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ACTIONS OF MEASURED QUANTUM GROUPOIDS
ON A FINITE BASIS

JONATHAN CRESPO

Abstract. In this article, we generalize to the case of mea-
sured quantum groupoids on a finite basis some important re-
sults concerning actions of locally compact quantum groups on

C∗-algebras (Comm. Math. Phys. 235 (2003) 139–167). Let G be

a measured quantum groupoid on a finite basis. We prove that

if G is regular, then any weakly continuous action of G on a C∗-
algebra is necessarily strongly continuous. Following (K-Theory

2 (1989) 683–721), we introduce and investigate a notion of G-
equivariant Hilbert C∗-modules. By applying the previous results

and a version of the Takesaki–Takai duality theorem obtained in

(Bull. Soc. Math. France 145 (2017) 711–802) for actions of G,
we obtain a canonical equivariant Morita equivalence between a

given G-C∗-algebra A and the double crossed product (A�G)� Ĝ.
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Introduction

The notion of monoidal equivalence of compact quantum groups has been
introduced by Bichon, De Rijdt and Vaes in [6]. Two compact quantum groups
G1 and G2 are said to be monoidally equivalent if their categories of represen-
tations are equivalent as monoidal C∗-categories. They have proved that G1

and G2 are monoidally equivalent if and only if there exists a unital C∗-algebra
equipped with commuting continuous ergodic actions of full multiplicity of G1

on the left and of G2 on the right.
Many crucial results of the geometric theory of free discrete quantum

groups rely on the monoidal equivalence of their dual compact quantum
groups. Among the applications of monoidal equivalence to this theory, we
mention the contributions to randow walks and their associated boundaries
[26], [15], CCAP property and Haagerup property [14], the Baum–Connes
conjecture and K-amenability [29], [28].

In his Ph.D. thesis [11], De Commer has extended the notion of monoidal
equivalence to the locally compact case. Two locally compact quantum groups
G1 and G2 (in the sense of Kustermans and Vaes [19]) are said to be
monoidally equivalent if there exists a von Neumann algebra equipped with
a left Galois action of G1 and a right Galois action of G2 that commute.
He proved that this notion is completely encoded by a measured quantum
groupoid (in the sense of Enock and Lesieur [17]) on the basis C

2. Such a
groupoid is called a colinking measured quantum groupoid.

The measured quantum groupoids have been introduced and studied
by Lesieur and Enock (see [17], [20]). Roughly speaking, a measured
quantum groupoid (in the sense of Enock–Lesieur) is an octuple G =
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(N,M,α,β,Γ, T,T ′, ν), where N and M are von Neumann algebras (the basis
N and M are the algebras of the groupoid corresponding respectively to the
space of units and the total space for a classical groupoid), α and β are faith-
ful normal ∗-homomorphisms from N and No (the opposite algebra) to M
(corresponding to the source and target maps for a classical groupoid) with
commuting ranges, Γ is a coproduct taking its values in a certain fiber prod-
uct, ν is a normal semi-finite weight on N and T and T ′ are operator-valued
weights satisfying some axioms.

In the case of a finite-dimensional basis N , the definition has been greatly
simplified by De Commer [13], [11] and we will use this point of view in this
article. Broadly speaking, we can take for ν the non-normalized Markov trace
on the C∗-algebra N =

⊕
1�l�kMnl

(C). The relative tensor product of Hilbert

spaces (resp., the fiber product of von Neumann algebras) is replaced by the
ordinary tensor product of Hilbert spaces (resp., von Neumann algebras). The
coproduct takes its values in M ⊗M but is no longer unital. In the following,
these objects will be referred to as “measured quantum groupoids on a finite
basis.”

In [2], the authors introduce a notion of (strongly) continuous actions on
C∗-algebras of measured quantum groupoids on a finite basis. They extend
the construction of the crossed product, the dual action and give a version of
the Takesaki–Takai duality generalizing the Baaj–Skandalis duality theorem
[3] in this setting.

If a colinking measured quantum groupoid G, associated with a monoidal
equivalence of two locally compact quantum groups G1 and G2, acts (strongly)
continuously on a C∗-algebra A, then A splits up as a direct sum A=A1⊕A2

of C∗-algebras and the action of G on A restricts to an action of G1 (resp.,
G2) on A1 (resp., A2).

They also extend the induction procedure to the case of monoidally equiva-
lent regular locally compact quantum groups. To any continuous action of G1

on a C∗-algebra A1, they associate canonically a C∗-algebra A2 endowed with
a continuous action of G2. As important consequences of this construction,
we mention the following:

• a one-to-one functorial correspondence between the continuous actions of
the quantum groups G1 and G2, which generalizes the compact case [15]
and the case of deformations by a 2-cocycle [21];

• a complete description of the continuous actions of colinking measured
quantum groupoids;

• the equivalence of the categories KKG1 and KKG2 , which generalizes to the
regular locally compact case a result of Voigt [29].

The proofs of the above results rely crucially on the regularity of the quantum
groups G1 and G2. They prove that the regularity of G1 and G2 is equivalent
to the regularity in the sense of [16] (see also [24], [23]) of the associated
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colinking measured quantum groupoid. By passing, this result solves some
questions raised in [21] in the case of deformations by a 2-cocycle.

In this article, we generalize to the case of (semi-)regular measured quantum
groupoid on a finite basis some important properties of (semi-)regular locally
compact quantum groups [4], [1]. This work will give us enough formulas
to generalize some crucial results of [5] concerning actions of (semi-)regular
locally compact quantum groups.

More precisely, if G is a semi-regular measured quantum groupoid on a finite
basis, then the space consisting of the continuous elements of any action of G
is a C∗-algebra. Moreover, if G is regular we prove that any weakly continuous
action of G is necessarily continuous in the strong sense.

We introduce a notion of action of G on Hilbert C∗-modules in line with
the corresponding notion for quantum groups [3]. A G-equivariant Hilbert C∗-
module is a Hilbert C∗-module endowed with a continuous action (in a sense
that will be specified). By using the previous result, if G is regular we prove
that any action of G on a Hilbert C∗-module is necessarily continuous. We are
able to define the notion of G-equivariant Morita equivalence of G-C∗-algebras.
By applying a version of the Takesaki–Takai duality theorem obtained in [2],
we prove that any G-C∗-algebra A is G-equivariantly Morita equivalent to its

double crossed product (A� G)� Ĝ in a canonical way.

This article is organized as follows.

• Chapter 1. We recall the general conventions and notation used throughout
this paper.
• Chapter 2. We make an overview of the theory of locally compact quantum
groups (cf. [19] and [4]). We recall the construction of the Hopf C∗-algebra
associated with a locally compact quantum group and the notion of action of
locally compact quantum groups in the C∗-algebraic setting. We also recall
the notion of equivariant Hilbert C∗-modules (cf. [3]).
• Chapter 3. We make a very brief survey of the theory of measured quan-
tum groupoid (cf. [20], [17]) and we recall the simplified definition in the case
where the basis is finite-dimensional and the associated C∗-algebraic structure
provided by De Commer in [13], [11]. In the last section, we make an outline
of the reflection technique across a Galois object provided by De Commer (cf.
[11], [12]), the construction and the structure of the colinking measured quan-
tum groupoid associated with monoidally equivalent locally compact quantum
groups. We also recall the precise description of the C∗-algebraic structure of
colinking measured quantum groupoids (cf. [2]).
• Chapter 4. In this chapter, we make a review of the notions of regularity
and semi-regularity for measured quantum groupoids on a finite basis (cf. [16],
[24], [23], [2]) and we obtain new relations equivalent to the (semi-)regularity
generalizing some results of Baaj and Skandalis [4], [1]. Given a (semi-)regular
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measured quantum groupoid, we derive new relations that will play a crucial
role in the subsequent chapters.
• Chapter 5. In the first section of this chapter, we recall the definitions and
the main results of [2] concerning the notion of (strongly) continuous action
of measured quantum groupoids on a finite basis on C∗-algebras. We also
recall the version of the Takesaki–Takai duality theorem obtained in [2] in
this framework. The second section is dedicated to a brief overview of C∗-
algebras acted upon by a colinking measured quantum groupoid (cf. [2]). In
the last section, we generalize to the setting of measured quantum groupoids
on a finite basis the results of Baaj, Skandalis and Vaes [5] concerning the
notion of weakly/strongly continuous action of (semi-)regular locally compact
quantum groups.
• Chapter 6. We introduce the notion of action of measured quantum groupoid
on a finite basis on Hilbert C∗-module and we investigate in detail the case of
a colinking measured quantum groupoid. In the last paragraph, we provide a
direct approach of the induction procedure for equivariant Hilbert C∗-modules
equivalent to that obtained in [2]. In particular, if GG1,G2 is a colinking mea-
sured quantum groupoid associated with two monoidally equivalent regular
locally compact groups G1 and G2 we obtain one-to-one correspondences be-
tween the actions of G1, G2, and GG1,G2 on Hilbert C∗-modules.
•Chapter 7. In this chapter, we introduce and discuss the notion of equivari-
ant Morita equivalence. Given a G-C∗-algebra A, we prove that A and its

double crossed product (A� G)� Ĝ are G-equivariantly Morita equivalent in
a canonical way.
• Chapter 8. In the Appendix of this article, we have assembled a very brief
review of the main notions and notation of the noncommutative measure and
integration theory. We can also find some notation and important results used
throughout this paper.

In a forthcoming article [10], we use the results of this paper to generalize
those of Baaj and Skandalis concerning the equivariant Kasparov theory (cf.
§6 [3] and 7.7 b) [4]).

1. Preliminary notation

We specify here some elementary notation and conventions used in this
article. For more notation, we refer the reader to the Appendix and the index
of this article.

• For all subset X of a normed vector space E, we denote 〈X〉 (resp., [X])
the linear span (resp., closed linear span) of X in E. If X,Y ⊂E, we denote
XY := {xy; x ∈ X,y ∈ Y }, where xy denotes the product/composition of x
and y or the evaluation of x at y (when these operations make sense). If X is
a subset of a ∗-algebra A, we denote by X∗ the subset {x∗; x ∈X} of A.
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• We denote by ⊗ the tensor product of Hilbert spaces, the tensor product
of von Neumann algebras, the minimal tensor product of C∗-algebras or the
external tensor product of Hilbert C∗-modules. We also denote by 	 (resp.,
	A) the algebraic tensor product over the field of complex numbers C (resp.,
an algebra A).

• Let A and B be C∗-algebras. We denote by M(A) (resp., Ã) the C∗-algebra
consisting of the multipliers of A (resp., the C∗-algebra obtained from A by

adjunction of a unit element). We denote by M̃(A⊗B) (or M̃B(A⊗B) in
case of ambiguity, §1 [3]) the B-relative multiplier algebra, that is, the C∗-

algebra consisting of the elements m of M(Ã ⊗ B) such that the relations

(Ã⊗B)m⊂A⊗B and m(Ã⊗B)⊂A⊗B hold.
Let π : A → M(B) be a (possibly degenerate) ∗-homomorphism. For all

C∗-algebra D, there exists a unique strictly continuous ∗-homomorphism π⊗
idD : M̃(A⊗D)→M(B ⊗D) satisfying the relation (π ⊗ idD)(x)(1B ⊗ d) =

(π ⊗ idD)(x(1A ⊗ d)) for all x ∈ M̃(A ⊗ D) and d ∈ D. Indeed, denote by

π̃ the unital extension of π to Ã. The non-degenerate ∗-homomorphism π̃ ⊗
idD : Ã⊗D →M(B ⊗D) uniquely extends to M(Ã⊗D). By restricting to

M̃(A⊗D), we obtain the desired extension of π⊗ idD (§1 [3]).
• If x and y are two elements of an algebra A, we denote by [x, y] the com-
mutator of x and y, i.e. the element of A defined by [x, y] := xy− yx.

Let H and K be Hilbert spaces (all inner products are assumed to be
anti-linear in the first variable and linear in the second variable).
• We denote by B(H ,K ) (resp., K(H ,K )) the Banach space of bounded
(resp., compact) linear operators from H to K . For all ξ ∈ K and η ∈ H ,
we denote by θξ,η ∈ B(H ,K ) the rank-one operator defined by θξ,η(ζ) :=
〈η, ζ〉ξ for all ζ ∈ H . We have the relation K(H ,K ) = [θξ,η; ξ ∈ K , η ∈ K ].
Denote by B(H ) := B(H ,H ) (resp., K(H ) := K(H ,H )) the C∗-algebra
of bounded (resp., compact) linear operators on H . Recall that K(H ) is a
closed two-sided ideal of B(H ) and B(H ) =M(K(H )).
• We denote by ΣK ⊗H (or simply Σ) the flip map, that is to say the unitary
operator K ⊗H → H ⊗K ; ξ ⊗ η �→ η⊗ ξ.
• For u ∈ B(H ), we denote by Adu the bounded operator on B(H ) defined
for all x ∈ B(H ) by Adu(x) = uxu∗.

In this article, we will use the notion of (right) Hilbert C∗-module over a C∗-
algebra and their tensor products (internal and external). All the definitions
and conventions are those of [18]. In particular, let E and F be two Hilbert
C∗-modules over a C∗-algebra A.
• We denote by L(E ,F ) the Banach space consisting of all adjointable oper-
ators from E to F and L(E ) the C∗-algebra L(E ,E ).
• For ξ ∈ F and η ∈ E , we denote by θξ,η the elementary operator of L(E ,F )
defined by θξ,η(ζ) := ξ〈η, ζ〉A for all ζ ∈ E . Let K(E ,F ) := [θξ,η; ξ ∈ F , η ∈ E ]
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be the Banach space of “compact” adjointable operators. Denote by K(E ) the
C∗-algebra K(E ,E ) consisting of the compact adjointable operators of L(E ).
Recall that K(E ) is a closed two-sided ideal of L(E ) and L(E ) =M(K(E )).
• Let E ∗ := K(E ,A). We have E ∗ = {T ∈ L(E ,A); ∃ξ ∈ E ,∀η ∈ E , T (η) =
〈ξ, η〉A}. We will identify E = K(A,E ) ⊂ L(A,E ). Up to this identification,
for ξ ∈ E the operator ξ∗ ∈ E ∗ satisfies ξ∗(η) = 〈ξ, η〉A for all η ∈ E . We
recall that E ∗ is a Hilbert K(E )-module for the inner product defined by
〈T,T ′〉K(E ) := T ∗ ◦ T ′ for T,T ′ ∈ E ∗ and the right action is defined by the
composition of maps.

In this article, we will also use the leg numbering notation. Let H be a
Hilbert space and T ∈ B(H ⊗ H ). We define the operators T12, T13, T23 ∈
B(H ⊗ H ) by setting T12 := T ⊗ 1, T23 := 1 ⊗ T and T13 := (Σ ⊗ 1)(1 ⊗
T )(Σ⊗ 1). We can generalize the leg numbering notation for operators acting
on any tensor product of Hilbert spaces and for adjointable operators acting
on any external tensor product of Hilbert C∗-modules over possibly different
C∗-algebras.

2. Locally compact quantum groups

For the notation and conventions used in this article concerning the non-
commutative integration theory and the canonical objects of the Tomita–
Takesaki theory, we refer the reader to the Appendix of this article (cf. §A.1).

Definition 2.1 ([19]). A locally compact quantum group is a pair G =
(L∞(G),Δ), where L∞(G) is a von Neumann algebra and Δ : L∞(G) →
L∞(G) ⊗ L∞(G) is a unital normal ∗-homomorphism satisfying the follow-
ing conditions:

1. (Δ⊗ id)Δ= (id⊗Δ)Δ;
2. there exist n.s.f. weights ϕ and ψ on L∞(G) such that:

(a) ϕ is left invariant, that is, ϕ((ω ⊗ id)Δ(x)) = ϕ(x)ω(1), for all ω ∈
L∞(G)+∗ and x ∈M+

ϕ ,
(b) ψ is right inveriant, that is, ψ((id⊗ ω)Δ(x)) = ψ(x)ω(1), for all ω ∈

L∞(G)+∗ and x ∈M
+
ψ .

A left (resp., right) invariant n.s.f. weight on L∞(G) is called a left (resp.,
right) Haar weight on G.

2.2. For a locally compact quantum group G, there exists a unique left
(resp., right) Haar weight on G up to a positive scalar [19]. Let us fix a
locally compact quantum group G := (L∞(G),Δ). Let us fix a left Haar weight
ϕ on G. Let (L2(G), π,Λ) be the G.N.S. construction for (L∞(G), ϕ). The
left regular representation of G is the multiplicative unitary [19], [4] W ∈
B(L2(G)⊗ L2(G)) defined by

W ∗(Λ(x)⊗Λ(y)
)
= (Λ⊗Λ)

(
Δ(y)(x⊗ 1)

)
, for all x, y ∈Nϕ.
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By identifying L∞(G) with its image by the G.N.S. representation π, we
obtain:

• L∞(G) is the strong closure of the algebra {(id⊗ ω)(W ); ω ∈ B(L2(G))∗};
• Δ(x) =W ∗(1⊗ x)W , for all x ∈ L∞(G).

2.3. The Hopf–von Neumann algebra (L∞(G),Δ) admits [19] a unitary
antipode map RG : L∞(G)→ L∞(G) and we can choose for right Haar weight
on G the weight ψ defined by ψ(x) := ϕ(RG(x)), for all x ∈ L∞(G)+. The
Connes cocycle derivative [8], [25] of ψ with respect to ϕ is given by

(Dψ :Dϕ)t := νit
2/2dit, for all t ∈R,

where ν > 0 is the scaling constant of G and the operator dηM is the mod-
ular element of G [19]. Let Nd

ϕ := {x ∈M ; xd1/2 is bounded and its closure

xd1/2 belongs to Nϕ}. The G.N.S. construction [25] for (L∞(G), ψ) is given
by (L2(G), id,Λψ), where Λψ is the closure of the map Nd

ϕ → L2(G); x �→
Λ(xd1/2). We recall that Jψ = νi/4J , where J denotes the modular conjuga-
tion for ϕ.

2.4. The right regular representation of the quantum group G is the mul-
tiplicative unitary V ∈ B(L2(G)⊗ L2(G)) defined by

V
(
Λψ(x)⊗Λψ(y)

)
= (Λψ ⊗Λψ)

(
Δ(x)(1⊗ y)

)
, for all x, y ∈Nψ.

Definition 2.5. The quantum group Ĝ dual of G is defined by the Hopf–

von Neumann algebra (L∞(Ĝ), Δ̂), where:

• L∞(Ĝ) is the strong closure of the algebra {(id⊗ ω)(V ); ω ∈ B(L2(G)};
• the coproduct Δ̂ : L∞(Ĝ)→ L∞(Ĝ)⊗ L∞(Ĝ) is defined by Δ̂(x) := V ∗(1⊗
x)V for all x ∈ L∞(Ĝ).

The quantum group Ĝ admits left and right Haar weights [19] and we can

take the Hilbert space L2(G) for G.N.S. space. We denote by Ĵ the modular

conjugation of the left Haar weight on Ĝ.

2.1. Hopf C∗-algebras associated with a quantum group. We asso-
ciate [4], [19] with the quantum group G two Hopf C∗-algebras (S, δ) and

(Ŝ, δ̂) defined by:

• S (resp., Ŝ) is the norm closure of the algebra {(ω⊗ id)(V ); ω ∈ B(L2(G))∗}
(resp., {(id⊗ ω)(V ); ω ∈ B(L2(G))∗});

• the coproduct δ : S →M(S ⊗ S) (resp., δ̂ : Ŝ →M(Ŝ ⊗ Ŝ)) is given by:

δ(x) := V (x⊗ 1)V ∗, for all x ∈ S(
resp., δ̂(x) := V ∗(1⊗ x)V, for all x ∈ Ŝ

)
.
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We call (S, δ) (resp., (Ŝ, δ̂)) the Hopf C∗-algebra (resp., dual Hopf C∗-algebra)
associated with G. We can also denote by C0(G) := S the Hopf C∗-algebra

of G. Note that C0(Ĝ) = Ŝ.

Notation 2.1.1.

• Consider the unitary operator U := ĴJ ∈ B(L2(G)). Since U = νi/4JĴ , we
have U∗ = ν−i/4U . In particular, AdU =AdU∗ on B(L2(G)).

• We have the following nondegenerate faithful representation of the C∗-
algebra S (resp., Ŝ):

L : S →B
(
L2(G)

)
; y �→ y;

R : S →B
(
L2(G)

)
; y �→ UL(y)U∗(

resp., ρ : Ŝ →B
(
L2(G)

)
; x �→ x;

λ : Ŝ →B
(
L2(G)

)
; x �→ Uρ(x)U∗).

It follows from 2.15 [19] that W =Σ(U ⊗ 1)V (U∗⊗ 1)Σ and [W12, V23] = 0.

The right regular representation of Ĝ is the multiplicative unitary Ṽ := Σ(1⊗
U)V (1⊗U∗)Σ.

Notation 2.1.2. Let H be a Hilbert space and X ∈ B(H ⊗ H ). We
denote by C(X) the norm closure of the subspace {(id⊗ω)(ΣX); ω ∈ B(H )∗}
of B(H ). If X is a multiplicative unitary, then {(id⊗ ω)(ΣX); ω ∈ B(H )∗}
is a subalgebra of B(H ) [4].

Definition 2.1.3 ([4], [1]). The quantum group G is said to be regular
(resp., semi-regular), if K(L2(G)) = C(V ) (resp., K(L2(G))⊂ C(V )).

Note that G is regular (resp., semi-regular) if, and only if, K(L2(G)) = C(W )
(resp., K(L2(G))⊂ C(W )).

2.2. Continuous actions of locally compact quantum groups. We use
the notation introduced in the previous paragraph. Let A be a C∗-algebra.

Definition 2.2.1.

1. An action of the quantum group G on A is a nondegenerate ∗-homomor-
phism δA :A→M(A⊗ S) satisfying (δA ⊗ idS)δA = (idA ⊗ δ)δA.

2. An action δA of G on A is said to be strongly (resp., weakly) continuous if[
δA(A)(1A ⊗ S)

]
=A⊗ S

(
resp., A=

[
(idA ⊗ ω)δA(A); ω ∈ B

(
L2(G)

)
∗
])
.

3. A G-C∗-algebra is a pair (A,δA), where A is a C∗-algebra and δA : A→
M(A⊗ S) is a strongly continuous action of G on A.

If G is regular, any weakly continuous action of G is necessarily continuous
in the strong sense, cf. 5.8 [5].
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Notation 2.2.2. Let δA : A→M(A⊗ S) (resp., δA : A→M(A⊗ Ŝ)) be

a strongly continuous action of G (resp., Ĝ) on the C∗-algebra A. Denote by
πL (resp., π̂λ) the representation of A on the Hilbert A-module A ⊗ L2(G)
defined by πL := (idA ⊗L)δA (resp., π̂λ := (idA ⊗ λ)δA).

Definition 2.2.3 (cf. 7.1 [4]). Let (A,δA) be a G-C∗-algebra (resp., Ĝ-

C∗-algebra). We call (reduced) crossed product of A by G (resp., Ĝ), the C∗-

subalgebra A�G (resp., A� Ĝ) of L(A⊗ L2(G)) generated by the products

πL(a)(1A⊗ρ(x)) (resp., π̂λ(a)(1A⊗L(x))) for a ∈A and x ∈ Ŝ (resp., x ∈ S).

The crossed product A � G (resp., A � Ĝ) is endowed with a strongly

continuous action of Ĝ (resp., G), cf. 7.3 [4]. If G is regular, then the Takesaki–
Takai duality extends to this setting, cf. 7.5 [4].

Definition 2.2.4. Let A and B be two C∗-algebras. Let δA :A→M(A⊗
S) and δB :B →M(B ⊗ S) be two actions of G on A and B respectively. A
nondegenerate ∗-homomorphism f : A → M(B) is said to be G-equivariant
if (f ⊗ idS)δA = δB ◦ f . We denote by AlgG the category whose objects are
the G-C∗-algebras and the morphisms are the G-equivariant nondegenerate
∗-homomorphisms.

2.3. Equivariant Hilbert C∗-modules and bimodules.

Preliminaries. In this paragraph, we briefly recall some classical notationand
elementary facts concerning Hilbert C∗-modules. Let A be a C∗-algebra and
E a Hilbert A-module.

Notation 2.3.1. Let us consider the following maps:

• ιA :A→K(E ⊕A), the ∗-homomorphism given by ιA(a)(ξ⊕ b) = 0⊕ ab for
all a, b ∈A and ξ ∈ E ;

• ιE : E →K(E ⊕A), the bounded linear map given by ιE (ξ)(η⊕ a) = ξa⊕ 0
for all a ∈A and ξ, η ∈ E ;

• ιE ∗ : E ∗ → K(E ⊕ A), the bounded linear map given by ιE ∗(ξ∗)(η ⊕ a) =
0⊕ ξ∗η for all ξ, η ∈ E and a ∈A;

• ιK(E ) :K(E )→K(E ⊕A), the ∗-homomorphism given by ιK(E )(k)(η⊕ a) =
kη⊕ 0 for all k ∈K(E ), η ∈ E and a ∈A.

The result below follows from straightforward computations.

Proposition 2.3.2. We have the following statements:

1. ιE (ξa) = ιE (ξ)ιA(a) and ιA(a)ιE ∗(ξ∗) = ιE ∗(aξ∗) for all ξ ∈ E and a ∈A;
2. ιE ∗(ξ∗) = ιE (ξ)

∗ and ιK(E )(θξ,η) = ιE (ξ)ιE (η)
∗ for all ξ, η ∈ E ;

3. ιE (ξ)
∗ιE (η) = ιA(〈ξ, η〉) for all ξ, η ∈ E ;

4. K(E ⊕A) is the C∗-algebra generated by the set ιA(A)∪ ιE (E ).
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Remarks 2.3.3.

1. For a ∈ A, ξ ∈ E and k ∈ K(E ), the operators ιA(a), ιE (ξ), ιE ∗(ξ∗) and
ιK(E )(k) can be represented by 2-by-2 matrices acting on the Hilbert A-
module E ⊕A as follows:

ιA(a) =

(
0 0
0 a

)
; ιE (ξ) =

(
0 ξ
0 0

)
;

ιE ∗
(
ξ∗

)
=

(
0 0
ξ∗ 0

)
; ιK(E )(k) =

(
k 0
0 0

)
.

Moreover, any operator x ∈ K(E ⊕A) can be written in a unique way as
follows:

x=

(
k ξ
η∗ a

)
, with k ∈K(E ), ξ, η ∈ E and a ∈A.

2. Note that ιA and ιK(E ) extend uniquely to strictly/∗-strongly continuous
unital ∗-homomorphisms ιA :M(A)→L(E ⊕A) and ιK(E ) : L(E )→L(E ⊕
A). Besides, we have ιA(m)(ξ ⊕ a) = 0⊕ma and ιK(E )(T )(ξ ⊕ a) = Tξ ⊕ 0
for all m ∈M(A), T ∈ L(E ), ξ ∈ E and a ∈A.

3. ιE ∗ admits an extension to a bounded linear map ιE ∗ : L(E ,A)→L(E ⊕A)
in a straightforward way. Similarly, up to the identification E = K(A,E ),
we can also extend ιE to a bounded linear map ιE : L(A,E )→L(E ⊕A).

4. As in 1, we can represent the operators ιA(m), ιK(E )(T ), ιE ∗(S) and ιE (S
∗),

for m ∈M(A), T ∈ L(E ) and S ∈ L(A,E ), by 2-by-2 matrices. Moreover,
any operator x ∈ L(E ⊕A) can be written in a unique way as follows:

x=

(
T S′

S∗ m

)
, with T ∈ L(E ), S,S′ ∈ L(A,E ) and m ∈M(A).

By using the matrix notations described above, we derive easily the follow-
ing useful technical lemma.

Lemma 2.3.4. Let x ∈ L(E ⊕A) (resp., x ∈K(E ⊕A)). We have:

1. x ∈ ιE (L(A,E )) (resp., ιE (E )) if, and only if, xιE (ξ) = 0 for all ξ ∈ E
and ιA(a)x = 0 for all a ∈ A; in that case, we have ιA(m)x = 0 for all
m ∈M(A);

2. x ∈ ιK(E )(L(E )) (resp., ιK(E )(K(E ))) if, and only if, xιA(a) = 0 and
ιA(a)x = 0 for all a ∈ A; in that case, we have xιA(m) = ιA(m)x = 0 for
all m ∈M(A).

Let us recall the notion of relative multiplier module, cf. 2.1 [3].

Definition 2.3.5. Let A and B be two C∗-algebras and let E be a Hilbert
C∗-module over A. Up to the identification E ⊗ B = K(A ⊗ B,E ⊗ B), we

define M̃(E ⊗B) (or M̃B(E ⊗B) in case of ambiguity) to be the following
subspace of L(A⊗B,E ⊗B):{
T ∈ L(A⊗B,E ⊗B); ∀x ∈B, (1E ⊗ x)T ∈ E ⊗B andT (1A ⊗ x) ∈ E ⊗B

}
.
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Note that M̃(E ⊗B) is a Hilbert C∗-module over M̃(A⊗B), whose M̃(A⊗
B)-valued inner product is given by

〈ξ, η〉 := ξ∗ ◦ η, for all ξ, η ∈ M̃(E ⊗B)⊂L(A⊗B,E ⊗B).

Note also that we have K(M̃(E ⊗B))⊂ M̃(K(E )⊗B).

Proposition-Definition 2.3.6. Let B ⊂ B(K ) be a C∗-algebra of oper-
ators on a Hilbert space K . For all T ∈ L(A⊗ B,E ⊗ B) and ω ∈ B(K )∗,
there exists a unique (idE ⊗ ω)(T ) ∈ L(A,E ) such that

ιE (idE ⊗ ω)(T ) = (idK(E⊕A) ⊗ ω)
(
ιE⊗B(T )

)
∈ L(E ⊕A),

where ιE⊗B : L(A⊗B,E ⊗B)→L((E ⊗B)⊕(A⊗B)) =M(K(E ⊕A)⊗B). If

B ⊂B(K ) is nondegenerate and T ∈ M̃(E ⊗B), then we have (idE ⊗ω)(T ) ∈
E .

Proof. This is a direct consequence of Lemma 2.3.4(1) and the fact that

ιE⊗B(T ) ∈ M̃(K(E ⊕A)⊗B) if T ∈ M̃(E ⊗B). �

Notion of equivariant Hilbert C∗-module. In this paragraph, we recall the
notion of equivariant Hilbert C∗-module through the three equivalent pic-
tures developed in §2 [3]. Let us fix a G-C∗-algebra (A,δA) and a Hilbert
A-module E .

Definition 2.3.7. An action of the locally compact quantum group G on

E is a linear map δE : E →M̃(E ⊗ S) such that:

1. δE (ξ)δA(a) = δE (ξa) and δA(〈ξ, η〉) = 〈δE (ξ), δE (η)〉, for all a ∈A and ξ, η ∈
E ;

2. [δE (E )(A⊗ S)] = E ⊗ S;
3. the linear maps δE ⊗ idS and idE ⊗ δ extend to linear maps from L(A⊗

S,E ⊗S) to L(A⊗S⊗S,E ⊗S⊗S) and we have (δE ⊗ idS)δE = (idE ⊗δ)δE .

An action δE of G on E is said to be continuous if we have [(1E ⊗S)δE (E )] =
E ⊗ S. A G-equivariant Hilbert A-module is a Hilbert A-module E endowed

with a continuous action δE : E →M̃(E ⊗ S) of G on E .

2.3.8. The datum of a continuous action of G on E is equivalent to that of a
continuous action δK(E⊕A) :K(E ⊕A)→M(K(E ⊕A)⊗S) of G on the linking
C∗-algebra K(E ⊕ A) such that the ∗-homomorphism ιA : A→K(E ⊕ A) is
G-equivariant, cf. 2.7 [3].

2.3.9. If δE is an action of G on E , we have the unitary operator V ∈
L(E ⊗δA (A⊗ S),E ⊗ S) defined by V (ξ ⊗δA x) := δE (ξ)x for all ξ ∈ E and
x ∈A⊗ S. This unitary satisfies the relation

(V ⊗C idS)(V ⊗δA⊗idS
1)

= V ⊗idA⊗δ 1 in L
(
E ⊗δ2A

(A⊗ S ⊗ S),E ⊗ S ⊗ S
)
,
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where δ2A := (δA ⊗ idS)δA = (idA ⊗ δ)δA; cf. 2.3 and 2.4 (a) [3] for the details.
Conversely, if there exists a unitary operator V ∈ L(E ⊗δA (A ⊗ S),E ⊗ S)

satisfying the above relation and the fact that V Tξ ∈ M̃(E ⊗S) for all ξ ∈ E ,
where Tξ ∈ L(A ⊗ S,E ⊗δA (A ⊗ S)) is defined by Tξ(x) := ξ ⊗δA x for all

x ∈A⊗ S, then the map δE : E →M̃(E ⊗ S); ξ �→ V Tξ is an action of G on
E ; cf. 2.4 (b) [3].

2.3.10. An action of G on E determines an action δK(E ) : K(E ) →
M̃(K(E ) ⊗ S) of G on K(E ) defined by δK(E )(k) = V (k ⊗δA 1)V ∗ for all
k ∈ K(E ), where V is the unitary operator associated to the action; cf. 2.8
[3]. Moreover, if E is a G-equivariant Hilbert module, then K(E ) turns into a
G-C∗-algebra.

3. Measured quantum groupoids

For reminders concerning the relative tensor product of Hilbert spaces and
the fiber product of von Neumann algebras, we refer the reader to the Ap-
pendix of this article (cf. §A.2).

Definition 3.1 (cf. 3.7 [17], 4.1 [20]). We call a measured quantum
groupoid an octuple G = (N,M,α,β,Γ, T,T ′, ν), where:

• M and N are von Neumann algebras;
• Γ :M →M β�αM is a faithful normal unital ∗-homomorphism, called the
coproduct;

• α :N →M and β :No →M are faithful normal unital ∗-homormorphisms,
called the range and source maps of G;

• T : M+ → α(N)ext+ and T ′ : M+ → β(No)ext+ are n.s.f. operator-valued
weights;

• ν is a n.s.f. weight on N ;

such that the following conditions are satisfied:

1. [α(n′), β(no)] = 0, for all n,n′ ∈N ;
2. Γ(α(n)) = α(n) β⊗α 1 and Γ(β(no)) = 1 β⊗α β(n

o), for all n ∈N ;
3. Γ is coassociative, i.e. (Γ β�α id)Γ = (id β�α Γ)Γ;
4. the n.s.f. weights ϕ and ψ onM given by ϕ= ν ◦α−1◦T and ψ = ν ◦β−1◦T ′

satisfy:

• ∀x ∈M
+
T , T (x) = (id β�αϕ)Γ(x),∀x ∈M

+
T ′ , T ′(x) = (ψ β�α id)Γ(x),

• σϕ
t and σψ

s commute for all s, t ∈R.

Let G = (N,M,α,β,Γ, T,T ′, ν) be a measured quantum groupoid. We de-
note by (H , π,Λ) the G.N.S. construction for (M,ϕ) where ϕ := ν ◦α−1 ◦ T .
Let (σt)t∈R, ∇ and J be respectively the modular automorphism group, the
modular operator and the modular conjugation for ϕ. In the following, we
identify M with its image by π in B(H ).
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• We have a coinvolutive ∗-antiautomomorphism RG : M → M such that
R2

G = idM (cf. 3.8 [17]).

From now on, we will assume that T ′ =RG ◦T ◦RG and then also ψ = ϕ◦RG .

• There exist self-adjoint positive nonsingular operators λ and d respectively

affiliated to Z(M) and M such that (Dψ : Dϕ)t = λit2/2dit for all t ∈ R.
The operators λ and d are respectively called the scaling operator and the
modular operator of G.

• The G.N.S. construction for (M,ψ) is given by (H , πψ,Λψ), where: Λψ is

the closure of the operator which sends any element x ∈M such that xd1/2

is closable and its closure xd1/2 ∈ Nϕ to Λϕ(xd1/2); πψ : M → B(H ) is
given by the formula πψ(a)Λψ(x) = Λψ(ax).

• The modular conjugation Jψ for ψ is given by Jψ = λi/4J .
• We will denote by WG : H β⊗α H → H α⊗β̂ H the pseudo-multiplicative

unitary of G (cf. 3.3.4 [27], 3.6 [17]).

Proposition-Definition 3.2 (cf. 3.10 [17]). We define the (Pontryagin)

dual of G to be the measured quantum groupoid Ĝ := (N,M̂,α, β̂, Γ̂, T̂ , R̂ ◦ T̂ ◦
R̂, ν), where:

• M̂ is the von Neumann algebra generated by {(ω � id)(WG); ω ∈ B(H )∗} ⊂
B(H );

• β̂ :No → M̂ is given by β̂(no) := Jα(n∗)J for all n ∈N ;

• Γ̂ : M̂ → M̂ β̂�α M̂ is given for all x ∈ M̂ by Γ̂(x) := σαβ̂WG(x β⊗α 1)W ∗
G σβ̂α;

• there exists a unique n.s.f. weight ϕ̂ on M̂ whose G.N.S. construction is
(H , id,Λϕ̂), where Λϕ̂ is the closure of the operator (ω � id)(WG) �→ aϕ(ω)
defined for normal linear forms ω in a dense subspace of Iϕ = {ω ∈
B(H )∗; ∃k ∈ R+,∀x ∈ Nϕ, |ω(x∗)|2 � kϕ(x∗x)} and aϕ(ω) ∈ H satisfies
ω(x∗) = 〈Λϕ(x), aϕ(ω)〉 for all x ∈Nϕ;

• T̂ is the unique n.s.f. operator-valued weight from M̂ to α(N) such that

ϕ̂ = ν ◦ α−1 ◦ T̂ and T̂ ′ = RĜ ◦ T̂ ◦ RĜ , where RĜ : M̂ → M̂ is given by

RĜ(x) := Jx∗J for all x ∈ M̂ .

The pseudo-multiplicative unitary WĜ of Ĝ is given by WĜ = σβαW ∗
G σβ̂α.

We will denote by Ĵ the modular conjugation for ϕ̂. Note that the scaling

operator of Ĝ is λ−1. In particular, we have λit ∈Z(M)∩Z(M̂) for all t ∈R.

• Let α̂(n) := Jβ(no)∗J = Ĵ β̂(no)∗Ĵ for n ∈N . We recall the following rela-

tions (cf. 3.11 (v) [17]): M ∩M̂ = α(N), M ∩M̂ ′ = β(No), M ′∩M̂ = β̂(No)

and M ′ ∩ M̂ ′ = α̂(N).

• Let U := ĴJ ∈ B(H ). Then, U∗ = λ−i/4U and U2 = λi/4 (cf. 3.11 (iv)
[17]). In particular, U is unitary. We have α̂(n) = Uα(n)U∗ and β̂(no) =



ACTIONS OF MEASURED QUANTUM GROUPOIDS ON A FINITE BASIS 127

Uβ(no)U∗ for all n ∈N . Since λ−i/4 ∈ Z(M), we also have α̂(n) = U∗α(n)U

and β̂(no) = U∗β(no)U for all n ∈N .

Proposition-Definition 3.3 (cf. 3.12 [17]).

• The octuple (No,M,β,α, ςβα ◦ Γ,RG ◦ T ◦ RG , T, ν
o) is a measured quan-

tum groupoid denoted by Go and called the opposite of G. The pseudo-

multiplicative unitary of Go is given by WGo = (β Ĵ α⊗α̂ Ĵβ̂)WG(β Ĵ α⊗α Ĵβ).

• Let CM :M →M ′ be the canonical ∗-antihomomorphism given by CM (x) :=
Jx∗J for all x ∈M . Let us define:

Γc := (CM β�αCM ) ◦ Γ ◦C−1
M ;

Rc
G :=CM ◦RG ◦C−1

M ;

T c =CM ◦ T ◦C−1
M .

Then the octuple (No,M ′, β̂, α̂,Γc, T c,Rc
GT

cRc
G , ν

o) is a measured quan-
tum groupoid denoted by Gc and called the commutant of G. The pseudo-
multiplicative unitary WGc of Gc is given by WGc = (β̂J α⊗α Jβ̂)WG(βJ α̂⊗α

Jβ̂).

Notation 3.4. For a given measured quantum groupoid G, we will need
the following pseudo-multiplicative unitaries:

V̂ :=WG ; V := W
(̂Go)

= W(Ĝ)c ; Ṽ :=W(Go)c .

Convention 3.5. Henceforth, we will refer to (Ĝ)c instead of Ĝ as the dual
of G since this groupoid is better suited for right actions of G. We have

(Ĝ)c =
(
No, M̂ ′, β, α̂, Γ̂c, T̂ c, T̂ c′, νo

)
,

where the coproduct and the operator-valued weights are given by:

• Γ̂c(x) = (W(Ĝ)c)
∗(1 β⊗α x)W(Ĝ)c , for all x ∈ M̂ ′;

• T̂ c =C
M̂

◦ T̂ ◦C−1

M̂
, where C

M̂
: M̂ → M̂ ′; x �→ Ĵx∗Ĵ ;

• T̂ c′ =R(Ĝ)c ◦ T̂ c ◦R(Ĝ)c .

