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ACTIONS OF MEASURED QUANTUM GROUPOIDS
ON A FINITE BASIS

JONATHAN CRESPO

ABSTRACT. In this article, we generalize to the case of mea-
sured quantum groupoids on a finite basis some important re-
sults concerning actions of locally compact quantum groups on
C*-algebras (Comm. Math. Phys. 235 (2003) 139-167). Let G be
a measured quantum groupoid on a finite basis. We prove that
if G is regular, then any weakly continuous action of G on a C*-
algebra is necessarily strongly continuous. Following (K-Theory
2 (1989) 683-721), we introduce and investigate a notion of G-
equivariant Hilbert C*-modules. By applying the previous results
and a version of the Takesaki-Takai duality theorem obtained in
(Bull. Soc. Math. France 145 (2017) 711-802) for actions of G,
we obtain a canonical equivariant Morita equivalence between a
given G-C*-algebra A and the double crossed product (A x G) x Q\
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Introduction

The notion of monoidal equivalence of compact quantum groups has been
introduced by Bichon, De Rijdt and Vaes in [6]. Two compact quantum groups
G1 and G» are said to be monoidally equivalent if their categories of represen-
tations are equivalent as monoidal C*-categories. They have proved that G,
and Go are monoidally equivalent if and only if there exists a unital C*-algebra
equipped with commuting continuous ergodic actions of full multiplicity of Gy
on the left and of G on the right.

Many crucial results of the geometric theory of free discrete quantum
groups rely on the monoidal equivalence of their dual compact quantum
groups. Among the applications of monoidal equivalence to this theory, we
mention the contributions to randow walks and their associated boundaries
[26], [15], CCAP property and Haagerup property [14], the Baum—Connes
conjecture and K-amenability [29], [28].

In his Ph.D. thesis [11], De Commer has extended the notion of monoidal
equivalence to the locally compact case. Two locally compact quantum groups
G; and Gz (in the sense of Kustermans and Vaes [19]) are said to be
monoidally equivalent if there exists a von Neumann algebra equipped with
a left Galois action of G; and a right Galois action of Gy that commute.
He proved that this notion is completely encoded by a measured quantum
groupoid (in the sense of Enock and Lesieur [17]) on the basis C?. Such a
groupoid is called a colinking measured quantum groupoid.

The measured quantum groupoids have been introduced and studied
by Lesieur and Enock (see [17], [20]). Roughly speaking, a measured
quantum groupoid (in the sense of Enock-Lesieur) is an octuple G =
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(N,M,o,B,T,T,T",v), where N and M are von Neumann algebras (the basis
N and M are the algebras of the groupoid corresponding respectively to the
space of units and the total space for a classical groupoid), @ and 3 are faith-
ful normal *-homomorphisms from N and N° (the opposite algebra) to M
(corresponding to the source and target maps for a classical groupoid) with
commuting ranges, I' is a coproduct taking its values in a certain fiber prod-
uct, v is a normal semi-finite weight on N and T and 1" are operator-valued
weights satisfying some axioms.

In the case of a finite-dimensional basis IV, the definition has been greatly
simplified by De Commer [13], [11] and we will use this point of view in this
article. Broadly speaking, we can take for v the non-normalized Markov trace
on the C*-algebra N = P, ¢, ), My, (C). The relative tensor product of Hilbert
spaces (resp., the fiber product of von Neumann algebras) is replaced by the
ordinary tensor product of Hilbert spaces (resp., von Neumann algebras). The
coproduct takes its values in M ® M but is no longer unital. In the following,
these objects will be referred to as “measured quantum groupoids on a finite
basis.”

In [2], the authors introduce a notion of (strongly) continuous actions on
C*-algebras of measured quantum groupoids on a finite basis. They extend
the construction of the crossed product, the dual action and give a version of
the Takesaki—-Takai duality generalizing the Baaj—Skandalis duality theorem
[3] in this setting.

If a colinking measured quantum groupoid G, associated with a monoidal
equivalence of two locally compact quantum groups G; and G, acts (strongly)
continuously on a C*-algebra A, then A splits up as a direct sum A= A; ® A,
of C*-algebras and the action of G on A restricts to an action of Gy (resp.,
Gz) on A; (resp., As).

They also extend the induction procedure to the case of monoidally equiva-
lent regular locally compact quantum groups. To any continuous action of G
on a C*-algebra A, they associate canonically a C*-algebra As endowed with
a continuous action of Go. As important consequences of this construction,
we mention the following:

e a one-to-one functorial correspondence between the continuous actions of
the quantum groups G; and Gs, which generalizes the compact case [15]
and the case of deformations by a 2-cocycle [21];

e a complete description of the continuous actions of colinking measured
quantum groupoids;

o the equivalence of the categories KKg, and KKg,, which generalizes to the
regular locally compact case a result of Voigt [29].

