZ/pZ-null.

A module M over the Steenrod algebra is locally finite if for any x ∈ M
only a finite number of Steenrod operations act non-trivially on x.

If X = (X, BX, e) is a loop space, we say that it is connected if X is
connected. We say that X is p-complete if both X and BX are Fp-complete
spaces in the sense of Bousfield-Kan. If X is connected, then X is Fp-complete
if and only if BX is Fp-complete (see the argument in [15, 11.9]). p-compact
groups and Fp-completions of Kac-Moody groups are our main examples of
p-complete loop spaces.

Definition 13.2. Let X = (X, BX, eX) and Y = (Y, BY, eY ) be p-
complete loop spaces. A homomorphism f : X → Y is a pointed map f :
BX → BY . A monomorphism is a pointed map f : BX → BY such that its
homotopy fibre is BZ/pZ-null.

As evidence that this definition is plausible, we point out the following
facts.

Proposition 13.2. (a) If X and Y are p-compact groups, then a mono-
morphism f : X → Y as defined above is the same as a monomorphism of
p-compact groups in the sense of [15].
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(b) Let φ : L → K be an (algebraic, continuous) homomorphism between
Kac-Moody groups. Then, Ker φ contains no element of order p if and only if
the homotopy fibre of the induced map Bφ : BL∧p → BK∧p is BZ/pZ-null.

Proof. Part (a) is a particular case of proposition 3.2 in [16].
Part (b) is a consequence of Theorem 8.3. Let F be the fibre of Bφ :

BL∧p → BK∧p and consider the induced fibration of mapping spaces:

Map(BZ/pZ, F )→ Map(BZ/pZ, BL∧p )→ Map(BZ/pZ, BK∧p ).

By 8.3, [BZ/pZ, BL∧p ] = Rep(Z/pZ, L) and [BZ/pZ, BK∧p ] = Rep(Z/pZ, K).
Hence, If Ker φ contains no element of order p we have a fibration

Map(BZ/pZ, F )→ Map(BZ/pZ, BL∧p )0 → Map(BZ/pZ, BK∧p )0

where Map(−,−)0 denotes the space of null homotopic maps.
By 8.3 again, Map(BZ/pZ, BL∧p )0 � BL∧p , Map(BZ/pZ, BK∧p )0 � BK∧p

and the fibration above shows that F is BZ/pZ-null. Conversely, if F is BZ/pZ-
null, then

[BZ/pZ, BL∧p ]→ [BZ/pZ, BK∧p ]

has trivial kernel and Ker φ contains no element of order p.

14. Proof of Theorem 1.1

Now we have all ingredients of the proof of the main result of this paper.

Proof of 1.1. We have a simply connected p-compact group X with Weyl
group WX of order prime to p generated by reflections of order two. In par-
ticular, p must be odd. The classification of p-compact groups for p odd ([4,
theorem 1.2]) tells us that X ∼= G∧p × Y where G is a compact simply con-
nected Lie group and Y is a p-compact group of Clark-Ewing type (see Section
7), associated to a pseudoreflection group R ⊂ GLr(Zp) of order prime to p
and generated by pseudoreflections of order two. Since G is itself a Kac-Moody
group, this reduces the proof of 1.1 to the case in which X is an irreducible
p-compact group of Clark-Ewing type.

By Corollary 12.1, there is a Kac-Moody group K such that Wp(K) =
WX ⊂ GLn(Z/pZ) and fw(K) = 2. Let Tp∞ be the standard p-discrete max-
imal torus of K. Tp∞ is also the standard p-discrete maximal torus of X and
we will construct a map BX → BK∧p extending the inclusion Tp∞ ↪→ BK∧p .
We know that BX = (BTp∞ ×WX

EWX)∧p , therefore, to construct this map,
we need to check two facts:

1. The inclusion Tp∞ ↪→ BK∧p is WX -equivariant up to homotopy.
2. The obstructions to extend a map Tp∞ ↪→ BK∧p which is WX -equiva-

riant up to homotopy to a map (BTp∞ ×WX
EWX)→ BK∧p vanish.

To solve (1) we use the following argument. Since WX has order prime to
p, we can inductively lift WX to Wpi(K) for all i and eventually we obtain an
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inclusion WX ↪→W∧
p (K) ⊂ GLn(Zp). Proposition 7.1 shows that this inclusion

must be conjugate to the standard inclusion WX ⊂ GLn(Zp). Hence, we can
assume that WX ⊂ W∧

p (K). Then, proposition 8.1 implies that i : Tp∞ ↪→
BK∧p is WX -equivariant up to homotopy.

To solve (2) we notice that the obstructions to an extension (BTp∞ ×WX

EWX)→ BK∧p belong to

Hr+1(WX ; πr(Map(BTp∞ , BK∧p )i), r ≥ 1.

(see [42]). By Proposition 8.2 we know that the groups πr(Map(BTp∞ , BK∧p )i)
are pro-p-groups. Then, the following lemma solves the problem.

Lemma 14.1. Let r ≥ 2 and let A be a pro-p-group, abelian if r > 2.
Let G be a finite group of order prime to p acting on A. Then, Hr(G; A) is
trivial.