Note also that the commutant weight ϕ̂c := νo ◦ β−1 ◦ T̂ c derived from the

weight ϕ̂ is left invariant for the coproduct Γ̂c. In the following, we will simply

denote by Ĝ the dual groupoid of G (since no ambiguity will arise with the
Pontryagin dual). Note that the bidual groupoid is (Go)c = (Gc)o.

3.1. Case where the basis is finite-dimensional. In [11], De Commer
provides an equivalent definition of a measured quantum groupoid on a finite
basis. This definition is far more tractable since it allows us to circumvent the
use of relative tensor products and fiber products.

In the following, we fix a finite-dimensional C∗-algebra N :=⊕
1�l�kMnl

(C) endowed with the nonnormalized Markov trace ε :=⊕
1�l�k nl ·Trl, where Trl denotes the nonnormalized trace on Mnl

(C).
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We refer to §A.2 of the Appendix for the definitions of vβα and qβα. Let
us a fix a measured quantum groupoid G = (N,M,α,β,Γ, T,T ′, ε). We have
a unital normal ∗-isomorphism M β�αM → qβα(M ⊗ M)qβα; x �→ v∗βαxvβα
(cf. Proposition-Definition A.2.14). Let Δ : M →M ⊗M be the (nonneces-
sarily unital) faithful normal ∗-homomorphism given by Δ(x) = v∗βαΓ(x)vβα
for all x ∈M . We have Δ(1) = qβα. This has led De Commer to the following
equivalent definition of a measured quantum groupoid on a finite basis.

Definition 3.1.1 (cf. 11.1.2 [11]). A measured quantum groupoid on the
finite-dimensional basis N is an octuple G = (N,M,α,β,Δ, T,T ′, ε), where:

• M is a von Neumann algebra, α :N →M and β :No →M are unital faithful
normal ∗-homomorphisms;

• Δ :M →M ⊗M is a faithful normal ∗-homomorphism;
• T : M+ → α(N)ext+ and T ′ : M+ → β(No)ext+ are n.s.f. operator-valued

weights;

such that the following conditions are satisfied:

1. [α(n′), β(no)] = 0, for all n,n′ ∈N ;
2. Δ(1) = qβα;
3. (Δ⊗ id)Δ= (id⊗Δ)Δ;
4. Δ(α(n)) =Δ(1)(α(n)⊗ 1) and Δ(β(no)) =Δ(1)(1⊗ β(no)), for all n ∈N ;
5. the n.s.f. weights ϕ and ψ on M given by ϕ := ε◦α−1 ◦T and ψ := ε◦β−1 ◦

T ′ satisfy:

T (x) = (id⊗ ϕ)Δ(x) for all x ∈M
+
T ,

T ′(x) = (ψ⊗ id)Δ(x), for all x ∈M
+
T ′ ;

6. σT
t ◦ β = β and σT ′

t ◦ α= α, for all t ∈R.

Let us fix a measured quantum groupoid G = (N,M,α,β,Δ, T,T ′, ε).

Notation 3.1.2. Let us consider the injective bounded linear map

ιβα̂α : B(H α̂⊗β H ,H β⊗α H )→B(H ⊗H ); X �→ v∗βαXvα̂β .

Similarly, we also define ια
ββ̂

and ια̂
β̂β

. Let

V := ιβα̂α(V ), W := ια
ββ̂

(V̂ ) and Ṽ := ια̂
β̂β

(Ṽ ),

where V = WĜ , V̂ =WG and Ṽ = W(Go)c (cf. Notation 3.4).

In what follows, we recall the main properties satisfied by V , W , and Ṽ .
The proof of the results below are derived from the properties satisfied by the

pseudo-multiplicative unitaries V , V̂ , and Ṽ (cf. [17], §11 [11], and §2 [2]).

Proposition 3.1.3 (cf. 3.11 (iii), 3.12 (v), (vi) [17], 2.2 [2]). The operators

V,W and Ṽ are multiplicative partial isometries acting on H ⊗H such that:
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1. W = Σ(U ⊗ 1)V (U∗ ⊗ 1)Σ, Ṽ = Σ(1⊗ U)V (1⊗ U∗)Σ = (U ⊗ U)W (U∗ ⊗
U∗);

2. V ∗ = (J ⊗ Ĵ)V (J ⊗ Ĵ), W ∗ = (Ĵ ⊗ J)W (Ĵ ⊗ J);
3. the initial and final projections are given by

V ∗V = qα̂β = Ṽ Ṽ ∗, W ∗W = qβα = V V ∗,

WW ∗ = qαβ̂ and Ṽ ∗Ṽ = qβ̂α̂.

Proposition 3.1.4 (cf. 3.8, 3.12 [17]).

1. The von Neumann algebra M (resp., M̂ ) is the weak closure of {(id ⊗
ω)(W ); ω ∈ B(H )∗} (resp., {(ω⊗ id)(W ); ω ∈ B(H )∗}).

2. We have W ∈M ⊗ M̂ , V ∈ M̂ ′ ⊗M , and Ṽ ∈M ′ ⊗ M̂ ′. In particular, we

have the commutation relations [W12, V23] = 0 and [V12, Ṽ23] = 0.

3. The coproduct Δ : M → M ⊗ M of G (resp., Δ̂ : M̂ ′ → M̂ ′ ⊗ M̂ ′ of Ĝ)
satisfies

Δ(x) = V (x⊗ 1)V ∗ =W ∗(1⊗ x)W, for all x ∈M(
resp., Δ̂(x) = V ∗(1⊗ x)V = Ṽ (x⊗ 1)Ṽ ∗, for all x ∈ M̂ ′).

Proposition 3.1.5 (cf. 3.2. (i), 3.6. (ii) [17] and 11.1.2 [11]). For all n ∈N ,
we have:

1. [V,α(n)⊗ 1] = 0, [V, β̂(no)⊗ 1] = 0, [V,1⊗ α̂(n)] = 0, [V,1⊗ β̂(no)] = 0;
2. V (1⊗ α(n)) = (α̂(n)⊗ 1)V , V (β(no)⊗ 1) = (1⊗ β(no))V ;

3. [W, β̂(no)⊗ 1] = 0, [W, α̂(n)⊗ 1] = 0, [W,1⊗ β(no)] = 0, [W,1⊗ α̂(n)] = 0;

4. W (1⊗ β̂(no)) = (β(no)⊗ 1)W , W (α(n)⊗ 1) = (1⊗ α(n))W ;

5. [Ṽ , α(n)⊗ 1] = 0, [Ṽ , β(no)⊗ 1] = 0, [Ṽ ,1⊗ α(n)] = 0, [Ṽ ,1⊗ β̂(no)] = 0;

6. Ṽ (1⊗ β(no)) = (β̂(no)⊗ 1)Ṽ , Ṽ (α̂(n)⊗ 1) = (1⊗ α̂(n))Ṽ .

Proposition 3.1.6 (cf. 11.1.4 [11]). For all n ∈N , we have:

1. W (β(no)⊗ 1) =W (1⊗ α(n)), (1⊗ β̂(no))W = (α(n)⊗ 1)W ;
2. V (1⊗ β(no)) = V (α̂(n)⊗ 1), (1⊗ α(n))V = (β(no)⊗ 1)V ;

3. Ṽ (β̂(no)⊗ 1) = Ṽ (1⊗ α̂(n)), (1⊗ β(no))Ṽ = (α̂(n)⊗ 1)Ṽ .

3.2. Weak Hopf C∗-algebras associated with a measured quan-
tum groupoid on a finite basis. We recall the definitions and the main
results concerning the weak Hopf C∗-algebras associated with a measured
quantum groupoid on a finite basis, cf. §11.2 [11] (with different notation
and conventions; cf. §2.3 [2]). Let us fix a measured quantum groupoid G =
(N,M,α,β,Δ, T,T ′, ε) on the finite-dimensional basis N =

⊕
1�l�kMnl

(C).

Notation 3.2.1. With the notation of §3.1, we denote by S (resp., Ŝ) the
norm closure of the subalgebra{

(ω⊗ id)(V ); ω ∈ B(H )∗
} (

resp.,
{
(id⊗ ω)(V ); ω ∈ B(H )∗

})
.
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According to §11.2 [11], we have the following statements:

• the Banach space S (resp., Ŝ) is a nondegenerate C∗-subalgebra of B(H ),

weakly dense in M (resp., M̂ ′);

• the C∗-algebra S (resp., Ŝ) is endowed with the faithful nondegenerate
∗-representations:

L : S →B(H ); x �→ x; R : S →B(H ); x �→ UL(x)U∗(
resp., ρ : Ŝ →B(H ); x �→ x; λ : Ŝ →B(H ); x �→ Uρ(x)U∗);

• α(N)⊂M(S), β(No)⊂M(S), β(No)⊂M(Ŝ) and α̂(N)⊂M(Ŝ);

• V ∈M(Ŝ ⊗ S), W ∈M(S ⊗ λ(Ŝ)) and Ṽ ∈M(R(S)⊗ Ŝ);

• Δ (resp., Δ̂) restricts to a strictly continuous ∗-homomorphism δ : S →
M(S ⊗ S) (resp., δ̂ : Ŝ →M(Ŝ ⊗ Ŝ)), which uniquely extends to a strictly

continuous ∗-homomorphism δ : M(S) → M(S ⊗ S) (resp., δ̂ : M(Ŝ) →
M(Ŝ ⊗ Ŝ)) satisfying δ(1S) = qβα (resp., δ̂(1Ŝ) = qα̂β);

• δ (resp., δ̂) is coassociative and satisfies [δ(S)(1S ⊗ S)] = δ(1S)(S ⊗ S) =

[δ(S)(S ⊗ 1S)] (resp., [δ̂(Ŝ)(1Ŝ ⊗ Ŝ)] = δ̂(1Ŝ)(Ŝ ⊗ Ŝ) = [δ̂(Ŝ)(Ŝ ⊗ 1Ŝ)]);

• the unital faithful ∗-homomorphisms α : N → M(S) and β : No →M(S)
satisfy

δ
(
α(n)

)
= δ(1S)

(
α(n)⊗ 1S

)
and

δ
(
β
(
no

))
= δ(1S)

(
1S ⊗ β

(
no

))
, for all n ∈N ;

• the unital faithful ∗-homomorphisms β : No →M(Ŝ) and α̂ : N →M(Ŝ)
satisfy

δ̂
(
β
(
no

))
= δ̂(1Ŝ)

(
β
(
no

)
⊗ 1Ŝ

)
and

δ̂
(
α̂(n)

)
= δ̂(1Ŝ)

(
1Ŝ ⊗ α̂(n)

)
, for all n ∈N.

Definition 3.2.2. With the above notation, we call the pair (S, δ) (resp.,

(Ŝ, δ̂)) the weak Hopf C∗-algebra (resp., dual weak Hopf C∗-algebra) associ-
ated with the measured quantum groupoid G.

Remark 3.2.3. With the notations of the above definition, the pair (Ŝ, δ̂)

is the weak Hopf C∗-algebra of Ĝ while its dual weak Hopf C∗-algebra is
the pair (R(S), δR), where R(S) = USU∗ and the coproduct δR is given by

δR(y) := Ṽ ∗(1⊗ y)Ṽ for all y ∈R(S).

3.3. Measured quantum groupoid associated with a monoidal equiv-
alence. We will recall the construction of the measured quantum groupoid
associated with a monoidal equivalence between two locally compact quantum
groups provided by De Commer [11], [12]. First of all, we will need to recall
the definitions and the crucial results of De Commer [11], [12].



ACTIONS OF MEASURED QUANTUM GROUPOIDS ON A FINITE BASIS 131

Definition 3.3.1. Let G be a locally compact quantum group. A right
(resp., left) Galois action of G on a von Neumann algebra N is an ergodic
integrable right (resp., left) action αN : N → N ⊗ L∞(G) (resp., γN : N →
L∞(G) ⊗N ) such that the crossed product N �αN

G (resp., GγN
�N ) is a

type I factor. Then the pair (N,αN ) (resp., (N,γN )) is called a right (resp.,
left) Galois object for G.

Let G be a locally compact quantum group and let us fix a right Galois
object (N,αN ) for G. In his thesis, De Commer was able to build a locally
compact quantum group H equipped with a left Galois action γN on N com-
muting with αN , i.e. (id⊗αN )γN = (γN ⊗ id)αN . This construction is called
the reflection technique and H is called the reflected locally compact quantum
group across (N,αN ).

In a canonical way, he was also able to associate a right Galois object
(O,αO) for H and a left Galois action γO :O→ L∞(G)⊗O of G on O com-
muting with αO. Finally, De Commer has built a measured quantum groupoid

GH,G =
(
C

2,M,α,β,Δ, T,T ′, ε
)
,

where:M =L∞(H)⊕N⊕O⊕L∞(G); Δ :M →M⊗M is made up of the coac-
tions and coproducts of the constituents of M ; the operator-valued weights T
and T ′ are given by the invariants weights; the nonnormalized Markov trace ε
on C

2 is simply given by ε(a, b) = a+ b for all (a, b) ∈C
2. Moreover, the source

and target maps α and β have range in Z(M) and generate a copy of C4.
Conversely, if G = (C2,M,α,β,Δ, T,T ′, ε) is a measured quantum groupoid

whose source and target maps have range in Z(M) and generate a copy of
C

4, then G is of the form GH,G in a unique way, where H and G are locally
compact quantum groups canonically associated with G.

In what follows, we fix a measured quantum groupoid G = (C2,M,α,β,Δ,
T, T ′, ε) whose source and target maps have range in Z(M) and generate a
copy of C4. It is worth noticing that for such a groupoid we have the following.

Lemma 3.3.2 (cf. 2.21 [2]). α̂= β and β̂ = α.

Following the notation introduced in [11], we recall the precise description
of the left and right regular representations W and V of G introduced in
the previous section. We identify M with its image by π in B(H ), where
(H , π,Λ) is the G.N.S. construction for M endowed with the n.s.f. weight
ϕ= ε ◦α−1 ◦ T . We also consider the n.s.f. weight ψ = ε ◦ β−1 ◦ T ′. Denote by
(ε1, ε2) the standard basis of the vector space C

2.

Notation 3.3.3. Let us introduce some useful notation and make some
remarks concerning them.

• For i, j = 1,2, we define the following nonzero central self-adjoint projection
of M :

pij := α(εi)β(εj).
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It follows from β(ε1) + β(ε2) = 1M and α(ε1) + α(ε2) = 1M that

α(εi) = pi1 + pi2 and β(εj) = p1j + p2j , for all i, j = 1,2.

• We have

Δ(1) = α(ε1)⊗ β(ε1) + α(ε2)⊗ β(ε2) and

Δ̂(1) = β(ε1)⊗ β(ε1) + β(ε2)⊗ β(ε2)

since α̂= β.
• Let Mij := pijM , for i, j = 1,2. Then Mij is a nonzero von Neumann sub-
algebra of M .

• Let Hij := pijH , for i, j = 1,2. Then Hij is a nonzero Hilbert subspace of
H for all i, j = 1,2.

• Let ϕij := ϕ �(Mij)+ and ψij := ψ �(Mij)+ , for i, j = 1,2. Then ϕij and ψij

are n.s.f. weights on Mij .
• For all i, j, k = 1,2, we denote by Δk

ij :Mij →Mik ⊗Mkj the unital normal
∗-homomorphism given by

Δk
ij(x) := (pik ⊗ pkj)Δ(x), for all x ∈Mij .

• We have Jpkl = pklJ , Ĵpkl = plkĴ and Upkl = plkU for all k, l = 1,2. We

define the anti-unitaries Jkl : Hkl → Hkl, Ĵkl : Hkl → Hlk and the unitary

Ukl : Hkl → Hlk by setting Jkl = pklJpkl, Ĵkl = plkĴpkl and Ukl = plkUpkl =

ĴklJkl.
• For i, j, k, l= 1,2, let Σij⊗kl := ΣHij⊗Hkl

: Hij ⊗Hkl → Hkl ⊗Hij .

We readily obtain:

M =
⊕

i,j=1,2

Mij ; H =
⊕

i,j=1,2

Hij ;

Δ(pij) = pi1 ⊗ p1j + pi2 ⊗ p2j , for all i, j = 1,2.

Note that in terms of the parts Δk
ij of Δ, the coassociativity condition reads

as follows:(
Δl

ik ⊗ idMkj

)
Δk

ij =
(
idMil

⊗Δk
lj

)
Δl

ij , for all i, j, k, l= 1,2.

The G.N.S. representation for (Mij , ϕij) is obtained by restriction of the
G.N.S. representation of (M,ϕ) to Mij . In particular, the G.N.S. space Hϕij

is identified with Hij .

Proposition 3.3.4. For all i, j, k, l= 1,2, we have:

(pij ⊗ 1)V (pkl ⊗ 1) = δik(pij ⊗ pjl)V (pil ⊗ pjl);

(1⊗ pij)W (1⊗ pkl) = δlj(pik ⊗ pij)W (pik ⊗ pkj);

(1⊗ pji)Ṽ (1⊗ plk) = δlj(pki ⊗ pji)Ṽ (pki ⊗ pjk).
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Notation 3.3.5. The operators V , W , and Ṽ each splits up into eight
unitaries

V i
jl : Hil ⊗Hjl → Hij ⊗Hjl,

W j
ik : Hik ⊗Hkj →Hik ⊗Hij and

Ṽ j
ki : Hki ⊗Hjk →Hki ⊗Hji

for i, j, k, l = 1,2, given by V i
jl = (pij ⊗ pjl)V (pil ⊗ pjl), W j

ik = (pik ⊗
pij)W (pik ⊗ pkj) and Ṽ j

ki = (pki ⊗ pji)Ṽ (pki ⊗ pjk).

Let i, j, k, l, l′ = 1,2. These unitaries are related to each other by the fol-
lowing relations (cf. Proposition 3.1.3):

W j
ik =Σij⊗ik(Uji ⊗ 1)V j

ik

(
U∗
jk ⊗ 1

)
Σik⊗kj ;

Ṽ j
ki =Σji⊗ki(1⊗Uik)V

j
ik

(
⊗U∗

ik

)
Σki⊗jk;

Ṽ j
ki = (Uik ⊗Uij)W

j
ik

(
U∗
ik ⊗U∗

kj

)
.

Furthermore, we also have:(
V i
jl

)∗
= (Jil ⊗ Ĵlj)V

i
lj(Jij ⊗ Ĵjl) and(

W l
ik

)∗
= (Ĵki ⊗ Jkj)W

j
ki(Ĵik ⊗ Jij).

Moreover, these unitaries satisfy the following pentagonal equations:(
V i
jk

)
12

(
V i
kl

)
13

(
V j
kl

)
23

=
(
V j
kl

)
23

(
V i
jl

)
12
;(

W k
ij

)
12

(
W l

ij

)
13

(
W l

jk

)
23

=
(
W l

ik

)
23

(
W k

ij

)
12
;(

Ṽ k
ji

)
12

(
Ṽ l
ji

)
13

(
Ṽ l
kj

)
23

=
(
Ṽ l
ki

)
23

(
Ṽ k
ji

)
12
.

We also have the following commutation relations:(
V l
kj

)
23

(
W j

ll′
)
12

=
(
W k

ll′
)
12

(
V l′

kj

)
23
;(

V l
ki

)
12

(
Ṽ j
ki

)
23

=
(
Ṽ j
ki

)
23

(
V l
ki

)
12
.

Furthermore, we have

Δk
ij(x) =

(
W j

ik

)∗
(1⊗ x)W j

ik = V i
kj(x⊗ 1)

(
V i
kj

)∗
, for all x ∈Mij .

Note that for all ω ∈ B(H )∗ we have:

(id⊗ pjlωpjl)
(
V i
jl

)
= pij(id⊗ ω)(V )pil;

(pikωpik ⊗ id)
(
W j

ik

)
= pij(ω⊗ id)(W )pkj ;

(pkiωpki ⊗ id)
(
Ṽ j
ki

)
= pji(id⊗ ω)(Ṽ )pjk.

Proposition 3.3.6. Let i, j = 1,2 such that i �= j. With the notation of
Notation 3.3.3, we have:

1. Gi := (Mii,Δ
i
ii, ϕii, ψii) is a locally compact quantum group whose left

(resp., right) regular representation is W i
ii (resp., V

i
ii);
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2. (Mij ,Δ
j
ij) is a right Galois object for Gj whose canonical implementation

is V i
jj ;

3. (Mij ,Δ
i
ij) is a left Galois object for Gi whose canonical implementation is

W j
ii;

4. the actions Δj
ij and Δi

ij on Mij commute;

5. the Galois isometry associated with the right Galois object (Mij ,Δ
j
ij) for

Gj (cf. 6.4.1, 6.4.2 [11]) is the unitary Σij⊗jj(W
j
ij)

∗Σij⊗ij .

Definition 3.3.7. A measured quantum groupoid (C2,M,α,β,Δ, T,T ′, ε)
such that the source and target maps have range in Z(M) and generate a copy
of C4 will be denoted by GG1,G2 , where Gi = (Mii,Δ

i
ii, ϕii, ψii) (cf. Proposi-

tion 3.3.6) and will be called a colinking measured quantum groupoid.

Definition 3.3.8. Let G and H be two locally compact quantum groups.
We say that G and H are monoidally equivalent if there exists a colinking
measured quantum groupoid GG1,G2 between two locally compact quantum
groups G1 and G2 such that H (resp., G) is isomorphic to G1 (resp., G2).

Let (S, δ) be the weak Hopf C∗-algebra associated with G. Note that

pij = α(εi)β(εj) ∈ Z
(
M(S)

)
, for all i, j = 1,2.

Notation 3.3.9. Let us recall the notation below (cf. 2.26 [2]).

1. Let Sij := pijS, for i, j = 1,2. Then, Sij is a C∗-algebra (actually a closed
two-sided ideal) of S weakly dense in Mij .

2. For i, j, k = 1,2, let ιkij :M(Sik ⊗ Skj)→M(S ⊗ S) be the unique strictly
continuous extension of the inclusion map Sik ⊗ Skj ⊂ S ⊗ S satisfying
ιkij(1Sik⊗Skj

) = pik ⊗ pkj .

3. Let δkij : Sij →M(Sik ⊗ Skj) be the unique ∗-homomorphism such that

ιkij ◦ δkij(x) = (pik ⊗ pkj)δ(x), for all x ∈ Sij .

With these notation, we have the following.

Proposition 3.3.10 (cf. 7.4.13, 7.4.14 [11], 2.27 [2]). Let i, j, k, l= 1,2.

1. (δlik ⊗ idSkj
)δkij = (idSil

⊗ δklj)δ
l
ij .

2. δkij(x) = (W j
ik)

∗(1Hik
⊗ x)W j

ik = V i
kj(x⊗ 1Hkj

)(V i
kj)

∗, for all x ∈ Sij .

3. [δkij(Sij)(1Sik
⊗ Skj)] = Sik ⊗ Skj = [δkij(Sij)(Sik ⊗ 1Skj

)]. In particular, we
have

Skj =
[
(idSik

⊗ ω)δkij(x); x ∈ Sij , ω ∈ B(Hkj)∗
]
.

4. The pair (Sjj , δ
j
jj) is the Hopf C∗-algebra associated with Gj .
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4. Contributions to the notions of semi-regularity and regularity

The notion of regular measured quantum groupoid has been introduced in
[16] and studied in the compact case. Note that this notion has been general-
ized in the setting of pseudo-multiplicative unitaries; cf. [24], [23]. The notion
of semi-regular measured quantum groupoid has been introduced in [2], [9],
where the notions of regularity and semi-regularity have been studied in the
case of a finite-dimensional basis.

In this chapter, we fix a measured quantum groupoid G = (N,M,α,
β,Δ, T,T ′, ε) on the finite-dimensional basis N =

⊕
1�l�kMnl

(C) and we use

all the notation introduced in §3.1, §3.2. In the Appendix (cf. Definition A.2.1),
for any ξ ∈ H we have given the definition of the operator

Rα
ξ ∈ B(Hε,H )

(
resp., Lβ

ξ ∈ B(Hε,H )
)

and the definition of the weakly dense ideal of α(N)′ (resp., β(No)′)

Kα :=
[
Rα

ξ

(
Rα

η

)∗
; ξ, η ∈ H

] (
resp., Kβ :=

[
Lβ
ξ

(
Lβ
η

)∗
; ξ, η ∈ H

])
.

Note that Kα and Kβ are C∗-subalgebras of K :=K(H ).
We first recall the following important consequence of the irreducibility (cf.

2.13 [2]) of G.

Proposition 4.1 (cf. 2.15 [2]). The Banach spaces [SŜ] and C(V ) (cf.

2.1.2) are C∗-algebras and we have [SŜ] = UC(V )U∗.

Definition 4.2 (cf. 4.7 [16], 2.37 [2]). The groupoid G is said to be semi-
regular (resp., regular) if we have Kβ ⊂ C(V ) (resp., Kβ = C(V )).

Proposition 4.3 (cf. 2.8 [2], 3.2.8 [9]). The following statements are equiv-
alent:

(i) G is semi-regular (resp., regular), that is, Kα ⊂ C(W ) (resp., Kα = C(W ));

(ii) Ĝ is semi-regular (resp., regular), that is, Kβ ⊂ C(V ) (resp., Kβ = C(V ));

(iii) (Go)c is semi-regular (resp., regular), that is, Kα̂ ⊂ C(Ṽ ) (resp., Kα̂ =

C(Ṽ )).

Proposition 4.4 (cf. 2.8 [2], 3.2.9 [9]). The following statements are equiv-
alent:

(i) G is semi-regular (resp., regular);

(ii) Kβ̂ ⊂ [ŜS] (resp., Kβ̂ = [ŜS]);

(iii) Kα ⊂ [R(S)Ŝ] (resp., Kα = [R(S)Ŝ]);

(iv) Kα̂ ⊂ [Sλ(Ŝ)] (resp., Kα̂ = [Sλ(Ŝ)]).

In particular, if G is regular we have [ŜS]⊂K, [R(S)Ŝ]⊂K and [Sλ(Ŝ)]⊂K
(and also C(V )⊂K, C(W )⊂K and C(Ṽ )⊂K).

The semi-regularity and the regularity of colinking measured quantum
groupoids have been treated in detail in §2.5 [2].
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Theorem 4.5 (cf. 2.45 [2]). Let GG1,G2 be a colinking measured quantum
groupoid associated with two monoidally equivalent locally compact quantum
groups G1 and G2. The groupoid GG1,G2 is semi-regular (resp., regular) if, and
only if, G1 and G2 are semi-regular (resp., regular).

In the following, we use the multi-index notation introduced in the Appen-
dix of this article (cf. Notations A.2.21, A.2.22, and Remarks A.2.23) with
γ := α and π := β.

Lemma 4.6. For all ξ, η ∈ H , we have

Rα
ξ

(
Rα

η

)∗
=

∑
I∈I

n−1
I · eIθξ,ηeI and Lβ

ξ

(
Lβ
η

)∗
=

∑
I∈I

n−1
I · fIθξ,ηfI .

Proof. For η, ζ ∈ H , let Xη,ζ ∈N be defined by Xη,ζ :=
∑

I∈I n−1
I 〈eIη, ζ〉 ·

εI . For all x ∈N and η ∈ H , we have Rα
ηΛε(x) = α(x)η =

∑
I∈I xI · eIη. Let

η, ζ ∈ H , and I ∈ I . 〈(Rα
η )

∗ζ,Λε(εI)〉= 〈ζ, eIη〉. By disjunction elimination,

we prove that ε(εJI) = δJ
I
nI for all I, J ∈ I . On the other hand, we have〈

Λε(Xη,ζ),Λε(εI)
〉
= ε

(
X∗

η,ζεI
)

= ε

( ∑
J∈I

n−1
J 〈eJη, ζ〉 · εJI

)
=

∑
J∈I

n−1
J 〈ζ, eJη〉ε(εJI)

= 〈ζ, eIη〉.
Hence, 〈(Rα

η )
∗ζ,Λε(εI)〉 = 〈Λε(Xη,ζ),Λε(εI)〉. Hence, (Rα

η )
∗ζ = Λε(Xη,ζ) for

all η, ζ ∈ H . Let ξ, η ∈ H . For all ζ ∈ H , we have

Rα
ξ

(
Rα

η

)∗
ζ =Rα

ξ Λε(Xη,ζ) =
∑
I∈I

(Xη,ζ)I · eIξ

=
∑
I∈I

n−1
I 〈η, eIζ〉 · eIξ

=
∑
I∈I

n−1
I θeIξ,eIη(ζ).

Hence, Rα
ξ (R

α
η )

∗ =
∑

I∈I n−1
I · eIθξ,ηeI . The second formula is proved in a

similar way. �

We refer to Proposition-Definition A.2.15 and Proposition A.2.18 for the
definition of the operators qα, qβ and qα̂. Propositions 4.7, 4.8, and 4.9 below
have to be compared with their corresponding statements in the quantum
group case; cf. 3.2 b), 3.6 b), and 3.6 d) [4].

Proposition 4.7. The following statements are equivalent:

(i) G is regular (resp., semi-regular);
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(ii) [(K⊗ 1)W (1⊗K)] = [(K⊗ 1)qα(1⊗K)] (resp., ⊃ [(K⊗ 1)qα(1⊗K)]);
(iii) [(K⊗ 1)V (1⊗K)] = [(K⊗ 1)qβ(1⊗K)] (resp., ⊃ [(K⊗ 1)qβ(1⊗K)]);

(iv) [(K⊗ 1)Ṽ (1⊗K)] = [(K⊗ 1)qα̂(1⊗K)] (resp., ⊃ [(K⊗ 1)qα̂(1⊗K)]).

Proof. It is known that G is regular (resp., semi-regular) if, and only if,
Ĝ is regular (resp., semi-regular). Therefore, it suffices to prove that (i) is
equivalent to (ii). We have[

(K⊗ 1)W (1⊗K)
]
=Σ

(
C(W )⊗K

)
(cf. 3.1 [4])

(C(W ) is a C∗-algebra regardless of the regularity of G). Note that G is reg-
ular (resp., semi-regular) if, and only if, Σ(C(W ) ⊗ K) = Σ(Kα ⊗ K) (resp.,
Σ(C(W ) ⊗ K) ⊃ Σ(Kα ⊗ K)). Let ξ, η, ζ,χ ∈ H . We have eIθξ,ηeI ⊗ θζ,χ =
θeIξ,eIη ⊗ θζ,χ = θeIξ⊗ζ,eIη⊗χ, for all I ∈ I . Hence, Σ(eIθξ,ηeI ⊗ θζ,χ) =
θζ⊗eIξ,eIη⊗χ = θζ,eIη ⊗ θeIξ,χ = θζ,ηeI ⊗ eIθξ,χ for all I ∈ I . By Lemma 4.6,
we obtain

Σ
(
Rα

ξ

(
Rα

η

)∗ ⊗ θζ,χ
)
= (θζ,η ⊗ 1)qα(1⊗ θξ,χ).

Hence, Σ(Kα ⊗ K) = [(K ⊗ 1)qα(1 ⊗ K)] and the equivalence ((i) ⇔ (ii)) is
proved. �

Proposition 4.8. If G is regular (resp., semi-regular), we have:

1. [(S ⊗ 1)W (1⊗K)] = [(S ⊗ 1)qα(1⊗K)] (resp., ⊃ [(S ⊗ 1)qα(1⊗K)]);
2. [(K⊗ 1)V (1⊗ S)] = [(K⊗ 1)qβ(1⊗ S)] (resp., ⊃ [(K⊗ 1)qβ(1⊗ S)]);

3. [(R(S)⊗ 1)Ṽ (1⊗K)] = [(R(S)⊗ 1)qα̂(1⊗K)] (resp., ⊃ [(R(S)⊗ 1)qα̂(1⊗
K)]).

Proof. Assume that G is regular (resp., semi-regular). Let us prove the
first statement. The others will be obtained by using similar arguments. Let
a, b ∈K, ω ∈ B(H )∗ and y = (id⊗ aω)(W ). We have

(y⊗ 1)W (1⊗ b) = (id⊗ ω⊗ id)
(
W12W13(1⊗ a⊗ b)

)
= (id⊗ ω⊗ id)

(
W23W12

(
1⊗W ∗(a⊗ b)

))
.

However, W ∗(K⊗K) = qβα(K⊗K). Moreover, since [W,1⊗β(no)] = 0 for all
n ∈N , we have [W12, qβα,23] = 0. Hence, W23W12qβα,23 =W23W12. We obtain
(cf. Proposition 4.7)[
(S ⊗ 1)W (1⊗K)

]
=

[
(id⊗ aω⊗ id)

(
W23W12(1⊗ 1⊗ b)

)
; ω ∈ B(H )∗, a, , b ∈K

]
=

[
(id⊗ ωa⊗ id)

(
W23W12(1⊗ 1⊗ b)

)
; ω ∈ B(H )∗, a, b ∈K

]
=

[
(id⊗ ω⊗ id)

((
(a⊗ 1)W (1⊗ b)

)
23
W12

)
; ω ∈ B(H )∗, a, b ∈K

]
=

[
(id⊗ ω⊗ id)

((
(a⊗ 1)qα(1⊗ b)

)
23
W12

)
; ω ∈ B(H )∗, a, b ∈K

](
resp., ⊃

[
(id⊗ ω⊗ id)

((
(a⊗ 1)qα(1⊗ b)

)
23
W12

)
; ω ∈ B(H )∗, a, b ∈K

])
.
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However, for all ω ∈ B(H )∗ and a, b ∈K we have

(id⊗ ω⊗ id)
((
(a⊗ 1)qα(1⊗ b)

)
23
W12

)
= (id⊗ ωa⊗ id)

(
qα,23W12(1⊗ 1⊗ b)

)
.

Since (1⊗α(n))W =W (α(n)⊗1) for all n ∈N , we have qα,23W12 =W12qα,13.
Hence,

(id⊗ ω⊗ id)
((
(a⊗ 1)qα(1⊗ b)

)
23
W12

)
=

(
(id⊗ ωa)(W )⊗ 1

)
qα(1⊗ b)

and the result is proved. �

Proposition 4.9. If G is regular (resp., semi-regular), then we have:

1. [(S ⊗ 1)W (1 ⊗ λ(Ŝ))] = [(S ⊗ 1)qα(1 ⊗ λ(Ŝ))] (resp., ⊃ [(S ⊗ 1)qα(1 ⊗
λ(Ŝ))]);

2. [(Ŝ ⊗ 1)V (1⊗ S)] = [(Ŝ ⊗ 1)qβ(1⊗ S)] (resp., ⊃ [(Ŝ ⊗ 1)qβ(1⊗ S)]);

3. [(R(S)⊗ 1)Ṽ (1⊗ Ŝ)] = [(R(S)⊗ 1)qα̂(1⊗ Ŝ)] (resp., ⊃ [(R(S)⊗ 1)qα̂(1⊗
Ŝ)]).

In particular, we have [(S ⊗ 1)W (1⊗ λ(Ŝ))]⊂ S ⊗ λ(Ŝ), [(Ŝ ⊗ 1)V (1⊗ S)]⊂
Ŝ ⊗ S and [(R(S)⊗ 1)Ṽ (1⊗ Ŝ)]⊂R(S)⊗ Ŝ.

Proof. We have the pentagonal equation V12V13 = V23V12V
∗
23. Since V ∈

M(Ŝ ⊗ S) is a partial isometry, we have V ∗(Ŝ ⊗ S) = qα̂β(Ŝ ⊗ S). Since
[V,1⊗ α̂(n)] = 0 for all n ∈N , we have [V12, qα̂β,23] = 0. Hence, V23V12qα̂β,23 =
V23V12. Hence,[

(Ŝ ⊗ 1)V (1⊗ S)
]

=
[(
(id⊗ ω)(V )⊗ 1

)
V (1⊗ y); ω ∈ B(H )∗, y ∈ S

]
=

[
(id⊗ ω⊗ id)

(
V12V13(1⊗ 1⊗ y)

)
; ω ∈ B(H )∗, y ∈ S

]
=

[
(id⊗ ω⊗ id)

(
V23V12V

∗
23(1⊗ x⊗ y)

)
; ω ∈ B(H )∗, y ∈ S,x ∈ Ŝ

]
=

[
(id⊗ ω⊗ id)

(
V23V12(1⊗ x⊗ y)

)
; ω ∈ B(H )∗, x ∈ Ŝ, y ∈ S

]
=

[
(id⊗ ω⊗ id)

(
V23(1⊗ 1⊗ y)V12

)
; ω ∈ B(H )∗, y ∈ S

]
=

[
(id⊗ ω⊗ id)

((
(a⊗ 1)V (1⊗ y)

)
23
V12

)
; ω ∈ B(H )∗, a ∈K, y ∈ S

]
.

Let X := [(id ⊗ ω ⊗ id)(((a ⊗ 1)qβ(1 ⊗ y))23V12); ω ∈ B(H )∗, a ∈ K, y ∈ S].
Since G is regular (resp., semi-regular), it follows from Proposition 4.8 that[

(Ŝ ⊗ 1)V (1⊗ S)
]
=X

(
resp.,

[
(Ŝ ⊗ 1)V (1⊗ S)

]
⊃X

)
.

However, since (1⊗ β(no))V = V (β(no)⊗ 1) for all n ∈N , we have

X =
[
(id⊗ ωa⊗ id)

(
qβ,23V12(1⊗ 1⊗ y)

)
; ω ∈ B(H )∗, a ∈K, y ∈ S

]
=

[
(id⊗ ω⊗ id)

(
V12qβ,13(1⊗ 1⊗ y)

)
; ω ∈ B(H )∗, y ∈ S

]



ACTIONS OF MEASURED QUANTUM GROUPOIDS ON A FINITE BASIS 139

=
[(
(id⊗ ω)(V )⊗ 1

)
qβ(1⊗ y); ω ∈ B(H )∗, y ∈ S

]
=

[
(Ŝ ⊗ 1)qβ(1⊗ S)

]
.

The second statement is proved and the third one follows by applying it

to Ĝ. We obtain the first statement by combining the third one with the

formulasW = (U∗⊗U∗)Ṽ (U⊗U) and α̂=AdU ◦α. Finally, the last statement

follows from the inclusions β(No) ⊂ M(S), β̂(No) ⊂ M(Ŝ), α(N) ⊂ M(S)

and α̂(N)⊂M(Ŝ). �

In the result below, we refer again to Proposition-Definition A.2.15 and
Proposition A.2.18 for the definition of the operators qββ̂ , qα̂α and qβ̂β .

Corollary 4.10. If G is regular (resp., semi-regular), then we have:

1. [(1⊗λ(Ŝ))W (S⊗ 1)] = [(1⊗λ(Ŝ))qββ̂(S⊗ 1)] (resp., ⊃ [(1⊗λ(Ŝ))qββ̂(S⊗
1)]);

2. [(1⊗ S)V (Ŝ ⊗ 1)] = [(1⊗ S)qα̂α(Ŝ ⊗ 1)] (resp., ⊃ [(1⊗ S)qα̂α(Ŝ ⊗ 1)]);

3. [(1⊗ Ŝ)Ṽ (R(S)⊗1)] = [(1⊗ Ŝ)qβ̂β(R(S)⊗1)] (resp., ⊃ [(1⊗ Ŝ)qβ̂β(R(S)⊗
1)]).

If G is regular, then we have [(1⊗λ(Ŝ))W (S⊗ 1)]⊂ S⊗λ(Ŝ), [(1⊗S)V (Ŝ⊗
1)]⊂ Ŝ ⊗ S and [(1⊗ Ŝ)Ṽ (R(S)⊗ 1)]⊂R(S)⊗ Ŝ.

Proof. This is a direct consequence of Proposition 4.9 and the formulas β̂ =

AdU ◦β, α̂=AdU ◦α,W =Σ(U⊗1)V (U∗⊗1)Σ and Ṽ =Σ(1⊗U)V (1⊗U∗)Σ.

The second statement follows from the inclusions β(No) ⊂M(S), β̂(No) ⊂
M(Ŝ), α(N)⊂M(S) and α̂(N)⊂M(Ŝ). �

5. Measured quantum groupoids on a finite basis in action

5.1. Continuous actions, crossed product, and biduality. In this sec-
tion, we fix a measured quantum groupoid G = (N,M,α,β,Δ, T,T ′, ε) on the
finite-dimensional basis N =

⊕
1�l�kMnl

(C) and we use all the notation in-
troduced in §3.1, §3.2. In the following, we recall the definitions, notations
and results of §3.1, §3.2.1, §3.2.2, and §3.3.1 [2] (see also [9] Chapter 4).

5.1.1. Notion of actions of measured quantum groupoids on a finite basis.

Lemma 5.1.1. Let A and B be two C∗-algebras, f : A → M(B) a ∗-
homomorphism and e ∈M(B). The following statements are equivalent:

(i) there exists an approximate unit (uλ)λ of A such that f(uλ) → e with
respect to the strict topology;

(ii) f extends to a strictly continuous ∗-homomorphism f :M(A)→M(B),
necessarily unique, such that f(1A) = e;

(iii) [f(A)B] = eB.
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In that case, e is a self-adjoint projection, for all approximate unit (vμ)μ of
A we have f(vμ)→ e with respect to the strict topology and [Bf(A)] =Be.