The proofs of the above results rely crucially on the regularity of the quantum
groups G; and Gs. They prove that the regularity of G; and Gs is equivalent
to the regularity in the sense of [16] (see also [24], [23]) of the associated
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colinking measured quantum groupoid. By passing, this result solves some
questions raised in [21] in the case of deformations by a 2-cocycle.

In this article, we generalize to the case of (semi-)regular measured quantum
groupoid on a finite basis some important properties of (semi-)regular locally
compact quantum groups [4], [1]. This work will give us enough formulas
to generalize some crucial results of [5] concerning actions of (semi-)regular
locally compact quantum groups.

More precisely, if G is a semi-regular measured quantum groupoid on a finite
basis, then the space consisting of the continuous elements of any action of G
is a C*-algebra. Moreover, if G is regular we prove that any weakly continuous
action of G is necessarily continuous in the strong sense.

We introduce a notion of action of G on Hilbert C*-modules in line with
the corresponding notion for quantum groups [3]. A G-equivariant Hilbert C*-
module is a Hilbert C*-module endowed with a continuous action (in a sense
that will be specified). By using the previous result, if G is regular we prove
that any action of G on a Hilbert C*-module is necessarily continuous. We are
able to define the notion of G-equivariant Morita equivalence of G-C*-algebras.
By applying a version of the Takesaki-Takai duality theorem obtained in [2],
we prove that any G-C*-algebra A is G-equivariantly Morita equivalent to its
double crossed product (A x G) x G in a canonical way.

This article is organized as follows.

e Chapter 1. We recall the general conventions and notation used throughout
this paper.

o Chapter 2. We make an overview of the theory of locally compact quantum
groups (cf. [19] and [4]). We recall the construction of the Hopf C*-algebra
associated with a locally compact quantum group and the notion of action of
locally compact quantum groups in the C*-algebraic setting. We also recall
the notion of equivariant Hilbert C*-modules (cf. [3]).

e Chapter 3. We make a very brief survey of the theory of measured quan-
tum groupoid (cf. [20], [17]) and we recall the simplified definition in the case
where the basis is finite-dimensional and the associated C*-algebraic structure
provided by De Commer in [13], [11]. In the last section, we make an outline
of the reflection technique across a Galois object provided by De Commer (cf.
[11], [12]), the construction and the structure of the colinking measured quan-
tum groupoid associated with monoidally equivalent locally compact quantum
groups. We also recall the precise description of the C*-algebraic structure of
colinking measured quantum groupoids (cf. [2]).

e Chapter 4. In this chapter, we make a review of the notions of regularity
and semi-regularity for measured quantum groupoids on a finite basis (cf. [16],
[24], [23], [2]) and we obtain new relations equivalent to the (semi-)regularity
generalizing some results of Baaj and Skandalis [4], [1]. Given a (semi-)regular
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measured quantum groupoid, we derive new relations that will play a crucial
role in the subsequent chapters.
e Chapter 5. In the first section of this chapter, we recall the definitions and
the main results of [2] concerning the notion of (strongly) continuous action
of measured quantum groupoids on a finite basis on C*-algebras. We also
recall the version of the Takesaki-Takai duality theorem obtained in [2] in
this framework. The second section is dedicated to a brief overview of C*-
algebras acted upon by a colinking measured quantum groupoid (cf. [2]). In
the last section, we generalize to the setting of measured quantum groupoids
on a finite basis the results of Baaj, Skandalis and Vaes [5] concerning the
notion of weakly /strongly continuous action of (semi-)regular locally compact
quantum groups.
o Chapter 6. We introduce the notion of action of measured quantum groupoid
on a finite basis on Hilbert C*-module and we investigate in detail the case of
a colinking measured quantum groupoid. In the last paragraph, we provide a
direct approach of the induction procedure for equivariant Hilbert C*-modules
equivalent to that obtained in [2]. In particular, if Gg, ¢, is a colinking mea-
sured quantum groupoid associated with two monoidally equivalent regular
locally compact groups G; and G5 we obtain one-to-one correspondences be-
tween the actions of G;, G2, and Gg, g, on Hilbert C*-modules.
e Chapter 7. In this chapter, we introduce and discuss the notion of equivari-
ant Morita equivalence. Given a G-C*-algebra A, we prove that A and its
double crossed product (A x G) x G are G-equivariantly Morita equivalent in
a canonical way.
e Chapter 8. In the Appendix of this article, we have assembled a very brief
review of the main notions and notation of the noncommutative measure and
integration theory. We can also find some notation and important results used
throughout this paper.