Proof. If A is abelian, the lemma is well known: Hr(G; A) is the standard
cohomology of the group G with coefficients in the G-module A, the order of
G annihilates Hr(G; A) and at the same time, multiplication by the order of G
is an automorphism of A. Hence, Hr(G; A) = 0.

If A is not abelian, then H2(G; A) is the set of extension of G by A (see
[39]). Since the classic Schur-Zassenhaus theorem extends to profinite groups
(see Theorem 2.3.15 in [33]), we know that there cannot be non trivial exten-
sions of G by the pro-p-group A.

Hence, the obstructions must vanish and we have a map BX → BK∧p
extending (up to homotopy) the identity between the p-completions of the
maximal tori. We need to prove that the fibre F of this map is BZ/pZ-null.
Since F is simply connected, by proposition 13.1, we just need to check that
H∗(F ) is locally finite.

Consider the principal fibration X → K∧p → F . We know that H∗(X)
is an exterior algebra on n transgressive generators. Also, Theorem 11.1 tells
us that BX → BK∧p is surjective in cohomology. Hence, the Serre spectral
sequence for X → K∧p → F must collapse at E2 and we obtain that H∗(F )
injects in H∗(K). If we apply 13.2.b to L = {1} we see that H∗(K) is locally
finite. The proof is complete.

15. Final remarks

In this final section we want to show that Theorem 1.1 is, in some sense,
the best possible result that we can expect. To do this, we will provide coun-
terexamples to show that the hypothesis on WX cannot be removed and that
we really need to use Kac-Moody groups since compact Lie groups would not
do the job.

Proposition 15.1. Theorem 1.1 becomes false if it is modified in any
of these ways :
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1. If we omit the hypothesis that WX is generated by reflections of order
two.

2. If we omit the hypothesis that WX has order prime to p.
3. If we add that K is a compact Lie group.

Proof. To prove (1), let X be the p-compact group of rank 1 with Weyl
group WX = Z/mZ for some large prime p and some large m|p − 1. By [11]
such a p-compact group exists. In rank one, the only available Kac-Moody
group is SU(2). But a map BX → BSU(2)∧p must be trivial in cohomology
and its fibre cannot be BZ/pZ-null.

It is an easy consequence from the theory of p-compact groups (see [16])
that a monomorphism f : BX → BY between connected p-compact groups of
the same rank induces a monomorphism WX ↪→ WY . Let X be a p-compact
group of rank two with Weyl group WX = D2m a dihedral group of order
m|p − 1 for some large prime p and some large m. By [11] such a p-compact
group exists. If there is a monomorphism BX → BG∧p for some compact
connected Lie group G, then WG must contain a large dihedral group. But the
order of the Weyl group of a Lie group of rank two is bounded. This proves
part (3).

The most interesting counterexample is the one that we need to prove part
(2). Along this paper, we have used the fact that the order of WX is prime to p
in several crucial points but the reader might have got the impression that this
could be just a way to simplify the proofs and that some more careful argument
could be used to handle the “modular” case. Part (2) claims that this is not
so.

Let p = 5 and let BX be the classifying space of the 5-compact group of
rank four with Weyl group WX = R29. The existence of this 5-compact group
was established in [1]. We will show that there is no monomorphism from BX
to BK∧5 for any Kac-Moody group K of rank 4. Let f : BX → BK∧5 be any
map. The Weyl group WX contains a cyclic group π of order 5 which acts on
the maximal torus TX through its irreducible representation of degree 4. Let
NX,5(TX) be the 5-normalizer of X, which is the subgroup of the normalizer of
TX in X which is an extension of π by TX . Inside NX,5(TX) let us consider the
group N of order 55 which is an split extension of π ⊂ WX by an elementary
abelian 5-group V = (Z/5Z)4 ⊂ TX . N is non abelian and there is a map
BN → BX. Composing with f we obtain a map g : BN → BK∧5 .

By Theorem 8.3 we know that g is homotopic to the map induced by some
representation ρ : N → K. By [10], Theorem 5.2, ρ is equivalent to some
homomorphism ρ : N → PI where PI is a parabolic of K with finite Weyl
group. Hence, PI is a compact connected Lie group of rank 4.

Assume first that PI is a proper parabolic in K. Then PI is a split extension
of a torus of rank at least one by a compact connected Lie group of rank at
most 3. Since the minimal non-trivial Q-representation of a cyclic group of
prime order p is in degree p−1, we deduce that the Weyl group of PI has order
prime to 5. This implies (see lemma A.1 in [22]) that ρ(N) must be contained
in some maximal torus of PI . Since N is non abelian, we deduce that ρ is not
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a monomorphism. If we assume now that the fibre of f : BX → BK∧5 is Z/5Z-
null, we deduce that there is a nullhomotopic map BZ/5Z → BN → BX.
But ([15, 9.9]) BNX,5(TX) → BX is a monomorphism. Hence, we have an
algebraic monomorphism Z/5Z ↪→ NX,5(TX) inducing a nullhomotopic map
BZ/5Z→ BNX,5(TX), a contradiction.

Hence, PI = K and K is itself a compact Lie group of rank 4. As above, a
monomorphism BX → BK∧5 implies the existence of a monomorphism WX ↪→
WK . But WX = R29 has order 7680 and inspecting the orders of the Weyl
groups of all compact Lie groups of rank 4 we cannot find any with a Weyl
group of order divisible by 7680.
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