Definition 5.1.2. An action of G on a C∗-algebra A is a pair (βA, δA) con-
sisting of a nondegenerate ∗-homomorphism βA :No →M(A) and a faithful
∗-homomorphism δA :A→M(A⊗ S) such that:

1. δA extends to a strictly continuous ∗-homomorphism δA :M(A)→M(A⊗
S) such that δA(1A) = qβAα (cf. Proposition-Definition A.2.19);

2. (δA ⊗ idS)δA = (idA ⊗ δ)δA;
3. δA(βA(n

o)) = qβAα(1A ⊗ β(no)), for all n ∈N .

We say that the action (βA, δA) is strongly continuous if we have[
δA(A)(1A ⊗ S)

]
= qβAα(A⊗ S).

If that case, we say that the triple (A,βA, δA) is a G-C∗-algebra.

Remarks 5.1.3.

• By Lemma 5.1.1, the condition 1 is equivalent to requiring that for some
(and then any) approximate unit (uλ) of A, we have δA(uλ) → qβAα

with respect to the strict topology of M(A ⊗ S). It is also equivalent to
[δA(A)(A⊗ S)] = qβAα(A⊗ S).

• Condition 1 implies that the ∗-homomorphisms δA ⊗ idS and idA ⊗ δ ex-
tend uniquely to strictly continuous ∗-homomorphisms from M(A⊗ S) to
M(A⊗S⊗S) such that (δA⊗ idS)(1A⊗S) = qβAα,12 and (idA⊗ δ)(1A⊗S) =
qβα,23. In particular, condition 2 does make sense and we denote by
δ2A := (δA ⊗ idS)δA :A→M(A⊗ S ⊗ S) the iterated coaction map.

Examples 5.1.4. Let us give two basic examples.

• (S,β, δ) is a G-C∗-algebra.
• Let βNo := idNo . Let δNo : No → M(No ⊗ S) be the faithful unital ∗-
homomorphism given by δNo(no) := qβNoα(1No ⊗β(no)) for all n ∈N . Then
the pair (βNo , δNo) is an action of G on No called the trivial action.

Proposition 5.1.5. Let (δA, βA) be an action of G on A. We have the
following statements:

1. the iterated coaction map δ2A extends uniquely to a strictly continu-
ous ∗-homomorphism δ2A : M(A) → M(A ⊗ S ⊗ S) such that δ2A(1A) =
qβAα,12qβα,23; moreover, we have δ2A(m) = (δA ⊗ idS)δA(m) = (idA ⊗
δ)δA(m) for all m ∈M(A);

2. for all n ∈N , we have δA(βA(n
o)) = (1A ⊗ β(no))qβAα;

3. if (βA, δA) is strongly continuous, then we have [(1A ⊗ S)δA(A)] = (A ⊗
S)qβAα.

Let us provide a more explicit definition of what an action of the dual

measured quantum groupoid Ĝ on a C∗-algebra B is.
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Definition 5.1.6. An action of Ĝ on a C∗-algebra B is a pair (αB , δB) con-
sisting of a nondegenerate ∗-homomorphism αB :N →M(B) and a faithful

∗-homomorphism δB :B →M(B ⊗ Ŝ) such that:

1. δB extends to a strictly continuous ∗-homomorphism δB :M(B)→M(B⊗
Ŝ) such that δB(1B) = qαBβ (cf. Proposition-Definition A.2.19);

2. (δB ⊗ idŜ)δB = (idB ⊗ δ̂)δB ;
3. δB(αB(n)) = qαBβ(1B ⊗ α̂(n)), for all n ∈N .

We say that the action (αB , δB) is strongly continuous if we have[
δB(B)(1B ⊗ Ŝ)

]
= qαBβ(B ⊗ Ŝ).

If (δB , αB) is a strongly continuous action of Ĝ on B, we say that the triple

(B,αB, δB) is a Ĝ-C∗-algebra.

Remarks 5.1.7. As for actions of G, we have:

• the condition 1 is equivalent to requiring that for some (and then any)
approximate unit (uλ)λ of B we have δB(uλ)→ qαBβ with respect to the

strict topology, which is also equivalent to the relation [δB(B)(B ⊗ Ŝ)] =

qαBβ(B ⊗ Ŝ);

• the ∗-homomorphisms idB ⊗ δ̂ and δB ⊗ idŜ extend uniquely to strictly

continuous ∗-homomorphisms from M(B⊗ Ŝ) to M(B⊗ Ŝ ⊗ Ŝ) such that

(idB ⊗ δ̂)(1B⊗Ŝ) = qα̂β,23 and (δB ⊗ idŜ)(1B⊗Ŝ) = qαBβ,12. In particular,

condition 2 does make sense and we denote by δ2B := (δB ⊗ idŜ)δB : B →
M(B ⊗ Ŝ ⊗ Ŝ) the iterated coaction map.

Examples 5.1.8. Let us give two basic examples:

• (Ŝ, α̂, δ̂) is a Ĝ-C∗-algebra;

• Let αN := idN and δN : N →M(N ⊗ Ŝ); n �→ qαNβ(1N ⊗ α̂(n)); then the

pair (αN , δN ) is an action of Ĝ on N called the trivial action.

Proposition 5.1.9. Let (αB , δB) be an action of Ĝ on B. We have the
following statements:

1. the iterated coaction map δ2B extends uniquely to a strictly continu-

ous ∗-homomorphism δ2B : M(B) → M(B ⊗ Ŝ ⊗ Ŝ) such that δ2B(1B) =
qαBβ,12qα̂β,23; moreover, we have δ2B(m) = (δB ⊗ idŜ)δB(m) = (idB ⊗
δ̂)δB(m) for all m ∈M(B);

2. for all n ∈N , we have δB(αB(n)) = (1B ⊗ α̂(n))qαBβ ;

3. if (αB , δB) is strongly continuous, then we have [(1B ⊗ Ŝ)δB(B)] = (B ⊗
Ŝ)qαBβ .

Definition 5.1.10. For i = 1,2, let Ai (resp., Bi) be a C∗-algebra.
For i = 1,2, let (βAi , δAi) (resp., (αBi , δBi)) be an action of G (resp.,

Ĝ) on Ai (resp., Bi). A nondegenerate ∗-homomorphism f : A1 → M(A2)
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(resp., f : B1 →M(B2)) is said to be G-equivariant (resp., Ĝ-equivariant) if
(f ⊗ idS)δA1 = δA2 ◦ f and f ◦ βA1 = βA2 (resp., (f ⊗ idŜ)δB1 = δB2 ◦ f and
f ◦ αB1 = αB2).

Remark 5.1.11. With the notation and hypotheses of Definition 5.1.10, if
f satisfies the relation (f ⊗ idS)δA1 = δA2 ◦ f (resp., (f ⊗ idŜ)δB1 = δB2 ◦ f ),
then f satisfies necessarily the relation f ◦ βA1 = βA2 (resp., f ◦ αB1 = αB2),

that is, f is G-equivariant (resp., Ĝ-equivariant). Indeed, let n ∈ N . For all
a ∈A1 and x ∈A2, we have

δA2

(
f
(
βA1

(
no

))
f(a)x

)
= (f ⊗ idS)δA1

(
βA1

(
no

)
a
)
δA2(x)

=
(
1A2 ⊗ β

(
no

))
(f ⊗ idS)δA1(a)δA2(x)

=
(
1A2 ⊗ β

(
no

))
δA2

(
f(a)x

)
= δA2

(
βA2

(
no

)
f(a)x

)
.

Hence, f(βA1(n
o))f(a)x= βA2(n

o)f(a)x for all a ∈ A1 and x ∈ A2 since δA2

is faithful. Hence, we have f(βA1(n
o)) = βA2(n

o) since f is nondegenerate.

Notation 5.1.12. We denote by AlgG the category whose objects are the
G-C∗-algebras and whose set of arrows between G-C∗-algebras is the set of
G-equivariant nondegenerate ∗-homomorphisms.

5.1.2. Crossed product and dual action. Let us fix a strongly continuous action
(βA, δA) of G on a C∗-algebra A.

Notation 5.1.13. The ∗-representation

πL := (idA ⊗L) ◦ δA :A→L(A⊗H )

of A on the Hilbert A-module A ⊗ H extends uniquely to a strictly/∗-
strongly continuous faithful ∗-representation πL : M(A) → L(A ⊗ H ) such
that πL(1A) = qβAα. Moreover, we have πL(m) = πL(m)qβAα = qβAαπL(m)
for all m ∈M(A). Consider the Hilbert A-module

EA,L := qβAα(A⊗H ).

By restricting πL, we obtain a strictly/∗-strongly continuous faithful unital
∗-representation

π :M(A)→L(EA,L); m �→ πL(m)�EA,L
.

We have [1A ⊗ T, qβAα] = 0 for all T ∈ M(Ŝ). We then obtain a strictly/∗-
strongly continuous unital ∗-representation

θ̂ :M(Ŝ)→L(EA,L); T �→ (1A ⊗ T )�EA,L
.

Note that if βA is faithful, then so is θ̂.
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Proposition-Definition 5.1.14. The norm closed subspace of L(EA,L)

spanned by the products of the form π(a)θ̂(x) for a ∈ A and x ∈ Ŝ is a C∗-
subalgebra called the (reduced) crossed product of A by the strongly continuous
action (βA, δA) of G and denoted by A� G.

In particular, the morphism π (resp., θ̂) defines a faithful unital ∗-
homomorphism (resp., unital ∗-homomorphism) π : M(A) → M(A � G)
(resp., θ̂ : Ŝ →M(A� G)).

Since [Ṽ , α(n)⊗1] = 0, we have [Ṽ23, qβAα,12] = 0. The operator Ṽ23 ∈ L(A⊗
H ⊗H ) restricts to a partial isometry

X := Ṽ23�EA,L⊗H ∈ L(EA,L ⊗H ),

whose initial and final projections are X∗X = qβ̂α,23�EA,L⊗H and XX∗ =
qα̂β,23�EA,L⊗H .

Proposition-Definition 5.1.15. Let

δA�G :A� G →L(EA,L ⊗H ) and αA�G :N →M(A� G)
be the linear maps defined by:

• δA�G(b) :=X(b⊗ 1)X∗, for all b ∈A� G;
• αA�G(n) := θ̂(α̂(n)) = (1A ⊗ α̂(n))�EA,L

, for all n ∈N .

Then, δA�G is a faithful ∗-homomorphism and αA�G is a nondegenerate ∗-
homomorphism. Moreover, we have the following statements:

1. δA�G(π(a)θ̂(x)) = (π(a) ⊗ 1Ŝ)(θ̂ ⊗ idŜ)δ̂(x), for all a ∈ A and x ∈ Ŝ; in

particular, δA�G takes its values in M((A� G)⊗ Ŝ);

2. αA�G(n)π(a)θ̂(x) = π(a)θ̂(α̂(n)x) and π(a)θ̂(x)αA�G(n) = π(a)θ̂(xα̂(n))

for all n ∈N , a ∈A and x ∈ Ŝ.

Proposition-Definition 5.1.16. With the notation of Proposition-
Definition 5.1.15, the pair (αA�G , δA�G) is a strongly continuous action of

Ĝ on A� G called the dual action of (βA, δA).

In a similar way, we define the crossed product of a C∗-algebra B
by a strongly continuous action (αB , δB) of the dual measured quantum

groupoid Ĝ.
Notation 5.1.17. The ∗-representation

π̂λ := (idB ⊗ λ) ◦ δB :B →L(B ⊗H )

of B on the Hilbert B-module B ⊗ H extends uniquely to a strictly/∗-
strongly continuous faithful ∗-representation π̂λ : M(B) → L(B ⊗ H ) such
that π̂λ(1B) = qαB β̂ . Moreover, we have π̂λ(m) = π̂λ(m)qαB β̂ = qαB β̂ π̂λ(m),

for all m ∈M(B). Consider the Hilbert B-module

EB,λ := qαB β̂(B ⊗H ).
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By restricting π̂λ, we obtain a strictly/∗-strongly continuous faithful unital
∗-representation

π̂ :M(B)→L(EB,λ); m �→ π̂λ(m)�EB,λ
.

We have [1B ⊗ T, qαB β̂ ] = 0 for all T ∈M(S). We then obtain a strictly/∗-
strongly continuous unital ∗-representation

θ :M(S)→L(EB,λ); T �→ (1B ⊗ T )�EB,λ
.

Note that if αB is faithful, then so is θ.

Proposition-Definition 5.1.18. The norm closed subspace of L(EB,λ)
spanned by the products of the form π̂(b)θ(x) for b ∈ B and x ∈ S is a C∗-
subalgebra called the (reduced) crossed product of B by the strongly continuous

action (αB , δB) of Ĝ and denoted by B � Ĝ.

In particular, the morphism π̂ (resp., θ) defines a faithful unital ∗-
homomorphism (resp., unital ∗-homomorphism) π̂ : M(B) → M(B � Ĝ)
(resp., θ : S →M(B � Ĝ)).

Since [V,β(no) ⊗ 1] = 0, we have [V23, qαBβ,12] = 0. The operator V23 ∈
L(B ⊗H ⊗H ) restricts to a partial isometry

Y := V23�EB,λ⊗H ∈ L(EB,λ ⊗H ),

whose initial and final projections are Y ∗Y = qα̂β,23�EB,λ⊗H and Y Y ∗ =
qβα,23�EB,λ⊗H .

Proposition-Definition 5.1.19. Let

δB�Ĝ :B � Ĝ → L(EB,λ ⊗H ) and βB�Ĝ :No →L(EB,λ)

be the linear maps defined by:

• δB�Ĝ(c) := Y (c⊗ 1H )Y ∗, for all c ∈B � Ĝ;
• βB�Ĝ(n

o) := θ(β(no)) = (1B ⊗ β(no))�EB,λ⊗H , for all n ∈N .

Then, δB�Ĝ is a faithful ∗-homomorphism and βB�Ĝ is a nondegenerate ∗-
homomorphism. Moreover, we have the following statements:

1. δB�Ĝ(π̂(b)θ(x)) = (π̂(b) ⊗ 1S)(θ ⊗ idS)δ(x), for all b ∈ B and x ∈ S; in

particular, δB�Ĝ takes its values in M((B � Ĝ)⊗ S);

2. βB�Ĝ(n
o)π̂(b)θ(x) = π̂(b)θ(β(no)x) and π̂(b)θ(x)βB�Ĝ(n

o) = π̂(b) ×
θ(xβ(no)) for all n ∈N , b ∈B, and x ∈ S.

Proposition-Definition 5.1.20. With the notation of Proposition-
Definition 5.1.19, the pair (βB�Ĝ , δB�Ĝ) is a strongly continuous action of

G on B � Ĝ called the dual action of (αB , δB).
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5.1.3. Takesaki–Takai duality. Let (βA, δA) be a strongly continuous action
of the groupoid G on a C∗-algebra A.

Notation 5.1.21. The ∗-representation

πR := (idA ⊗R) ◦ δA :A→L(A⊗H )

of A on the Hilbert A-module A ⊗ H extends uniquely to a strictly/∗-
strongly continuous faithful ∗-representation πR :M(A)→L(A⊗H ) satisfy-
ing πR(m) = (idA ⊗R)δA(m) for all m ∈M(A) and πR(1A) = qβAα̂. Consider
the Hilbert A-module

EA,R := qβAα̂(A⊗H ).

We recall that the Banach space

D :=
[
πR(a)

(
1A ⊗ λ(x)L(y)

)
; a ∈A,x ∈ Ŝ, y ∈ S

]
is a C∗-subalgebra of L(A⊗ H ) such that dqβAα̂ = d= dqβAα̂ for all d ∈D.
Moreover, we have D(A⊗H ) = EA,R. We also recall that there exists a unique
strictly/∗-strongly continuous faithful ∗-representation jD :M(D)→L(A⊗
H ) extending the inclusion map D ⊂L(A⊗H ) such that jD(1D) = qβAα̂.

Proposition 5.1.22. There exists a unique ∗-isomorphism φ : (A� G)�
Ĝ → D such that φ(π̂(π(a)θ̂(x))θ(y)) = πR(a)(1A ⊗ λ(x)L(y)) for all a ∈ A,

x ∈ Ŝ and y ∈ S.

Notation 5.1.23. We denote K := K(H ) for short. Let δ0 : A ⊗ K →
M(A⊗K⊗ S) be the ∗-homomorphism defined by δ0(a⊗ k) = δA(a)13(1A ⊗
k ⊗ 1S) for all a ∈ A and k ∈ K. The morphism δ0 extends uniquely to a
strictly continuous ∗-homomorphism δ0 : M(A ⊗ K) → M(A ⊗ K ⊗ S) such
that δ0(1A⊗K) = qβAα,13. Let V ∈ L(H ⊗ S) be the unique partial isometry
such that (idK ⊗L)(V) = V .

Theorem 5.1.24. There exists a unique strongly continuous action

(βD, δD) of G on the C∗-algebra D = [πR(a)(1A ⊗ λ(x)L(y)); a ∈A,x ∈ Ŝ, y ∈
S] defined by the relations:

(jD ⊗ idS)δD(d) = V23δ0(d)V∗
23, d ∈D;

jD
(
βD

(
no

))
= qβAα̂

(
1A ⊗ β

(
no

))
, n ∈N.

Moreover, the canonical ∗-isomorphism φ : (A � G) � Ĝ → D (cf. Proposi-
tion 5.1.22) is G-equivariant. If the groupoid G is regular, then we have
D = qβAα̂(A⊗K)qβAα̂.

The G-C∗-algebra D defined above will be referred to as the bidual G-C∗-
algebra of A.
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5.2. Case of a colinking measured quantum groupoid. In this section,
we fix a colinking measured quantum groupoid G := GG1,G2 associated with two
monoidally equivalent locally compact quantum groups G1 and G2. We follow
all the notation recalled in §3.3 concerning the objects associated with G.

In the following, we recall the notation and the main results of §3.2.3 [2]
concerning the equivalent description of the G-C∗-algebras in terms of G1-C

∗-
algebras and G2-C

∗-algebras. Let us fix a G-C∗-algebra (A,βA, δA).

Notation 5.2.1.

• The morphism βA : C2 → M(A) is central. Let qj := βA(εj) for j = 1,2.
Then, qj is a central self-adjoint projection of M(A) and q1 + q2 = 1A. Let
Aj := qjA for j = 1,2. For j = 1,2, Aj is a C∗-subalgebra (actually a closed
two-sided ideal) of A and we have A=A1 ⊕A2.

• For j, k = 1,2, let πk
j :M(Ak⊗Skj)→M(A⊗S) be the unique strictly con-

tinuous extension of the inclusion Ak⊗Skj ⊂A⊗S such that πk
j (1Ak⊗Skj

) =
qk ⊗ pkj .

In case of ambiguity, we will denote πk
A,j and qA,j instead of πk

j and qj .

Proposition 5.2.2. For all j, k = 1,2, there exists a unique faithful non-
degenerate ∗-homomorphism

δkAj
:Aj →M(Ak ⊗ Skj)

such that for all x ∈Aj , we have

πk
j ◦ δkAj

(x) = (qk ⊗ pkj)δA(x) = (qk ⊗ 1S)δA(x)

=
(
1A ⊗ α(εk)

)
δA(x) = (1A ⊗ pkj)δA(x).

Moreover, we have:

1. δA(a) =
∑

k,j=1,2 π
k
j ◦ δkAj

(qja), for all a ∈A;

2. (δlAk
⊗ idSkj

)δkAj
= (idAl

⊗ δklj)δ
l
Aj

, for all j, k, l= 1,2;

3. [δkAj
(Aj)(1Ak

⊗ Skj)] =Ak ⊗ Skj , for all j, k = 1,2; in particular, we have

Ak =
[
(idAk

⊗ ω)δkAj
(a); a ∈Aj , ω ∈ B(Hkj)∗

]
;

4. δjAj
:Aj →M(Aj ⊗ Sjj) is a strongly continuous action of Gj on Aj .

From this concrete description of G-C∗-algebras, we can also give a con-
venient description of the G-equivariant ∗-homomorphisms. With the above
notation, we have the result below.

Proposition 5.2.3. Let A and B be two G-C∗-algebras. For k = 1,2, let ιk :
M(Bk)→M(B) be the unique strictly continuous extension of the inclusion
map Bk ⊂B such that ιk(1Bk

) = qB,k.
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1. Let f : A → M(B) be a non-degenerate G-equivariant ∗-homomorphism.
Then, for all j = 1,2, there exists a unique nondegenerate ∗-homomorphism
fj :Aj →M(Bj) such that for k = 1,2 we have

(5.1) (fk ⊗ idSkj
) ◦ δkAj

= δkBj
◦ fj .

Moreover, we have f(a) = ι1 ◦ f1(aqA,1) + ι2 ◦ f2(aqA,2) for all a ∈A.
2. Conversely, for j = 1,2 let fj : Aj → M(Bj) be a nondegenerate ∗-

homomorphism such that (5.1) holds for all j, k = 1,2. Then, the map
f :A→M(B), defined for all a ∈A by

f(a) := ι1 ◦ f1(aqA,1) + ι2 ◦ f2(aqA,2),

is a nondegenerate G-equivariant ∗-homomorphism.

The above results show that for j = 1,2 we have a functor

AlgG → AlgGj
; (A,βA, δA) �→

(
Aj , δ

j
Aj

)
.

In §4 [2], it has been proved that if G is regular (cf. Theorem 4.5), then
(A,δA, βA)→ (A1, δ

1
A1

) is an equivalence of categories. Moreover, the authors
build explicitly the inverse functor (A1, δA1)→ (A,βA, δA). More precisely, to
any G1-C

∗-algebra (A1, δA1) they associate a G2-C
∗-algebra (A2, δA2) in a

canonical way. Then the C∗-algebra A := A1 ⊕ A2 can be equipped with a
strongly continuous action (βA, δA) of the groupoid G. This allowed them to
build the inverse functor (A1, δA1)→ (A,βA, δA). The equivalence of categories
(A1, δA1)→ (A2, δA2) generalizes the correspondence of actions for monoidally
equivalent compact quantum groups of De Rijdt and Vander Vennet [15]. We
bring to the reader’s attention that an induction procedure has been developed
by De Commer in the von Neumann algebraic setting (cf. §8 [11]).

In the following, we recall the notations and the main results of §4 [2]. We
assume that the quantum groups G1 and G2 are regular.

Notation 5.2.4. Let δA1 : A1 →M(A1 ⊗ S11) be a continuous action of
G1 on a C∗-algebra A1. Let us denote:

δ1A1
:= δA1 , δ

(2)
A1

:=
(
idA1 ⊗ δ211

)
δA1 :A1 →M(A1 ⊗ S12 ⊗ S21).

Then, δ
(2)
A1

is a faithful nondegenerate ∗-homomorphism. In the following, we
will identify S21 with a C∗-subalgebra of B(H21). Let

IndG2

G1
(A1) :=

[
(idA1⊗S12 ⊗ ω)δ

(2)
A1

(a); a ∈A1, ω ∈ B(H21)∗
]

⊂M(A1 ⊗ S12).

Proposition 5.2.5. The Banach space A2 := IndG2

G1
(A1)⊂M(A1⊗S12) is

a C∗-algebra. Moreover, we have:

1. [A2(1A1 ⊗S12)] =A1 ⊗S12 = [(1A1 ⊗S12)A2]; in particular, A2 ⊂M(A1 ⊗
S12) defines a faithful nondegenerate ∗-homomorphism and M(A2) ⊂
M(A1 ⊗ S12);
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2. let δA2 := (idA1 ⊗ δ212)�A2 , we have δA2(A2) ⊂M(A2 ⊗ S22) and δA2 is a
continuous action of G2 on A2;

3. the correspondence IndG2

G1
: AlgG1

→ AlgG2
is functorial.

By exchanging the roles of the quantum groups G1 and G2, we obtain
mutatis mutandis a functor IndG1

G2
: AlgG2

→ AlgG1
.

Proposition 5.2.6. Let j, k = 1,2 with j �= k. Let (Aj , δAj ) be a Gj-C
∗-

algebra. Let

Ak := IndGk

Gj
(Aj)⊂M(Aj ⊗ Sjk) and

C := Ind
Gj

Gk
(Ak)⊂M(Ak ⊗ Skj)

endowed with the continuous actions δAk
:= (idAj ⊗ δkjk)�Ak

and δC :=

(idAk
⊗ δjkj)�C respectively. Then we have:

1. C ⊂M(Ak ⊗ Skj)⊂M(Aj ⊗ Sjk ⊗ Skj) and C = δ
(k)
Aj

(Aj);

2. πj : Aj → C; a �→ δ
(k)
Aj

(a) := (idAj ⊗ δkjj)δAj (a) is a Gj-equivariant ∗-
isomorphism;

3. δkAj
: Aj → M(Ak ⊗ Skj); a �→ δ

(k)
Aj

(a) := (idAj ⊗ δkjj)δAj (a) is a faithful

nondegenerate ∗-homomorphism.

The above result shows that the functors IndG2

G1
and IndG1

G2
are inverse of

each other.

Notation 5.2.7. Let (B1, δB1) be a G1-C
∗-algebra. Let (B2, δB2) be

the induced G2-C
∗-algebra, that is to say B2 = IndG2

G1
(B1) and δB2 =

(idB1 ⊗ δ212)�B2 . In virtue of Proposition 5.2.6, we have four ∗-homomorphisms:

δkBj
:Bj →M(Bk ⊗ Skj), j, k = 1,2.

Let us give a precise description of them. We denote δ1B1
:= δB1 and δ2B2

:= δB2 .

The ∗-homomorphism δ2B1
:B1 →M(B2 ⊗ S21) is given by

b ∈B1 �→ δ2B1
(b) := δ

(2)
B1

(b)

∈M(B2 ⊗ S21)
(
with δ

(2)
B1

(b) :=
(
idB1 ⊗ δ211

)
δ1B1

(b), for b ∈B1

)
whereas the ∗-homomorphism δ1B2

:B2 →M(B1⊗S12) is defined by the rela-
tion

(π1 ⊗ idS12)δ
1
B2

(b) = δ
(1)
B2

(b) for b ∈B2,

where δ
(1)
B2

:= (idB2 ⊗ δ122)δ
2
B2

and π1 :B1 → IndG1

G2
(B2); b �→ δ

(2)
B1

(b) (cf. Propo-
sition 5.2.6(2)).

Proposition 5.2.8. Let (A,βA, δA) be a G-C∗-algebra. Let j, k = 1,2 with
j �= k. With the notation of Proposition 5.2.2, let

(Ãj , δÃj
) := Ind

Gj

Gk

(
Ak, δ

k
Ak

)
.
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If x ∈Aj , then we have δkAj
(x) ∈ Ãj ⊂M(Ak⊗Skj) and the map π̃j :Aj → Ãj ;

x �→ δkAj
(x) is a Gj-equivariant ∗-isomorphism.

Proposition 5.2.9. Let (B1, δB1) be a G1-C
∗-algebra. Let B2 = IndG2

G1
(B1)

be the induced G2-C
∗-algebra. Let B :=B1 ⊕B2. For j, k = 1,2 with j �= k, let

πk
j : M(Bk ⊗ Skj)→ M(B ⊗ S) be the strictly continuous ∗-homomorphism

extending the canonical injection Bk ⊗ Skj →B ⊗ S and δkBj
:Bj →M(Bk ⊗

Skj) the ∗-homomorphisms defined in Notation 5.2.7. Let βB : C2 → M(B)
and δB :B →M(B ⊗ S) be the ∗-homomorphisms defined by:

βB(λ,μ) :=

(
λ 0
0 μ

)
, (λ,μ) ∈C

2;

δB(b) :=
∑

k,j=1,2

πk
j ◦ δkBj

(bj), b= (b1, b2) ∈B.

Therefore, we have:

1. (βB , δB) is a strongly continuous action of G on B;
2. the correspondence AlgG1

→ AlgG ; (B1, δB1) �→ (B,βB , δB) is functorial;
3. the functors AlgG1

→ AlgG and AlgG → AlgG1
are inverse of each other.

5.3. Actions of (semi-)regular measured quantum groupoids. In this
section, we fix a measured quantum groupoid G = (N,M,α,β,Δ, T,T ′, ε) on a
finite-dimensional basis N :=

⊕
1�l�kMnl

(C) endowed with the nonnormal-

ized Markov trace ε=
⊕

1�l�k nl ·Trl and we use all the notation introduced
in §3.1.

We begin this section by a characterization of the regularity (resp., semi-
regularity) of G in terms of the action of G on itself (cf. Examples 5.1.4), which
generalizes 2.6 [5] to the setting of measured quantum groupoids on a finite
basis.

Proposition 5.3.1. Let S � G be the crossed product of S by the strongly
continuous action (β, δ) of G. Then we have a canonical ∗-isomorphism S �

G � [SŜ]. In particular, G is regular (resp., semi-regular) if, and only if, we
have Kβ̂ = S � G (resp., Kβ̂ ⊂ S � G).

Proof. Let us identify L(ES,L) = {T ∈ L(S ⊗ H ); Tqβα = T = qβαT}. Let
us denote by jS�G : S�G →B(H ⊗H ), the faithful ∗-representation defined
by jS�G(u) = (L⊗ idK)(u) for all u ∈ S � G ⊂ L(ES,L). Let π : S →M(S � G)
and θ̂ : Ŝ →M(S � G) be the canonical morphisms (cf. Notation 5.1.13). We

claim that there exists a unique ∗-isomorphism φ : S � G → [SŜ] such that

φ
(
π(s)θ̂(x)

)
= L(s)ρ(x), for all s ∈ S and x ∈ Ŝ.



150 J. CRESPO

Let s ∈ S and x ∈ Ŝ. Since W ∈M ⊗ M̂ and ρ(Ŝ)⊂ M̂ ′, we have

jS�G
(
π(s)θ̂(x)

)
= (L⊗L)δ(s)

(
1⊗ ρ(x)

)
=W ∗(1⊗L(s)

)
W

(
1⊗ ρ(x)

)
=W ∗(1⊗L(s)ρ(x)

)
W.

Let C := im(jS�G) = {W ∗(1 ⊗ z)W ; z ∈ [SŜ]}. The representation jS�G in-
duces a ∗-isomorphism ψ : S � G →C. Since WW ∗ = qαβ̂ and [1⊗ z, qαβ̂ ] = 0

for all z ∈ [SŜ], the map

χ : [SŜ]→C; z →W ∗(1⊗ z)W

is a ∗-homomorphism satisfying Wχ(z)W ∗ = qαβ̂(1⊗ z) for all z ∈ [SŜ]. Let

ω ∈ B(H )∗ such that ω ◦ α= ε. We have

(ω⊗ id)
(
Wχ(z)W ∗) = z, for all z ∈ [SŜ].

Hence, χ is a ∗-isomorphism. Hence, φ := χ−1 ◦ψ : S � G → [SŜ]; π(s)θ̂(x) �→
L(s)θ̂(x) is a ∗-isomorphism. The second statement of the proposition follows
from Proposition 4.4. �

Proposition 5.3.4 and Theorem 5.3.6 are the generalizations of 5.7 and 5.8
of [5] to measured quantum groupoids on a finite basis.

Notation 5.3.2. Let (βA, δA) be an action of G on a C∗-algebra A. With
the notation of Notations A.2.21 and A.2.22, let eI := α(εI) and qI := βA(εI)
for all I ∈ I .

Lemma 5.3.3. Let (βA, δA) be an action of G on a C∗-algebra A. With the
notation of Notation 5.3.2, we have:

1. qβAα =
∑

I∈I n−1
I qI ⊗ eI ;

2. (qI ⊗ 1S)δA(a) = (1A ⊗ eI)δA(a), for all a ∈A and I ∈ I ;
3. δA(a)(qI ⊗ 1S) = δA(a)(1A ⊗ eI), for all a ∈A and I ∈ I .

Proof. Statement 1 is just restatement of Proposition A.2.18. By a straight-
forward computation, we verify that (qI ⊗ 1S)qβAα = (1A ⊗ eI)qβAα for all
I ∈ I . Statement 2 then follows from the fact that δA(1A) = qβAα. The last
statement follows from the second one by taking the adjoint. �

Proposition 5.3.4. Let (βA, δA) be an action of G on a C∗-algebra A. If G
is semi-regular, the Banach space [(idA⊗ω)δA(a); a ∈A,ω ∈ B(H )∗]⊂M(A)
is a C∗-algebra.

Proof. Let us denote T := [(idA⊗ω)δA(a); a ∈A,ω ∈ B(H )∗]. For all a ∈A
and ω ∈ B(H )∗, we have (idA⊗ω)(δA(a))

∗ = (idA⊗ω)δA(a
∗). Hence, T ∗ ⊂ T .
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Let us prove that TT ⊂ T . Let ω,φ ∈ B(H )∗, a, b ∈A and x, y ∈K. We have

(idA ⊗ yω)δA(a)(idA ⊗ φx)δA(b)

= (idA ⊗ φ⊗ ω)
(
δA(a)13(1A ⊗ x⊗ y)δA(b)12

)
.

By Lemma 5.3.3(1), (2), we have

δA(a)13(1A ⊗ x⊗ y)δA(b)12

=
∑
I∈I

n−1
I δA(a)13(1A ⊗ x⊗ eIy)(qI ⊗ 1⊗ 1)δA(b)12

=
∑
I∈I

n−1
I δA(a)13(1A ⊗ xeI ⊗ eIy)δA(b)12

= δA(a)13
(
(x⊗ 1)qα(1⊗ y)

)
23
δA(b)12.

It follows from Proposition 4.7 that (idA ⊗ yω)δA(a)(idA ⊗ φx)δA(b) is the
norm limit of finite sums of elements of the form

c := (idA ⊗ φ⊗ ω)
(
δA(a)13

((
x′ ⊗ 1

)
W

(
1⊗ y′

))
23
δA(b)12

)
=

(
idA ⊗ φx′ ⊗ y′ω

)(
δA(a)13W23δA(b)12

)
,

where x′, y′ ∈K. By combining the following formulas;

δ2A(a) =W ∗
23δA(a)13W23; WW ∗ = qαβ̂ ;[

δA(a)13, qαβ̂,23
]
= 0

(
since β̂

(
No

)
⊂M ′);

we obtain δA(a)13W23 =W23δ
2
A(a). Hence, we have c = (idA ⊗ ψ)(δ2A(a)13 ×

δA(b)12), where ψ := (φx′ ⊗ yω)W ∈ B(H ⊗ H )∗. Therefore, c is the norm
limit of finite sums of elements of the form (idA ⊗ φ′ ⊗ ω′)(δ2A(a)13δA(b)12) =
(id ⊗ φ′)δA((idA ⊗ ω′)δA(a)b), where φ′, ω′ ∈ B(H )∗. Hence, (idA ⊗ yω)×
δA(a)(idA ⊗ φx)δA(b) ∈ T . �

Definition 5.3.5. Let (βA, δA) be an action of G on a C∗-algebra A. We
say that (βA, δA) is weakly continuous if we have A = [(idA ⊗ ω)δA(a); a ∈
A,ω ∈ B(H )∗].

Note that any strongly continuous action (βA, δA) of G on a C∗-algebra A is
necessarily continuous in the weak sense. Indeed, if (βA, δA) is strongly contin-
uous we have the inclusion δA(A)(1A⊗S)⊂A⊗S. Hence, [(idA⊗ω)δA(a); a ∈
A,ω ∈ B(H )∗] ⊂ A since S ⊂ B(H ) is nondegenerate. Conversely, let ω ∈
B(H )∗ such that ω ◦α= ε. We have (idA⊗ω)(qβAα) = 1A. By writing ω = yω′

for some ω′ ∈ B(H )∗ and y ∈ S, we obtain (idA ⊗ω′)(qβAα(a⊗ y)) = a for all
a ∈A.

Theorem 5.3.6. If the groupoid G is regular, then any weakly continuous
action of G is strongly continuous.
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Proof. Let us fix an action (βA, δA) of G on a C∗-algebra A. Let us as-
sume that (βA, δA) is weakly continuous. Since W ∈M(S ⊗ K) is a partial
isometry such that W ∗W = qβα, we have (S ⊗K)W = (S ⊗K)qβα. We recall
that δA(a)13W23 =W23δ

2
A(a) for all a ∈A (cf. proof of Proposition 5.3.4). By

Proposition 5.1.5(1), we have qβα,23δ
2
A(a) = δ2A(a) for all a ∈ A. By combin-

ing the assertions of the above discussion with Lemma 5.3.3(3) and Proposi-
tion 4.8(1), we have

(A⊗ S)qβAα

=
[(
(idA ⊗ ω)δA(a)⊗ y

)
qβAα; a ∈A,y ∈ S,ω ∈ B(H )∗

]
=

[
(idA ⊗ idS ⊗ xω)

(
δA(a)13(1A ⊗ y⊗ 1S)qβAα,12

)
; a ∈A,x ∈K, y ∈ S,

ω ∈ B(H )∗
]

=
[
(idA ⊗ idS ⊗ ω)

(
δA(a)13

(
(y⊗ 1K)qα(1S ⊗ x)

)
23

)
; a ∈A,x ∈K, y ∈ S,

ω ∈ B(H )∗
]

=
[
(idA ⊗ idS ⊗ ω)

(
δA(a)13

(
(y⊗ 1K)W (1S ⊗ x)

)
23

)
; a ∈A,x ∈K, y ∈ S,

ω ∈ B(H )∗
]

=
[
(idA ⊗ idS ⊗ ω)

(
(1A ⊗ y⊗ 1)δA(a)13W23

)
; a ∈A,x ∈K, y ∈ S,

ω ∈ B(H )∗
]

=
[
(idA ⊗ idS ⊗ ω)

((
1A ⊗ (y⊗ x)W

)
δ2A(a)

)
; a ∈A,x ∈K, y ∈ S,

ω ∈ B(H )∗
]

=
[
(idA ⊗ idS ⊗ ω)

(
(1A ⊗ y⊗ x)δ2A(a)

)
; a ∈A,x ∈K, y ∈ S,ω ∈ B(H )∗

]
=

[
(1A ⊗ y)δA

(
(idA ⊗ ωx)δA(a)

)
; a ∈A,x ∈K, y ∈ S,ω ∈ B(H )∗

]
=

[
(1A ⊗ S)δA(A)

]
. �

As a first application, we have the result below.

Proposition 5.3.7. If the groupoid G is regular, then the trivial action of
G on No (cf. Examples 5.1.4) is strongly continuous and there exists a unique

Ĝ-equivariant ∗-isomorphism τ :No
�G → Ŝ such that τ(π(no)θ̂(x)) = β(no)x

for all n ∈N and x ∈ Ŝ.

Proof. In this proof, we use the notation of Notation 5.3.2 with A :=No. In
this case, we have qI = εoI for all I ∈ I . According to Theorem 5.3.6, it suffices
to show that the trivial action is weakly continuous. Since the C∗-algebra N
is finite-dimensional, it amounts to proving that εoI ∈ 〈(idNo ⊗ω)δNo(no); n ∈
N,ω ∈ B(H )∗〉 for all I ∈ I . Let I ∈ I . For all n′ ∈ N , there exists ω ∈
B(H )∗ such that ω(α(n)) = ε(n′n) for all n ∈N (extension of normal linear
forms). In particular, there exists ω ∈ B(H )∗ such that ω(α(εJ)) = nIδ

I
J for all

J ∈ I . By a straightforward computation, we have εoI = (idNo ⊗ ω)δNo(1No)
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and the weak continuity of the trivial action is then proved since No is uni-

tal. Since No is unital, we have θ̂(x) = π(1No)θ̂(x) ∈ No � G for all x ∈ Ŝ.

Moreover, we have π(no)θ̂(x) = θ̂(β(no)x) for all n ∈N and x ∈ Ŝ. Hence, the

morphism θ̂ induces a ∗-isomorphism Ŝ �No � G. The equivariance is easily
obtained from the definitions. �

6. Notion of equivariant Hilbert C∗-modules

6.1. Actions of measured quantum groupoids on Hilbert C∗-
modules. In this section, we introduce a notion of G-equivariant Hilbert
C∗-module for a measured quantum groupoid G on a finite basis in the
spirit of [3]. We fix a measured quantum groupoid G on a finite-dimensional
basis N =

⊕
1�l�kMnl

(C) endowed with the nonnormalized Markov trace

ε =
⊕

1�l�k nl · Trl. We use all the notation introduced in §3.1, §3.2. Let us
fix a G-C∗-algebra A.

The three pictures. Following §2 [3], an action of G on a Hilbert A-module E
will be defined by three equivalent data:

• a pair (βE , δE ) consisting of a ∗-homomorphism βE : No → L(E ) and a

linear map δE : E →M̃(E ⊗ S); cf. Definition 6.1.1;
• a pair (βE ,VE ) consisting of a ∗-homomorphism βE : No → L(E ) and an
isometry V ∈ L(E ⊗δA (A⊗ S),E ⊗ S); cf. Definition 6.1.4;

• an action (βJ , δJ) of G on J :=K(E ⊕A); cf. Definition 6.1.8;

satisfying some conditions.
We have the following unitary equivalences of Hilbert modules:

A⊗δA (A⊗ S)→ qβAα(A⊗ S);
(6.1)

a⊗δA x �→ δA(a)x;

(A⊗ S)⊗δA⊗idS
(A⊗ S ⊗ S)→ qβAα,12(A⊗ S ⊗ S);

(6.2)
x⊗δA⊗idS

y �→ (δA ⊗ idS)(x)y;

(A⊗ S)⊗idA⊗δ (A⊗ S ⊗ S)→ qβα,23(A⊗ S ⊗ S);
(6.3)

x⊗idA⊗δ y �→ (idA ⊗ δ)(x)y.