In a forthcoming article [10], we use the results of this paper to generalize
those of Baaj and Skandalis concerning the equivariant Kasparov theory (cf.
86 [3] and 7.7 b) [4]).

1. Preliminary notation

We specify here some elementary notation and conventions used in this
article. For more notation, we refer the reader to the Appendix and the index
of this article.

e For all subset X of a normed vector space E, we denote (X) (resp., [X])
the linear span (resp., closed linear span) of X in E. If X, Y C E, we denote
XY :={zy; x € X,y € Y}, where xy denotes the product/composition of
and y or the evaluation of z at y (when these operations make sense). If X is
a subset of a x-algebra A, we denote by X* the subset {¢*; z € X} of A.
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e We denote by ® the tensor product of Hilbert spaces, the tensor product
of von Neumann algebras, the minimal tensor product of C*-algebras or the
external tensor product of Hilbert C*-modules. We also denote by ® (resp.,
©®4) the algebraic tensor product over the field of complex numbers C (resp.,
an algebra A).

e Let A and B be C*-algebras. We denote by M(A) (resp., A) the C*-algebra
consisting of the multipliers of A (resp., the C*-algebra obtained from A by
adjunction of a unit element). We denote by M(A ® B) (or Mp(A® B) in
case of ambiguity, §1 [3]) the B-relative multiplier algebra, that is, the C*-
algebra consisting of the elements m of M(A ® B) such that the relations
(A BYymC A® B and m(A® B) C A® B hold.

Let m: A — M(B) be a (possibly degenerate) x-homomorphism. For all
C*-algebra D, there exists a unique strictly continuous *-homomorphism 7 ®
idp : M(A® D) — M(B® D) satisfying the relation (7 ® idp)(z)(1p ® d) =
(7 ®idp)(x(1a ® d)) for all z € M(A® D) and d € D. Indeed, denote by
7 the unital extension of 7 to A. The non-degenerate *-homomorphism 7 ®
idp : A® D — M(B ® D) uniquely extends to M(A ® D). By restricting to
MV(A ® D), we obtain the desired extension of 7 ® idp (§1 [3]).

o If z and y are two elements of an algebra A, we denote by [x,y] the com-
mutator of x and y, i.e. the element of A defined by [z,y] :=zy — yz.

Let s and % be Hilbert spaces (all inner products are assumed to be
anti-linear in the first variable and linear in the second variable).
o We denote by B(,. %) (resp., K(s¢,.%)) the Banach space of bounded
(resp., compact) linear operators from 52 to J£ . For all £ € # and n € 2,
we denote by 0¢, € B(J,. %) the rank-one operator defined by 6, (¢) :=
(n,¢)¢ for all ¢ € 7. We have the relation K(, ) = [0¢.; € € X ,n€ X ].
Denote by B(J#) := B(, ) (resp., K(I) := K(H, 7)) the C*-algebra
of bounded (resp., compact) linear operators on . Recall that K(J7) is a
closed two-sided ideal of B(s¢) and B() = M(K(57)).
e We denote by X gz (or simply ) the flip map, that is to say the unitary
operator X @ H — H QK EQN—>NRE.
e For u € B(.57), we denote by Ad, the bounded operator on B(5) defined
for all x € B(2) by Ad,(z) = uzu®*.

In this article, we will use the notion of (right) Hilbert C*-module over a C*-
algebra and their tensor products (internal and external). All the definitions
and conventions are those of [18]. In particular, let & and .# be two Hilbert
C*-modules over a C*-algebra A.

e We denote by £(&,.%) the Banach space consisting of all adjointable oper-
ators from & to F and L(&) the C*-algebra L(&,&).

e For £ € F and n € &, we denote by 0¢ ,, the elementary operator of L(&,.%)
defined by 6¢ ,,(¢) :=&(n,{)a for all ( € &. Let K(&,.F) :=[0g; § € F,nE &)
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be the Banach space of “compact” adjointable operators. Denote by K(&) the
C*-algebra K(&, &) consisting of the compact adjointable operators of L(&).
Recall that IC(&) is a closed two-sided ideal of £(&) and L(&) = M(K(&)).
o Let &% :=K(&,A). We have &* ={T € L(&,A); I € &Vne &,T(n) =
(&,m)a}t. We will identify & = K(A,&) C L(A,&). Up to this identification,
for £ € & the operator £* € &* satisfies £*(n) = (£,n)a for all n € & We
recall that &* is a Hilbert K(&)-module for the inner product defined by
(I, T") () :=T* oT" for T,T" € & and the right action is defined by the
composition of maps.