In the following, we fix a Hilbert A-module E . We will apply the usual
identifications M(A⊗ S) = L(A⊗ S), K(E )⊗ S =K(E ⊗ S) and M(K(E )⊗
S) = L(E ⊗ S).

Definition 6.1.1. An action of G on the Hilbert A-module E is a pair
(βE , δE ), where βE : No → L(E ) is a nondegenerate ∗-homomorphism and

δE : E →M̃(E ⊗ S) is a linear map such that:

1. for all a ∈A and ξ, η ∈ E , we have

δE (ξa) = δE (ξ)δA(a) and
〈
δE (ξ), δE (η)

〉
= δA

(
〈ξ, η〉

)
;

2. [δE (E )(A⊗ S)] = qβE α(E ⊗ S);
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3. for all ξ ∈ E and n ∈N , we have δE (βE (n
o)ξ) = (1E ⊗ β(no))δE (ξ);

4. the linear maps δE ⊗ idS and idE ⊗ δ extend to linear maps from L(A⊗
S,E ⊗ S) to L(A⊗ S ⊗ S,E ⊗ S ⊗ S) and we have

(δE ⊗ idS)δE (ξ) = (idE ⊗ δ)δE (ξ)

∈ L(A⊗ S ⊗ S,E ⊗ S ⊗ S), for all ξ ∈ E .

Remarks 6.1.2.

• If the second formula of the condition 1 holds, then δE is isometric (cf. [4],
Remarks A.3.2(1)).

• If the condition 1 holds, then the condition 2 is equivalent to:[
δE (E )(1A ⊗ S)

]
= qβE α(E ⊗ S).

Indeed, if (uλ)λ is an approximate unit of A we have

δE (ξ) = lim
λ

δE (ξuλ) = lim
λ

δE (ξ)δA(uλ) = δE (ξ)qβAα, for all ξ ∈ E .

By strong continuity of the action (βA, δA), the condition 1 of Defini-
tion 6.1.1 and the equality EA = E , we then have [δE (E )(A ⊗ S)] =
[δE (E )(1A ⊗ S)] and the equivalence follows.

• Note that we have qβE αδE (ξ) = δE (ξ) = δE (ξ)qβAα for all ξ ∈ E .
• We will prove (cf. Remarks 6.1.7) that if δE satisfies the conditions 1 and 2
of Definition 6.1.1, then the extensions of δE ⊗ idS and idE ⊗ δ always exist
and satisfy the formulas:

(idE ⊗ δ)(T )(idA ⊗ δ)(x) = (idE ⊗ δ)(Tx);

(δE ⊗ idS)(T )(δA ⊗ idS)(x) = (δE ⊗ idS)(Tx);

for all x ∈A⊗ S and T ∈ L(A⊗ S,E ⊗ S).

Notation 6.1.3. For ξ ∈ E , let us denote by Tξ ∈ L(A⊗S,E ⊗δA (A⊗S))
the operator defined by

Tξ(x) := ξ ⊗δA x, for all x ∈A⊗ S.

We have T ∗
ξ (η⊗δA y) = δA(〈ξ, η〉)y for all η ∈ E and y ∈A⊗ S. In particular,

we have T ∗
ξ Tη = δA(〈ξ, η〉) for all ξ, η ∈ E .

Definition 6.1.4. Let V ∈ L(E ⊗δA (A⊗ S),E ⊗ S) be an isometry and
βE :No →L(E ) a nondegenerate ∗-homomorphism such that:

1. V V ∗ = qβE α;
2. V (βE (n

o)⊗δA 1) = (1E ⊗ β(no))V , for all n ∈N .

Then, V is said to be admissible if we further have:

3. V Tξ ∈ M̃(E ⊗ S), for all ξ ∈ E ;
4. (V ⊗C idS)(V ⊗δA⊗idS

1) = V ⊗idA⊗δ 1 ∈ L(E ⊗δ2A
(A⊗S⊗S),E ⊗S⊗S).
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The fourth statement in the previous definition makes sense since we have
used the canonical identifications thereafter. By combining the associativity
of the internal tensor product with the unitary equivalences (6.2) and (6.3),
we obtain the following unitary equivalences of Hilbert A⊗ S-modules:(

E ⊗δA (A⊗ S)
)
⊗δA⊗idS

(A⊗ S ⊗ S)→ E ⊗δ2A
(A⊗ S ⊗ S),

(6.4)
(ξ ⊗δA x)⊗δA⊗idS

y �→ ξ ⊗δ2A
(δA ⊗ idS)(x)y;(

E ⊗δA (A⊗ S)
)
⊗idA⊗δ (A⊗ S ⊗ S)→ E ⊗δ2A

(A⊗ S ⊗ S),
(6.5)

(ξ ⊗δA x)⊗idA⊗δ y �→ ξ ⊗δ2A
(idA ⊗ δ)(x)y.

We also have the following:

(E ⊗ S)⊗δA⊗idS
(A⊗ S ⊗ S)→

(
E ⊗δA (A⊗ S)

)
⊗ S,

(6.6)
(ξ ⊗ s)⊗δA⊗idS

(x⊗ t) �→ (ξ ⊗δA x)⊗ st;

(E ⊗ S)⊗idA⊗δ (A⊗ S ⊗ S)→ qβα,23(E ⊗ S ⊗ S)⊂ E ⊗ S ⊗ S,
(6.7)

ξ ⊗idA⊗δ y �→ (idE ⊗ δ)(ξ)y.

In particular, V ⊗δA⊗idS
1 ∈ L(E ⊗δ2A

(A⊗S⊗S), (E ⊗S)⊗δA⊗idS
(A⊗S⊗S))

(6.4) and V ⊗C idS ∈ L((E ⊗ S)⊗δA⊗idS
(A⊗ S ⊗ S),E ⊗ S ⊗ S) (6.6).

The next result provides an equivalence of Definitions 6.1.1 and 6.1.4.

Proposition 6.1.5.

(a) Let δE : E → M̃(E ⊗ S) be a linear map and βE : No → L(E ) a non-
degenerate ∗-homomorphism which satisfy the conditions 1, 2, and 3 of
Definition 6.1.1. Then there exists a unique isometry V ∈ L(E ⊗δA (A⊗
S),E ⊗S) such that δE (ξ) = V Tξ for all ξ ∈ E . Moreover, the pair (βE ,V )
satisfies the conditions 1, 2, and 3 of Definition 6.1.4.

(b) Conversely, let V ∈ L(E ⊗δA (A⊗S),E ⊗S) be an isometry and βE :No →
L(E ) a nondegenerate ∗-homomorphism, which satisfy the conditions 1, 2,
and 3 of Definition 6.1.4. Let us consider the map δE : E →L(A⊗S,E ⊗S)
given by δE (ξ) := V Tξ for all ξ ∈ E . Then the pair (βE , δE ) satisfies the
conditions 1, 2, and 3 of Definition 6.1.1.

(c) Let us assume that the above statements hold. Then the pair (βE , δE ) is
an action of G on E if, and only if, V is admissible.

In the proof, we will use the following notation.

Notation 6.1.6. Let E and F be Hilbert C∗-modules. Let q ∈ L(E) be a

self-adjoint projection and T ∈ L(qE ,F). Let T̃ : E → F be the map defined

by T̃ ξ := Tqξ, for all ξ ∈ E . Therefore, T̃ ∈ L(E ,F) and T̃ ∗ = qT ∗. By abuse

of notation, we will still denote by T the adjointable operator T̃ .

Proof of Proposition 6.1.5. (a) By definition of the internal tensor product
and Definition 6.1.1(1), there exists a unique isometric (A ⊗ S)-linear map
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V : E ⊗δA (A⊗ S)→ E ⊗ S such that

V (ξ ⊗δA x) = δE (ξ)x, for all ξ ∈ E and x ∈A⊗ S.

In other words, we have V Tξ = δE (ξ) for all ξ ∈ E . Now, it follows from
Definition 6.1.1(2) that the ranges of V and qβE α are equal. Then denote by
v the range restriction of V . Hence, the map v−1qβE α is an adjoint for V .
Indeed, for all x ∈ E ⊗ S and y ∈ E ⊗δA (A⊗ S) we have〈

v−1qβE αx, y
〉
=

〈
V v−1(qβE αx),V y

〉
(V is isometric)

= 〈qβE αx,V y〉
= 〈x,V y〉 −

〈
(1− qβE α)(x),V y

〉
= 〈x,V y〉

(
V y ∈ im(qβE α)

)
.

Hence, V ∈ L(E ⊗δA (A ⊗ S),E ⊗ S) and then V ∗V = 1 and V V ∗ =
V v−1qβEα = qβE α.

The conditions 1 and 3 of Definition 6.1.4 are then fulfilled. Now, we have

V
(
βE

(
no

)
⊗δA 1

)
(ξ ⊗δA x) = δE

(
βE

(
no

)
ξ
)
x

=
(
1E ⊗ β

(
no

))
δE (ξ)x

=
(
1E ⊗ β

(
no

))
V (ξ ⊗δA x),

for all ξ ∈ E , x ∈A⊗ S and n ∈N . Hence, the condition 2 of Definition 6.1.4
holds.

(b) is straightforward.
(c) Let T ∈ L(A⊗S,E ⊗S). By using Notation 6.1.6 and the identifications

(6.3), (6.7), we have T ⊗idA⊗δ 1 ∈ L(A⊗S⊗S,E ⊗S⊗S). Now, we can define
the extension

idE ⊗ δ : L(A⊗ S,E ⊗ S)→L(A⊗ S ⊗ S,E ⊗ S ⊗ S)

by setting

(idE ⊗ δ)(T ) := T ⊗idA⊗δ 1, for all T ∈ L(A⊗ S,E ⊗ S).

We also have T ⊗δA⊗idS
1 ∈ L(A⊗S⊗S, (E ⊗δA (A⊗S))⊗S) by using again

Notation 6.1.6 and the identifications (6.2), (6.6). Let us define the extension

δE ⊗ idS : L(A⊗ S,E ⊗ S)→L(A⊗ S ⊗ S,E ⊗ S ⊗ S)

by setting

(δE ⊗ idS)(T ) := (V ⊗C 1S)(T ⊗δA⊗idS
1), for all T ∈ L(A⊗ S,E ⊗ S).

Therefore, for all ξ ∈ E we have:

(δE ⊗ idS)δE (ξ) = (V ⊗C 1S)(V ⊗δA⊗idS
1)(Tξ ⊗δA⊗idS

1)

∈ L(A⊗ S ⊗ S,E ⊗ S ⊗ S);

(idE ⊗ δ)δE (ξ) = (V ⊗idA⊗δ 1)(Tξ ⊗idA⊗δ 1)

∈ L(A⊗ S ⊗ S,E ⊗ S ⊗ S);
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where:

Tξ ⊗δA⊗idS
1 ∈ L

(
A⊗ S ⊗ S,E ⊗δ2A

(A⊗ S ⊗ S)
)
;

Tξ ⊗idA⊗δ 1 ∈ L
(
A⊗ S ⊗ S,E ⊗δ2A

(A⊗ S ⊗ S)
)
;

by using the identifications (6.2), (6.4) and (6.3), (6.5), respectively, and No-
tation 6.1.6. In particular, if V is admissible, then the condition 4 of Defini-
tion 6.1.1 holds.

Conversely, let us assume that the above condition is satisfied. In order
to show that V is admissible, we only have to prove that the restrictions
of the operators Tξ ⊗δA⊗idS

1 and Tξ ⊗idA⊗δ 1 to the Hilbert submodule
qβAα,12qβα,23(A⊗ S ⊗ S) are surjective.

Let a ∈A, x ∈A⊗S and y ∈A⊗S⊗S. Let us set z = (δA⊗ idS)(δA(a)x)y.
It is clear that z ∈ qβAα,12qβα,23(A⊗S⊗S). By a straightforward computation,
we have

(Tξ ⊗δA⊗idS
1)(z) = ξa⊗δ2A

(δA ⊗ idS)(x)y.

Hence, the restriction of Tξ ⊗δA⊗idS
1 to qβAα,12qβα,23(A⊗S⊗S) is surjective

in virtue of (6.4) and the fact that EA= E . The same statement is also true
for Tξ ⊗idA⊗δ 1. �

Remarks 6.1.7. In the proof of Proposition 6.1.5, we have proved the
statements below.

• By applying Notation 6.1.6 and the identifications (6.3), (6.7), we have
obtained a linear map idE ⊗ δ : L(A⊗S,E ⊗S)→L(A⊗S ⊗S,E ⊗S ⊗S)
given by

(idE ⊗ δ)(T ) := T ⊗idA⊗δ 1, for all T ∈ L(A⊗ S,E ⊗ S);

• If δE satisfies the conditions 1 and 2 of Definition 6.1.1, let V be the isometry
associated with δE (cf. Proposition 6.1.5(a)). By applying Notation 6.1.6
and the identifications (6.2), (6.6), the linear map δE ⊗ idS : L(A⊗ S,E ⊗
S)→L(A⊗ S ⊗ S,E ⊗ S ⊗ S) is defined by

(δE ⊗ idS)(T ) := (V ⊗C 1S)(T ⊗δA⊗idS
1), for all T ∈ L(A⊗ S,E ⊗ S).

Note that the extensions idE ⊗ δ and δE ⊗ idS satisfy the following formulas:

(6.8)
(idE ⊗ δ)(T )(idA ⊗ δ)(x) = (idE ⊗ δ)(Tx);

(δE ⊗ idS)(T )(δA ⊗ idS)(x) = (δE ⊗ idS)(Tx);

for all x ∈A⊗ S and T ∈ L(A⊗ S,E ⊗ S).

Let us denote by J := K(E ⊕ A) the linking C∗-algebra associated with
the Hilbert A-module E . In the following, we apply the usual identifications
M(J) = L(E ⊕A) and M(J ⊗ S) = L((E ⊗ S)⊕ (A⊗ S)).

Definition 6.1.8. An action (βJ , δJ) of G on J is said to be compatible
with the action (βA, δA) if:
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1. δJ : J →M(J ⊗ S) is compatible with δA, that is, ιA⊗S ◦ δA = δJ ◦ ιA;
2. βJ : No →M(J) is compatible with βA, that is, ιA(βA(n

o)a) = βJ(n
o)×

ιA(a), for all n ∈N and a ∈A.

Proposition 6.1.9. Let (βJ , δJ) be a compatible action of G on J . There
exists a unique non-degenerate ∗-homomorphism βE :No →L(E ) such that

βJ

(
no

)
=

(
βE (n

o) 0
0 βA(n

o)

)
, for all n ∈N.

Moreover, we have

qβJα =

(
qβE α 0
0 qβAα

)
.

Proof. Note that since ιA, βA, and βJ are ∗-homomorphisms, the condi-
tion 2 of Definition 6.1.8 is equivalent to

ιA
(
aβA

(
no

))
= ιA(a)βJ

(
no

)
, for all a ∈A,n ∈N.

Therefore, there exists a map βE :No →L(E ) necessarily unique such that

βJ

(
no

)
=

(
βE (n

o) 0
0 βA(n

o)

)
,

for all n ∈N . Then it is clear that βE is a nondegenerate ∗-homomorphism
and the last statement is then an immediate consequence. �

Remarks 6.1.10. Note that if βA is injective, then so is βJ . For all
n ∈ N , ξ ∈ E and k ∈ K(E ), we have ιK(E )(βE (n

o)k) = βJ(n
o)ιK(E )(k) and

ιE (βE (n
o)ξ) = βJ(n

o)ιE (ξ). In particular, we have βE (n
o)θξ,η = θβE (no)ξ,η for

all n ∈N and ξ, η ∈ E (cf. Proposition 2.3.2(2)).

Proposition 6.1.11.

(a) Let us assume that the C∗-algebra J is endowed with a compatible action

(βJ , δJ) of G such that δJ(J) ⊂ M̃(J ⊗ S). Then we have the following
statements:

• there exists a unique linear map δE : E →M̃(E ⊗ S) such that ιE⊗S ◦
δE = δJ ◦ιE ; furthermore, the pair (βE , δE ) is an action of G on E , where
βE :No →L(E ) is the ∗-homomorphism defined in Proposition 6.1.9;

• there exists a unique faithful ∗-homomorphism δK(E ) : K(E ) →
M̃(K(E ) ⊗ S) such that ιK(E⊗S) ◦ δK(E ) = δJ ◦ ιK(E ); moreover, the
pair (βE , δK(E )) is an action of G on K(E ).

(b) Conversely, let (βE , δE ) be an action of G on the Hilbert A-module E .

Then there exists a faithful ∗-homomorphism δJ : J → M̃(J ⊗ S) such
that ιE⊗S ◦ δE = δJ ◦ ιE . Moreover, we define a unique action (βJ , δJ) of
G on J compatible with (βA, δA) by setting

βJ

(
no

)
=

(
βE (n

o) 0
0 βA(n

o)

)
, for all n ∈N.
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Proof. (a) Let us assume that the C∗-algebra J is endowed with a com-
patible action (βJ , δJ) of G. Let βE : No → L(E ) be the ∗-homomorphism
defined in Proposition 6.1.9. By strict continuity and Definition 6.1.8(1), we
have δJ(ιA(m)) = ιA⊗S(δA(m)) for all m ∈M(A). It then follows from Propo-
sition 6.1.9 that

δJ
(
ιK(E )(1E )

)
= δJ(1J)− δJ

(
ιA(1A)

)
= qβJα − ιA⊗S(qβAα)

= ιK(E⊗S)(qβE α).

Let ξ ∈ E . We have ιK(E )(1E )ιE (ξ) = ιE (ξ) and ιE (ξ)ιK(E )(1E ) = 0. Hence,

ιK(E⊗S)(qβE α)δJ
(
ιE (ξ)

)
= δJ

(
ιE (ξ)

)
and

δJ
(
ιE (ξ)

)
ιK(E⊗S)(qβE α) = 0.

We have ιA⊗S(x)δJ (ιE (ξ)) = ιA⊗S(x)ιL(E⊗S)(qβE α)δJ(ιE (ξ)) = 0, for all x ∈
A⊗ S. Now, let (uλ)λ be an approximate unit of A. We have

δJ
(
ιE (ξ)

)
= lim

λ
δJ

(
ιE (ξuλ)

)
= lim

λ
δJ

(
ιE (ξ)

)
ιA⊗S

(
δA(uλ)

)
.

Hence, δJ(ιE (ξ))ιE⊗S(η) = 0 for all η ∈ E ⊗ S. Hence, there exists a unique
linear map δE : E → L(A ⊗ S,E ⊗ S) such that ιE⊗S ◦ δE = δJ ◦ ιE (cf.
Lemma 2.3.4(1)). Moreover, δE actually takes its values in the subspace

M̃(E ⊗ S) of L(A ⊗ S,E ⊗ S). Indeed, let us fix ξ ∈ E and s ∈ S. By as-
sumption, we have that

ιE⊗S

(
(1E ⊗ s)δE (ξ)

)
= (1J ⊗ s)δJ

(
ιE (ξ)

)
and

ιE⊗S

(
δE (ξ)(1A ⊗ s)

)
= δJ

(
ιE (ξ)

)
(1J ⊗ s)

belong to J ⊗ S =K((E ⊗ S)⊕ (A⊗ S)). It then follows that (1E ⊗ s)δE (ξ) ∈
E ⊗S and δE (ξ)(1A⊗s) ∈ E ⊗S. The first condition of Definition 6.1.1 is easily
derived from the compatibility of δJ . The vector subspace of δJ(1J)((E ⊕A)⊗
S) spanned by{

δJ(θξ⊕a,η⊕b)(ζ); ξ, η ∈ E , a, b ∈A,ζ ∈ (E ⊕A)⊗ S
}

is dense. However, we have

δJ(θξ⊕a,η⊕b)(ζ) =
(
δE (ξ)⊕ δA(a)

)(
δE (η)⊕ δA(b)

)∗
(ζ),

where δE (ξ) ⊕ δA(a), δE (η) ⊕ δA(b) ∈ L(A ⊗ S,E ⊗ S) ⊕ L(A ⊗ S) ⊂ L(A ⊗
S, (E ⊕ A) ⊗ S). In particular, the vector subspace of δJ(1J)((E ⊕ A) ⊗ S)
spanned by {

δE (ξ)x⊕ δA(a)x; ξ ∈ E , a ∈A,x ∈A⊗ S
}

is dense. Therefore, the relation [δE (E )(A⊗ S)] = qβE α(E ⊗ S) follows since
we also have δJ(1J)((E ⊕A)⊗ S) = qβE α(E ⊗ S)⊕ qβAα(A⊗ S).

Let us fix ξ ∈ E and n ∈N . We have

ιE⊗S

(
δE

(
βE

(
no

)
ξ
))

= δJ
(
ιE

(
βE

(
no

)
ξ
))

= δJ
(
βJ

(
no

)
ιE (ξ)

)
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=
(
1J ⊗ β

(
no

))
δJ

(
ιE (ξ)

)
= ιE⊗S(

(
1E ⊗ β

(
no

)
δE (ξ)

)
.

Hence, δE (βE (n
o)ξ) = (1E ⊗ β(no))δE (ξ).

Let us consider the linear maps idE ⊗ δ : L(A ⊗ S,E ⊗ S) → L(A ⊗ S ⊗
S,E ⊗ S ⊗ S) and δE ⊗ idS : L(A⊗ S,E ⊗ S)→L(A⊗ S ⊗ S,E ⊗ S ⊗ S) (cf.
Remarks 6.1.7). By using (6.8) and the compatibility of δJ with δA and δE ,
it follows from a straightforward computation that

ιE⊗S⊗S

(
(idE ⊗ δ)(T )

)
= (idJ ⊗ δ)

(
ιE⊗S(T )

)
;

ιE⊗S⊗S

(
(δE ⊗ idS)(T )

)
= (δJ ⊗ idS)

(
ιE⊗S(T )

)
;

for all T ∈ L(A ⊗ S,E ⊗ S). In particular, ιE⊗S⊗S((idE ⊗ δ)δE (ξ)) = (idJ ⊗
δ)δJ(ιE (ξ)) and ιE⊗S⊗S((δE ⊗ idS)δE (ξ)) = (δJ ⊗ idS)δJ(ιE (ξ)) for all ξ ∈ E .
Hence, for all ξ ∈ E we have (δE ⊗ idS)δE (ξ) = (idE ⊗ δ)δE (ξ). Therefore, the
pair (βE , δE ) is an action of G on E .

We claim that there exists a unique ∗-homomorphism δK(E ) : K(E ) →
M(K(E ) ⊗ S) such that ιK(E⊗S) ◦ δK(E ) = δJ ◦ ιK(E ). We recall that
δJ(ιK(E )(1E )) = ιK(E⊗S)(qβE α). We also have ιA⊗S(x)ιK(E⊗S)(qβE α) = 0 and
ιK(E⊗S)(qβE α)ιA⊗S(x) = 0 for all x ∈ A ⊗ S. It follows that ιA⊗S(x)×
δJ(ιK(E )(k)) = 0 and δJ(ιK(E )(k))ιA⊗S(x) = 0 for all k ∈K(E ) and x ∈A⊗S.
Hence, δJ(ιK(E )(k)) ∈ ιK(E⊗S)(L(E ⊗ S)) (cf. Lemma 2.3.4) and the claim
is proved since ιK(E⊗S) is faithful. Since ιK(E⊗S) is isometric and δJ ◦ ιK(E )

is strictly continuous, the ∗-homomorphism δK(E ) is strictly continuous and
extend uniquely to a strictly continuous ∗-homomorphism δK(E ) : L(E ) →
M(K(E )⊗ S) such that δK(E )(1E ) = qβE α. Moreover, for all ξ, η ∈ E we have
(cf. Proposition 2.3.2(2))

δK(E )(θξ,η) = δE (ξ) ◦ δE (η)
∗ = θδE (ξ),δE (η)(6.9)

∈K
(
M̃(E ⊗ S)

)
⊂ M̃

(
K(E )⊗ S

)
.

Hence, δK(E )(K(E ))⊂ M̃(K(E )⊗S). We have δK(E )(βE (n
o)) = (1E ⊗β(no))×

qβEα, for all n ∈N (cf. (6.9), Remarks 6.1.10). By strict continuity, we have
the formulas:

ιK(E⊗S⊗S)(idK(E ) ⊗ δ)(T ) = (idJ ⊗ δ)
(
ιK(E⊗S)(T )

)
;

ιK(E⊗S⊗S)(δK(E ) ⊗ idS)(m)) = (δJ ⊗ idS)
(
ιK(E⊗S)(T )

)
;

for all T ∈ M(K(E ) ⊗ S) = L(E ⊗ S). By applying the above formulas to
T := δK(E )(k) for k ∈ K(E ), we show that (δK(E ) ⊗ idS)δK(E )(k) = (idK(E ) ⊗
δ)δK(E )(k).

(b) First, it is clear that βJ is a nondegenerate ∗-homomorphism. It is also
clear that βJ is compatible with the fibration map βA, that is, βJ(n

o)ιA(a) =
ιA(βA(n

o)a), for all a ∈A and n ∈N . Let V ∈ L(E ⊗δA (A⊗S),E ⊗S) be the
isometry associated with the action δE . Let i : qβAα(A⊗ S)→ A⊗ S be the
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inclusion map. We verify that i is an (A⊗S)-linear adjointable map and i∗ =
qβAα. In particular, the map i is an isometry since we have i∗i(x) = qβAαx= x
for all x ∈ qβAα(A⊗ S). Let

W := V ⊕ i ∈ L
((

E ⊗δA (A⊗ S)
)
⊕ qβAα(A⊗ S), (E ⊗ S)⊕ (A⊗ S)

)
.

We have W ∗W = 1, then W is an isometry. Henceforth, we will use the fol-
lowing identification (see (6.1)):(

E ⊗δA (A⊗ S)
)
⊕ qβAα(A⊗ S) =

(
E ⊗δA (A⊗ S)

)
⊕

(
A⊗δA (A⊗ S)

)
= (E ⊕A)⊗δA (A⊗ S).

Hence, W ∈ L((E ⊕A)⊗δA (A⊗ S), (E ⊕A)⊗ S). Let us define

δJ(x) := W (x⊗δA 1)W ∗ ∈M(J ⊗ S), for all x ∈ J.

In that way, we define a strictly continuous ∗-homomorphism δJ : J →
M(J ⊗ S) satisfying δJ(1J) = W W ∗ = qβE α ⊕ qβAα = qβJα. Let a ∈ A.
Let us prove that ιA⊗S(δA(a)) = δJ(ιA(a)). Since ιA⊗S(δA(a))W W ∗ =
ιA⊗S(δA(a)) and δJ(ιA(a))W W ∗ = δJ (ιA(a)), it amounts to proving that
ιA⊗S(δA(a))W = δJ(ιA(a))W , for all a ∈ A. Therefore, it is enough to prove
that ιA⊗S(δA(a))W = W (ιA(a)⊗δA 1) since W ∗W = 1. However, for all η ∈ E ,
b ∈A and x ∈A⊗ S we have

W
(
(η⊕ b)⊗δA x

)
= V (η⊗δA x)⊕ δA(b)x= δE (η)x⊕ δA(b)x.

We finally obtain

W
(
ιA(a)⊗δA 1

)(
(η⊕ b)⊗δA x

)
=W

(
(0⊕ ab)⊗δA x

)
= (V ⊕ i)

(
0⊕ δA(ab)x

)
= 0⊕ δA(a)δA(b)x

= ιA⊗S

(
δA(a)

)(
δE (η)x⊕ δA(b)x

)
= ιA⊗S

(
δA(a)

)
W

(
(η⊕ b)⊗δA x

)
,

for all η ∈ E , b ∈A, and x ∈A⊗S. By using similar arguments, we also prove
that ιE⊗S(δE (ξ)) = δJ(ιE (ξ)) for all ξ ∈ E . By strict continuity, we obtain the
formulas:

(δJ ⊗ idS)ιA⊗S(m) = ιA⊗S⊗S(δA ⊗ idS)(m);

(idJ ⊗ δ)ιA⊗S(m) = ιA⊗S⊗S(idA ⊗ δ)(m);

for all m ∈M(A⊗S). By applying the above formulas to m := δA(a) for a ∈A
and by using again the compatibility of δJ with δA, we obtain the formulas:

(δJ ⊗ idS)δJ
(
ιA(a)

)
= ιA⊗S⊗S(δA ⊗ idS)δA(a);

(idJ ⊗ δ)δJ
(
ιA(a)

)
= ιA⊗S⊗S(idA ⊗ δ)δA(a).

Hence, (δJ ⊗ idS)δJ(ιA(a)) = (idJ ⊗ δ)δJ (ιA(a)) for all a ∈A. In a similar way,
we have (δJ ⊗ idS)δJ (ιE (ξ)) = (idJ ⊗ δ)δJ (ιE (ξ)) for all ξ ∈ E . However, since
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J is generated by ιE (E ) ∪ ιA(A) as a C∗-algebra, the coassociativity of δJ is
then proved.

For all η ∈ E , b ∈A, x ∈A⊗ S, and n ∈N , we have

δJ
(
βJ

(
no

))
W

(
(η⊕ b)⊗δA x

)
= W

(
βJ

(
no

)
(η⊕ b)⊗δA x

)
= W

((
βE

(
no

)
η⊕ βA

(
no

)
b
)
⊗δA x

)
= δE

(
βE

(
no

)
η
)
x⊕ δA

(
βA

(
no

)
b
)
x

=
(
1J ⊗ β

(
no

))(
δE (η)x⊕ δA(b)x

)
=

(
1J ⊗ β

(
no

))
W

(
(η⊕ b)⊗δA x

)
.

Hence, δJ (βJ(n
o)) = δJ(βJ(n

o))W W ∗ = (1J ⊗ β(no))W W ∗ = (1J ⊗ β(no))×
δJ(1J), for all n ∈N . Therefore, (βJ , δJ) is an action of G on J , compatible
with (βA, δA). �

Equivariant unitary equivalence. In this paragraph, we define a notion of
equivariance for unitary equivalences of Hilbert modules acted upon by G.
We refer the reader to §A.3 for the definitions and notation used below.

Definition 6.1.12. Let A and B be two G-C∗-algebras and φ : A → B
a G-equivariant ∗-isomorphism. Let E and F be two Hilbert modules over
respectively A and B acted upon by G. A φ-compatible unitary operator
Φ : E →F is said to be G-equivariant if we have

δF (Φξ) = (Φ⊗ idS)δE (ξ), for all ξ ∈ E .

We recall that the linear map Φ⊗ idS : L(A⊗S,E ⊗S)→L(B⊗S,F ⊗S)
(Notation A.3.6) is the extension of the φ⊗ idS-compatible unitary operator
Φ⊗ idS : E ⊗ S → F ⊗ S (Proposition-Definition A.3.4).

Proposition 6.1.13. With the notation and hypotheses of Definition
6.1.12, for all n ∈N we have βF (no) ◦Φ=Φ ◦ βE (n

o).

Proof. It is clear that (Φ⊗idS)((1E ⊗s)T ) = (1F ⊗s)(Φ⊗idS)(T ) for all s ∈
S and T ∈ L(A⊗S,E ⊗S). Let n ∈N and ξ ∈ E . We have δF (Φ(βE (n

o)ξ)) =
δF (βF (no)Φξ) by Definition 6.1.1(3). Hence, Φ(βE (n

o)ξ) = βF (no)Φξ by Re-
marks 6.1.2(1). �

Definition 6.1.14. Two Hilbert C∗-modules E and F acted upon by G are
said to be G-equivariantly unitarily equivalent if there exists a G-equivariant
unitary operator from E onto F .

It is clear that the G-equivariant unitary equivalence defines an equivalence
relation on the class consisting of the Hilbert C∗-modules acted upon by G. In
the following, we provide equivalent definitions of the G-equivariant unitary
equivalence in the two other pictures.
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Let A and B be two G-C∗-algebras and φ : A → B a G-equivariant ∗-
isomomorphism. Let E and F be two Hilbert C∗-modules over A and B
respectively and Φ : E → F a φ-compatible unitary operator.

Lemma 6.1.15. The linear map

E ⊗δA (A⊗ S)→ F ⊗δB (B ⊗ S);

ξ ⊗δA x �→Φξ ⊗δB (φ⊗ idS)(x)

is a φ⊗ idS-compatible unitary operator.

Proof. For all ξ ∈ E , a ∈A and x ∈A⊗ S, we have

Φ(ξa)⊗δB (φ⊗ idS)(x) = Φ(ξ)φ(a)⊗δB (φ⊗ idS)(x)

= Φξ ⊗δB δB
(
φ(a)

)
(φ⊗ idS)(x)

= Φξ ⊗δB (φ⊗ idS)
(
δA(a)x

)
.

Therefore, we have a well-defined linear map

Ψ : E 	A (A⊗ S)→ F ⊗δB (B ⊗ S);

ξ 	A x �→Φξ ⊗δB (φ⊗ idS)(x).

For all ξ, η ∈ E , we have δB(〈Φξ,Φη〉) = δB(φ(〈ξ, η〉)) = (φ ⊗ idS)δA(〈ξ, η〉).
Therefore, for all ξ, η ∈ E and x, y ∈A⊗ S, we have〈

Φξ ⊗δB (φ⊗ idS)(x),Φη⊗δB (φ⊗ idS)(y)
〉

= (φ⊗ idS)
(
〈ξ ⊗δA x, η⊗δA y〉

)
.

Hence, 〈Ψ(t),Ψ(t′)〉= (φ⊗ idS)(〈t, t′〉) for all t, t′ ∈ E 	A (A⊗S). In particular,
we have ‖Ψ(t)‖= ‖t‖ for all t ∈ E 	A (A⊗S) (φ⊗ idS is isometric). Therefore,
Ψ extends uniquely to a bounded operator from E ⊗δA (A⊗S) to F ⊗δB (B⊗
S) still denoted by Ψ. We have 〈Ψ(t),Ψ(t′)〉 = (φ⊗ idS)(〈t, t′〉) for all t, t′ ∈
E ⊗δA (A⊗ S). Since Ψ is isometric and has a dense range, we conclude that
Ψ is surjective. A staightforward computation shows that Ψ(tx) = Ψ(t)(φ⊗
idS)(x) for all t ∈ E ⊗δA (A⊗ S) and x ∈A⊗ S. �

Proposition 6.1.16. Let (βE , δE ) (resp., (βF , δF )) be an action of G on
E (resp., F ). Denote by VE ∈ L(E ⊗δA (A⊗S),E ⊗S) (resp., VF ∈ L(F ⊗δB

(B⊗S),F ⊗S)) the isometry associated with (βE , δE ) (resp., (βF , δF )). As-
sume that Φ ◦ βE (n

o) = βF (no) ◦Φ for all n ∈N . Then Φ is G-equivariant if,
and only if, we have

V ∗
F (Φ⊗ idS)VE (ξ ⊗δA x) = Φξ ⊗δB (φ⊗ idS)(x),

for all ξ ∈ E and x ∈A⊗ S.

Proof. Let Ψ : E ⊗δA (A⊗ S)→F ⊗δB (B ⊗ S) be the φ⊗ idS -compatible
unitary operator defined in the above lemma. For all ξ ∈ E and x ∈A⊗S, we
have

δF (Φξ)(φ⊗ idS)(x) = VF (Φξ ⊗δB x) = VF ◦Ψ(ξ ⊗δA x)
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and (Φ⊗ idS)(δE (ξ))(φ⊗ idS)(x) = (Φ⊗ idS)(δE (ξ)x) = (Φ⊗ idS)VE (ξ⊗δA x).
Therefore, δF ◦Φ = (Φ⊗ idS) ◦ δE if, and only if, VF ◦Ψ= (Φ⊗ idS)VE . In
order for the formula VF ◦Ψ= (Φ⊗ idS)VE to hold true, it is necessary and
sufficient that Ψ = V ∗

F (Φ⊗ idS)VE . Indeed, it is necessary since V ∗
FVF = 1. It

is also sufficient since we have VFV ∗
F = qβFα, qβFα(Φ⊗ idS) = (Φ⊗ idS)qβE α

(by assumption) and qβE αVE = VE . �

Remark 6.1.17. Let A be a G-C∗-algebra. Let E and F be two Hilbert
A-modules acted upon by G. Let Φ ∈ L(E ,F ) be a unitary. The following
statements are equivalent:

(i) Φ is G-equivariant;
(ii) Φ ◦βE (n

o) = βF (no) ◦Φ for all n ∈N and V ∗
F (Φ⊗ 1S)VE =Φ⊗δA 1A⊗S ;

(iii) Φ ◦ βE (n
o) = βF (no) ◦ Φ for all n ∈ N and VF (Φ ⊗δA 1A⊗S)V ∗

E =
qβE α(Φ⊗ 1S).

Proposition 6.1.18. Let A and B be two G-C∗-algebras and φ : A → B
a G-equivariant ∗-isomorphism. Let E and F be two Hilbert modules over
respectively A and B acted upon by G. Let Φ : E → F be a φ-compatible unitary
operator. Denote by f : K(E ⊕A)→K(F ⊕B) the unique ∗-homomorphism
such that f ◦ ιE = ιF ◦ T and f ◦ ιA = ιB ◦ φ (cf. Proposition A.3.5). Then Φ
is G-equivariant if, and only if, f is G-equivariant.

Proof. Let J :=K(E ⊕A) and L :=K(F ⊕B). Assume that Φ is equivari-
ant. The following formulas are immediate consequences of the definitions:

ιB⊗S ◦ (φ⊗ idS)(m) = (f ⊗ idS) ◦ ιA⊗S(m), m ∈M(A⊗ S);

ιF⊗S ◦ (Φ⊗ idS)(T ) = (f ⊗ idS) ◦ ιE⊗S(T ), T ∈ L(A⊗ S,E ⊗ S).

By combining the first (resp., second) formula with the G-equivariance of φ
(resp., Φ) and the fact that f ◦ ιA = ιB ◦ φ (resp., f ◦ ιE = ιF ◦Φ), we obtain

δL ◦ f
(
ιA(a)

)
= (f ⊗ idS)δJ

(
ιA(a)

)
, for all a ∈A(

resp., δL ◦ f
(
ιE (ξ)

)
= (f ⊗ idS)δJ

(
ιE (ξ)

)
, for all ξ ∈ E

)
.

Therefore, we have δL(f(x)) = (f ⊗ idS)δJ(x) for all x ∈ J . Moreover, by
definition of the fibration map on a linking C∗-algebra (cf. Proposition 6.1.11)
and the G-equivariance of Φ, we have

f
(
βJ

(
no

))
=

(
βE (n

o) 0
0 βA(n

o)

)
=

(
Φ ◦ βE (n

o) ◦Φ−1 0
0 φ(βA(n

o))

)
= βL

(
no

)
,

for all n ∈N . The converse is proved in a similar way. �
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Continuous actions. In this paragraph, we introduce the notion of continuity
for actions of the quantum groupoid G on Hilbert A-modules. If G is regular,
we prove that any action of G is necessarily continuous.

Definition 6.1.19. An action (βE , δE ) of G on a Hilbert A-module E is said
to be continuous if we have [(1E ⊗ S)δE (E )] = (E ⊗ S)qβAα. A G-equivariant
Hilbert A-module is a Hilbert A-module E endowed with a continuous action
of G.

Proposition 6.1.20. Let E be a G-equivariant Hilbert A-module. Let B :=
K(E ). We have the following statements:

1. the action (βB , δB) of G on B defined in Proposition 6.1.11 is strongly
continuous;

2. we define a continuous action of G on the Hilbert B-module E ∗ by setting:

• βE ∗(no)T := βA(n
o) ◦ T , for all n ∈N and T ∈ E ∗,

• δE ∗(T )x := δE (T
∗)∗ ◦ x, for all T ∈ E ∗ and x ∈B ⊗ S;

where we have applied the usual identifications B ⊗ S = K(E ⊗ S) and
E =K(A,E ).

Proof. 1. We have [δB(B)(1B ⊗ S)] = [δB(θξ,η)(1B ⊗ y); ξ, η ∈ E , y ∈ S].
However, we have δB(θξ,η)(1B ⊗ y) = δE (ξ)δE (η)

∗(1B ⊗ y) = δE (ξ)((1B ⊗
y∗)δE (η))

∗ for all y ∈ S and ξ, η ∈ E . It then follows from the continuity of
the action (βE , δE ) and Remarks 6.1.2 that[

δB(B)(1B ⊗ S)
]
=

[
δE (E )qβAα

(
E ∗ ⊗ S

)]
=

[
δE (E )

(
E ∗ ⊗ S

)]
.

Now, by combining the formulas [δE (E )(1E ⊗ S)] = qβE α(E ⊗ S) and B =
[E E ∗] with the fact that any element of S can be written as a product of
two elements of S, we obtain [δB(B)(1B ⊗ S)] = [δE (E )(1E ⊗ S)(E ∗ ⊗ S)] =
qβEα(B ⊗ S).

2. Straightforward. �

Proposition 6.1.21. Let E be a Hilbert A-module endowed with an action
(βE , δE ) of G on E . Let J :=K(E ⊕A) be the associated linking C∗-algebra. Let
(βJ , δJ) be the action defined in Proposition 6.1.11. Then the action (βE , δE )
is continuous if, and only if, the action (βJ , δJ) is strongly continuous.

Proof. Assume that the action (βE , δE ) is continuous. Let B :=K(E ). Let
us prove that (βJ , δJ) is strongly continuous. Let x ∈ J and s ∈ S. Let us write

x=

(
b ξ
η∗ a

)
, where a ∈A,b ∈B and ξ, η ∈ E .

Then, we have

δJ(x)(1J ⊗ s) = ιB⊗S

(
δB(b)(1B ⊗ s)

)
+ ιE⊗S

(
δE (ξ)(1A ⊗ s)

)
+ ιE ∗⊗S

(
δE ∗

(
η∗

)
(1B ⊗ s)

)
+ ιA⊗S

(
δA(a)(1A ⊗ s)

)
.
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Then the continuity of (βJ , δJ) follows from the continuity of (βA, δA), (βE , δE )
and the continuity of (βB , δB) and (βE ∗ , δE ∗) (Proposition 6.1.20). Conversely,
assume that (βJ , δJ) is continuous. We have ιE⊗S((E ⊗ S)qβAα) = (ιE (E )⊗
S)qβJα. Let ζ ∈ E and y ∈ S. As in the above computation, we prove that
ιE⊗S((ζ⊗ y)qβAα) is the norm limit of finite sums of elements of the following
forms: ιB⊗S((1B ⊗ s)δB(b)), ιE⊗S((1E ⊗ s)δE (ξ)), ιE ∗⊗S((1E ∗ ⊗ s)δE ∗(η∗)),
and ιA⊗S((1A ⊗ s)δA(a)). By multiplying by ιB⊗S(1B⊗S) on the left and by
ιA⊗S(1A⊗S) on the right, we have that ιE⊗S((ζ ⊗ y)qβAα) is the norm limit
of finite sums of elements of the form ιE⊗S((1E ⊗ s)δE (ξ)). The continuity of
(βE , δE ) follows from the fact that ιE⊗S is isometric. �

Definition 6.1.22. A linking G-C∗-algebra is a quintuple (J,βJ , δJ , e1, e2)
consisting of a C∗-algebra J endowed with a continuous action (βJ , δJ) and
nonzero self-adjoint projections e1, e2 ∈M(J) satisfying the following condi-
tions:

1. e1 + e2 = 1J ;
2. [JejJ ] = J , for all j = 1,2;
3. δJ(ej) = qβJα(ej ⊗ 1S), for all j = 1,2.

Remarks 6.1.23.

• Let (A,βA, δA) be a G-C∗-algebra and m ∈ M(A) such that δA(m) =
qβAα(m ⊗ 1S). Let n ∈ N , we have [m,βA(n

o)] = 0. Indeed, since α
and β commute pointwise we have [qβAα(1A ⊗ β(no)), qβAα(m ⊗ 1S)] = 0.
It then follows that δA([m,βA(n

o)]) = [δA(mβA(n
o)), δA(βA(n

o)m)] = 0.
Hence, [m,βA(n

o)] = 0 by faithfulness of δA. In particular, we have [qβAα,
m⊗ 1S ] = 0.

• Let (J,βJ , δJ , e1, e2) be a linking G-C∗-algebra. By restriction of the action
(βJ , δJ), the corner e2Je2 (resp., e1Je2) turns into a G-C∗-algebra (resp.,
G-equivariant Hilbert C∗-module over e2Je2). Furthermore, we also have
the identification of G-C∗-algebras K(e1Je2) = e1Je1.

• Conversely, if (E , βE , δE ) is a G-equivariant Hilbert A-module, then the
C∗-algebra J := K(E ⊕ A) endowed with the continuous action (βJ , δJ)
(cf. Propositions 6.1.11, 6.1.21) and the projections e1 := ιE (1E ) and e2 :=
ιA(1A) is a linking G-C∗-algebra.

Lemma 6.1.24. Let E be a Hilbert A-module endowed with an ac-
tion (βE , δE ) of G. We have E = [(idE ⊗ ω)δE (ξ); ξ ∈ E , ω ∈ B(H )∗] (cf.
Proposition-Definition 2.3.6).

Proof. We have E ⊃ [(idE ⊗ ω)δE (ξ); ξ ∈ E , ω ∈ B(H )∗] (cf. Proposition-
Definition 2.3.6). To obtain the converse inclusion, we combine the fact that
there exists ω ∈ B(H )∗ such that (idE ⊗ ω)(qβE α) = 1E with the formula
[δE (E )(1B ⊗ S)] = qβE α(E ⊗ S). �

Now, we can state the main results of this chapter.
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Theorem 6.1.25. Let A be a G-C∗-algebra and E a Hilbert A-module acted
upon by G. Let J := K(E ⊕ A) be the associated linking C∗-algebra endowed
with the action (βJ , δJ) defined in Proposition 6.1.11. If G is semi-regular
(resp., regular), then the action (βJ , δJ) is weakly (resp., strongly) continuous.

Proof. Assume that G is semi-regular. Denote by T := [(idJ ⊗ω)δJ(x); x ∈
J,ω ∈ B(H )∗] the C∗-algebra of continuous elements (cf. Proposition 5.3.4).
By combining the compatibility of δJ with δA (resp., δE ) with the fact that
(βA, δA) is (weakly) continuous (resp., Lemma 6.1.24), we obtain ιA(A)⊂ T
(resp., ιE (E ) ⊂ T ). Hence, J ⊂ T . The converse inclusion also holds since

δJ(J)⊂ M̃(J ⊗S). Hence, (βJ , δJ) is weakly continuous. It follows from The-
orem 5.3.6 that the action (βJ , δJ) is strongly continuous if G is regular. �

Corollary 6.1.26. Let E be a Hilbert A-module. If the quantum groupoid
G is regular, then any action of G on E is continuous.

Proof. This is an immediate consequence of Proposition 6.1.21 and Theo-
rem 6.1.25. �

6.2. Case of a colinking measured quantum groupoid. Let us fix
a colinking measured quantum groupoid G := GG1,G2 between two monoidally
equivalent locally compact quantum groups G1 and G2. Let (A,βA, δA) be a G-
C∗-algebra. We follow all the notation of §3.3 (resp., Notation 5.2.1 and Propo-
sition 5.2.2) concerning the objects associated with G (resp., (A,βA, δA)).

In the following, we provide a description of Hilbert modules acted upon by
G in terms of Hilbert modules acted upon by G1 and G2. Let us fix a Hilbert
A-module E endowed with an action (βE , δE ) of G.

Notation 6.2.1. We introduce some useful notation to describe the action
(βE , δE ).

• Let qE ,j := βE (εj) for j = 1,2. Note that qE ,1 and qE ,2 are orthogonal self-
adjoint projections of L(E ) and qE ,1 + qE ,2 = 1E .

• Let J := K(E ⊕ A) be the linking C∗-algebra associated with E endowed
with the action (βJ , δJ) of G (cf. Proposition 6.1.11(b)). Since βJ(C

2) ⊂
Z(M(J)) (cf. 3.2.3 [2]), we have βE (n)ξ = ξβA(n) in L(A,E ) for all n ∈C2

and ξ ∈ E , that is, (βE (n)ξ)a= ξ(βA(n)a) for all n ∈ C2, ξ ∈ E and a ∈A.
Hence,

(6.10) (qE ,jξ)a= ξ(qA,ja), for all ξ ∈ E , a ∈A, j = 1,2.

In particular, we have

〈qE ,jξ, qE ,jη〉= qA,j〈ξ, η〉, for all ξ, η ∈ E .

Indeed, fix ξ, η ∈ E and write ξ = ξ′a and η = η′b with ξ′, η′ ∈ E and
a, b ∈A. Since the projection qA,j is central in A, we have 〈qE ,jξ, qE ,jη〉=
〈(qE ,jξ

′)a, (qE ,jη
′)b〉 = 〈ξ′(qA,ja), η

′(qA,jb)〉 = qA,ja
∗〈ξ′, η′〉b = qA,j〈ξ, η〉.
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For j = 1,2, we then define the following Hilbert Aj -module Ej := qE ,jE .
Note that E = E1 ⊕ E2.

• For j, k = 1,2, let Πk
j : Ek ⊗ Skj → E ⊗ S be the inclusion map. It is clear

that Πk
j is a πk

j -compatible operator (cf. Definition A.3.1). We can consider

its canonical linear extension Πk
j : L(Ak ⊗Skj ,Ek ⊗Skj)→L(A⊗S,E ⊗S),

up to the canonical injective maps Ek ⊗ Skj →L(Ak ⊗ Skj ,Ek ⊗ Skj) and
E ⊗S →L(A⊗S,E ⊗S), defined by Πk

j (T )(x) := Πk
j ◦ T ((qA,k ⊗ pkj)x) for

all T ∈ L(Ak ⊗ Skj ,Ek ⊗ Skj) and x ∈A⊗ S.

Lemma 6.2.2. With the above notations and hypotheses, we have a
canonical unitary equivalence of Hilbert A ⊗ S-modules E ⊗δA (A ⊗ S) =⊕

j,k=1,2 Ej ⊗δkAj
(Ak ⊗ Skj).

Proof. This is a straightforward verification to see that we define a unitary
adjointable operator by the following formula:

E ⊗δA (A⊗ S)→
⊕

j,k=1,2

Ej ⊗δkAj
(Ak ⊗ Skj);

ξ ⊗δA x �→
⊕

j,k=1,2

qE ,jξ ⊗δkAj
(qA,k ⊗ pkj)x.

�

Proposition-Definition 6.2.3. Let V ∈ L(E ⊗δA (A⊗ S),E ⊗ S) be the
isometry associated with the action (βE , δE ) (cf. Proposition 6.1.5(a)). For all
j, k = 1,2, there exists a unique unitary

V k
j ∈ L

(
Ej ⊗δkAj

(Ak ⊗ Skj),Ek ⊗ Skj

)
such that

V (ξ ⊗δA x)

=
∑

j,k=1,2

V k
j

(
qE ,jξ ⊗δkAj

(qA,k ⊗ pkj)x
)
, for all ξ ∈ E and x ∈A⊗ S.

Proof. Let j, k = 1,2. Fix ξ ∈ E , x ∈A⊗S and write x= x′x′′ with x′, x′′ ∈
A⊗ S. We have

V
(
qE ,jξ ⊗δA (qA,k ⊗ pkj)x

)
=

(
1E ⊗ β(εj)

)
V

(
ξ ⊗δA (qA,k ⊗ pkj)x

)
(Definition 6.1.4(2))

=
(
1E ⊗ β(εj)

)
V

(
ξ ⊗δAx

′(qA,k ⊗ pkj)x
′′) (qA,k, pkj are central)

=
(
1E ⊗ β(εj)

)
V

(
ξ ⊗δAx

′)(qA,k ⊗ pkj)x
′′ (V is A⊗ S-linear).

Now if η ∈ E , y, s ∈ S and a ∈A, we have(
1E ⊗ β(εj)

)
(η⊗ y)(qA,k ⊗ pkj)(a⊗ s)

= η(qA,ka)⊗ β(εj)ypkjs
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= η(qA,ka)⊗ pkjys

= qE ,kηa⊗ pkjys ∈ Ek ⊗ Skj

by using (6.10) and the fact that pkj is central in S. In particular, for all ξ ∈ E
and x ∈A⊗ S we have V (qE ,jξ ⊗δA (qA,k ⊗ pkj)x) ∈ Ek ⊗ Skj . By combining
the fact that V is isometric with the fact that xδkAj

(a) = xδA(a) for all a ∈Aj

and x ∈Ak ⊗ Skj , we obtain a well-defined isometric Ak ⊗ Skj -linear map

V k
j : Ej ⊗δkAj

(Ak ⊗ Skj)→ Ek ⊗ Skj ; ξ ⊗δkAj
x �→ V (ξ ⊗δA x).

It follows from im(V ) = qβE α(E ⊗ S) (Definition 6.1.4(1)) that V k
j is surjec-

tive. As a result, we have V k
j ∈ L(Ej ⊗δkAj

(Ak ⊗ Skj),Ek ⊗ Skj) and V k
j is

unitary. �

For j, k, l= 1,2 we have the following set of unitary equivalences of Hilbert
modules:

Aj ⊗δkAj
(Ak ⊗ Skj)→Ak ⊗ Skj ,

a⊗δkAj
x �→ δkAj

(a)x;
(6.11)

(Ak ⊗ Skj)⊗δlAk
⊗idSkj

(Al ⊗ Slk ⊗ Skj)→Al ⊗ Slk ⊗ Skj ,

x⊗δlAk
⊗idSkj

y �→
(
δlAk

⊗ idSkj

)
(x)y;

(6.12)

(Al ⊗ Slj)⊗idAl
⊗δklj

(Al ⊗ Slk ⊗ Skj)→Al ⊗ Slk ⊗ Skj ,

x⊗idAl
⊗δklj

y �→
(
idAl

⊗ δklj
)
(x)y;

(6.13) (
Ej ⊗δkAj

(Ak ⊗ Skj)
)
⊗δlAk

⊗idSkj
(Al ⊗ Slk ⊗ Skj)

→ Ej ⊗(δlAk
⊗idSkj

)δkAj
(Al ⊗ Slk ⊗ Skj),

(ξ ⊗δkAj
x)⊗δlAk

⊗idSkj
y �→ ξ ⊗(δlAk

⊗idSkj
)δkAj

(
δlAk

⊗ idSkj

)
(x)y;

(6.14)

(
Ej ⊗δlAj

(Al ⊗ Slj)
)
⊗idAl

⊗δklj
(Al ⊗ Slk ⊗ Skj)

→ Ej ⊗(idAl
⊗δklj)δ

l
Aj
(Al ⊗ Slk ⊗ Skj),

(ξ ⊗δlAj
x)⊗idAl

⊗δklj
y �→ ξ ⊗(idAl

⊗δklj)δ
l
Aj

(
idAl

⊗ δklj
)
(x)y;

(6.15)

(Ek ⊗ Skj)⊗δlAk
⊗idSkj

(Al ⊗ Slk ⊗ Skj)→
(
Ek ⊗δlAk

(Al ⊗ Slk)
)
⊗ Skj ,

(ξ ⊗ s)⊗δlAk
⊗idSkj

(x⊗ t) �→ (ξ ⊗δlAk

x)⊗ st;
(6.16)

(El ⊗ Slj)⊗idAl
⊗δklj

(Al ⊗ Slk ⊗ Skj)→ El ⊗ Slk ⊗ Skj ,

ξ ⊗idAl
⊗δklj

y �→
(
idEl

⊗ δklj
)
(ξ)y.

(6.17)

Proposition 6.2.4. For all j, k, l= 1,2, we have(
V l
k ⊗C idSkj

)(
V k
j ⊗δlAk

⊗idSkj
1
)
= V l

j ⊗idAl
⊗δklj

1.
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For j, k, l= 1,2, V l
k ⊗C idSkj

∈ L((Ek⊗Skj)⊗δlAk
⊗idSkj

(Al⊗Slk⊗Skj),El⊗
Slk⊗Skj) (6.16), V k

j ⊗δlAk
⊗idSkj

1 ∈ L(Ej⊗(δlAk
⊗idSkj

)δkAj
(Al⊗Slk⊗Skj), (Ek⊗

Skj)⊗δlAk
⊗idSkj

(Al⊗Slk⊗Skj)) (6.14) and V l
j ⊗idAl

⊗δklj
1 ∈ L(Ej⊗(idAl

⊗δklj)δ
l
Aj

(Al ⊗ Slk ⊗ Skj),El ⊗ Slk ⊗ Skj) (6.17). Moreover, the composition (V l
k ⊗C

idSkj
)(V k

j ⊗δlAk
⊗idSkj

1) does make sense since (δlAk
⊗ idSkj

)δkAj
= (idAl

⊗
δklj)δ

l
Aj

.

Proof. Straightforward consequence of (V ⊗C idS)(V ⊗δA⊗idS
1) =

V ⊗idA⊗δ 1. �
Proposition-Definition 6.2.5. For j, k = 1,2, let δkEj

: Ej → L(Ak ⊗
Skj ,Ek ⊗ Skj) be the linear map defined by

δkEj
(ξ)x := V k

j (ξ ⊗δkAj
x), for all ξ ∈ Ej and x ∈Ak ⊗ Skj .

For all j, k, l= 1,2, we have:

(i) δE (ξ) =
∑

k,j=1,2Π
k
j ◦ δkEj

(qE ,jξ), for all ξ ∈ E ;

(ii) δkEj
(Ej)⊂ M̃(Ek ⊗ Skj);

(iii) δkEj
(ξa) = δkEj

(ξ)δkAj
(a) and 〈δkEj

(ξ), δkEj
(η)〉= δkAj

(〈ξ, η〉), for all ξ, η ∈ Ej

and a ∈Aj ;
(iv) [δkEj

(Ej)(1Ak
⊗ Skj)] = Ek ⊗ Skj ; in particular, we have

Ek =
[
(idEk

⊗ ω)δkEj
(ξ); ω ∈ B(Hkj)∗, ξ ∈ Ej

]
(cf. Proposition-Definition 2.3.6).

(v) δlEk
⊗ idSkj

(resp., idEl
⊗ δklj) extends to a linear map from L(Ak ⊗

Skj ,Ek ⊗Skj) (resp., L(Al⊗Slj ,El⊗Slj)) to L(Al⊗Slk ⊗Skj ,El⊗Slk ⊗
Skj) and for all ξ ∈ Ej we have(

δlEk
⊗ idSkj

)
δkEj

(ξ) =
(
idEl

⊗ δklj
)
δlEj

(ξ)

∈ L(Al ⊗ Slk ⊗ Skj ,El ⊗ Slk ⊗ Skj);

(vi) if E is a G-equivariant Hilbert A-module, then we have [(1Ek
⊗ Skj)×

δkEj
(Ej)] = Ek ⊗ Skj .

If E is a G-equivariant Hilbert module, then (Ej , δ
j
Ej
) is a Gj-equivariant

Hilbert Aj-module and V j
j is the associated unitary.

Proof. It is clear that δkEj
: Ej →L(Ak ⊗Skj ,Ek ⊗Skj) is a well-defined lin-

ear map. Moreover, statement (i) follows straightforwardly from Proposition-
Definition 6.2.3 and the fact that δE (ξ)x = V (ξ ⊗δA x) for all ξ ∈ E and
x ∈A⊗ S. Let ξ ∈ Ej and s ∈ Skj . We have

Πk
j

(
δkEj

(ξ)(1Ak
⊗ s)

)
= δE (ξ)(1A ⊗ s) and

Πk
j

(
(1Ek

⊗ s)δkEj
(ξ)

)
= (1E ⊗ s)δE (ξ)
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It then follows from δE (E ) ⊂ M̃(E ⊗ S) that Πk
j (δ

k
Ej
(ξ)(1Ak

⊗ s)) and

Πk
j ((1Ek

⊗s)δkEj
(ξ)) belong to E ⊗S. Moreover, (qE,k⊗pkj)Π

k
j (T ) = Πk

j (T ) for

all T ∈ L(Ak ⊗ Skj ,Ek ⊗ Skj); hence, Π
k
j (δ

k
Ej
(ξ)(1Ak

⊗ s)) ∈Πk
j (Ek ⊗ Skj) and

Πk
j ((1Ek

⊗ s)δkEj
(ξ)) ∈ Πk

j (Ek ⊗ Skj). It then follows that δkEj
(ξ)(1Ak

⊗ s) and

(1Ek
⊗s)δkEj

(ξ) belong to Ek⊗Skj by injectivity of Πk
j : L(Ak⊗Skj ,Ek⊗Skj)→

L(A⊗ S,E ⊗ S). Hence, statement (ii) is proved.
Let ξ, η ∈ Ej . We have

πk
j

(〈
δkEj

(ξ), δkEj
(η)

〉)
=

〈
Πk

j

(
δkEj

(ξ)
)
,Πk

j

(
δkEj

(η)
)〉

=
〈
(qE ,k ⊗ pkj)δE (ξ), (qE ,k ⊗ pkj)δE (η)

〉
= (qA,k ⊗ pkj)δA

(
〈ξ, η〉

)
= πk

j

(
δkAj

(
〈ξ, η〉

))
.

Hence, 〈δkEj
(ξ), δkEj

(η)〉= δkAj
(〈ξ, η〉) by injectivity of πk

j . The first formula of

statement (iii) is derived immediately from the definition of δkEj
.

The surjectivity of V k
j is just a restatement of [δkEj

(Ej)(Ak ⊗ Skj)] =

Ek⊗Skj . The identity [δkEj
(Ej)(1Ak

⊗Skj)] = Ek⊗Skj follows by combining the

previous formula with the first relation of (iii) and the relation [δkAj
(Aj)(1Ak

⊗
Skj)] = Ak ⊗ Skj . Let us prove the formula Ek = [(idEk

⊗ ω)δkEj
(ξ); ω ∈

B(Hkj)∗, ξ ∈ Ej ]. By statement (ii) and Proposition-Definition 2.3.6, we al-
ready have the relation Ek ⊃ [(idEk

⊗ ω)δkEj
(ξ); ω ∈ B(Hkj)∗, ξ ∈ Ej ]. Con-

versely, let us fix η ∈ Ek. Let ω ∈ B(Hkj)∗ and s ∈ Skj such that ω(s) = 1.
It then follows from the formula [δkEj

(Ej)(1Ak
⊗ Skj)] = Ek ⊗ Skj that η =

(idEk
⊗ ω)(η ⊗ s) is the norm limit of finite sums of elements of the form

(idEk
⊗ω)(δkEj

(ξ)(1Ak
⊗y)) = (idEk

⊗yω)δkEj
(ξ), where ξ ∈ Ej and y ∈ S. There-

fore, statement (iv) is proved.
By using the identifications (6.12) and (6.16) (resp., (6.13) and (6.17)), the

linear map

δlEk
⊗ idSkj

: L(Ak ⊗ Skj ,Ek ⊗ Skj)

→L(Al ⊗ Slk ⊗ Skj ,El ⊗ Slk ⊗ Skj)(
resp., idEl

⊗ δklj : L(Al ⊗ Slj ,El ⊗ Slj)

→L(Al ⊗ Slk ⊗ Skj ,El ⊗ Slk ⊗ Skj)
)

is defined for all T ∈ L(Ak ⊗ Skj ,Ek ⊗ Skj) (resp., T ∈ L(Al ⊗ Slj ,El ⊗ Slj))
by (

δlEk
⊗ idSkj

)
(T ) :=

(
V j
k ⊗ 1Skj

)
(T ⊗δlAk

⊗idSkj
1)(

resp.,
(
idEl

⊗ δklj
)
(T ) := T ⊗idAl

⊗δklj
1
)
.
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The relation (δlEk
⊗ idSkj

)δkEj
(ξ) = (idEl

⊗ δklj)δ
l
Ej
(ξ) for ξ ∈ Ej is then de-

rived from Proposition 6.2.4 as in the proof of Proposition 6.1.5. Assume
that (βE , δE ) is continuous. Since pkj is central in S, we have

Πk
j (Ek ⊗ Skj) = (qE ,j ⊗ pkj)(E ⊗ S)qβAα

= (qE ,j ⊗ pkj)
[
(1E ⊗ S)δE (E )

]
=Πk

j

[
(1Ek

⊗ Skj)δ
k
Ej
(Ej)

]
and statement (vi) is proved. �

From this concrete description of G-equivariant Hilbert C∗-modules, we can
also provide a corresponding description of the G-equivariant unitary equiva-
lences between them.

Lemma 6.2.6. Let A and B be G-C∗-algebras. Let E and F be Hilbert
C∗-modules over A and B respectively acted upon by G.
1. Let Φ : E → F be a G-equivariant unitary equivalence over a G-equivariant

∗-isomorphism φ : A → B. For j = 1,2, there exists a unique map Φj :
Ej → Fj satisfying the formula Φ(ξ) = Φ1(qE ,1ξ)+Φ2(qE ,2ξ) for all ξ ∈ E .
Moreover, we have:
(i) for j = 1,2, the map Φj is a unitary equivalence over the ∗-

isomorphism φj :Aj →Bj (cf. Proposition 5.2.3(1));
(ii) for all j, k = 1,2, we have

(6.18) (Φk ⊗ idSkj
) ◦ δkEj

= δkFj
◦Φj .

In particular, Φj is a Gj-equivariant φj-compatible unitary operator.
2. Conversely, for j = 1,2 let Φj : Ej →Fj be a Gj-equivariant unitary equiv-

alence over a Gj-equivariant ∗-isomorphism φj : Aj → Bj such that (5.1)
and (6.18) hold for all j, k = 1,2. Then the map Φ : E → F , defined by
Φ(ξ) := Φ1(qE ,1ξ) + Φ2(qE ,2ξ) for all ξ ∈ E , is a G-equivariant unitary
equivalence over the G-equivariant ∗-isomorphism φ : A → B (cf. Propo-
sition 5.2.3(2)).

Proof. 1. Let j = 1,2. Since Φ is G-equivariant, we have Φ◦ qE ,j = qF ,j ◦Φ.
It then follows that Φ(Ej)⊂ Fj . Let us denote Φj := Φ�Ej : Ej → Fj . For ξ ∈ E ,
we have ξ = qE ,1ξ + qE ,2ξ; hence, Φ(ξ) = Φ1(qE ,1ξ) + Φ2(qE ,2ξ). Moreover,
such a decomposition of Φ is unique since F1 and F2 are orthogonal in F .
Statement (i) is straightforward. Let j, k = 1,2 and x ∈ Ak ⊗ Skj . For all
T ∈ L(Ak ⊗ Skj ,Ek ⊗ Skj) we have

(Φ⊗ idS)
(
Πk

j (T )
)
(φ⊗ idS)(x) = (Φk ⊗ idSkj

)(T )(φk ⊗ idSkj
)(x).

In particular, (Φ⊗ idS)(Π
k
j (δ

k
Ej
(ξ)))(φ⊗ idS)(x) = (Φk ⊗ idSkj

)(δkEj
(ξ))(φk ⊗

idSkj
)(x) for all ξ ∈ Ej ; hence, (Φ⊗ idS)(δE (ξ))(φ⊗ idS)(x) = (Φk ⊗ idSkj

)×
(δkEj

(ξ))(φk ⊗ idSkj
)(x) (Proposition-Definition 6.2.5(i)) for all ξ ∈ Ej . We
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also have δF (Φ(ξ))(qA,k ⊗ pkj) = Πk
j (δ

k
Fj

(Φj(ξ))) for all ξ ∈ Ej . Hence,

δF (Φ(ξ))(φ⊗ idS)(x) = δkFj
(Φj(ξ))(φk⊗ idSkj

)(x) for all ξ ∈ Ej and statement

(ii) is proved.
2. Straightforward. �

Example 6.2.7. Let (βN , δN ) be the trivial action (cf. Examples 5.1.4). Let
i = 1,2. Consider the Hilbert N -module E := Hi1 ⊕ Hi2. Let V ∈ L(E ⊗δN

(N ⊗ S),E ⊗ S) and βE :N →L(E ) be the maps defined by the formulas:

V (ξ ⊗ 1) =
∑
k=1,2

V i
kj(ξ ⊗ 1), ξ ∈ Hij ; βE (εj) = pij , j = 1,2.

Then the pair (V , βE ) is an action of G on E .

6.3. Induction of equivariant Hilbert C∗-modules. Let G1 and G2 be
two monoidally equivalent regular locally compact quantum groups.

Fix a G1-C
∗-algebra (A1, δA1) and a G1-equivariant Hilbert A1-module

(E1, δE1). We denote by J1 := K(E1 ⊕ A1) the associated linking C∗-algebra
endowed with the continuous action δJ1 of G1.

Notation 6.3.1. Let us fix some notation.

• Let idE1 ⊗ δ211 : L(A1⊗S11,E1⊗S11)→L(A1⊗S12⊗S21,E1⊗S12⊗S21) be
the unique linear extension of idE1 ⊗ δ211 : E1⊗S11 →L(A1⊗S12⊗S21,E1⊗
S12 ⊗ S21) such that (idE1 ⊗ δ211)(T )(idA1 ⊗ δ211)(x) = (idE1 ⊗ δ211)(Tx) for
all x ∈M(A1 ⊗ S11) and T ∈ L(A1 ⊗ S11,E1 ⊗ S11).

• Let δ
(2)
E1

: E1 →L(A1 ⊗ S12 ⊗ S21,E1 ⊗ S12 ⊗ S21) be the linear map defined

by δ
(2)
E1

(ξ) := (idE1 ⊗ δ211)δE1(ξ) for all ξ ∈ E1.

• Consider the Banach subspace of L(A1 ⊗ S12,E1 ⊗ S12) defined by (cf.
Proposition-Definition 2.3.6):

IndG2

G1
(E1) :=

[
(idE1⊗S12 ⊗ ω)δ

(2)
E1

(ξ); ξ ∈ E1, ω ∈ B(H21)∗
]
.

Proposition 6.3.2. We have [IndG2

G1
(E1)(1A1 ⊗ S12)] = E1 ⊗ S12 = [(1E1 ⊗

S11) Ind
G2

G1
(E1)]. In particular, IndG2

G1
(E1)⊂ M̃(E1 ⊗ S12).

Proof. Let us prove the formula [IndG2

G1
(E1)(1A1 ⊗S12)] = E1 ⊗S12. Fix ξ ∈

E1, s ∈ S12 and ω ∈ B(H21)∗. Write ω = s′ω′ with s′ ∈ S21 and ω′ ∈ B(H21)∗.
It follows from S12 ⊗ S21 = [δ211(S11)(1S12 ⊗ S21)] that

(idE1⊗S12 ⊗ ω)
(
δ
(2)
E1

(ξ)
)
(1A1 ⊗ s)

=
(
idE1⊗S12 ⊗ ω′)(δ(2)E1

(ξ)
(
1E1 ⊗ s⊗ s′

))
is the norm limit of finite sums of elements of the form

η =
(
idE1 ⊗ idS12 ⊗ ω′)(δ(2)E1

(ξ)
(
1E1 ⊗ δ211

(
t′
)
(1S12 ⊗ t)

))
,

with t′ ∈ S11 and t ∈ S21.
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It follows from [δE1(E1)(1A1 ⊗ S11)] = E1 ⊗ S11 that

η =
(
idE1⊗S12 ⊗ ω′)((idE1 ⊗ δ211

)(
δE1(ξ)

(
1E1 ⊗ t′

))
(1E1⊗S12 ⊗ t)

)
is the norm limit of finite sums of elements of the form

η′ =
(
idE1⊗S12 ⊗ ω′)(ζ ⊗ δ211

(
t′′

)
(1S12 ⊗ t)

)
, with ζ ∈ E1 and t′′ ∈ S21.

By using S12 = [(idS12 ⊗ ω)(δ211(y)); ω ∈ B(H21)∗, y ∈ S11], we obtain

η′ = ζ ⊗
(
idS12 ⊗ tω′)(δ211(t′′)) ∈ E1 ⊗ S12.

Hence, (idE1⊗S12 ⊗ ω)(δ
(2)
E1

(ξ))(1A1 ⊗ s) ∈ E1 ⊗ S12 for all ξ ∈ E1, ω ∈ B(H21)∗
and s ∈ S12. Therefore, the inclusion[

IndG2

G1
(E1)(1A1 ⊗ S12)

]
⊂ E1 ⊗ S12

is proved. The converse inclusion is obtained by following backwards the above
argument.

By a similar argument, we prove by using the relation (1E1 ⊗S12)δE1(E1)⊂
E1⊗S12 that (1E1 ⊗S12) Ind

G2

G1
(E1)⊂ E1⊗S12. Hence, [(1E1 ⊗S12) Ind

G2

G1
(E1)]⊂

E1 ⊗ S12. For the converse inclusion, it suffices to follow backwards the proof
as above and to use the continuity of the action δE1 . �

Lemma 6.3.3. For all a ∈A1, ξ ∈ E1, k ∈K(E1) and ω ∈ B(H21)∗, we have:

1. ιA1⊗S11(idA1⊗S12 ⊗ ω)δ
(2)
A1

(a) = (idJ1⊗S12 ⊗ ω)δ
(2)
J1

(ιA1(a));

2. ιE1⊗S12(idE1⊗S12 ⊗ ω)δ
(2)
E1

(ξ) = (idJ1⊗S12 ⊗ ω)δ
(2)
J1

(ιE1(ξ));

3. ιK(E1⊗S12)(idK(E1)⊗S12
⊗ ω)δ

(2)
K(E1)

(k) = (idJ1⊗S12 ⊗ ω)δ
(2)
J1

(ιK(E1)(k)).

Proof. These formulas are straightforward consequences of definitions and
the compatibility of δJ1 with δA1 and δE1 and δK(E1) (2.7 (b), 2.8 (a) [3],
Proposition-Definition 2.3.6). �

Proposition 6.3.4. Let IndG2

G1
(A1) be the induced C∗-algebra. Then

IndG2

G1
(E1) is a Hilbert IndG2

G1
(A1)-module for the right action by composi-

tion and the IndG2

G1
(A1)-valued inner product given by 〈ξ, η〉 := ξ∗ ◦ η for

ξ, η ∈ IndG2

G1
(E1).

Proof. Let ω,ω′ ∈ B(H21)∗, a ∈ A1 and ξ ∈ E1. Let η := (idE1⊗S12 ⊗
ω)δ

(2)
E1

(ξ) and x := (idA1⊗S12 ⊗ ω′)δ
(2)
A1

(a). We have

ιE1⊗S12(ηx)

= ιE1⊗S12(η)ιA1⊗S12(a) (Proposition 2.3.2(1))

= (idJ1⊗S12 ⊗ ω)δ
(2)
J1

(
ιE1(ξ)

)(
idJ1⊗S12 ⊗ ω′)δ(2)J1

(
ιA(a)

)
(Lemma 6.3.3)

=
(
idJ1⊗S12 ⊗ ω⊗ ω′)(δ(2)J1

(
ιE1(ξ)

)
123

δ
(2)
J1

(
ιA(a)

)
124

)
.
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In virtue of 4.2 a) [2], we have ιE1⊗S12(ηx) ∈ IndG2

G1
(J1). Therefore, ιE1⊗S12(ηx)

is the norm limit of finite sums of elements of the form

y = (idJ1⊗S12 ⊗ φ)δ
(2)
J1

(
k ζ
χ∗ b

)
,

with k ∈K(E1), ζ ∈ E1, χ
∗ ∈ E ∗

1 , b ∈A1, φ ∈ B(H21)∗.

We have (Lemma 6.3.3)

y = ιK(E1⊗S12)(idK(E1)⊗S12
⊗ φ)δ

(2)
K(E1)

(k)

+ ιE1⊗S12(idE1⊗S12 ⊗ φ)δ
(2)
E1

(ζ)

+ ιE1⊗S12(idE1⊗S12 ⊗ φ)δ
(2)
E1

(χ)∗

+ ιA1⊗S12(idA1⊗S12 ⊗ φ)δ
(2)
A1

(b).

By multiplying on the left (resp., right) by ιK(E1⊗S12)(1E1⊗S12) (resp.,
ιA1⊗S12(1A1⊗S12)), we obtain (Lemma 2.3.4) that ιE1⊗S12(ηx) is the norm
limit of finite sums of elements of the form

ιE1⊗S12(idE1 ⊗ idS12 ⊗ φ)δ
(2)
E1

(ζ), with ζ ∈ E1 and φ ∈ B(H21)∗.

Since ιE1⊗S12 is isometric, we have proved that ηx ∈ IndG2

G1
(E1).

Let us prove that ζ∗ ◦ χ ∈ IndG2

G1
(A1) for all ζ,χ ∈ IndG2

G1
(E1) ⊂ L(A1 ⊗

S12,E1 ⊗ S12). Let us fix ξ, η ∈ E1 and ω,ψ ∈ B(H21)∗. Let us denote ζ :=

(idE1⊗S12 ⊗ ω)δ
(2)
E1

(ξ) and χ := (idE1⊗S12 ⊗ψ)δ
(2)
E1

(η). We have

ιA1⊗S12

(
ζ∗ ◦ χ

)
= ιE1⊗S12(ζ)

∗ιE1⊗S12(χ) (Proposition 2.3.2(3))

= (idJ1⊗S12 ⊗ ω)δ
(2)
J1

(
ιE1(ξ)

∗)(idJ1⊗S12 ⊗ψ)δ
(2)
J1

(
ιE1(η)

)
(Lemma 6.3.3)

= (idJ1⊗S12 ⊗ ω⊗ψ)
(
δ
(2)
J1

(
ιE1(ξ)

∗)
123

δ
(2)
J1

(
ιE1(η)

)
124

)
.

Hence, ιA1⊗S12(ζ
∗ ◦ χ) ∈ IndG2

G1
(J1) (4.2 a) [2]). As above, we prove that

ιA1⊗S12(ζ
∗ ◦ χ) is the norm limit of finite sums of elements of the form

ιA1⊗S12(idA1⊗S12 ⊗ φ)δ
(2)
A1

(a) with a ∈ A1 and φ ∈ B(H21)∗. We have proved

that ζ∗ ◦ χ ∈ IndG2

G1
(A1) since ιA1⊗S12 is isometric. �

Let us denote (A2, δA2) := IndG2

G1
(A1, δA1) and (J2, δJ2) := IndG2

G1
(J1, δJ1) the

induced G2-C
∗-algebra of (A1, δA1) and (J1, δJ1), respectively. We also denote

E2 := IndG2

G1
(E1) the induced Hilbert A2-module as defined above.

In the technical lemma below, we make the identificationM(A) = L(A). We
first recall a well-known corollary of the Cohen–Hewitt factorization theorem.

Lemma 6.3.5. Let A be a C∗-algebra and E a Hilbert A-module. If T :A→
E is a map such that T (ab) = T (a)b for all a, b ∈ A, then T is linear and
continuous.
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Lemma 6.3.6. Let A be a C∗-algebra, B ⊂ M(A) a nondegenerate C∗-
subalgebra and E a Hilbert A-module. Let F ⊂L(A,E) be a Hilbert B-module
(where B is acting on the right by composition and the B-valued inner product
is given by 〈η1, η2〉 := η∗1 ◦ η2, for all η1, η2 ∈ F) such that [FA] = E .
(i) There exists a unique map i : L(B,F) → L(A,E) such that i(T )(ba) =

(Tb)a for all T ∈ L(B,F), b ∈ B and a ∈ A. Moreover, i is an injective
linear map whose image is im(i) = {S ∈ L(A,E); SB ⊂F , S∗F ⊂B}.

(ii) There exists a unique map j : L(F ⊕B)→L(E ⊕A) such that j(x)(ηa) =
(xη)a for all x ∈ L(F ⊕B), η ∈ F ⊕B and a ∈A. Moreover, j is a unital
faithful ∗-homomorphism.

Proof. (i) We have A=BA. Let T ∈ L(B,F). Let (uλ) be an approximate
unit of B, we have (Tb)a = limλ[T (uλb)]a = limλ[T (uλ)b]a = limλ T (uλ)ba,
for all b ∈B and a ∈A. In particular, we have (Tb)a= (Tb′)a′ for all b, b′ ∈B
and a, a′ ∈A such that ba= b′a′. Therefore, i(T ) is well-defined. Moreover, we
have i(T )(aa′) = (i(T )a)a′ for all a, a′ ∈A. Indeed, let us fix a, a′ ∈A. Let us
write a = ba′′ with b ∈ B and a′′ ∈ A. We have i(T )(aa′) = i(T )(b(a′′a′)) =
(Tb)a′′a′ = i(T )(ba′′)a′ = (i(T )a)a′. By Lemma 6.3.5, it then follows that
i(T ) is a bounded linear map. By a straightforward computation, we have
〈i(T )(ba′), ηa〉 = 〈ba′, T ∗(η)a〉, for all b ∈ B, a, a′ ∈ A and η ∈ F . Hence,
〈i(T )x, ηa〉 = 〈x,T ∗(η)a〉 for all x,a ∈ A and η ∈ F . Let S ∈ L(F ,B). We
have 〈

x,

n∑
l=1

S(ηl)al

〉
=

〈
i
(
S∗)x, n∑

l=1

ηlal

〉
,

for all a1, . . . an ∈A,η1, . . . , ηn ∈ F and x ∈A.

As a consequence, the following map

i′(S) : 〈FA〉 →A;

n∑
l=1

ηlal �→
n∑

l=1

S(ηl)al

is well-defined and we have 〈x, i′(S)(ξ)〉 = 〈i(S∗)x, ξ〉 for all ξ ∈ 〈FA〉
and x ∈ A. It follows from the boundedness of the linear operator i(S∗)
and the Cauchy–Schwarz inequality that ‖i′(S)ξ‖2 = ‖〈i′(S)ξ, i′(S)ξ〉‖ =
‖〈ξ, i(S∗)(i′(S)ξ)〉‖ � ‖ξ‖‖i(S∗)(i′(S)ξ)‖ � ‖ξ‖‖i(S∗)‖‖i′(S)ξ‖ for all ξ ∈ E .
Hence, ‖i′(S)ξ‖ � ‖i(S∗)‖‖ξ‖ for all ξ ∈ E , which proves the continuity of
i′(S) since i′(S) is linear by definition. In particular, i′(S) extends uniquely
to a bounded linear map i′(S) : E → A. By continuity of the inner product,
we have proved that i′(S) ∈ L(E ,A) and i′(S)∗ = i(S∗). As a result, we have
well-defined maps i : L(A,E)→L(B,F) and i′ : L(F ,B)→L(E ,A) such that
i(T )∗ = i′(T ∗) for all T ∈ L(A,E). It is clear that i is linear and injective.