In this article, we will also use the leg numbering notation. Let JZ be a
Hilbert space and T € B(J# ® ). We define the operators Tia,T13,Ta3 €
B(% & %) by setting T12 =T ® 1, T23 =1® T and T13 = (Z ® 1)(1 ®
T)(X ®1). We can generalize the leg numbering notation for operators acting
on any tensor product of Hilbert spaces and for adjointable operators acting
on any external tensor product of Hilbert C*-modules over possibly different
C*-algebras.

2. Locally compact quantum groups

For the notation and conventions used in this article concerning the non-
commutative integration theory and the canonical objects of the Tomita—
Takesaki theory, we refer the reader to the Appendix of this article (cf. §A.1).

DEFINITION 2.1 ([19]). A locally compact quantum group is a pair G =
(L>*(G),A), where L>*°(G) is a von Neumann algebra and A :L*®(G) —
L>*(G) ® L*>°(G) is a unital normal x-homomorphism satisfying the follow-
ing conditions:

1. (A®id)A=(1d® A)A;
2. there exist n.s.f. weights ¢ and ¢ on L*°(G) such that:
(a) ¢ is left invariant, that is, ¢((w ® id)A(z)) = ¢(z)w(l), for all w e
L>(G)f and z € MY,
(b) 4 is right inveriant, that is, ¥((id ® w)A(z)) = ¥(x)w(l), for all w €
L*®(G)f and z € Sﬁg
A left (resp., right) invariant n.s.f. weight on L*°(G) is called a left (resp.,
right) Haar weight on G.

2.2. For a locally compact quantum group G, there exists a unique left
(resp., right) Haar weight on G up to a positive scalar [19]. Let us fix a
locally compact quantum group G := (L*°(G), A). Let us fix a left Haar weight
¢ on G. Let (L%(G),7,A) be the G.N.S. construction for (L*°(G), ). The
left regular representation of G is the multiplicative unitary [19], [4] W €
B(L*(G) ® L*(G)) defined by

W*(Az) @ A(y)) = (A2 A)(A(y)(z®1)), for all z,y € N,.
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By identifying L°(G) with its image by the G.N.S. representation 7, we
obtain:

e L°(G) is the strong closure of the algebra {(id ® w)(W); w € B(L?(G)).};
o Alx)=W*(1@z)W, for all x € L=(G).

2.3. The Hopf-von Neumann algebra (L*°(G),A) admits [19] a unitary
antipode map Rg : L>°(G) — L*°(G) and we can choose for right Haar weight
on G the weight ¢ defined by ¢ (z) := p(Rg(x)), for all x € L=(G). The
Connes cocycle derivative [8], [25] of 1) with respect to ¢ is given by

(DY : D)y = yit2/2dit, for all t € R,
where v > 0 is the scaling constant of G and the operator dnM is the mod-
ular element of G [19]. Let MNZ := {x € M; xd'/? is bounded and its closure
xd'/? belongs to N, }. The G.N.S. construction [25] for (L>°(G),v) is given
by (L*(G),id,Ay), where Ay is the closure of the map ‘ﬁi — L2(G);

A(zd'/?). We recall that Jy, = v'/4J, where J denotes the modular conjuga-
tion for ¢.

2.4. The right regular representation of the quantum group G is the mul-
tiplicative unitary V € B(L?(G) ® L?(G)) defined by

V(A¢(x) ® Aw(y)) =(Ay ®Ay) (A(x)(l ® y))7 for all z,y € M.

DEFINITION 2.5. The quantum group G dual of G is defined by the Hopf-

~_ o~

von Neumann algebra (L*°(G), A), where:

e L°(G) is the strong closure of the algebra {(id ® w)(V); w € B(L%(G)};
e the coproduct A:L>®(G) = L*°(G) ® L*°(G) is defined by A(z) :=V*(1®
x)V for all x € L>(G).

The quantum group G admits left and right Haar weights [19] and we can

take the Hilbert space L?(G) for G.N.S. space. We denote by J the modular
conjugation of the left Haar weight on G.