It remains to prove that im(i) = {S ∈ L(A,E); SB ⊂ F , S∗F ⊂ B}. Let
T ∈ L(B,F) and b ∈B ⊂L(A). For all a ∈A, we have [i(T ) ◦ b]a= i(T )(ba) =
(Tb)a. Hence i(T ) ◦ b = T (b) ∈ F . Fix η ∈ F . Write η = ζb with ζ ∈ F



ACTIONS OF MEASURED QUANTUM GROUPOIDS ON A FINITE BASIS 177

and b ∈ B. For all a ∈ A, we have [i(T )∗ ◦ η]a = [i′(T ∗)η]a = i′(T ∗)(ηa) =
i′(T ∗)(ζ(ba)) = (T ∗ζ)ba = T ∗(ζb)a = T ∗(η)a. Hence, i(T )∗ ◦ η = T ∗(η) ∈ B.
Conversely, let us fix S ∈ L(A,E) such that SB ⊂ F and S∗F ⊂ B. Let
T :A→E and T ′ :F →B be the maps defined by:

T (b) := S ◦ b, b ∈B; T ′(η) := S∗ ◦ η, η ∈ F .

For all b ∈B and η ∈ F , we have 〈T (b), η〉= (S◦b)∗◦η = b∗(S∗◦η) = 〈b,T ′(η)〉.
Hence T ∈ L(A,E) and T ∗ = T ′. Moreover, we have i(T )(ba) = T (b)a= S(ba)
for all a ∈A and b ∈B. Thus, we have S = i(T ).

(ii) Since [FA] = E , we have [(F ⊕ B)A] = E ⊕ A, which proves the
uniqueness of j. Let i12 := i and i21 := i′. By a similar argument as in
statement (i), we prove that there exists a unique map i11 : L(F) → L(E)
such that i11(T )(ηa) = (Tη)a for all η ∈ F and a ∈ A. The nondegenerate
inclusion of C∗-algebras B ⊂ M(A) extends to a unital ∗-homomorphism
i22 : M(B) → M(A). Then we consider the map j : L(F ⊕ B) → L(E ⊕ A)
defined by j(x) := (ikl(xkl))k,l=1,2 for all x = (xkl)k,l=1,2 ∈ L(F ⊕ B). It is
clear that j(x)(ηa) = (xη)a for all x ∈ L(F ⊕B), η ∈ F ⊕B and a ∈ A. The
fact that j is a unital faithful ∗-homomorphism is then straightforward. �

Remarks 6.3.7. With the notation and hypotheses of the previous propo-
sition, we have:

(i) for all T ∈ L(B,F), j(ιF (T )) = ιE(i(T ));
(ii) for all m ∈M(B), j(ιB(m)) = ιA(m), where we identify M(B)⊂M(A).

Lemma 6.3.8. Let j = 1,2. We have a canonical embedding

L(A2 ⊗ S2j ,E2 ⊗ S2j)→L(A1 ⊗ S12 ⊗ S2j ,E1 ⊗ S12 ⊗ S2j);

T �→ T̃ ,

where for T ∈ L(A2 ⊗ S2j ,E2 ⊗ S2j) the operator T̃ ∈ L(A1 ⊗ S12 ⊗ S2j ,E1 ⊗
S12⊗S2j) is defined by T̃ (xa) = T (x)a for all x ∈A2⊗S2j and a ∈A1⊗S12⊗
S2j . Moreover, the image of L(A2 ⊗ S2j ,E2 ⊗ S2j)→L(A1 ⊗ S12 ⊗ S2j ,E1 ⊗
S12 ⊗ S2j) is{

X ∈ L(A1 ⊗ S12 ⊗ S2j ,E1 ⊗ S12 ⊗ S2j);

X(A2 ⊗ S2j)⊂ E2 ⊗ S2j and X∗(E2 ⊗ S2j)⊂A2 ⊗ S2j

}
.

Proof. This follows from Lemma 6.3.6 with A := A1 ⊗ S12 ⊗ S2j , B :=
A2⊗S2j , E := E1⊗S12⊗S2j and F := E2⊗S2j ⊂L(A1⊗S12⊗S2j ,E1⊗S12⊗
S2j). The assumptions of Lemma 6.3.6 are satisfied in this case in virtue of
Propositions 5.2.5(1) and 6.3.2. �

Notation 6.3.9. Let

idE1 ⊗ δ212 : L(A1 ⊗ S12,E1 ⊗ S12)

→L(A1 ⊗ S12 ⊗ S22,E1 ⊗ S12 ⊗ S22)
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be the unique linear extension of idE1 ⊗δ212 : E1⊗S12 →L(A1⊗S12⊗S22,E1⊗
S12 ⊗ S22) such that (idE1 ⊗ δ212)(T )(idA1 ⊗ δ212)(x) = (idE1 ⊗ δ212)(Tx) for all
x ∈M(A1 ⊗ S12) and T ∈ L(A1 ⊗ S12,E1 ⊗ S12).

Proposition-Definition 6.3.10. There exists a unique linear map

δE2 : E2 →L(A2 ⊗ S22,E2 ⊗ S22)

satisfying the relation [δE2(ξ)a]b= (idE1 ⊗ δ212)(ξ)(ab) for all ξ ∈ E2, a ∈A2 ⊗
S22 and b ∈A1 ⊗ S12 ⊗ S22.

Proof. Let us prove the inclusion (idE1 ⊗ δ212)(E2)(A2 ⊗ S22) ⊂ E2 ⊗ S22.
It follows from Lemma 6.3.3(2) that ιE1⊗S12(E2) ⊂ J2. Fix ξ ∈ E2 and x ∈
A2 ⊗ S22. We have

ιE1⊗S12⊗S22

((
idE1 ⊗ δ212

)
(ξ)x

)
=

(
idJ1 ⊗ δ212

)(
ιE1⊗S12(ξ)

)
ιA1⊗S12⊗S22(x)

= δJ2

(
ιE1⊗S12(ξ)

)
ιA2⊗S22(x) ∈ J2 ⊗ S22.

As in the proof of Proposition 6.3.4, ιE1⊗S12⊗S22((idE1 ⊗ δ212)(ξ)x) is the norm

limit of finite sums of elements of the form ιE1⊗S12⊗S22((idE1⊗S12 ⊗ω)δ
(2)
E1

(η)⊗
s) with η ∈ E1, ω ∈ B(H21)∗ and s ∈ S22. Hence, (idE1 ⊗ δ212)(ξ)x ∈ E2 ⊗ S22

since ιE1⊗S12⊗S22 is isometric. Therefore, we have (idE1 ⊗ δ212)(E2)(A2⊗S22)⊂
E2 ⊗ S22. The inclusion (idE1 ⊗ δ212)(E2)

∗(E2 ⊗ S22) ⊂ A2 ⊗ S22 is obtained
by a similar argument. Then the existence and uniqueness of the operator
δE2(ξ) ∈ L(A2 ⊗ S22,E2 ⊗ S22) follows as an application of Lemma 6.3.8 with
j = 2. It is clear that the map δE2 : E2 →L(A2 ⊗ S22,E2 ⊗ S22) is linear. �

In the following, we prove that δE2 is a continuous action of G2 on E2.
We also show that the induction procedure for equivariant Hilbert modules is
equivalent to that of §4.3 [2].

Notation 6.3.11. Let e1,1 := ιK(E1)(1E1) ∈M(J1) and e2,1 := ιA1(1A1) ∈
M(J1), where we identify M(J1) = L(E1 ⊕A1). Let (J2, δJ2 , e1,2, e2,2) be the
induced linking G2-C

∗-algebra, with el,2 := el,1 ⊗ 1S12 ∈ M(J2) for l = 1,2
(cf. 4.14 [2]). Consider e2,2J2e2,2 and e1,2J2e2,2 endowed with their struc-
ture of G2-C

∗-algebra and G2-equivariant Hilbert e2,2J2e2,2-module [3]. Re-

call that the morphism IndG2

G1
ιA1 : A2 → J2; x �→ (ιA1 ⊗ idS12)(x) induces a

G2-equivariant ∗-isomormorphism A2 → e2,2J2e2,2 (cf. 4.17, 4.18 [2]).

Proposition 6.3.12. We use the above notation:

(i) The map δE2 : E2 →L(A2 ⊗ S22,E2 ⊗ S22) is a continuous action of G2

on E2.
(ii) There exists a unique bounded linear map IndG2

G1
ιE1 : E2 → J2 such that

IndG2

G1
ιE1

(
(idE1⊗S12 ⊗ ω)δ

(2)
E1

(ξ)
)
= (idJ1⊗S12 ⊗ ω)δ

(2)
J1

(
ιE1(ξ)

)
,
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for all ξ ∈ E1 and ω ∈ B(H21)∗. Moreover, we have IndG2

G1
ιE1(E2) =

e1,2J2e2,2 and IndG2

G1
ιE1 induces a G2-equivariant unitary equivalence

E2 → e1,2J2e2,2; ξ �→ IndG2

G1
ιE1(ξ) over the G2-equivariant ∗-isomorphism

A2 → e2,2J2e2,2; a �→ IndG2

G1
ιA1(a).

(iii) There exists a unique ∗-homomorphism τ : K(E2 ⊕ A2) → J2 such that

τ ◦ιE2 = IndG2

G1
ιE1 and τ ◦ιA2 = IndG2

G1
ιA1 . Moreover, τ is an isomorphism

of linking G2-C
∗-algebras.

(iv) If T ∈ IndG2

G1
(K(E1)) ⊂ L(E1 ⊗ S12) and η ∈ E2 ⊂ L(A1 ⊗ S12,E1 ⊗ S12),

then we have T ◦ η ∈ E2. Moreover, for all T ∈ IndG2

G1
(K(E1)), we have

[η �→ T ◦η] ∈K(E2). More precisely, the map IndG2

G1
(K(E1))→K(E2); T �→

[η �→ T ◦ η] is a G2-equivariant ∗-isomorphism.

Proof. Let us denote B := e2,2J2e2,2 and F := e1,2J2e2,2 for short.

(i)–(ii) We have ιE1⊗S12(E2) ⊂ J2 (cf. Lemma 6.3.3). Let IndG2

G1
ιE1 :=

ιE1⊗S12�E2 : E2 → J2. It also follows from the formulas δ
(2)
J1

(el,1) = el,2 ⊗ 1S21

for l= 1,2 (4.14 [2]) that

e1,2J2e2,2 =
[
(idJ1⊗S12 ⊗ ω)δ

(2)
J1

(e1,1xe2,1); x ∈ J1, ω ∈ B(H21)∗
]

=
[
(idJ1⊗S12 ⊗ ω)δ

(2)
J1

(
ιE1(ξ)

)
; ξ ∈ E1, ω ∈ B(H21)∗

]
= IndG2

G1
ιE1(E2).

Let ξ, η ∈ E2. Since 〈ξ, η〉 ∈A2, we have (cf. Proposition 2.3.2(3))〈
IndG2

G1
ιE1(ξ), Ind

G2

G1
ιE1(η)

〉
= ιE1⊗S12(ξ)

∗ιE1⊗S12(η) = ιA1⊗S12

(
〈ξ, η〉

)
= IndG2

G1
ιA1

(
〈ξ, η〉

)
.

We also have IndG2

G1
ιE1(ξ) = IndG2

G1
ιE1(ξ) Ind

G2

G1
ιA1(a) for all a ∈A2 and ξ ∈ E2

(cf. Proposition 2.3.2(1)). The map Φ : E2 → F ; ξ �→ IndG2

G1
ιE1(ξ) is a uni-

tary equivalence of Hilbert modules over the ∗-isomorphism φ : A2 → B;
a �→ IndG2

G1
ιA1(a).

Let us prove that (Φ ⊗ idS22) ◦ δE2 = δF ◦ Φ. It is immediately verified
that for ξ ∈ E1 ⊗ S12, the formula (ιE1⊗S12 ⊗ idS22)(idE1 ⊗ δ212)(ξ) = (idJ1 ⊗
δ212)(ιE1⊗S12(ξ)) holds true. Let us fix ξ ∈ L(A1 ⊗ S12,E1 ⊗ S12). For all a ∈
A1 ⊗ S12 and x ∈A1 ⊗ S12 ⊗ S22, we have

ιE1⊗S12⊗S22

((
idE1 ⊗ δ212

)
(ξ)

)
ιA1⊗S12⊗S22

((
idA1 ⊗ δ212

)
(a)x

)
=

(
idJ1 ⊗ δ212

)(
ιE1⊗S12(ξa)

)
ιA1⊗S12⊗S22(x)

and (idJ1 ⊗ δ212)(ιE1⊗S12(ξa)) = (idJ1 ⊗ δ212)(ιE1⊗S12(ξ))ιA1⊗S12⊗S22((idA1 ⊗
δ212)(a)). Hence,

ιE1⊗S12⊗S22

((
idE1 ⊗ δ212

)
(ξ)

)
ιA1⊗S12⊗S22

((
idA1 ⊗ δ212

)
(a)x

)
=

(
idJ1 ⊗ δ212

)(
ιE1⊗S12(ξ)

)
ιA1⊗S12⊗S22

((
idA1 ⊗ δ212

)
(a)x

)
.
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Thus, ιE1⊗S12⊗S22((idE1 ⊗ δ212)(ξ))ιA1⊗S12⊗S22(x) = (idJ1 ⊗ δ212)(ιE1⊗S12(ξ))×
ιA1⊗S12⊗S22(x) for all ξ ∈ L(A1⊗S12,E1⊗S12) and a ∈A1⊗S12⊗S22 in virtue
of the non-degeneracy of idA1 ⊗ δ212. Let us fix ξ ∈ E2. For all x ∈A2⊗S22 and
y ∈A1 ⊗ S12 ⊗ S21 we have[

(Φ⊗ idS22)δE2(ξ)(φ⊗ idS22)(x)
]
ιA1⊗S12⊗S22(y)

= ιE1⊗S12⊗S22

((
δE2(ξ)x

)
y
)

= ιE1⊗S12⊗S22

((
idE1 ⊗ δ212

)
(ξ)(xy)

)
=

(
idJ1 ⊗ δ212

)(
ιE1⊗S12(ξ)

)
ιA1⊗S12⊗S22(xy)

=
[
δF

(
Φ(ξ)

)
(φ⊗ idS22)(x)

]
ιA1⊗S12⊗S22(y),

which also holds for all y ∈M(A1 ⊗S12 ⊗S22) by strict continuity. In partic-
ular, by applying this formula for y ∈A2 ⊗ S22, we have then proved that

(Φ⊗ idS22)
(
δE2(ξ)

)
(φ⊗ idS22)(x) = δF

(
Φ(ξ)

)
(φ⊗ idS22)(x)

for all x ∈A2⊗S22. Hence, (Φ⊗ idS22)(δE2(ξ)) = δF (Φ(ξ)) for all ξ ∈ E2. This
proves that δE2 is a continuous action of G2 on E2 and Φ is G2-equivariant.

(iii) There exists a unique unital faithful ∗-homomorphism

j : L(E2 ⊕A2)→L
(
(E1 ⊗ S12)⊕ (A1 ⊗ S12)

)
such that j(x)(ηa) = (xη)a for all x ∈ L(E2⊕A2), η ∈ E2⊕A2 and a ∈A1⊗S12

(Lemma 6.3.8(ii), with A := A1 ⊗ S12, B := A2, E := E1 ⊗ S12 and F := E2).
Now, it should be noted that we have the following canonical identifications:

J2 ⊂M(J1 ⊗ S12) = L
(
(E1 ⊕A1)⊗ S12

)
= L

(
(E1 ⊗ S12)⊕ (A1 ⊗ S12)

)
.

We have j(ιE2(ξ)) = IndG2

G1
ιE1(ξ) for all ξ ∈ E2 and j(ιA2(b)) = IndG2

G1
ιA1(b)

for all b ∈A2 (cf. Remarks 6.3.7). In particular, we have j(K(E2 ⊕A2))⊂ J2.
Let τ := j�K(E2⊕A2):K(E2 ⊕A2)→ J2. Since J2 is generated by e1,2J2e2,2 and
e2,2J2e2,2 as a C∗-algebra, τ has dense range (cf. (ii)); moreover, τ is also
isometric (faithful), therefore τ is surjective. Thus, we have proved that τ is
a ∗-isomorphism. The G2-equivariance of τ is derived from straightforward
computations.

(iv) Consider the G2-equivariant ∗-isomorphism

ϕ : IndG2

G1

(
K(E1)

)
→ e1,2J2e1,2; k �→ IndG2

G1
ιK(E1)(k)

(cf. 4.18 [2], note that K(F ) = e1,2J2e1,2). By statement (ii), τ induces by re-
striction a G2-equivariant ∗-isomorphism τ : f1,2K(E2 ⊕A2)f1,2 → e1,2J2e1,2,
where f1,2 := ιE2(1E2) and f2,2 := ιA2(1A2). We have an isomorphism ψ :
K(E2) → f1,2K(E2 ⊕ A2)f1,2; k �→ ιK(E2)(k) of G2-C

∗-algebras. Hence, χ :=

ψ−1 ◦ τ−1 ◦ ϕ : IndG2

G1
(K(E1))→K(E2) is an isomorphism of G2-C

∗-algebras.
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It is clear that χ(T )ξ = T ◦ ξ for all T ∈ IndG2

G1
(K(E1)) ⊂ L(E1 ⊗ S12) and

ξ ∈ E2 ⊂L(A1 ⊗ S12,E1 ⊗ S12). �

Proposition-Definition 6.3.13. Let us fix some notation. Consider:

• two G1-C
∗-algebras A1 and B1;

• two G1-equivariant Hilbert modules E1 and F1 over A1 and B1, respectively;
• a G1-equivariant unitary equivalence Φ1 : E1 → F1 over a G1-equivariant

∗-isomorphism φ1 :A1 →B1.

Denote by:

• A2 := IndG2

G1
(A1) and B2 := IndG2

G1
(B1) the induced G2-C

∗-algebras;

• IndG2

G1
(φ1) :A2 →B2 the induced G2-equivariant ∗-isomorphism;

• E2 := IndG2

G1
(E1) and F2 := IndG2

G1
(F1) the induced G2-equivariant Hilbert

modules over A2 and B2, respectively;
• Φ1⊗ idS12 : L(A1⊗S12,E1⊗S12)→L(B1⊗S12,F1⊗S12) the unique linear

map such that (Φ1 ⊗ idS12)(T )(φ1 ⊗ idS12)(x) = (Φ1 ⊗ idS12)(Tx) for all
L(A1 ⊗ S12,E1 ⊗ S12) and x ∈A1 ⊗ S12 (cf. Notation A.3.6).

Then, (Φ1 ⊗ idS12)(E2) ⊂ F2 and the map IndG2

G1
(Φ1) := (Φ1 ⊗ idS12)�E2 :

E2 → F2 is a G2-equivariant unitary equivalence over IndG2

G1
(φ1) : A2 → B2.

Moreover, for all ξ ∈ E1 and ω ∈ B(H21)∗ we have IndG2

G1
(Φ1)((idE1⊗S12 ⊗

ω)δ
(2)
E1

(ξ)) = (idF1⊗S12 ⊗ ω)δ
(2)
F1

(Φ1ξ).

Proof. Denote by J1 := K(E1 ⊕ A1) and K1 := K(F1 ⊕ B1) the linking
G1-C

∗-algebras, whose linking structures are respectively defined by: e1,1 :=
ιE1(1E1), e2,1 := ιA1(1A1); f1,1 := ιF1(1F1), f2,1 := ιB1(1B1). We also de-
note by (J2, δJ2 , e1,2, e2,2) and (K2, δK2 , f1,2, f2,2) the induced linking G2-C

∗-
algebras, where el,2 := el,1⊗1S12 and fl,2 := fl,1⊗1S12 for l= 1,2 (cf. 4.14 [2]).
There exists a unique ∗-isomorphism τ1 : J1 →K1 such that τ1 ◦ ιE1 = ιF1 ◦Φ1

and τ1 ◦ ιA1 = ιB1 ◦φ1 (cf. Propositions A.3.5 and 6.1.18). We then denote by

τ2 := IndG2

G1
τ1 : J2 →K2

the induced morphism. Since τ2 is an isomorphism of linking G2-C
∗-algebras,

it induces a G2-equivariant unitary equivalence Ψ : e1,2J2e2,2 → f1,2K2f2,2
over the isomorphism of G2-C

∗-algebras ψ : e2,2J2e2,2 → f2,2K2f2,2. Since τ1 ◦
ιA1 = ιB1 ◦ φ1, we have

τ2 ◦ IndG2

G1
ιA1 = IndG2

G1
ιB1 ◦ φ2.

Therefore, by composition of G2-equivariant unitary equivalences (cf. Re-
marks A.3.2(2)) and by applying Proposition 6.3.12, we obtain a G2-
equivariant φ2-compatible unitary operator Φ2 : E2 → F2. By a straightfor-
ward computation, we show that Φ2 = (Φ1 ⊗ idS12)�E2 . �

By exchanging the roles of G1 and G2, we define as above an induction
procedure for G2-equivariant Hilbert modules.
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In the following, we investigate the composition of IndG2

G1
and IndG1

G2
. Let

A1 be a G1-C
∗-algebra and E1 a G1-equivariant Hilbert A1-module. Denote

by:

• A2 := IndG2

G1
(A1) and E2 = IndG2

G1
(E1) ⊂ L(A1 ⊗ S12,E1 ⊗ S12) the induced

G2-C
∗-algebra and the induced G2-equivariant Hilbert A2-module;

• C = IndG1

G2
(A2) and F := IndG1

G2
(E2) ⊂ L(A2 ⊗ S21,E2 ⊗ S21) the induced

G1-C
∗-algebra and the induced G1-equivariant Hilbert C-module.

Proposition 6.3.14. With the above notation and hypotheses, we have the
following statements:

1. there exists a unique map Π1 : E1 → F such that(
Π1(ξ)x

)
a= δ

(2)
E1

(ξ)(xa),

for all ξ ∈ E1, x ∈A2 ⊗ S21 and a ∈A1 ⊗ S12 ⊗ S21;

moreover, Π1 is a G1-equivariant unitary equivalence over the G1-

equivariant ∗-isomorphism π1 :A1 →C; a �→ δ
(2)
A1

(a);

2. δ2E1
: E1 →M̃(E2⊗S21); ξ �→Π1(ξ) is a well-defined linear map such that:

(i) δ2E1
(ξa) = δ2E1

(ξ)δ2A1
(a) and 〈δ2E1

(ξ), δ2E1
(η)〉 = δ2A1

(〈ξ, η〉) for all ξ, η ∈
E1 and a ∈A1,

(ii) [δ2E1
(E1)(1A2 ⊗ S21)] = E2 ⊗ S21 = [(1E2 ⊗ S21)δ

2
E1
(E1)].

Proof. 1. The existence and uniqueness of Π1 is an immediate application
of Lemma 6.3.8 with j = 1 and the proof is very similar to that of Proposi-
tion 6.3.10. The fact that Π1 is a G1-equivariant unitary equivalence over π1

is a straightforward consequence of Proposition 6.3.12(ii), (iii) and Proposi-
tion 5.2.6(2).

2. Statement (ii) and the fact that δ2E1
takes its values in M̃(E2 ⊗ S21) are

proved by combining the formulas [F (1A2 ⊗S21)] = E2⊗S21 = [(1E2 ⊗S21)F ]
(cf. Proposition 6.3.2) with the fact that Π1 is bijective. Statement (i) follows
from the compatibility of Π1 with π1. �

We have proved the following result:

Theorem 6.3.15. Let G1 and G2 be two monoidally equivalent regular
locally compact quantum groups. The map

IndG2

G1
: (E1, δE1)

�→
(
E2 := IndG2

G1
(E1), δE2 : ξ ∈ E2 �→

[
x ∈A2 ⊗ S22 �→

(
idE1 ⊗ δ212

)
(ξ)x

])
,

where E1 is a Hilbert module over the G1-C
∗-algebra A1 and A2 = IndG2

G1
(A1)

denotes the induced G2-C
∗-algebra, is a one-to-one correspondence up to uni-

tary equivalence. The inverse map, up to unitary equivalence, is

IndG1

G2
: (F2, δF2)

�→
(
F1 := IndG1

G2
(F2), δF1 : ξ ∈ F1 �→

[
x ∈B1 ⊗ S11 �→

(
idF2 ⊗ δ121

)
(ξ)x

])
,
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where F2 is a Hilbert module over the G2-C
∗-algebra B2 and B1 = IndG2

G1
(B2)

denotes the induced G1-C
∗-algebra.

Proof. This is a consequence of Propositions 6.3.14, 6.3.13, and the corre-
sponding results obtained by exchanging the roles of G1 and G2. �

Let B1 be a G1-C
∗-algebra. Let us denote by B2 := IndG2

G1
(B1) the in-

duced G2-C
∗-algebra. Let δkBj

: Bj → M(Bk ⊗ Skj) for j, k = 1,2 be the ∗-
homomorphisms defined in Notation 5.2.7.

Notation 6.3.16. Let E1 be a G1-equivariant Hilbert B1-module. Let us
denote by F2 = IndG2

G1
(F1) the induced G2-equivariant Hilbert B2-module.

We have four linear maps

δkFj
: Fj →L(Bk ⊗ Skj ,Fk ⊗ Skj), for j, k = 1,2,

defined as follows:

• δ1F1
:= δF1 and δ2F2

:= δF2 ;

• δ2F1
: F1 →L(B2 ⊗ S21,F2 ⊗ S21) is the unique linear map such that(

δ2F1
(ξ)x

)
b= δ

(2)
F1

(ξ)(xb)

for all ξ ∈ F1, x ∈B2⊗S21 and b ∈B1⊗S12⊗S22, where δ
(2)
F1

(ξ) := (idE1 ⊗
δ211)δF1(ξ) (cf. Proposition 6.3.14);

• δ1F2
: F2 →L(B1⊗S12,F1⊗S12) is the unique linear map such that for all

ξ ∈ F2, x ∈ IndG1

G2
(B2)⊗ S12 and y ∈B2 ⊗ S21 ⊗ S12, we have[
(Π1 ⊗ idS12)

(
δ1F2

(ξ)
)
x
]
y = δ

(1)
F2

(ξ)(xy),

where δ
(1)
F2

(ξ) := (idF1 ⊗ δ122)δF2(ξ) and Π1 : F1 → IndG1

G2
(F2) (cf. Proposi-

tion 6.3.14(1)).

Lemma 6.3.17. For all j, k, l= 1,2, we have the following statements:

1. δkFj
(Fj)⊂ M̃(Fk ⊗ Skj);

2. δkFj
(ξb) = δkFj

(ξ)δkBj
(b) and 〈δkFj

(ξ), δkFj
(η)〉= δkBj

(〈ξ, η〉) for all ξ, η ∈ Fj

and b ∈Bj ;
3. [δkFj

(Fj)(1Bk
⊗ Skj)] = Fk ⊗ Skj = [(1Fk

⊗ Skj)δ
k
Fj

(Fj)];

4. δlFk
⊗ idSkj

(resp., idFl
⊗δklj) extends uniquely to a linear map from L(Bk⊗

Skj ,Ek ⊗ Skj) to L(Bl ⊗ Slk ⊗ Skj ,El ⊗ Slk ⊗ Skj) such that(
δlFk

⊗ idSkj

)
(T )

(
δlBk

⊗ idSkj

)
(x) =

(
δlFk

⊗ idSkj

)
(Tx)(

resp.,
(
idFl

⊗ δklj
)
(T )

(
idBl

⊗ δklj
)
(x) = idFl

⊗ δklj
)
(Tx))

for all T ∈ L(Bk ⊗ Skj ,Ek ⊗ Skj) and x ∈Bk ⊗ Skj ;
5. (δlFk

⊗ idSkj
)δkFj

= (idFl
⊗ δklj)δ

l
Fj

.
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Proof. Let C := IndG1

G2
(B2), D := IndG2

G1
(C), K = IndG1

G2
(F2) and L =

IndG2

G1
(K ). There exists a unique G2-equivariant unitary equivalence Π2 :

F2 → L (Proposition 6.3.14(1), after exchanging the roles of G1 and G2)
over the G2-equivariant ∗-isomorphism π2 :B2 →D.

1. This statement will follow straightforwardly from the third one.
2. This statement has already been proved for (j, k) = (1,1) (by defini-

tion), (j, k) = (2,2) (cf. Proposition 6.3.12(i)) and for (j, k) = (1,2) (cf. Propo-
sition 6.3.14). Moreover, the case (j, k) = (2,1) follows from the formulas
δ1F2

= (Π−1
1 ⊗ idS12)Π2 and δ1B2

= (π−1
1 ⊗ idS12)π2.

3. This statement is true by assumption for (j, k) = (1,1), for (j, k) = (2,2)
(cf. Proposition 6.3.12(i)) and for (j, k) = (1,2) (cf. Proposition 6.3.14(2)(ii)).
By Propositions 6.3.2 and 6.3.14, we have [L (C ⊗ S12)] = K ⊗ S12, L =
Π2(F2) and K =Π1(F1). Therefore, we have[

δ1F2
(F2)(B1 ⊗ S12)

]
=

[(
Π−1

1 ⊗ idS12

)
(L )

(
π−1
1 ⊗ idS12

)
(D⊗ S12)

]
=

[(
Π−1

1 ⊗ idS12

)(
L (D⊗ S12)

)]
= F1 ⊗ S12.

It then follows from the second statement and the fact that [δ1B2
(B2)(1B1 ⊗

S12)] =B1 ⊗ S12 that [δ1F2
(F2)(1B1 ⊗ S12)] = F1 ⊗ S12, which is statement 3

for (j, k) = (2,1).
4. Let j, k, l = 1,2. The uniqueness of the extensions is obvious by the

nondegeneracy of δklj and δlBk
. The linear map idFl

⊗ δklj : L(Bk ⊗ Skj ,Ek ⊗
Skj)→L(Bl ⊗ Slk ⊗ Skj ,El ⊗ Slk ⊗ Skj) is defined by(

idFl
⊗ δklj

)
(T ) := T ⊗idBl

⊗δklj
1, for all T ∈ L(Bk ⊗ Skj ,Ek ⊗ Skj),

where we use the identifications (6.13) and (6.17). As in 2.4 (a) [3], there
exists a unique unitary V l

k ∈ L(Fk ⊗δlBk

(Bl ⊗ Slk),Fl ⊗ Slk) such that

V l
k (ξ ⊗δlBk

x) = δlFk
(ξ)x, for all ξ ∈ Fk and x ∈Bl ⊗ Slk.

The linear extension δlFk
⊗ idSkj

: L(Bk ⊗ Skj ,Ek ⊗ Skj) → L(Bl ⊗ Slk ⊗
Skj ,El⊗Slk⊗Skj) is defined by (δlFk

⊗ idSkj
)(T ) := (V l

k ⊗C 1)(T ⊗δlBk
⊗idSkj

1)

for all T ∈ L(Bk ⊗ Skj ,Ek ⊗ Skj), up to the identifications (6.12) and (6.16).
5. The formula (δlFk

⊗ idSkj
)δkFj

= (idFl
⊗ δklj)δ

l
Fj

is derived from Propo-

sition 6.3.12 after long but straightforward computations. �

Let us consider the C∗-algebra B :=B1 ⊕B2 endowed with the continuous
action (βB , δB) (cf. Proposition 5.2.9).

Proposition 6.3.18. Let F1 be a G1-equivariant Hilbert B1-module. Let
F2 := IndG2

G1
(F1) be the induced G2-equivariant Hilbert B2-module. Consider

the Hilbert B-module F := F1⊕F2. Denote by Πk
j : L(Bk⊗Skj ,Fk⊗Skj)→

L(B ⊗ S,F ⊗ S) the linear extension of the canonical injection Fk ⊗ Skj →
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F ⊗ S. Let us consider the linear maps δF : F →L(B ⊗ S,F ⊗ S) and βF :
C

2 →L(F ) defined by:

δF (ξ) :=
∑

k,j=1,2

Πk
j ◦ δkFj

(ξj), ξ = (ξ1, ξ2) ∈ F ;

βF (λ,μ) :=

(
λ 0
0 μ

)
, (λ,μ) ∈C

2.

Then, the triple (F , βF , δF ) is a G-equivariant Hilbert B-module.

Proof. Let us consider J1 := K(F1 ⊕B1) (resp., K(F2 ⊕B2)) the linking
G1-C

∗-algebra (resp., linking G2-C
∗-algebra) associated with F1 (resp., F2).

Let J2 := IndG2

G1
(J1) be the induced G2-C

∗-algebra. Let us consider J := J1 ⊕
J2 endowed with the continuous action (βJ , δJ) of G (see above). We denote
L := K(F ⊕ B) the linking C∗-algebra associated with F and we identify
L = J1 ⊕K(F2 ⊕B2). We have an isomorphism of linking C∗-algebras f :=
idJ1 ⊕ τ : L→ J (Proposition 6.3.12(ii)). Let (βL, δL) be the continuous action
of G on L obtained by transport of structure, i.e.:

δL(x) :=
(
f−1 ⊗ idS

)
δJ

(
f(x)

)
, x ∈ L;

βL(n) := f−1
(
βJ (n)

)
, n ∈C

2.

By straightforward computations, we show that (βL, δL) is compatible with
(βB , δB) (cf. Definition 6.1.8) and we prove that δL(ιF (ξ)) = ιF⊗S(δF (ξ)),
for all ξ ∈ F . Therefore, the result follows from Propositions 6.1.11(a) and
6.1.21. �

Proposition 6.3.19. Let (E , βE , δE ) be a G-equivariant Hilbert A-module.
In the following, we use the notation of Proposition-Definition 6.2.5. Let j, k =
1,2 with j �= k. Let

Ãj := Ind
Gj

Gk

(
Ak, δ

k
Ak

)
and Ẽj := Ind

Gj

Gk

(
Ek, δ

k
Ek

)
.

If ξ ∈ Ej , then we have δkEj
(ξ) ∈ Ẽj ⊂ M̃(Ek ⊗ Skj) and the map Π̃j : Ej →

Ẽj ; ξ �→ δkEj
(ξ) is a Gj-equivariant unitary equivalence over π̃j :Aj → Ãj (cf.

Proposition 5.2.8).

Proof. We have Ej = [(idEj ⊗ ω)δjEk
(ξ); ω ∈ B(Hjk)∗, ξ ∈ Ek] (cf. Propo-

sition-Definition 6.2.5(iv)) and for all ξ ∈ Ej and ω ∈ B(Hjk)∗ we have

δkEj
(idEj ⊗ ω)δjEk

(ξ) = (idEk⊗Skj
⊗ ω)

(
δkEj

⊗ idSjk

)
δjEk

(ξ)

= (idEk⊗Skj
⊗ ω)δ

(k)
Ej

(ξ)

(cf. Proposition-Definition 6.2.5(v)), where δ
(k)
Ej

(ξ) := (idEj ⊗ δkjj)δ
j
Ej
(ξ). As a

consequence, statement 1 is proved as well as the surjectivity of Π̃j . The fact
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that Π̃j is a Gj -equivariant π̃j -compatible unitary operator is just a restate-

ment of Proposition-Definition 6.2.5(iii) and (idEk
⊗ δjkj)δ

k
Ej

= (δkEj
⊗ idSjj )δ

j
Ej

(Proposition-Definition 6.2.5(v)). �

Theorem 6.3.20. Let GG1,G2 be a colinking measured quantum groupoid
between two regular monoidally equivalent locally compact quantum groups G1

and G2. Let j = 1,2. The map (E , βE , δE ) �→ (Ej , δ
j
Ej
) is a one-to-one cor-

respondence up to unitary equivalence (cf. Proposition-Definition 6.2.5 and
Lemma 6.2.6(1)). The inverse map, up to unitary equivalence, is (Fj , δFj ) �→
(F , βF , δF ) (cf. Propositions 6.3.18, 6.3.13 and Lemma 6.2.6(2)).

Proof. Let A be a G-C∗-algebra and E a G-equivariant Hilbert A-module.
Let us use all the notation introduced in §6.2. Let us denote:

(B1, δB1) :=
(
A1, δ

1
A1

)
, (B2, δB2) := IndG2

G1
(B1, δB1);

(F1, δF1) :=
(
E1, δ

1
E1

)
, (F2, δF2) := IndG2

G1
(F1, δF1).

Let us endow the C∗-algebra B :=B1⊕B2 with the continuous action (βB , δB)
of G and F := F1⊕F2 with the structure of G-equivariant Hilbert B-module
(βF , δF ) (cf. Propositions 5.2.9, 6.3.18). Let ψA : A → B the canonical G-
equivariant ∗-isomorphism defined for all a ∈A by ψA(a) := (qA,1a, π̃2(qA,2a))
(cf. 4.10 [2]). Then we consider the map Ψ : E → F given by

Ψ(ξ) :=
(
qE ,1ξ, Π̃2(qE ,2ξ)

)
, for all ξ ∈ E .

It is clear from Proposition 6.3.19 that Ψ is a ψA-compatible unitary operator.
Let us consider the G-C∗-algebras K := K(E ⊕ A) and L := K(F ⊕ B). Let
f :K → L be the associated isomorphism of linking C∗-algebras (cf. Propo-
sition A.3.5). In virtue of Proposition 6.1.18, it only remains to prove that
f is G-equivariant. We also consider the G1-C

∗-algebra J1 := K(F1 ⊕ B1)

and the induced G2-C
∗-algebra J2 := IndG2

G1
(J1). We recall that we have a

canonical isomorphism τ : K(F2 ⊕ B2)→ J2 (cf. Proposition 6.3.12(ii)). Let
us endow the C∗-algebra J := J1⊕J2 with the continuous action (βJ , δJ) of G.
Therefore, it amounts to proving that the ∗-isomorphism (idJ1 ⊕ τ)f :K → J
is G-equivariant (we identify L = J1 ⊕K(F2 ⊕ B2)). We apply the notation
of §6.2 to the G-C∗-algebra K and identify Kj := qK,jK = K(Ej ⊕ Aj) for
j = 1,2. Let us consider as above (by exchanging the roles of A and K) the
G-equivariant ∗-isomorphism ψK :K → J . By evaluating on elements of the
form ιE (ξ) for ξ ∈ E and ιA(a) for a ∈ A, it is staightforward to see that
(idJ1 ⊕ τ)f = ψK . �

7. Takesaki–Takai duality and equivariant Morita equivalence

In this section, we fix a measured quantum groupoid G = (N,M,α,β,Δ, T,
T ′, ε) on the finite-dimensional basis N =

⊕
1�l�kMnl

(C) and we use all the
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notation introduced in §3.1 and §3.2. We will use the notation and results of
§5.1, §5.3, and §6.1.

Equivariant Hilbert bimodules and Morita equivalence. In this para-
graph, we introduce the notion of equivariant representation of a G-C∗-algebra
on a Hilbert module acted upon by G. We then introduce the notion of equi-
variant Morita equivalence.

Notation 7.1. Let A and B be C∗-algebras. Let E be a Hilbert B-module.
If γ :A→L(E ) is a ∗-homomorphism then, up to the identification M(K(E )⊗
S) = L(E ⊗S), we can extend γ⊗ idS to a ∗-homomorphism γ⊗ idS : M̃(A⊗
S)→L(E ⊗ S) (cf. §1).

As in 2.9 [3], we have:

Definition 7.2. Let A and B be two G-C∗-algebras, E a Hilbert B-
module, (βE , δE ) an action of G on E and γ : A→L(E ) a ∗-representation.
We say that γ is G-equivariant if we have the following.

1. δE (γ(a)ξ) = (γ ⊗ idS)(δA(a)) ◦ δE (ξ), for all a ∈A and ξ ∈ E ;
2. βE (n

o) ◦ γ(a) = γ(βA(n
o)a), for all n ∈N and a ∈A.

Remarks 7.3.

1. Provided that the second condition in the above definition is verified, the
first condition is equivalent to:

(7.1) V
(
γ(a)⊗δB 1

)
V ∗ = (γ ⊗ idS)δA(a), for all a ∈A,

where V ∈ L(E ⊗δB (B⊗S),E ⊗S) denotes the isometry defined in Propo-
sition 6.1.5(a). Indeed, we can interpret it as follows: V (γ(a) ⊗δB 1) =
(γ ⊗ idS)(δA(a))V , for all a ∈A. Moreover, for all a ∈A we have

(γ ⊗ idS)
(
δA(a)

)
V V ∗ = (γ ⊗ idS)

(
δA(a)

)
qβE α

= (γ ⊗ idS)
(
δA(a)qβAα

)
= (γ ⊗ idS)δA(a).

Hence, (V (γ(a) ⊗δB 1) = (γ ⊗ idS)(δA(a))V ⇔ V (γ(a) ⊗δB 1)V ∗ = (γ ⊗
idS)δA(a)), for all a ∈A.