2.1. Hopf C*-algebras associated with a quantum group. We asso-
ciate [4], [19] with the quantum group G two Hopf C*-algebras (S,d) and
(S,0) defined by:
e S (resp., S) is the norm closure of the algebra {(w ®id)(V); w € B(L3(G)), }

(esp, {([d@w)(V)we BIZG).Y;
e the coproduct §: 5 — M(S®S) (resp., §: S — M(S®S)) is given by:

0(x)=V(xe1)V*, forallzeS
(resp., 5(x):=V*Q1®z)V, forallze §)
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We call (S,4) (resp., (§, A)) the Hopf C*-algebra (resp., dual Hopf C*-algebra)
associated with G. We can also denote by Co(G) := S the Hopf C*-algebra
of G. Note that Co(G) = S.

NoraTION 2.1.1.

e Consider the unitary operator U :=.J.J € B(L%(G)). Since U = VAT, we
have U* = v~/4U. In particular, Ady = Ady- on B(L*(G)).

e We have the following nondegenerate faithful representation of the C*-
algebra S (resp., S):

)i yey
)iy UL(y)U”
); T T
G)); = Up(z)U").

It follows from 2.15 [19] that W =3(U ® 1)V(U* ® 1)% and [W1a, Va3] = 0.
The right regular representation of G is the multiplicative unitary V :=2(1®
U)V(1eU*X.

NoTATION 2.1.2. Let 52 be a Hilbert space and X € B(J ® ). We
denote by C(X) the norm closure of the subspace {(id®@w)(XX); w € B(J).}
of B(s#). If X is a multiplicative unitary, then {(id ® w)(XX); w € B(H#).}
is a subalgebra of B(7¢) [4].

DEFINITION 2.1.3 ([4], [1]). The quantum group G is said to be regular
(resp., semi-regular), if K(L?(G)) =C(V) (resp., K(L?(G)) C C(V)).

Note that G is regular (resp., semi-regular) if, and only if, K(L?(G)) = C(W)
(resp., K(L2(G)) C C(W)).

2.2. Continuous actions of locally compact quantum groups. We use
the notation introduced in the previous paragraph. Let A be a C*-algebra.
DEFINITION 2.2.1.

1. An action of the quantum group G on A is a nondegenerate *-homomor-
phism d4: A — M(A®S) satisfying (64 ®idg)da = (ida ® §)d 4.
2. An action §4 of G on A is said to be strongly (resp., weakly) continuous if

[6a(A)(1a®8)|=A®S  (resp., A= [(ida ®w)da(A); w € B(L*(G)),]).

3. A G-C*-algebra is a pair (A,54), where A is a C*-algebra and §4 : A —
M(A® S) is a strongly continuous action of G on A.

If G is regular, any weakly continuous action of G is necessarily continuous
in the strong sense, cf. 5.8 [5].
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NOTATION 2.2.2. Let 64 : A— M(A®S) (resp., 64 : A— M(A® S)) be
a strongly continuous action of G (resp., G) on the C*-algebra A. Denote by
71, (resp., my) the representation of A on the Hilbert A-module A ® L%(G)

defined by 7y, := (idg ® L)d4 (resp., Ty := (ida @ X\)d4).

DEFINITION 2.2.3 (cf. 7.1 [4]). Let (A,54) be a G-C*-algebra (resp., G-
C*-algebra). We call (reduced) crossed product of A by G (resp., @), the C*-
subalgebra A x G (resp., A x G) of £(A® L2(G)) generated by the products
70(a) (14 ® p(z)) (resp., Ta(a)(1a ® L(x))) fora € A and z € § (resp., z € S).

The crossed product A x G (resp., A % @) is endowed with a strongly

continuous action of G (resp., G), cf. 7.3 [4]. If G is regular, then the Takesaki—
Takai duality extends to this setting, cf. 7.5 [4].

DEFINITION 2.2.4. Let A and B be two C*-algebras. Let 64 : A - M(A®
S) and dp : B— M(B® S) be two actions of G on A and B respectively. A
nondegenerate *-homomorphism f: A — M(B) is said to be G-equivariant
if (f®idg)ds =0dpo f. We denote by Alg, the category whose objects are
the G-C*-algebras and the morphisms are the G-equivariant nondegenerate
s*-homomorphisms.

2.3. Equivariant Hilbert C*-modules and bimodules.

Preliminaries. In this paragraph, we briefly recall some classical notationand
elementary facts concerning Hilbert C*-modules. Let A be a C*-algebra and
& a Hilbert A-module.

NoOTATION 2.3.1. Let us consider the following maps:

e 14: A= K(& @A), the x-homomorphism given by t4(a)({ ®b) =0 ab for
all a,be A and £ € &

o 15:8— K(E® A), the bounded linear map given by tg(£)(n@®a) =Ea® 0
foralla€ A and {,n € &;

o 15 EF = K(& @ A), the bounded linear map given by tg«(£*)(n @ a) =
0 &*n for all {,n e & and a € A;

o (e K(&) = K(& @ A), the x-homomorphism given by tx(s)(k)(n @ a) =
kn@0 for all ke K(&), ne€ & and a € A.

The result below follows from straightforward computations.

PROPOSITION 2.3.2. We have the following statements:

ctg(€a) =1e(&)ala) and ta(a)ie(§F) =g~ (al*) for all £ € & and a € A;
e (&) =1e(8)" and uc(s)(Og,n) = te(§)te(n)” for all §,m € &
cte(§)*te(n) =va((§,m) for all §,n € &;

. K(& @ A) is the C*-algebra generated by the set 14(A) Uig(&).

=W N =
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REMARKS 2.3.3.
1. For a € A, £ € & and k € K(&), the operators ta(a), te(§), te-(£*) and

ti(ey(k) can be represented by 2-by-2 matrices acting on the Hilbert A-
module & @ A as follows:

LA(Q):<8 2); Lg(&):<8 g);
Lg*(s*)(fq‘ 8); L’“‘?)(k)(g 8>

Moreover, any operator = € (& @ A) can be written in a unique way as
follows:

= (T;C* 2)’ with k£ € K(&),£,n € & and a € A.

2. Note that 14 and tx(s) extend uniquely to strictly/-strongly continuous
unital *-homomorphisms ¢4 : M(A) = L(E D A) and 1y : L(E) = L(ED
A). Besides, we have 14(m)({ ©a) =0®ma and gy (T) (D a)=TEDO
for all me M(A), T € L(&), (€& and a € A.

3. 1e+ admits an extension to a bounded linear map tg- : L(&, A) = L(E® A)
in a straightforward way. Similarly, up to the identification & = KC(A, &),
we can also extend tg to a bounded linear map tg : L(A, &) = L(E D A).

4. Asin 1, we can represent the operators t4(m), t()(T), te+(S) and 1g(S*),
for me M(A), T € L(&) and S € L(A, &), by 2-by-2 matrices. Moreover,
any operator x € L(& @ A) can be written in a unique way as follows:

S*
By using the matrix notations described above, we derive easily the follow-
ing useful technical lemma.
LEMMA 2.3.4. Let x € L(E @ A) (resp., v € K(E G A)). We have:

.z €1e(L(A,E)) (resp., te(8)) if, and only if, xte(€) =0 for all £ € &
and va(a)xr =0 for all a € A; in that case, we have ta(m)x =0 for all
m e M(A);

2. 1 € 1) (L(8)) (resp., eey(K(E))) if, and only if, xta(a) =0 and
tala)x =0 for all a € A; in that case, we have xtga(m) =1a(m)x =0 for
all me M(A).

Let us recall the notion of relative multiplier module, cf. 2.1 [3].
DEFINITION 2.3.5. Let A and B be two C*-algebras and let & be a Hilbert

C*-module over A. Up to the identification & ® B =K(A® B,& ® B), we

define /K/lv(éa ® B) (or Mp (&€ ® B) in case of ambiguity) to be the following

subspace of L(A® B,& ® B):

{TeL(A®B,&@B);Vz€B,(ls®2)T €@ B andT(14 @) € £ @ B}.

!
x:(T fn)’ with T € L(&),S,5" € L(A, &) and m € M(A).
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Note that M(& ® B) is a Hilbert C*-module over M(A ® B), whose M(A ®
B)-valued inner product is given by

(&m):=¢"on, forall{,neM(&®B)CLA®B,&® B).
Note also that we have K(M(& ® B)) C M(K(&) ® B).

PROPOSITION-DEFINITION 2.3.6. Let B C B(#') be a C*-algebra of oper-
ators on a Hilbert space # . For all T € L(A® B,& ® B) and w € B(X ).,
there exists a unique (idge @ w)(T) € L(A, &) such that

te(ide @ w)(T) = (id;c(g@A) ®w) (Lg@B(T)) eL(EDA),
where e LA®B,6®@B) = L((£ @ B)& (A® B)) = M(K(6© A)® B). If

B C B(¥) is nondegenerate and T € M(& @ B), then we have (idg @w)(T) €
8.