2. We recall that the action δK(E ) of G on K(E ) is defined by δK(E )(k) :=
V (k ⊗δB 1)V ∗ for all k ∈ K(E ). Hence, (7.1) can be restated as follows:
δK(E )(γ(a)) = (γ ⊗ idS)δA(a) for all a ∈ A. In particular, if γ is non-
degenerate, then Definition 7.2 simply means that the ∗-homomorphism
γ :A→M(K(E )) is G-equivariant (cf. Definition 5.1.10).

3. If γ :A→L(E ) is a nondegenerate ∗-representation such that

δE

(
γ(a)ξ

)
= (γ ⊗ idS)

(
δA(a)

)
◦ δE (ξ), for all a ∈A and ξ ∈ E ,

then we have βE (n
o) ◦ γ(a) = γ(βA(n

o)a) for all n ∈N and a ∈A. Indeed,
this will be inferred from Remark 5.1.11 and the previous remark.
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Definition 7.4 (cf. §6 [22]). Let A and B be two C∗-algebras. An im-
primitivity A-B-bimodule is an A-B-bimodule E , which is a full left Hilbert
A-module for an A-valued inner product A〈·, ·〉 and a full right Hilbert B-
module for a B-valued inner product 〈·, ·〉B such that A〈ξ, η〉ζ = ξ〈η, ζ〉B for
all ξ, η, ζ ∈ E .

Remarks 7.5. Let A and B be two C∗-algebras and E an imprimitivity A-
B-bimodule. We recall that the norms defined by the inner products A〈·, ·〉 on
AE and 〈·, ·〉B on EB coincide. We also recall that the left (resp., right) action
of A (resp., B) on E defines a non-degenerate ∗-homomorphism γ :A→L(EB)
(resp., ρ :B →L(AE )).

Definition 7.6. Let A and B be two G-C∗-algebras. A G-equivariant im-
primitivity A-B-bimodule is an imprimitivity A-B-bimodule E endowed with
a continuous action of G on EB such that the left action γ : A → L(EB) is
G-equivariant.

Examples 7.7. Let A and B be two G-C∗-algebras.

(i) B is a G-equivariant imprimitivity B-B-bimodule for the inner products
given by B〈x, y〉 := xy∗ and 〈x, y〉B := x∗y for all x, y ∈B.

(ii) Let E be a G-equivariant Hilbert B-module. If E is full, then E is a
G-equivariant imprimitivity K(E )-B-bimodule for the natural left action
and the inner product given by K(E )〈ξ, η〉 := θξ,η for all ξ, η ∈ E . Con-
versely, if E is a G-equivariant imprimitivity A-B-bimodule, then the
the left action γ : A→L(EB) induces an isomorphism of G-C∗-algebras
A�K(EB).

(iii) Let (J,βJ , δJ , e1, e2) be a linking G-C∗-algebra (cf. Definition 6.1.22).
Let A := e1Je1 and B := e2Je2 be the corner C∗-algebras endowed
with the continuous actions of G induced by (βJ , δJ). Let us endow
E := e1Je2 with its structure of G-equivariant Hilbert B-module (cf. Re-
marks 6.1.23). Then, E is a G-equivariant imprimitivity A-B-module
whose actions and inner products are defined as in (i).

(iv) If E is a G-equivariant imprimitivity A-B-bimodule, then E ∗ turns into
a G-equivariant imprimitivity B-A-bimodule for the actions and inner
products given by the following formulas: bξ∗a := (a∗ξb∗)∗, for ξ∗ ∈ E ∗,
a ∈A and b ∈B; B〈ξ∗, η∗〉 := 〈ξ, η〉B and 〈ξ∗, η∗〉A := A〈ξ, η〉, for ξ∗, η∗ ∈
E ∗.

Proposition 7.8. Let A and B be G-C∗-algebras. The following statements
are equivalent:

(i) there exists a G-equivariant imprimitivity A-B-bimodule;
(ii) there exists a full G-equivariant Hilbert B-module E such that we have

an isomorphism A�K(E ) of G-C∗-algebras;
(iii) there exists a linking G-C∗-algebra (J,βJ , δJ , e1, e2) such that we have

G-equivariant ∗-isomorphisms A� e1Je1 and B � e2Je2.
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Proof. This is a straightforward consequence of Examples 7.7(ii), (iii),
Proposition 6.1.11(b), and Remarks 6.1.23. �

Now, we investigate the tensor product construction (cf. 2.10 [3] for the
quantum group case).

Proposition 7.9. Let C (resp., B) be a G-C∗-algebra. Let E1 (resp., E2) be
a Hilbert module over C (resp., B) endowed with an action (βE1 , δE1) (resp.,
(βE2 , δE2)) of G. Let γ2 :C →L(E2) be a G-equivariant ∗-representation. Con-
sider the Hilbert B-module E := E1 ⊗γ2 E2. Denote by

Δ(ξ1, ξ2) :=
(
δE1(ξ1)⊗γ̃2⊗idS

1
)
◦ δE2(ξ2), for ξ1 ∈ E1 and ξ2 ∈ E2.

We have Δ(ξ1, ξ2) ∈ M̃(E ⊗S) for all ξ1 ∈ E1 and ξ2 ∈ E2. Let βE :No →L(E )
be the ∗-homomorphism defined by

βE

(
no

)
:= βE1

(
no

)
⊗γ2 1, for all n ∈N.

There exists a unique map δE : E → M̃(E ⊗ S) defined by the formula
δE (ξ1 ⊗γ2 ξ2) := Δ(ξ1, ξ2) for ξ1 ∈ E1 and ξ2 ∈ E2 such that the pair (βE , δE )
is an action of G on E .

The operator δE1(ξ1) is considered here as an element of L(C̃⊗S,E1⊗S)⊃
M̃(E1 ⊗ S). In particular, we have δE1(ξ1)⊗γ̃2⊗idS

1 ∈ L(E2 ⊗ S,E ⊗ S) since
we use the identifications:

(C̃ ⊗ S)⊗γ̃2⊗idS
(E2 ⊗ S) = E2 ⊗ S,

(7.2)
x⊗γ̃2⊗idS

η �→ (γ̃2 ⊗ idS)(x)η;

(E1 ⊗ S)⊗γ̃2⊗idS
(E2 ⊗ S) = E ⊗ S,

(7.3)
(ξ1 ⊗ s)⊗γ̃2⊗idS

(ξ2 ⊗ t) �→ (ξ1 ⊗γ2 ξ2)⊗ st.

Proof. The proof is basically the same as that of 2.10 [3]. For example, we

refer the reader to it for the proof of the fact that Δ(ξ1, ξ2) ∈ M̃(E ⊗S) for all
ξ1 ∈ E1 and ξ2 ∈ E . Let V1 and V2 be the isometries associated with δE1 and
δE2 . Since V2 intertwines the left actions c �→ γ2(c)⊗δB 1 and (γ2⊗ idS)δC of C,

there exists a unique isometry Ṽ2 ∈ L(E ⊗δB (B⊗S),E1 ⊗(γ2⊗idS)δC (E2 ⊗S))
such that

Ṽ2

(
(ξ1 ⊗γ2 ξ2)⊗δB x

)
= ξ1 ⊗(γ2⊗idS)δC V2(ξ2 ⊗δB x),

for all ξ1 ∈ E1, ξ2 ∈ E2 and x ∈B ⊗ S.

Let us prove that Ṽ2 is a unitary. It amounts to proving that Ṽ2 is surjec-

tive. Since im(V2) = im(qβE2
α), we have im(Ṽ2) = [ξ ⊗(γ2⊗idS)δC qβE2

αη; ξ ∈
E1, η ∈ E2 ⊗ S]. Let ξ ∈ E1 and η ∈ E2 ⊗ S. Write ξ = ξ′c with ξ′ ∈ E1 and
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c ∈C. Since V2V
∗
2 = qE2α, we have (γ2⊗ idS)δC(c)qβE2

α = (γ2⊗ idS)δC(c) (cf.

Remarks 7.3). Hence,

ξ ⊗(γ2⊗idS)δC qβE2
αη = ξ′ ⊗(γ2⊗idS)δC (γ2 ⊗ idS)δC(c)qβE2

αη

= ξ′ ⊗(γ2⊗idS)δC (γ2 ⊗ idS)δC(c)η

= ξ ⊗(γ2⊗idS)δC η.

Therefore, we have shown that im(Ṽ2) = E1⊗(γ2⊗idS)δC (E2⊗S), which proves

that Ṽ2 is unitary. Let us identify(
E1 ⊗δC (C ⊗ S)

)
⊗γ2⊗idS

(E2 ⊗ S)→ E1 ⊗(γ2⊗idS)δC (E2 ⊗ S),

(ξ1 ⊗δC x)⊗γ2⊗idS
η �→ ξ1 ⊗(γ2⊗idS)δC (γ2 ⊗ idS)(x)η

and (E1 ⊗ S)⊗γ2⊗idS
(E2 ⊗ S) = E ⊗ S (cf. (7.3)). Let

V := (V1 ⊗γ2⊗idS
1)Ṽ2 ∈ L

(
E ⊗δB (B ⊗ S),E ⊗ S

)
.

It follows from the formulas Ṽ ∗
2 Ṽ2 = 1, Ṽ2Ṽ

∗
2 = 1, V ∗

1 V1 = 1 and V1V
∗
1 = qβE1

α

that V ∗V = 1 and V V ∗ = qβE1
α ⊗γ2⊗idS

1 = qβE α (by definition of βE ).
Let n ∈N . On one hand, we have

Ṽ2

(
βE

(
no

)
⊗δB 1

)
=

(
βE1

(
no

)
⊗(γ2⊗idS)δC 1

)
Ṽ2

(by definition of βE and Ṽ2). On the other, we have

(V1 ⊗γ2⊗idS
1)

(
βE1

(
no

)
⊗(γ2⊗idS)δC 1

)
=

((
1E1 ⊗ β

(
no

))
⊗γ2⊗idS

1
)
(V1 ⊗γ2⊗idS

1).

Hence, we have proved that V (βE (n
o)⊗δB 1) = (1⊗ β(no))V for all n ∈N .

Exactly as in the proof of 2.10 [3], we have V Tξ1⊗γ2ξ2
=Δ(ξ1, ξ2) for all ξ1 ∈ E1

and ξ2 ∈ E2 (cf. Notation 6.1.3 for the definition of Tξ). In particular, V Tξ ∈
M̃(E ⊗S) for all ξ ∈ E . It then follows from Proposition 6.1.5(b) that the pair

(βE , δE ), where δE : E →M̃(E ⊗ S) is defined for all ξ ∈ E by δE (ξ) := V Tξ ,
satisfies the conditions 1, 2, and 3 of Definition 6.1.4. The coassociativity
condition of δE is derived from those of δE1 and δE2 exactly as in the proof of
2.10 [3]. �

Proposition 7.10. We use all the notation and hypotheses of Propo-
sition 7.9. If A is a G-C∗-algebra and γ1 : A → L(E1) is a G-equivariant
∗-representation, then γ : A → L(E1 ⊗γ2 E2) the ∗-representation defined by
γ(a) := γ1(a)⊗γ2 1 for all a ∈A is G-equivariant.

Proof. Through the identification (7.3), for all x ∈A⊗S the operator (γ1⊗
idS)(x)⊗γ̃2⊗idS

1 is identified to (γ ⊗ idS)(x). This identification also holds

for x ∈ M̃(A⊗ S) (by using the fact that any element of S can be written
as a product of two elements of S). In particular, for all a ∈ A the operator
(γ1 ⊗ idS)δA(a)⊗γ̃2⊗idS

1 is identified to (γ ⊗ idS)δA(a). Hence, δE (γ(a)ξ) =
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(γ⊗ idS)δA(a) ◦ δE (ξ) for all ξ ∈ E and a ∈A by definition of δE . The relation
βE (n

o) ◦ γ(a) = γ(βA(n
o)a) for n ∈N and a ∈A is straightforward. �

From now on, we assume the quantum groupoid G to be regular. We recall
that any action of the quantum groupoid G on a Hilbert module is necessarily
continuous (cf. Corollary 6.1.26).

Proposition-Definition 7.11. Let A, C and B be G-C∗-algebras. Let
E1 (resp., E2) be a G-equivariant imprimitivity A-C-bimodule (resp., C-B-
bimodule). Denote by E1 ⊗C E2 the internal tensor product E1 ⊗γ2 E2, where
γ2 :C →L(E2) is the G-equivariant ∗-representation defined by the left action
of C on E2. The Hilbert B-module E1 ⊗C E2 endowed with the action of G
defined in Proposition 7.9 is a G-equivariant imprimitivity A-B-bimodule for
the left action of A and the A-valued inner product defined by the formulas:

• a(ξ1 ⊗C ξ2) := aξ1 ⊗C ξ2, for all a ∈A, ξ1 ∈ E1 and ξ2 ∈ E2;
• A〈ξ1⊗C ξ2, η1⊗C η2〉 := A〈ξ1, η1C〈ξ2, η2〉〉, for all ξ1, η1 ∈ E1 and ξ2, η2 ∈ E2.

Proof. It is known that E1 ⊗C E2 is an imprimitivity A-B-bimodule. The
rest of the proof is contained in Propositions 7.9 and 7.10. �

Proposition 7.12. Let A and B be G-C∗-algebras. Let E be a G-
equivariant imprimitivity A-B-bimodule. Then the map E ∗ ⊗A E →B; ξ∗ ⊗A

η �→ 〈ξ, η〉B defines an isomorphism of G-equivariant imprimitivity B-B-
bimodules.

Proof. It is known that the map Φ : E ∗ ⊗A E →B; ξ∗ ⊗A η �→ 〈ξ, η〉B is an
isomorphism of imprimitivity B-B-bimodules. The G-equivariance of Φ is a
restatement of the formula δB(〈ξ, η〉B) = δE (ξ)

∗ ◦ δE (η) for ξ, η ∈ E . �

Definition 7.13. Let A and B be G-C∗-algebras. We say that A and
B are G-equivariantly Morita equivalent if there exists a G-equivariant im-
primitivity A-B-bimodule. The G-equivariant Morita equivalence is a reflexive
(Examples 7.7(i)), symmetric (Examples 7.7(iv)) and transitive (Proposition-
Definition 7.11) relation on the class of G-C∗-algebras.

Biduality and equivariant Morita equivalence. In this paragraph, the
measured quantum groupoid G is assumed to be regular. Let us fix a G-C∗-
algebras A. We show that there is a canonical G-equivariant Morita equiva-

lence between A and the double crossed product (A� G)� Ĝ.
Notation 7.14. Denote by K := K(H ) for short. Consider the Hilbert

A-modules E0 :=A⊗H and EA,R := qβAα̂(A⊗H ). Let V ∈ L(H ⊗S) be the
unique partial isometry such that (idK ⊗L)(V) = V .

Proposition 7.15. There exists a unique bounded linear map δE0 : E0 →
L(A⊗S,E0 ⊗S) such that δE0(a⊗ ζ) = V23δA(a)13(1A ⊗ ζ ⊗ 1S), for all a ∈A
and ζ ∈ H .
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Proof. If B is a C∗-algebra and K a Hilbert space, we identify M(B)⊗K
with a closed vector subspace of L(B,B ⊗ K ). We have (δA ⊗ idH )(ξ) ∈
L(A⊗ S,A⊗ S ⊗ H ) and (δA ⊗ idH )(ξ)∗ = (δA ⊗ idH ∗)(ξ∗) for ξ ∈ E0. Let
σ ∈ L(S⊗H ,H ⊗S) be the flip map. Denote by δE0 : E0 →L(A⊗S,E0 ⊗S)
the map defined by δE0(ξ) := V23σ23(δA ⊗ idH )(ξ) for ξ ∈ E0. It is clear that
δE0 : E0 →L(A⊗ S,E0 ⊗ S) is linear map satsifying the formula δE0(a⊗ ξ) =
V23δA(a)13(1A ⊗ ξ ⊗ 1S) for all a ∈A and ζ ∈ H . �

Proposition 7.16. We have the following statements:

1. δE0(ξ)
∗δE0(η) = δA(〈qβAα̂ξ, qβAα̂η〉), for all ξ, η ∈ E0;

2. δE0(ξa) = δE0(ξ)δA(a), for all ξ ∈ E0 and a ∈A;
3. δE0(qβAα̂ξ) = δE0(ξ), for all ξ ∈ E0;
4. δE0(E0)(A⊗ S)⊂ EA,R ⊗ S.

Proof. 1. Let ξ, η ∈ E0, we have δE0(ξ)
∗δE0(η) = (δA ⊗ id)(ξ∗)σ∗

23V∗
23V23 ×

σ23(δA ⊗ id)(η). We have σ∗V∗Vσ = qβα̂. Let n,n′ ∈ N . For all a ∈ A and
ζ ∈ H , we have (

1A ⊗ β
(
no

)
⊗ α̂

(
n′))(δA ⊗ idH )(a⊗ ζ)

=
(
1A ⊗ β

(
no

))
δA(a)⊗ α̂

(
n′)ζ

= δA
(
βA

(
no

)
a
)
⊗ α̂

(
n′)ζ

= (δA ⊗ idH )
((
βA

(
no

)
⊗ α̂

(
n′))(a⊗ ζ)

)
.

Hence, (1A⊗β(no)⊗ α̂(n′))(δA⊗ idH )(η) = (δA⊗ idH )((βA(n
o)⊗ α̂(n′))η). It

then follows that σ∗
23V∗

23V23σ23(δA⊗ idH )(η) = (δA⊗ idH )(qβAα̂η). We finally
have

δE0(ξ)
∗δE0(η) = (δA ⊗ idH ∗)

(
ξ∗

)
(δA ⊗ idH )(qβAα̂η)

= δA
(
〈ξ, qβAα̂η〉

)
= δA

(
〈qβAα̂ξ, qβAα̂η〉

)
,

where the last equality follows from the fact that qβAα̂ ∈ L(E0) is a self-adjoint
projection.

2. Let us fix a, b ∈ A, and ζ ∈ H . We have δA(a)13(1A ⊗ ζ ⊗ 1S) = (1A ⊗
ζ ⊗ 1S)δA(a) in L(A⊗ S,E0 ⊗ S). Hence, δE0((b⊗ ζ)a) = δE0(b⊗ ζ)δA(a).

3. Let a ∈A and ζ ∈ H . For all n,n′ ∈N , we have

δE0

(
βA

(
no

)
a⊗ α̂

(
n′)ζ)

= V23

(
1A ⊗ α̂

(
n′)⊗ 1S

)
δA

(
βA

(
no

)
a
)
13
(1A ⊗ ζ ⊗ 1S)

= V23

(
1A ⊗ α̂

(
n′)⊗ β

(
no

))
δA(a)13(1A ⊗ ζ ⊗ 1S).

Hence, δE0(qβAα̂(a⊗ ζ)) = V23qα̂β,23δA(a)13(1A ⊗ ζ ⊗ 1S) = δE0(a⊗ ζ).
4. It suffices to show that qβAα̂,12δE0(ξ) = δE0(ξ) for all ξ ∈ E0. We re-

call (cf. Proposition 3.1.5) that (α̂(n)⊗ 1S)V = V(1K ⊗ α(n)) for all n ∈ N .
Hence, qβAα̂,12V23 = V23qβAα,13. It then follows from qβAα = δA(1A) that
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qβAα̂,12V23δA(a)13 = V23δA(a)13 for all a ∈ A. Hence, qβAα̂,12δE0(a ⊗ ζ) =
δE0(a⊗ ζ) for all a ∈A and ζ ∈ H . �

Notation 7.17. According to the previous proposition, δE0 restricts to a
linear map

δEA,R
: EA,R →L(A⊗ S,EA,R ⊗ S),

which satisfies the following statements:

• δEA,R
(ξ)∗δEA,R

(η) = δA(〈ξ, η〉), for all ξ, η ∈ EA,R;
• δEA,R

(ξa) = δEA,R
(ξ)δA(a), for all ξ ∈ EA,R and a ∈A.

Since [α̂(n′), β(no)] = 0 for all n,n′ ∈N , we have [1A⊗β(no), qβAα̂] = 0 for all
n ∈N . We then have a nondegenerate ∗-homomorphism

βEA,R
:No →L(EA,R); n �→

(
1A ⊗ β

(
no

))
�EA,R

.

Since β and α̂ commute pointwise and VV∗ = qβα, we have [V23V∗
23,

qβAα̂,12] = 0. Hence, qβEA,R
α = V23V∗

23�EA,R⊗S∈ L(EA,R ⊗ S).

Proposition 7.18. We have the following statements:

1. δEA,R
(EA,R)⊂ M̃(EA,R ⊗ S);

2. [δEA,R
(EA,R)(A⊗ S)] = qβEA,R

α(EA,R ⊗ S);

3. δEA,R
(βEA,R

(no)ξ) = (1EA,R
⊗ β(no))δEA,R

(ξ), for all ξ ∈ EA,R and n ∈N .

Proof. 1. Let us prove that δEA,R
(ξ)(1A ⊗ s) ∈ EA,R ⊗ S for all ξ ∈ EA,R

and s ∈ S. It amounts to proving that δE0(ξ)(1A ⊗ s) ∈ E0 ⊗ S for all ξ ∈ E0
and s ∈ S (cf. Proposition 7.16(3), (4)). Let a ∈A and ζ ∈ H . It follows from
the relation δA(A)(1A ⊗ S) ⊂ A ⊗ S that δE0(a ⊗ ζ)(1A ⊗ s) = (1A ⊗ V(ζ ⊗
1S))δA(a)(1A⊗s) is the norm limit of finite sums of the form

∑
i ai⊗V(ζ⊗si),

where ai ∈A and si ∈ S. Hence, δE0(a⊗ ζ)(1A ⊗ s) ∈ E0 ⊗ S.
Now, let us prove that (1EA,R

⊗ y)δEA,R
(ξ) ∈ EA,R ⊗ S for all ξ ∈ EA,R and

y ∈ S. This also amounts to proving that (1E0 ⊗ y)δE0(ξ) ∈ E0 ⊗ S for all
ξ ∈ E0 and y ∈ S. Let a ∈A, ζ ∈ H and y ∈ S, we have (1E0 ⊗ y)δE0(a⊗ ζ) =

(1A ⊗ (1H ⊗ y)V(ζ ⊗ 1S))δA(a). Write ζ = ρ(x)η with x ∈ Ŝ and η ∈ H . We
have (1K ⊗ y)V(ζ ⊗ 1S) = (ρ ⊗ idS)((1Ŝ ⊗ y)V (x ⊗ 1S))(η ⊗ 1S). Since G is

regular, we have (1Ŝ ⊗ y)V (x ⊗ 1S) ∈ Ŝ ⊗ S (cf. Corollary 4.10(2)). Hence,
(1E0 ⊗ y)δE0(a ⊗ ζ) is the norm limit of finite sums of elements of the form

(1A ⊗ ρ(x′)η ⊗ y′)δA(a) with x′ ∈ Ŝ and y′ ∈ S. Hence, (1E0 ⊗ y)δE0(a⊗ ζ) ∈
E0 ⊗ S since (1A ⊗ S)δA(A)⊂A⊗ S.

2. Since VV∗V = V , we have V23V∗
23δE0(ξ) = δE0(ξ) for all ξ ∈ E0. It then

follows that qβEA,R
αδEA,R

(ξ) = δEA,R
(ξ), for all ξ ∈ EA,R. By the first statement,

we then obtain

δEA,R
(EA,R)(A⊗ S)⊂ qβEA,R

α(EA,R ⊗ S).
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Conversely, let a ∈ A, ζ ∈ H and s ∈ S. Since V23qβAα,13 = qβAα̂,12V23, we
have

qβEA,R
α

(
qβAα̂(a⊗ ζ)⊗ s

)
= V23V∗

23qβAα̂,12(a⊗ ζ ⊗ s)

= V23qβAα,13

(
a⊗V∗(ζ ⊗ s)

)
.

Hence, qβEA,R
α(qβAα̂(a⊗ ζ)⊗ s) is the norm limit of finite sums of elements

of the form:

V23qβAα,13

(
a⊗ ζ ′ ⊗ s′

)
= V23

(
qβAα

(
a⊗ s′

))
23

(
1A ⊗ ζ ′ ⊗ 1S

)
, where ζ ′ ∈ H , s′ ∈ S.

By continuity of the action (δA, βA), V23qβAα,13(a⊗ ζ ′ ⊗ s′) is the norm limit
of finite sums of the form

∑
i V23δA(ai)13(1A ⊗ ζ ′ ⊗ si) =

∑
i δEA,R

(qβAα̂(ai ⊗
ζ ′))(1A ⊗ si), where ai ∈A and si ∈ S. As a result, we have

qβEA,R
α

(
qβAα̂(a⊗ ζ)⊗ s

)
∈

[
δEA,R

(EA,R)(A⊗ S)
]

for all a ∈A, ζ ∈ H and s ∈ S. Hence, qβEA,R
α(EA,R ⊗ S)⊂ [δEA,R

(EA,R)(A⊗
S)].

3. Let ξ = qβAα̂(a⊗ ζ), with a ∈A and ζ ∈ H . We have

βEA,R

(
no

)
ξ =

(
1A ⊗ β

(
no

))
qβAα̂(a⊗ ζ) = qβAα̂

(
a⊗ β

(
no

)
ζ
)
.

Moreover, we have V(β(no)⊗ 1S) = (1K ⊗ β(no))V for all n ∈N (cf. Proposi-
tion 3.1.5). It then follows that

δEA,R

(
βEA,R

(
no

)
ξ
)
= δE0

(
a⊗ β

(
no

)
ζ
)
=

(
1E0 ⊗ β

(
no

))
δE0(a⊗ ζ)

=
(
1EA,R

⊗ β
(
no

))
δEA,R

(ξ). �

Consequently, δEA,R
⊗ idS and idEA,R

⊗ δ extend to linear maps from L(A⊗
S,EA,R ⊗ S) to L(A⊗ S ⊗ S,EA,R ⊗ S ⊗ S) (cf. Remarks 6.1.7) and we have:

(δEA,R
⊗ idS)(T )(δA ⊗ idS)(x) = (δEA,R

⊗ idS)(Tx);

(idEA,R
⊗ δ)(T )(idA ⊗ δ)(x) = (idEA,R

⊗ δ)(Tx);

for all x ∈A⊗ S and T ∈ L(A⊗ S,EA,R ⊗ S).

Proposition 7.19. For all ξ ∈ EA,R, (δEA,R
⊗ idS)δEA,R

(ξ) = (idEA,R
⊗

δ)δEA,R
(ξ).

Proof. Let a ∈A, ζ ∈ H and x ∈A⊗ S. Let ξ := qβAα̂(a⊗ ζ). We have

(δEA,R
⊗ idS)δEA,R

(ξ)(δA ⊗ idS)(x)

= (δE0 ⊗ idS)
(
V23

(
δA(a)x

)
13
(1A ⊗ ζ ⊗ 1S)

)
.

For all b ∈A, ζ ′ ∈ H and s′ ∈ S, we have

(δE0 ⊗ idS)
(
b⊗ ζ ′ ⊗ s′

)
= V23δA(b)13

(
1A ⊗ ζ ′ ⊗ 1S ⊗ s′

)
.
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Hence, (δE0 ⊗ idS)(b⊗X) = V23δA(b)13X24 ∈ L(A⊗ S ⊗ S,A⊗ H ⊗ S ⊗ S)
for all b ∈A and X ∈ H ⊗ S. In particular, we have

(δE0 ⊗ idS)
(
V23(b⊗ ζ ⊗ s)

)
= (δE0 ⊗ idS)

(
b⊗V(ζ ⊗ s)

)
= V23δA(b)13V24(1A ⊗ ζ ⊗ 1S ⊗ s)

= V23V24δA(b)13(1A ⊗ ζ ⊗ 1S ⊗ s).

However, we have (idK ⊗ δ)(V) = V12V13. Hence, V23V24 = (idA⊗K ⊗ δ)(V23).
Moreover, we have δA(b)13(1A⊗ζ⊗1S⊗s) = (δA,13⊗ idS)(b⊗s)(1A⊗ζ⊗1S⊗
1S), for all b ∈ A and s ∈ S, where δA,13 : A→M(A⊗K⊗ S) is the strictly
continuous ∗-homomorphism defined by δA,13(a) := δA(a)13 for all a ∈A. As
a result, for all Y ∈A⊗ S we have

(δE0 ⊗ idS)
(
V23Y13(1A ⊗ ζ ⊗ 1S)

)
= (idA⊗K ⊗ δ)(V23)(δA,13 ⊗ idS)(Y )(1A ⊗ ζ ⊗ 1S ⊗ 1S).

In particular, we have

(δE0 ⊗ idS)
(
δE0(a⊗ ζ)x

)
= (idA⊗K ⊗ δ)(V23)(δA,13 ⊗ idS)

(
δA(a)x

)
(1A ⊗ ζ ⊗ 1S ⊗ 1S)

= (idA⊗K ⊗ δ)(V23)(δA,13 ⊗ idS)δA(a)(1A ⊗ ζ ⊗ 1S ⊗ 1S)(δA ⊗ idS)(x).

Moreover, we have (δA,13 ⊗ idS)δA = (idA⊗K ⊗ δ)δA,13. Hence,

(δEA,R
⊗ idS)δEA,R

(ξ)x

= (idA⊗K ⊗ δ)
(
V23δA(a)13

)
(1A ⊗ ζ ⊗ 1S ⊗ 1S)x,

for all x ∈ qβAα,12(A⊗ S ⊗ S). In particular, if x ∈ qβAα,12qβα,23(A⊗ S ⊗ S)
we have

(δEA,R
⊗ idS)δEA,R

(ξ)x

= (idA⊗K ⊗ δ)
(
V23δA(a)13

)
qβα,34(1A ⊗ ζ ⊗ 1S ⊗ 1S)x

= (idA⊗K ⊗ δ)
(
V23δA(a)13

)
(idE0 ⊗ δ)(1A ⊗ ζ ⊗ 1S)x

= (idE0 ⊗ δ)δE0(a⊗ ζ)x

= (idEA,R
⊗ δ)δEA,R

(ξ)x.

Hence, (δEA,R
⊗ idS)δEA,R

(ξ) = (idEA,R
⊗ δ)δEA,R

(ξ). �

Now, we can assemble the previous results (see also Corollary 6.1.26) in
the statement below.

Proposition 7.20. The triple (EA,R, βEA,R
, δEA,R

) is a G-equivariant
Hilbert A-module.

Let D be the bidual G-C∗-algebra of A. We have a canonical G-equivariant
∗-isomorphism φ : (A� G)� Ĝ →D of G-C∗-algebras (cf. Proposition 5.1.22).
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Let jD :M(D)→L(E0) be the unique faithful continuous ∗-homomorphism
for the strict/∗-strong topologies such that jD(1D) = qβAα̂.

Proposition 7.21. The ∗-representation (A � G) � Ĝ → L(EA,R); x �→
φ(x)�EA,R

is G-equivariant.

Proof. We have to prove that δE0(dξ) = (jD ⊗ idS)(δD(d)) ◦ δE0(ξ) for all
d ∈D and ξ ∈ E0 (cf. Remarks 7.3(3) and Proposition 7.16(3)). Let us prove
it in three steps:

• Let b ∈A, x ∈ Ŝ and ζ ∈ H . We have

δE0

(
b⊗ λ(x)ζ

)
=

(
1A ⊗V

(
λ(x)⊗ 1S

))
δA(b)13(1A ⊗ ζ ⊗ 1S).

However, [V , λ(x)⊗ 1S ] = 0 (as λ(Ŝ)⊂ M̂ and V ∈ M̂ ′ ⊗M ). Hence,

δE0

(
b⊗ λ(x)ζ

)
=

(
1A ⊗ λ(x)⊗ 1S

)
δE0(b⊗ ζ)

and then δE0((1A ⊗λ(x))ξ) = (1A ⊗λ(x)⊗ 1S)δE0(ξ), for all x ∈ Ŝ and ξ ∈ E0.
• Let y ∈ S. Since L(y) ∈M ⊂ α̂(N)′, we have

V
(
L(y)⊗ 1S

)
= Vqα̂β

(
L(y)⊗ 1S

)
= V

(
L(y)⊗ 1S

)
qα̂β

= V
(
L(y)⊗ 1S

)
V∗V = (L⊗ idS)δ(y)V .

For all b ∈A and ζ ∈ H , we have

δE0

((
1A ⊗L(y)

)
(b⊗ ζ)

)
=

(
1A ⊗V

(
L(y)⊗ 1S

))
δA(b)13(1A ⊗ ζ ⊗ 1S)

=
(
1A ⊗ (L⊗ idS)δ(y)

)
δE0(b⊗ ζ).

Hence, δE0((1A⊗L(y))ξ) = (1A⊗ (L⊗ idS)δ(y))δE0(ξ) for all y ∈ S and ξ ∈ E0.
In virtue of the first two steps, for all ξ ∈ EA,R we have

δEA,R

((
1A ⊗ λ(x)L(y)

)
ξ
)

=
(
1A ⊗ λ(x)⊗ 1S

)(
1A ⊗ (L⊗ idS)δ(y)

)
δEA,R

(ξ).

• Let s ∈ S. We have (cf. Proposition 3.1.3)(
R(s)⊗ 1

)
V = (U ⊗ 1)Σ

(
1⊗L(s)

)
Σ

(
U∗ ⊗ 1

)
V

= (U ⊗ 1)Σ
(
1⊗L(s)

)
WΣ

(
U∗ ⊗ 1

)
.

Besides, (1⊗L(s))W = (1⊗L(s))WW ∗W =WW ∗(1⊗L(s))W =Wδ(s) since

we have WW ∗ = qαβ̂ and L(s) ∈M ⊂ β̂(No)′. Therefore, since (U ⊗ 1)ΣW =

V (U ⊗ 1)Σ we have (R(s)⊗ 1)V = V Σ(1⊗U)δ(s)(1⊗U∗)Σ. Hence, (R(s)⊗
1S)V = Vσ(idS ⊗ R)(δ(s))σ∗ for all s ∈ S. We then have ((idA ⊗ R)(x) ⊗
1S)V23 = V23σ23(idA⊗S ⊗R)((idA ⊗ δ)(x))σ∗

23 for all x ∈A⊗ S. But, since R
and δ are strictly continuous this equality also holds for all x ∈M(A⊗S). In
particular, we have πR(a)12V23 = V23σ23(idA⊗S ⊗R)(δ2A(a))σ

∗
23 for all a ∈A.

By coassociativity of δA, we have

πR(a)12V23 = V23σ23(δA ⊗ idK)
(
πR(a)

)
σ∗
23, for all a ∈A.
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It then follows that

πR(a)12δE0(ξ) = V23σ23(δA ⊗ idK)
(
πR(a)

)
(δA ⊗ idH )(ξ)

= V23σ23(δA ⊗ idH )
(
πR(a)ξ

)
= δE0

(
πR(a)ξ

)
,

for all a ∈ A and ξ ∈ E0. In particular, πR(a)12δE0(ξ0) = δE0(πR(a)ξ0) for all
a ∈A and ξ ∈ E0.

We have proved that for all a ∈A, x ∈ Ŝ, y ∈ S and ξ ∈ E0, we have

δE0

(
πR(a)

(
1A ⊗ λ(x)L(y)

)
ξ
)

= πR(a)12
(
1A ⊗ λ(x)⊗ 1S

)(
1A ⊗ (L⊗ idS)δ(y)

)
δE0(ξ).

However, for all a ∈A, x ∈ Ŝ and y ∈ S we have (cf. 3.37 d) [2])

(jD ⊗ idS)δD
(
πR(a)

(
1A ⊗ λ(x)L(y)

))
= πR(a)12

(
1A ⊗ λ(x)⊗ 1S

)(
1A ⊗ (L⊗ idS)δ(y)

)
.

If d = πR(a)(1A ⊗ λ(x)L(y)) ∈ D, where a ∈ A, x ∈ Ŝ and y ∈ S, we have
proved that δE0(dξ) = (jD⊗ idS)(δD(d))◦δE0(ξ) for all ξ ∈ E0. Thus, the state-
ment is proved since D = [πR(a)(1A ⊗ λ(x)L(y)); a ∈A,x ∈ Ŝ, y ∈ S]. �

Theorem 7.22. The G-C∗-algebras (A� G)� Ĝ and A are Morita equiva-

lent via the G-equivariant imprimitivity (A� G)� Ĝ-A-bimodule EA,R.

Proof. Let us prove that the Hilbert A-module EA,R is full. Fix x ∈ A
and write x = a∗b for a, b ∈ A. There exists ω ∈ B(H )∗ such that (idA ⊗
ω)(qβAα̂) = 1A. Hence, x is the norm limit of finite sums of elements of the
form a∗(idA⊗ωξ,η)(qβAα̂)b, where ξ, η ∈ H . However, for all ξ, η ∈ H we have

a∗(idA ⊗ ωξ,η)(qβAα̂)b= (a⊗ ξ)∗qβAα̂(b⊗ η)

=
〈
qβAα̂(a⊗ ξ), qβAα̂(b⊗ η)

〉
.

Hence, A = [〈ξ, η〉; ξ, η ∈ EA,R]. Now, we recall that D = qβAα̂(A ⊗ K)qβAα̂

(cf. Theorem 5.1.24). It is easily seen that the left action of (A � G) � Ĝ
(cf. Proposition 7.21) induces a G-equivariant ∗-isomorphism (A� G)� Ĝ �
K(EA,R). �

Appendix

A.1. Normal linear forms, weights and operator-valued weights on
von Neumann algebras [8]. Let M be a von Neumann algebra. Denote by
M∗ (resp., M+

∗ ) the Banach space (resp., positive cone) of the normal linear
forms (resp., positive normal linear forms) on M . Let ω ∈M∗ and a, b ∈M .
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Denote by aω ∈M∗ and ωb ∈M∗ the normal linear functionals on M given
for all x ∈M by:

(aω)(x) := ω(xa); (ωb)(x) := ω(bx).

We have a′(aω) = (a′a)ω and (ωb)b′ = ω(bb′), for all a, a, b, b′ ∈ M . We also
denote

aωb := a(ωb) = (aω)b; ωa := a∗ωa.

If ω ∈M+
∗ , then ωa ∈M+

∗ . Note that (ωa)b = ωab for all a, b ∈M . If ω ∈M∗
we define ω ∈M∗ by setting

ω(x) := ω
(
x∗

)
, for all x ∈M.

Let H be a Hilbert space and let us fix ξ, η ∈ H . Denote by ωξ,η ∈ B(H )∗
the normal linear form defined by

ωξ,η(x) := 〈ξ, xη〉, for all x ∈ B(H ).

Note that we have ωξ,η = ωη,ξ, aωξ,η = ωξ,aη and ωξ,ηa = ωa∗ξ,η for all a ∈
B(H ).

A.1.1. Tensor product of normal linear forms. Let M and N be von Neu-
mann algebras, φ ∈M∗ and ψ ∈N∗. There exists a unique φ⊗ψ ∈ (M ⊗N)∗
such that (φ ⊗ ψ)(x ⊗ y) = φ(x)ψ(y) for all x ∈ M and y ∈ N . Moreover,
‖φ⊗ ψ‖ � ‖φ‖ · ‖ψ‖. Actually, it is known that we have an (completely) iso-
metric identification M∗⊗̂πN∗ = (M ⊗N)∗, where ⊗̂π denotes the projective
tensor product of Banach spaces. In particular, any ω ∈ (M ⊗N)∗ is the norm
limit of finite sums of the form

∑
i φi ⊗ψi, where φi ∈M∗ and ψi ∈N∗.

A.1.2. Slicing with normal linear forms. We will also need to slice maps
with normal linear forms. Let M1 and M2 be von Neumann algebras, ω1 ∈
(M1)∗ and ω2 ∈ (M2)∗. Therefore, the maps ω1 	 id : M1 	 M2 → M1 and
id	 ω2 :M1 	M2 →M2 extend uniquely to norm continuous normal linear
maps ω1 ⊗ id :M1 ⊗M2 →M2 and id⊗ ω2 :M1 ⊗M2 →M1. Let H and K
be Hilbert spaces, for ξ ∈ H and η ∈ K we define θξ ∈ B(K ,H ⊗ K ) and
θ′η ∈ B(H ,H ⊗K ) by setting:

θξ(ζ) := ξ ⊗ ζ, for all ζ ∈ K ; θ′η(ζ) := ζ ⊗ η, for all ζ ∈ H .

If T ∈ B(H ⊗ K ), φ ∈ B(K )∗ and ω ∈ B(H )∗, then the operators (id ⊗
φ)(T ) ∈ B(H ) and (ω⊗ id)(T ) ∈ B(K ) are determined by the formulas:〈

ξ1, (id⊗ φ)(T )ξ2
〉
= φ

(
θ∗ξ1Tθξ2

)
, ξ1, ξ2 ∈ H ;〈

η1, (ω⊗ id)(T )η2
〉
= ω

(
θ′∗η1

Tθ′η2

)
, η1, η2 ∈ K .