Proof. This is a direct consequence of Lemma 2.3.4(1) and the fact that
teep(T) e M(K(E @A) @ B) if T e M(6 ® B). O

Notion of equivariant Hilbert C*-module. In this paragraph, we recall the
notion of equivariant Hilbert C*-module through the three equivalent pic-
tures developed in §2 [3]. Let us fix a G-C*-algebra (A4,04) and a Hilbert
A-module &

DEFINITION 2.3.7. An action of the locally compact quantum group G on
& is a linear map dg : & - M(& ® S) such that:

1. 5{;(5)(5,4((1) =dg(€a) and d4({§,n)) = (0s(€),05(n)), foralla € Aand &,n €

2. [0s(E)(A®S)]=E®S;
3. the linear maps d¢ ® idg and idg ® § extend to linear maps from L£(A ®
S,E®5)to LIA®S®S,£®S®S) and we have (ds ®idg)ds = (ide ®9)de.
An action dg of G on & is said to be continuous if we have [(15 ® S)dg(&)] =
& ® S. A G-equivariant Hilbert A—godule is a Hilbert A-module & endowed
with a continuous action dg: & — M(E®S) of G on &.
2.3.8. The datum of a continuous action of G on & is equivalent to that of a
continuous action dx(sga) : K(&DA) = M(K(EDA)®S) of G on the linking

C*-algebra K(& @ A) such that the -homomorphism ¢4 : A — K(& @ A) is
G-equivariant, cf. 2.7 [3].

2.3.9. If dg is an action of G on &, we have the unitary operator ¥ €
L(E®s, (A®S),&®S) defined by ¥ (€ ®s, x) :=0g(§)x for all £ € & and
x € A® S. This unitary satisfies the relation

(7 ®@cids)(¥ ®s,40ids 1)
=7 Qid,es 1 in ﬁ(éa®512‘x (A®S®S),g®5®5),
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where 62 := (04 ®ids)da = (ida ®6)d; cf. 2.3 and 2.4 (a) [3] for the details.
Conversely, if there exists a unitary operator ¥ € £L(& ®s, (A ® S),& ® S)
satisfying the above relation and the fact that ¥T¢ € Mv(é’ ®S) forall (£ €&,
where Te € LIA® 5,6 ®5, (A®S)) is defined by T¢(z) :=§ ®5, = for all
r€A®S, then the map dg : é"—>ﬂ/lv(é"®5); &= V1 is an action of G on
&; cf. 2.4 (b) [3].

2.3.10. An action of G on & determines an action dx(g) : K(&) —
M(K(&) @ S) of G on K(&) defined by (e (k) = ¥ (k ®s, 1)7* for all
k € K(&), where ¥ is the unitary operator associated to the action; cf. 2.8

[3]. Moreover, if & is a G-equivariant Hilbert module, then (&) turns into a
G-C*-algebra.

3. Measured quantum groupoids

For reminders concerning the relative tensor product of Hilbert spaces and
the fiber product of von Neumann algebras, we refer the reader to the Ap-
pendix of this article (cf. §A.2).

DEFINITION 3.1 (¢f 3.7 [17], 4.1 [20]). We call a measured quantum

groupoid an octuple G = (N, M, o, 8,1, T,T",v), where:

e M and N are von Neumann algebras;

o I': M — M gxo M is a faithful normal unital *-homomorphism, called the
coproduct;

e ao: N— M and B: N° — M are faithful normal unital *-homormorphisms,
called the range and source maps of G;

o T: M, — a(N)Y* and T : My — B(N°)F* are n.s.f. operator-valued
weights;

e v is a n.s.f. weight on V;

such that the following conditions are satisfied:

1. [a(n'),B(n°)] =0, for all n,n’ € N;

2. T(a(n)) = a(n) g®q 1 and T'((n°)) =158, B(n°), for all n € N;

3. T is coassociative, i.e. (I gxq id)I" = (id gx I)T';

4. the n.s.f. weights ¢ and 1) on M given by ¢ =voa~toT and ) =voB~LoT’
satisfy:
o Yz € ML, T(x) = (id gxo ¢)['(2), Vo € ML, T () = (¢ pxa id)[(2),
e o7 and 0¥ commute for all s,t € R.

Let G=(N,M,«a,8,T',T,T',v) be a measured quantum groupoid. We de-
note by (5, m,A) the G.N.S. construction for (M, ) where ¢ :=voa~toT.
Let (0¢)ter, V and J be respectively the modular automorphism group, the
modular operator and the modular conjugation for . In the following, we
identify M with its image by 7 in B(J¢).
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e We have a coinvolutive x-antiautomomorphism Rg : M — M such that
RZ =idy (cf. 3.8 [17]).