In particular, we have:

(id⊗ ωη1,η2)(T ) = θ′∗η1
Tθ′η2

, η1, η2 ∈ K ;

(ωξ1,ξ2 ⊗ id)(T ) = θ∗ξ1Tθξ2 , ξ1, ξ2 ∈ H .
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Let us recall some formulas that will be used several times. For all φ ∈ B(K )∗,
ω ∈ B(H )∗ and T ∈ B(H ⊗K ), we have:

x(id⊗ φ)(T )y = (id⊗ φ)
(
(x⊗ 1)T (y⊗ 1)

)
,

(yωx⊗ id)(T ) = (ω⊗ id)
(
(x⊗ 1)T (y⊗ 1)

)
for all x, y ∈ B(H );

a(ω⊗ id)(T )b= (ω⊗ id)
(
(1⊗ a)T (1⊗ b)

)
,

(id⊗ bφa)(T ) = (id⊗ φ)
(
(1⊗ a)T (1⊗ b)

)
for all a, b ∈ B(K ). We also have

(id⊗ φ)(T )∗ = (id⊗ φ)
(
T ∗),

(ω⊗ id)(T )∗ = (ω⊗ id)
(
T ∗),

(φ⊗ id)(ΣH ⊗K TΣK ⊗H ) = (id⊗ φ)(T ),

(id⊗ ω)(ΣH ⊗K TΣK ⊗H ) = (ω⊗ id)(T ),

for all T ∈ B(H ⊗K ), φ ∈ B(K )∗ and ω ∈ B(H )∗.

Definition A.1.3. A weight ϕ on M is a map ϕ :M+ → [0,∞] such that:

• for all x, y ∈M+, ϕ(x+ y) = ϕ(x) +ϕ(y);
• for all x ∈M+ and λ ∈R+, ϕ(λx) = λϕ(x).

We denote byNϕ := {x ∈M ; ϕ(x∗x)<∞} the left ideal of square ϕ-integrable
elements of M , M+

ϕ := {x ∈M+; ϕ(x)<∞} the cone of positive ϕ-integrable

elements of M and Mϕ := 〈M+
ϕ 〉 the space of ϕ-integrable elements of M .

Definition A.1.4. Let ϕ be a weight on M . The opposite weight of ϕ is
the weight ϕo on Mo given by ϕo(xo) := ϕ(x) for all x ∈M+. Then, we have
Nϕo = (N∗

ϕ)
o, M+

ϕo = (M+
ϕ )

o and Mϕo = (Mϕ)
o.

Definition A.1.5. A weight ϕ on M is called:

• semi-finite, if Nϕ is σ-weakly dense in M ;
• faithful, if for x ∈M+ the condition ϕ(x) = 0 implies x= 0;
• normal, if ϕ(supi∈I xi) = supi∈I ϕ(xi) for all increasing bounded net (xi)i∈I
of M+.

From now on, we will mainly use normal semi-finite faithful (n.s.f.) weights.
Fix a n.s.f. weight ϕ on M .

Definition A.1.6. We define an inner product on Nϕ by setting

〈x, y〉ϕ := ϕ
(
x∗y

)
, for all x, y ∈Nϕ.

We denote by (Hϕ,Λϕ) the Hilbert space completion of Nϕ with respect to
this inner product, where Λϕ :Nϕ → Hϕ is the canonical map. There exists a
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unique unital normal ∗-representation πϕ :M →B(Hϕ) such that

πϕ(x)Λϕ(y) = Λϕ(xy), for all x ∈M and y ∈Nϕ.

The triple (Hϕ, πϕ,Λϕ) is called the G.N.S. construction for (M,ϕ).

Remarks A.1.7. The linear map Λϕ is called the G.N.S. map. We have
that Λϕ(Nϕ) is dense in Hϕ and 〈Λϕ(x),Λϕ(y)〉ϕ = ϕ(x∗y) for all x, y ∈Nϕ. In
particular, Λϕ is injective. Moreover, we also call πϕ the G.N.S. representation.

We recall below the main objects of the Tomita–Takesaki modular theory.

Proposition-Definition A.1.8. Let M be a von Neumann algebra and
ϕ a n.s.f. weight on M . The anti-linear map Λϕ(N

∗
ϕ ∩Nϕ)→ Λϕ(N

∗
ϕ ∩Nϕ);

Λϕ(x) �→ Λϕ(x
∗) is closable and its closure is a possibly unbounded anti-linear

map Tϕ :D(Tϕ)⊂Hϕ → Hϕ such that D(Tϕ) = imTϕ and Tϕ ◦ Tϕ(x) = x for
all x ∈D(Tϕ).

Let Tϕ = Jϕ∇1/2
ϕ be the polar decomposition of Tϕ. The anti-unitary Jϕ :

Hϕ → Hϕ is called the modular conjugation for ϕ and the injective positive
self-adjoint operator ∇ϕ is called the modular operator for ϕ.

Proposition-Definition A.1.9. There exists a unique one-parameter
group (σϕ

t )t∈R of automorphisms on M , called the modular automorphism
group of ϕ, such that

πϕ

(
σϕ
t (x)

)
=∇it

ϕπϕ(x)∇−it
ϕ , for all t ∈R and x ∈M.

Then, for all t ∈ R and x ∈ M we have σϕ
t (x) ∈ Nϕ and Λϕ(σ

ϕ
t (x)) =

∇it
ϕΛϕ(x).

Proposition-Definition A.1.10. The map CM : M → M ′; x �→ Jϕ ×
πϕ(x)

∗Jϕ is a normal unital ∗-antihomomorphism.

Definition A.1.11. Let N be a von Neumann algebra. The extended pos-
itive cone of N is the set N ext

+ consisting of the maps m :N+
∗ → [0,∞], which

satisfy the following conditions:

• for all ω1, ω2 ∈N+
∗ , m(ω1 + ω2) =m(ω1) +m(ω2);

• for all ω ∈N+
∗ and λ ∈R+, m(λω) = λm(ω);

• m is lower semicontinuous with respect to the norm topology on N∗.

Notation A.1.12. Let N be a von Neumann algebra.

1. From now on, we will identify N+ with its part inside N ext
+ . Accordingly,

if m ∈N ext
+ and ω ∈N+

∗ we will denote by ω(m) the evaluation of m at ω.
2. Let a ∈ N and m ∈ N ext

+ , we define a∗ma ∈ N ext
+ by setting ω(a∗ma) :=

aωa∗(m) for all ω ∈N+
∗ . If m,n ∈N ext

+ and λ ∈R+, we also define m+n ∈
N ext

+ and λm ∈ N ext
+ by setting ω(m+ n) := ω(m) + ω(n) and ω(λm) :=

λω(m) for all ω ∈N+
∗ .
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Definition A.1.13. Let N ⊂M be a unital normal inclusion of von Neu-
mann algebras. An operator-valued weight from M to N is a map T :M+ →
N ext

+ such that:

• for all x, y ∈M+, T (x+ y) = T (x) + T (y);
• for all x ∈M+, ∀λ ∈R+, T (λx) = λT (x);
• for all x ∈M+ and a ∈N , T (a∗xa) = a∗T (x)a.

Let NT := {x ∈M ; T (x∗x) ∈N+}, M+
T := {x ∈M+; T (x) ∈N+} and MT :=

〈M+
T 〉.

Definition A.1.14. Let N ⊂M be a unital normal inclusion of von Neu-
mann algebras. An operator-valued weight T from M to N is said to be:

• semi-finite, if NT is σ-weakly dense in M ;
• faithful, if for x ∈M+ the condition T (x) = 0 implies x= 0;
• normal, if for every increasing bounded net (xi)i∈I of elements of M+ and
ω ∈N+

∗ , we have ω(T (supi∈I xi)) = limi∈I ω(T (xi)).

Note that if T : M+ → N ext
+ is an operator-valued weight, it extends

uniquely to a semi-linear map T : M ext
+ → N ext

+ . This will allow us to com-
pose n.s.f. operator-valued weights. Indeed, let P ⊂N ⊂M be unital normal
inclusions of von Neumann algebras. Let S (resp., T ) be an operator-valued
weight from N (resp., M ) to P (resp., N ). We define an operator-valued
weight from M to P by setting (S ◦ T )(x) := S(T (x)) for all x ∈N+.

A.2. Relative tensor product of Hilbert spaces and fiber product of
von Neumann algebras. In this paragraph, we will recall the definitions,
notations and important results concerning the relative tensor product and
the fiber product which are the main technical tools of the theory of measured
quantum groupoids. For more information, we refer the reader to [7].

In the whole section, N is a von Neumann algebra endowed with a n.s.f.
weight ϕ. Let π (resp., γ) be a normal unital ∗-representation of N (resp.,
No) on a Hilbert space H (resp., K).

Relative tensor product. The Hilbert space H (resp., K) may be considered as
a left (resp., right) N -module. Moreover, Hϕ is an N -bimodule whose actions
are given by

xξ := πϕ(x)ξ and

ξy := Jϕπϕ

(
y∗

)
Jϕξ, for all ξ ∈ Hϕ and x, y ∈N.

Definition A.2.1. We define the set of right (resp., left) bounded vectors
with respect to ϕ and π (resp., γ) to be:

ϕ(π,H) :=
{
ξ ∈H; ∃C ∈R+,∀x ∈Nϕ,

∥∥π(x)ξ∥∥ � C
∥∥Λϕ(x)

∥∥}
,(

resp., (K, γ)ϕ :=
{
ξ ∈K; ∃C ∈R+,∀x ∈N∗

ϕ,
∥∥γ(

xo
)
ξ
∥∥ � C

∥∥Λϕo

(
xo

)∥∥})
.
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If ξ ∈ ϕ(π,H), we denote by Rπ,ϕ
ξ ∈ B(Hϕ,H) (or simply Rπ

ξ if ϕ is under-

stood) the unique bounded operator such that

Rπ,ϕ
ξ Λϕ(x) = π(x)ξ, for all x ∈Nϕ.

Similarly, if ξ ∈ (K, γ)ϕ we denote Lγ,ϕ
ξ ∈ B(Hϕ,K) (or simply Lγ

ξ if ϕ is

understood) the unique bounded operator such that

Lγ,ϕ
ξ JϕΛϕ

(
x∗) = γ

(
xo

)
ξ, for all x ∈N∗

ϕ,

where we have used the identification Hϕo → Hϕ; Λϕo(xo) �→ JϕΛϕ(x
∗).

Note that ξ ∈K is left bounded with respect to ϕ and γ if, and only if, it is
right bounded with respect to the n.s.f. weight ϕc := ϕ ◦C−1

N on N ′ and the

normal unital ∗-representation γc := γ ◦ C−1
N of N ′. It is important to note

that (K, γ)ϕ (resp., ϕ(π,H)) is dense in K (resp., H) (cf. Lemma 2 of [7]).
If ξ ∈ ϕ(π,H) (resp., ξ ∈ (K, γ)ϕ), we have that Rπ,ϕ

ξ (resp., Lγ,ϕ
ξ ) is left

(resp., right) N -linear. Therefore, for all ξ, η ∈ ϕ(π,H) (resp., (K, γ)ϕ) we have(
Rπ,ϕ

ξ

)∗
Rπ,ϕ

η ∈ πϕ(N)′ =CN (N) and Rπ,ϕ
ξ

(
Rπ,ϕ

η

)∗ ∈ π(N)′(
resp.,

(
Lγ,ϕ
ξ

)∗
Lγ,ϕ
η ∈ πϕ(N) and Lγ,ϕ

ξ

(
Lγ,ϕ
η

)∗ ∈ γ
(
No

)′)
.

Notation A.2.2 (cf. 2.1 [16]). Let

Kπ,ϕ :=
[
Rπ,ϕ

ξ

(
Rπ,ϕ

η

)∗
; ξ, η ∈ ϕ(π,H)

](
resp., Kγ,ϕ :=

[
Lγ,ϕ
ξ

(
Lγ,ϕ
η

)∗
; ξ, η ∈ (H, γ)ϕ

])
.

Note that Kπ,ϕ (resp., Kγ,ϕ) is a weakly dense ideal of π(N)′ (resp., γ(No)′)
(cf. Proposition 3 of [7]). If ϕ is understood, we denote Kπ (resp., Kγ) instead
of Kπ,ϕ (resp., Kγ,ϕ).

Notation A.2.3. Let ξ, η ∈ ϕ(π,H) (resp., (K, γ)ϕ), we denote

〈ξ, η〉No :=C−1
N

((
Rπ,ϕ

ξ

)∗
Rπ,ϕ

η

)o ∈No(
resp., 〈ξ, η〉N := π−1

ϕ

((
Lγ,ϕ
ξ

)∗
Lγ,ϕ
η

)
∈N

)
.

Proposition A.2.4. For all ξ, η ∈ ϕ(π,H) (resp., ξ, η ∈ (K, γ)ϕ) and y ∈N
analytic for (σϕ

t )t∈R, we have:

1. 〈ξ, η〉∗No = 〈η, ξ〉No (resp., 〈ξ, η〉∗N = 〈η, ξ〉N );
2. 〈ξ, ηyo〉No = 〈ξ, η〉Noσϕ

i/2(y)
o (resp., 〈ξ, ηy〉N = 〈ξ, η〉Nσϕ

−i/2(y)).

Lemma A.2.5. For all ξ1, ξ2 ∈ ϕ(π,H) and η1, η2 ∈ (K, γ)ϕ, we have〈
η1, γ

(
〈ξ1, ξ2〉No

)
η2

〉
K =

〈
ξ1, π

(
〈η1, η2〉N

)
ξ2

〉
H.

Definition A.2.6. The relative tensor product

K γ⊗π
ϕ

H (or simply denoted by K γ⊗π H)
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is the Hausdorff completion of the pre-Hilbert space (K, γ)ϕ 	 ϕ(π,H), whose
inner product is given by

〈η1 ⊗ ξ1, η2 ⊗ ξ2〉 :=
〈
η1, γ

(
〈ξ1, ξ2〉No

)
η2

〉
K =

〈
ξ1, π

(
〈η1, η2〉N

)
ξ2

〉
H,

for all η1, η2 ∈ (K, γ)ϕ and ξ1, ξ2 ∈ ϕ(π,H). If η ∈ (K, γ)ϕ and ξ ∈ ϕ(π,H), we
will denote by

η γ⊗π
ϕ

ξ (or simply η γ⊗π ξ)

the image of η ⊗ ξ by the canonical map (K, γ)ϕ 	 ϕ(π,H)→K γ⊗π H (iso-
metric dense range).

Remarks A.2.7.

1. By applying this construction to (No, ϕo) instead of (N,ϕ) we obtain the
relative tensor product H π⊗γ

ϕo

K.

2. The relative tensor product K γ⊗π H is also the Hausdorff completion of
the pre-Hilbert space (K, γ)ϕ	H (resp., K	ϕ(π,H)), whose inner product
is given by:

〈η1 ⊗ ξ1, η2 ⊗ ξ2〉 :=
〈
ξ1, π

(
〈η1, η2〉N

)
ξ2

〉
H(

resp., 〈η1 ⊗ ξ1, η2 ⊗ ξ2〉 :=
〈
η1, γ

(
〈ξ1, ξ2〉No

)
η2

〉
K
)
.

3. Moreover, for all η ∈K, ξ ∈ ϕ(π,H) and y ∈N analytic for (σϕ
t )t∈R we have

γ
(
yo

)
η γ⊗π ξ = η γ⊗π π

(
σϕ
−i/2(y)

)
ξ.

A.2.8. The relative flip map is the isomorphism σγπ
ϕ from K γ⊗π

ϕ

H onto
H π⊗γ

ϕo

K given by:

σγπ
ϕ (η γ⊗π

ϕ

ξ) := ξ π⊗γ
ϕo

η,

for all ξ ∈ (K, γ)ϕ and η ∈ ϕ(π,H) (or simply σγπ).

Note that σγπ
ϕ is unitary and (σγπ

ϕ )∗ = σπγ
ϕo . Then we can define a relative flip

∗-homomorphism

ςγπϕ : B(K γ⊗π
ϕ

H)→B
(
H π⊗γ

ϕo

K
)

(or simply denoted by ςγπ)

by setting ςγπϕ (X) := σγπ
ϕ X(σγπ

ϕ )∗ for all X ∈ B(K γ⊗π
ϕ

H).

Fiber product of von Neumann algebras. We continue to use the notation of
the previous paragraph.

Proposition-Definition A.2.9. Let Ki and Hi be Hilbert spaces, and
γi :N

o →B(Ki) and πi :N →B(Hi) be unital normal ∗-homomorphisms for
i= 1,2. Let T ∈ B(K1,K2) and S ∈ B(H1,H2) such that T ◦γ1(no) = γ2(n

o)◦T
and S ◦ π1(n) = π2(n) ◦ S for all n ∈N . Then the linear map

(K1, γ1)ϕ 	 ϕ(π1,H1)→K2 γ2⊗π2 H2; ξ 	 η �→ Tξ γ2⊗π2 Sη
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extends uniquely to a bounded operator γ2T γ1⊗π2 Sπ1 ∈ B(K1 γ1⊗π1 H1,
K2 γ2⊗π2 H2) (or simply denoted by T γ1⊗π2 S), whose adjoint operator is

γ1T
∗
γ2⊗π1 S

∗
π2 (or simply T ∗

γ2⊗π1 S
∗). In particular, if x ∈ γ(No)′ and

y ∈ π(N)′, then the linear map

(K, γ)ϕ 	 ϕ(π,H)→K γ⊗π H; ξ 	 η �→ xξ γ⊗π yη

extends uniquely to a bounded operator on K γ⊗π H denoted by x γ⊗π y ∈
B(K γ⊗π H).

Remark A.2.10. With the notations of Proposition-Definition A.2.9, let
T : K1 → H2 and S : H1 → K2 be bounded antilinear maps such that T ◦
γ1(n

o)∗ = π2(n)◦T and S ◦π1(n) = γ2(n
o)∗ ◦S for all n ∈N . In a similar way,

we define π2T γ1⊗γ2 Sπ1 ∈ B(K1 γ1⊗π1 H1,H2 π2⊗γ2 K2) (or simply T γ1⊗γ2 S).
Note that these notation are different from those used in [17], [20].

Let M ⊂B(K) and P ⊂B(H) be two von Neumann algebras. Let us assume
that π(N)⊂ P and γ(No)⊂M .

Definition A.2.11. The fiber product M γ�π P of M and P over N is
the commutant of {x γ⊗π y; x ∈M ′, y ∈ P ′} ⊂ B(K γ⊗π H). Then M γ�π P is
a von Neumann algebra.

Note that we have ςγπ(M γ�π P ) = P π�γ M . We still denote by ςγπ :
M γ�π P → P π�γ M the restriction of ςγπ to M γ�π P .

A.2.12. Slicing with normal linear forms. Now, let us recall how to slice
with normal linear forms. For ξ ∈ (K, γ)ϕ and η ∈ ϕ(π,H), we consider the
following bounded linear maps:

λγπ
ξ :H→K γ⊗π H, ζ �→ ξ γ⊗π ζ;

ργπη :K→K γ⊗π H, ζ �→ ζ γ⊗π η.

Let T ∈ B(K γ⊗π H) and ω ∈ B(H)∗ (resp., ω ∈ B(K)∗). By using the fact
that (K, γ)ϕ (resp., ϕ(π,H)) is dense in H (resp., K), there exists a unique
(id γ�π ω)(T ) ∈ B(K) (resp., (ω γ�π id)(T ) ∈ B(H)) such that〈

ξ1, (id γ�π ω)(T )ξ2
〉
= ω

((
λγπ
ξ1

)∗
Tλγπ

ξ2

)
, for all ξ1, ξ2 ∈ (K, γ)ϕ(

resp.,
〈
η1, (ω γ�π id)(T )η2

〉
= ω

((
ργπη1

)∗
Tργπη2

)
, for all η1, η2 ∈ ϕ(π,H)

)
.

In particular, we have:

(id γ�π ωη1,η2)(T ) =
(
ργπη1

)∗
Tργπη2

∈ B(K), for all η1, η2 ∈ ϕ(π,H);

(ωξ1,ξ2 γ�π id)(T ) =
(
λγπ
ξ1

)∗
Tλγπ

ξ2
∈ B(H), for all ξ1, ξ2 ∈ (K, γ)ϕ.

If x ∈ M γ�π P , then for all ω ∈ B(H)∗ (resp., ω ∈ B(K)∗) we have
(id γ�π ω)(x) ∈M (resp., (ω γ�π id)(x) ∈ P ). We refrain from writing the de-
tails but we can easily define the slice maps if T takes its values in a different
relative tensor product. Note that we can extend the notion of slice maps for
normal linear forms to normal semi-finite weights.
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Fiber product over a finite-dimensional von Neumann algebra. Now, let us
assume that

N :=
⊕

1�l�k

Mnl
(C) and ϕ :=

⊕
1�l�k

Trl(Fl−),

where Fl is a positive invertible matrix of Mnl
(C) and Trl is the nonnormalized

trace on Mnl
(C). Denote by (Fl,i)1�i�nl

the eigenvalues of Fl.

Proposition-Definition A.2.13 (§7 [13]). The bounded linear map

vγπϕ :K⊗H→K γ⊗π
ϕ

H;

ξ ⊗ η �→ ξ γ⊗π
ϕ

η (or simply denoted by vγπ)

is a coisometry if, and only if, we have
∑

1�i�nl
F−1
l,i = 1 for all 1� l � k.

In the following, we assume the above condition to be satisfied.

Proposition-Definition A.2.14 (§7 [13]). Let us denote

qγπϕ :=
(
vγπϕ

)∗
vγπϕ (or simply qγπ).

Then qγπϕ is a self-adjoint projection of B(K⊗H) such that

qγπϕ =
∑

1�l�k

∑
1�i,j�nl

F
−1/2
l,i F

−1/2
l,j γ

(
e
(l)o
ij

)
⊗ π

(
e
(l)
ji

)
,

where, for all 1 � l � k, (e
(l)
ij )1�i,j�nl

is a system of matrix units (s.m.u.) di-

agonalizing Fl, that is, Fl =
∑

1�i�nl
Fl,ie

(l)
ii . Moreover, M γ�π P → qγπϕ (M ⊗

P )qγπϕ ; x �→ (vγπϕ )∗xvγπϕ is a unital normal ∗-isomorphism.

Since N is finite-dimensional, the inner product given by 〈x, y〉 := ϕ(x∗y)
for all x, y ∈N defines a structure of finite-dimensional Hilbert space on N .
We have a (bounded) linear map μϕ : N ⊗ N → N defined for all x, y ∈ N
by μϕ(x⊗ y) = xy, where N ⊗N is endowed with its canonical structure of
finite-dimensional Hilbert space.

Proposition-Definition A.2.15. For i = 1,2, let πi : N → B(Hi) be a
unital normal ∗-representation of N on a Hilbert space Hi. Let us denote

qπ1π2
ϕ := (π1 ⊗ π2)

(
μ∗
ϕ(1N )

)
∈ B(H1 ⊗H2) (or simply qπ1π2).

We denote qπ1
ϕ := qπ1π1

ϕ (or simply qπ1) for short. Then we have

qπ1π2
ϕ =

∑
1�l�k

∑
1�i,j�nl

F−1
l,j π1

(
e
(l)
ij

)
⊗ π2

(
e
(l)
ji

)
,

where, for all 1� l � k, (e
(l)
ij )1�i,j�nl

is a s.m.u. diagonalizing Fl.
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Proof. For 1 � l � k, fix a s.u.m. (e
(l)
ij )1�i,j�nl

of Mnl
(C) diagonalizing Fl.

It suffices to prove that

μ∗
ϕ(1N ) =

∑
1�l�k

∑
1�i,j�nl

F−1
l,j e

(l)
ij ⊗ e

(l)
ji .

Since 1N =
∑

1�l�k

∑
1�i�nl

e
(l)
ii , it is enough to prove that

μ∗
ϕ

(
e(l)rs

)
=

∑
1�j�nl

F−1
l,j e

(l)
rj ⊗ e

(l)
js , for all 1� r, s� nl.

Let (f
(l)
ij ) be the family of N given by f

(l)
ij := F

−1/2
l,j e

(l)
ij for all 1 � l � k and

1 � i, j � nl. It is clear that (f
(l)
ij ) is an orthonormal basis of N . We have

ϕ
(
e(l)sq

)
=Trl

(
Fle

(l)
sq

)
=

nl∑
i=1

Fl,iTrl
(
e
(l)
ii e

(l)
sq

)
= Fl,sTrl

(
e(l)sq

)
= Fl,sδ

s
q .

We have

μ∗
ϕ

(
e(l)rs

)
=

k∑
l′,l′′=1

nl′∑
i,j =1

nl′′∑
p,q =1

〈
μ∗
ϕ

(
e(l)rs

)
, f

(l′)
ij ⊗ f (l′′)

pq

〉
f
(l′)
ij ⊗ f (l′′)

pq

=

k∑
l′,l′′=1

nl′∑
i,j =1

nl′′∑
p,q =1

δl
′

l′′δ
j
pF

−1
l′,j F

−1
l′′,q

〈
e(l)rs , e

(l′)
iq

〉
e
(l′)
ij ⊗ e(l

′′)
pq

=

k∑
l′=1

nl′∑
i,j,q =1

δll′δ
r
i F

−1
l′,j F

−1
l′,qϕ

(
e(l)sq

)
e
(l′)
ij ⊗ e

(l′)
jq

=

nl∑
j,q=1

F−1
l,j F−1

l,q Fl,sδ
s
qe

(l)
rj ⊗ e

(l)
jq

=

nl∑
j=1

F−1
l,j e

(l)
rj ⊗ e

(l)
js . �

Remarks A.2.16.

1. For i= 1,2, let γi :N
o →B(Ki) be a unital normal ∗-representation of No

on a Hilbert space Ki. In a similar way, we define qγ1γ2
ϕo ∈ B(K1 ⊗K2) (or

simply qγ1γ2) such that

qγ1γ2
ϕo =

∑
1�l�k

∑
1�i,j�nl

F−1
l,j γ1

(
e
(l)o
ij

)
⊗ γ2

(
e
(l)o
ji

)
,

where, for all 1� l � k, (e
(l)
ij )1�i,j�nl

is a s.m.u. diagonalizing Fl.

2. It should be noted that qπ1π2
ϕ and qγ1γ2

ϕo are self-adjoint but not idempotent

in general. If N is commutative (i.e., N = C
k), then qπ1π2

ϕ and qγ1γ2
ϕo are

projections.
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Case of the nonnormalized Markov trace. In this paragraph, we take for
ϕ the nonnormalized Markov trace on N =

⊕
1�l�kMnl

(C), that is, ε =⊕
1�l�k nl · Trl. From now on, the operators qγπε , qπγεo , qπ1π2

ε and qγ1γ2
εo will

be simply denoted by qγπ , qπγ , qπ1π2 and qγ1γ2 . As a corollary of Proposition-
Definition A.2.14, we have the following.

Proposition A.2.17. For all s.u.m. (e
(l)
ij )1�l�k,1�i,j�nl

of N , we have

qγπ =
∑

1�l�k

n−1
l

∑
1�i,j�nl

γ
(
e
(l)o
ij

)
⊗ π

(
e
(l)
ji

)
and

qπγ =
∑

1�l�k

n−1
l

∑
1�i,j�nl

π
(
e
(l)
ij

)
⊗ γ

(
e
(l)o
ji

)
.

As a corollary of Proposition-Definition A.2.15, we have:

Proposition A.2.18. For all s.u.m. (e
(l)
ij )1�l�k,1�i,j�nl

of N , we have

qπ1π2 =
∑

1�l�k

n−1
l

∑
1�i,j�nl

π1

(
e
(l)
ij

)
⊗ π2

(
e
(l)
ji

)
and

qγ1γ2 =
∑

1�l�k

n−1
l

∑
1�i,j�nl

γ1
(
e
(l)o
ij

)
⊗ γ2

(
e
(l)o
ji

)
.

The following result is a slight generalization of Proposition A.2.17 to the
setting of C∗-algebras.

Proposition-Definition A.2.19 (2.6 [2]). Let A, B be two C∗-algebras.
We consider two non-degenerate ∗-homomorphisms γA :No →M(A) and πB :
N →M(B). There exists a unique self-adjoint projection qγAπB

∈M(A⊗B)
(resp., qπBγA

∈M(B ⊗A)) such that

qγAπB
=

∑
1�l�k

n−1
l

∑
1�i,j�nl

γA
(
e
(l)o
ij

)
⊗ πB

(
e
(l)
ji

)
(
resp., qπBγA

=
∑

1�l�k

n−1
l

∑
1�i,j�nl

πB

(
e
(l)
ij

)
⊗ γA

(
e
(l)o
ji

))
,

for all s.u.m. (e
(l)
ij )1�l�k,1�i,j�nl

of N .

Proof. The uniqueness of such a self-adjoint projection is straightforward.
In virtue of the Gelfand–Naimark theorem, we can consider faithful nonde-
generate ∗-homomorphisms θA :A→B(K) and θB :B →B(H). Let us denote
γ := θA ◦ γA and π := θB ◦ πB . Then γ : No → B(K) and π : N → B(H) are

normal unital ∗-representations. Let us fix an arbitrary s.u.m. (e
(l)
ij )1�i,j�nl

for Mnl
(C) for each 1 � l � k. We define a self-adjoint projection qγAπB

∈
M(A⊗B) by setting:

qγAπB
:=

∑
1�l�k

n−1
l

∑
1�i,j�nl

γA
(
e
(l)o
ij

)
⊗ πB

(
e
(l)
ji

)
.
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By Proposition A.2.17, we have qγπ = (θA⊗θB)(qγAπB
). By using again Propo-

sition A.2.17 and the fact that θA ⊗ θB is faithful, we obtain that qγAπB
is

independent of the chosen systems of matrix units. Moreover, the definition
of qγAπB

shows that qγAπB
is also independent of the chosen faithful nonde-

generate ∗-homomorphisms θA and θB . �

In a similar way, we have the following generalization of Proposition A.2.18
to the setting of C∗-algebras.

Proposition A.2.20. For i= 1,2, let Bi (resp., Ai) be a C∗-algebra and
πi :N →M(Bi) (resp., γi :N

o →M(Ai)) a nondegenerate ∗-homomorphism.
Then there exists a unique qπ1π2 ∈M(B1 ⊗B2) (resp., qγ1γ2 ∈M(A1 ⊗A2))
such that

qπ1π2 =
∑

1�l�k

n−1
l

∑
1�i,j�nl

π1

(
e
(l)
ij

)
⊗ π2

(
e
(l)
ji

)
(
resp., qγ1γ2 =

∑
1�l�k

n−1
l

∑
1�i,j�nl

γ1
(
e
(l)o
ij

)
⊗ γ2

(
e
(l)o
ji

))
,

for all s.u.m. (e
(l)
ij )1�l�k,1�i,j�nl

of N .

In the following, we adopt a multi-index notation to simplify formulas and
computations.

Notation A.2.21.

1. Consider the index sets I := {(l, i, j); 1 � l � k,1 � i, j � nl} and I0 :=
I � {∅}.

2. For I = (l, i, j) ∈ I , we denote I := (l, j, i) ∈ I . Denote also ∅ :=∅. The
map I0 →I0; I �→ I is involutive.

3. A pair of indices (I, J) ∈ I × I is said to be composable if we have I =
(l, i,m) and J = (l,m, j) for some indices 1 � l � k and 1 � i,m, j � nl. In
this case, we denote IJ := (l, i, j) ∈ I . We also denote IJ =∅ if I and J
are not composable, I =∅ or J =∅. This defines a map I0 × I0 → I0;
(I, J) �→ IJ . It is clear that IJ = JI for all I, J ∈ I0.

Let us fix a s.u.m. (e
(l)
ij )1�l�k,1�i,j�nl

of N .

Notation A.2.22.

1. Denote by εI := e
(l)
ij for I = (l, i, j) ∈ I and ε∅ := 0. Denote by eI := π(εI)

and fI := γ(εoI) for I ∈ I0. Denote by nI := nl for I = (l, i, j) ∈ I and
n∅ := 1. Notice that we have nI = nI for all I ∈ I0.

2. Since (εI)I∈I is a basis of N , for x ∈N we denote x=
∑

I∈I xI · εI , with
xI ∈C for I ∈ I . Note that x∗ =

∑
I∈I xI · εI .
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Remarks A.2.23. 1. For all I, J ∈ I0, we have ε∗I = εI and εIεJ = εIJ .
For all I, J ∈ I0, we have:

e∗I = eI , eIeJ = eIJ ; f∗
I = fI , fIfJ = fJI .

2. We have qγπ =
∑

I∈I n−1
I fI ⊗eI , qπγ =

∑
I∈I n−1

I eI ⊗fI , qπ =
∑

I∈I eI ⊗
eI and qγ =

∑
I∈I fI ⊗ fI .

A.3. Unitary equivalence of Hilbert C∗-modules. In the following, we
recall the notion of morphism between Hilbert modules over possibly different
C∗-algebras.

Definition A.3.1. Let A and B be two C∗-algebras and φ : A → B a
∗-homomorphism. Let E and F be two Hilbert C∗-modules over A and B
respectively. A φ-compatible operator from E to F is a linear map Φ : E →F
such that:

(i) for all ξ ∈ E and a ∈A, Φ(ξa) = Φ(ξ)φ(a);
(ii) for all ξ, η ∈ E , 〈Φξ,Φη〉= φ(〈ξ, η〉).
Furthermore, if φ is a ∗-isomorphism and Φ is surjective, we say that Φ is φ-
compatible unitary operator (or a unitary equivalence over φ) from E onto F .

Remarks A.3.2.

1. It follows from (ii) that Φ : E → F is bounded and even isometric if φ is
faithful. Indeed, we have ‖〈Φξ,Φη〉‖ = ‖φ(〈ξ, η〉)‖ = ‖〈ξ, η〉‖ for all ξ, η ∈
E . Then, for all ξ ∈ E we have ‖Φξ‖2 = ‖〈Φξ, Φξ〉‖ = ‖〈ξ, ξ〉‖ = ‖ξ‖2.
In particular, if φ is a ∗-isomorphism and Φ is a φ-compatible unitary
operator, then Φ is bijective and the inverse map Φ−1 : F → E is a φ−1-
compatible unitary operator.

2. It is clear that idE is a idA-compatible unitary operator. Let A, B, and
C be C∗-algebras and E , F , and G be Hilbert modules over A, B, and
C, respectively. Let φ :A→B and ψ :B →C be ∗-homomorphisms (resp.,
∗-isomorphisms). If Φ : E → F is a φ-compatible operator (resp., unitary
operator) and Ψ : F → G a ψ-compatible operator (resp., unitary oper-
ator), then Ψ ◦ Φ : E → G is a ψ ◦ φ-compatible operator (resp., unitary
operator).

3. Let Φ : E → F be a unitary equivalence over a given ∗-isomorphism φ. If
T ∈ L(E ), then the map Φ ◦ T ◦ Φ−1 : F → F is an adjointable operator
whose adjoint operator is Φ−1 ◦T ∗ ◦Φ. We define a ∗-isomorphism L(E )→
L(F ); T �→Φ ◦ T ◦Φ−1. Note that Φ ◦ θξ,η ◦Φ−1 = θΦξ,Φη for all ξ, η ∈ E .
In particular, for all k ∈K(E ) we have Φ ◦k ◦Φ−1 ∈K(F ). More precisely,
the map K(E )→K(F ); k �→Φ ◦ k ◦Φ−1 is a ∗-isomorphism.

The notion of unitary equivalence defines an equivalence relation on the
class consisting of all Hilbert C∗-modules (cf. Remarks A.3.2(1), (2)). Actually,
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this notion of morphism between Hilbert modules over possibly different C∗-
algebra can be understood in terms of unitary adjointable operator between
two Hilbert modules over the same C∗-algebra.

Proposition A.3.3. Let A and B be two C∗-algebras and φ : A → B a
∗-isomorphism. Let E and F be two Hilbert C∗-modules over A and B, re-
spectively.

1. If Φ : E → F is a surjective φ-compatible unitary operator, then there exists
a unique unitary adjointable operator U ∈ L(E ⊗φ B,F ) such that U(ξ⊗φ

b) = Φ(ξ)b, for all ξ ∈ E and b ∈B.
2. Conversely, if U ∈ L(E ⊗φ B,F ) is a unitary, then there exists a unique

φ-compatible unitary operator Φ : E → F such that Φ(ξ)b= U(ξ ⊗φ b) for
all ξ ∈ E and b ∈B.

As an application of the above proposition, we can the state the following
result.

Proposition-Definition A.3.4. Let A1, B1, A2, and B2 be C∗-algebras,
φ1 : A1 → B1 and φ2 : A2 → B2 ∗-isomorphisms. Let E1, F1, E2, and F2 be
Hilbert C∗-modules over A1, B1, A2, and B2, respectively. Let Φ1 : E1 → F1

and Φ2 : E2 → F2 be unitary equivalences over φ1 and φ2 respectively. Then
the linear map E1 	 E2 → F1 ⊗ F2; ξ1 ⊗ ξ2 �→ Φ1(ξ1)⊗ Φ2(ξ2) extends to a
bounded linear map Φ1 ⊗ Φ2 : E1 ⊗ E2 → F1 ⊗ F2. Moreover, Φ1 ⊗ Φ2 is a
φ1 ⊗ φ2-compatible unitary operator.

The notion of unitary equivalence can also be understood in terms of iso-
morphism between the associated linking C∗-algebras.

Proposition A.3.5. Let A and B be two C∗-algebras and φ : A → B a
∗-isomorphism. Let E and F be two Hilbert C∗-modules over A and B, re-
spectively.

1. If Φ : E →F is a φ-compatible unitary operator, then there exists a unique
∗-homomorphism f :K(E ⊕A)→K(F ⊕B) such that f ◦ ιE = ιF ◦Φ and
f ◦ ιA = ιB ◦ φ. Moreover, f is a ∗-isomorphism.

2. Conversely, let f : K(E ⊕ A)→K(F ⊕ B) be a ∗-isomorphism such that
f ◦ιA = ιB ◦φ. Then there exists a unique map Φ : E → F such that f ◦ιE =
ιF ◦Φ. Moreover, Φ is a φ-compatible unitary operator.

Proof. 1. The ∗-homomorphism f : K(E ⊕ A) → K(F ⊕ B) is defined by
(cf. Remarks A.3.2(3)):

f

(
k ξ
η∗ a

)
:=

(
Φ ◦ k ◦Φ−1 Φξ

(Φη)∗ φ(a)

)
,

for all k ∈K(E ), ξ, η ∈ E and a ∈A.

2. This is a straightforward consequence of Lemma 2.3.4(1). �
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Notation A.3.6. Let A, B be C∗-algebras and E and F be two Hilbert
C∗-modules over A and B, respectively. Let φ : A→ B be a ∗-isomorphism
and Φ : E → F a φ-compatible unitary operator. If T ∈ L(A,E ), we define

the map Φ̃(T ) := Φ ◦ T ◦φ−1 :B →F . By a straightforward computation, we

show that Φ̃(T ) ∈ L(B,F ) whose adjoint operator is Φ̃(T )∗ = φ ◦ T ∗ ◦ Φ−1.

We have a bounded linear map Φ̃ : L(A,E )→L(B,F ), which is an extension
of Φ up to the canonical injections E →L(A,E ) and F →L(B,F ).
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Index of notations and symbols

AlgG , category of G-C∗-algebras,
142

A� G, crossed product, 143

B � Ĝ, crossed product, 144

C(−), 121
CM , 200

Δk
ij , 132

δkij , 134

δ2A, iterated coaction map, 140
D, bidual G-C∗-algebra, 145
δkAj

, 146

δ
(2)
A1

, 147

δkEj
, 170

δ
(2)
E1

, 173

(ε1, ε2), standard basis of C2, 131
EA,L, 142
EB,λ, 144
EA,R, 145
εI , 208
eI , fI , 208

GG1,G2 , colinking measured
quantum groupoid, 134

Hij , 132

ιA, ιE , ιE ∗ , ιK(E ), canonical
morphisms, 122

ιkij , 134

IndG2

G1
(A1), induced C∗-algebra,
147

IndG2

G1
(E1), induced Hilbert
module, 173

I , multi-index set, 208

jD, 145

K, C∗-algebra of compact
operators on the G.N.S.
space L2(G), 135

Kπ , Kγ , 202

L, R, ρ, λ, canonical

representations of S and Ŝ,
130

Mnl
(C), square matrices of order
nl with entries in C, 115

M̃(E ⊗B), relative multiplier
module, 123

Mij , 132

Nϕ, M
+
ϕ , 199

N ext
+ , extended positive cone, 200

NT , M
+
T , MT , 201

ω, 198
ωξ,η , 198

pij , 131
ϕij , ψij , 132
πL, 142

π, θ̂, 142
π̂λ, 143
π̂, θ, 144
πR, 145
πk
j , π

k
A,j , 146

πj , 148
π̃j , 149
Πk

j , 168, 184
Πj , 182

Π̃j , 185
ϕo, opposite weight, 199
ϕc, commutant weight, 202

qj , qA,j , 146
qI , 150
qE ,j , 167
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qγπ , qπγ , 205
qπ1π2 , qπ1 , 205

RG , unitary coinverse, 126
Rπ

ξ , L
γ
η , 202

S, Ŝ, weak Hopf C∗-algebras, 129
Sij , 134
σγπ/ςγπ , relative flip

map/∗-homomorphism, 203

Trl, non-normalized Markov trace
on Mnl

(C), 127
Tξ , 154

U , 126

V̂ , V , Ṽ , 127

V , W , Ṽ , multiplicative partial
isometries, 128

V i
jl, W

j
ik, Ṽ

j
ki, 133

V , 145
V k
j , 168, 184

vγπ , canonical coisometry, 205

WG , pseudo-multiplicative unitary,
126

Z(−), center, 126
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