From now on, we will assume that 7" = Rg o T o Rg and then also v = ¢ o Rg.

e There exist self-adjoint positive nonsingular operators A and d respectively
affiliated to Z(M) and M such that (Dy : D), = N/24it for all t € R.
The operators A and d are respectively called the scaling operator and the
modular operator of G.

e The G.N.S. construction for (M, 1)) is given by (4, 7y, Ay), where: Ay, is
the closure of the operator which sends any element = € M such that xzd'/2
is closable and its closure zd'/2 € M, to Ay(zd/2); my : M — B(J) is
given by the formula my(a)Ay(z) = Ay (ax).

e The modular conjugation Jy, for 1 is given by Jy = N4 T

o We will denote by #g : I 3R H — Q®B% the pseudo-multiplicative
unitary of G (cf. 3.3.4 [27], 3.6 [17]).

PROPOSITION-DEFINITION 3.2 (cf. 3.10 [17]). We define the (Pontryagin)
dual of G to be the measured quantum groupoid G :=(N,M,a,8,T,T,RoT o
R,v), where:

e M is the von Neumann algebra generated by {(w*id)(#g); we B(H).} C
B();

B:N°— M is given by ,@(no) =Ja(n*)J for alln € N;

e T:M— M\E*‘* M is given for allz € M by [(z):= 005 (@ s®a 1) #5035,

e there exists a unique n.s.f. weight ¢ on M whose G.N.S. construction is
(J€,id, Ag), where Ag is the closure of the operator (wid)(#g) — a,(w)
defined for mormal linear forms w in a dense subspace of I, = {w €
B().; Ik € Ry, Vo € Ny, [w(z*)|> < kp(z*z)} and ay,(w) € H# satisfies
w(z*) = (Ap(x),ap(w)) for all x € Ny;

o T is the unique n.s.f. operator-valued weight from M to a(N) such that
@:Vooflof and f':RéofoRé, where Ré:]/W\—>]/W\ is given by

Rg(z) := Ja*J for all x € M.

The pseudo-multiplicative unitary WQA ofg is gwen by Wz = O'Igan*Uaa.

We will denote by J the modular conjugation for . Note that the scaling
operator of G is A~1. In particular, we have A € Z(M)N Z(M) for all t € R.

e Let a(n):=JB(n°)*J = JB(n°)*J for n € N. We recall the following rela-
tions (cf. 3.11 (v) [17]): MNM = (N), MO M’ = B(N°), M’ "M = B(N®)
and M’ N M’ = a(N).

o Let U:=JJ € B(A). Then, U* = \=/4U and U? = XV/* (ct. 3.11 (iv)
[17]). In particular, U is unitary. We have a(n) = Ua(n)U* and S(n°) =
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UB(n°)U* for all n € N. Since A\™/* € Z(M), we also have a(n) = U*a(n)U
and B(n°) =U*B(n°)U for all n € N.
PROPOSITION-DEFINITION 3.3 (cf. 3.12 [17]).

o The octuple (N°,M,B,0,68q 0 ', Rg o T o Rg,T,v°) is a measured quan-
tum groupoid denoted by G° and called the opposite of G. The pseudo-
multiplicative unitary of G° is given by Wgo = (5Ja®a e (8] o®a J,B)

o Let Cpr: M — M’ be the canonical *-antihomomorphism given by Cpy(x) :=
Jx*J for all x € M. Let us define:

= (Cwm p*a Crr) 0T 0 Oy
RS :=CyoRgoCy
T°=CpoToChf

Then the octuple (NO,M’,B, a,I°,T¢, RET°Rg,v°) is a measured quan-
tum groupoid denoted by G° and called the commutant of G. The pseudo-
multiplicative unitary #ge of G° is given by #ge = (5J a®a JB)”//g (8J 6®a

J 3).
NOTATION 3.4. For a given measured quantum groupoid G, we will need

the following pseudo-multiplicative unitaries:

7/ = Wg, 7/ W(go W(g)ca

CONVENTION 3.5. Henceforth, we will refer to (QA)C instead of QA as the dual
of G since this groupoid is better suited for right actions of G. We have

(Q\)C = (NO7]/\4\/7/87&7 i‘—‘\c77/—\‘c77/—\‘c,7y0)7
where the coproduct and the operator-valued weights are given by:
o I(z) = (7/@)6)*(1 R0 x)%é)c, for all z € M’;

o~

. T\C*CAOT\OC'il where CM:M%J/\/T’;ml—)jx*j;
o T¢' = R 0T OR

4/722 W(go)c.

(©)e

Note also that the commutant weight @°:=1°0 71 o T¢ derived from the
weight @ is left invariant for the coproduct . In the following, we will simply
denote by G the dual groupoid of G (since no ambiguity will arise with the
Pontryagin dual). Note that the bidual groupoid is (G°)¢ = (G°)°.

3.1. Case where the basis is finite-dimensional. In [11], De Commer
provides an equivalent definition of a measured quantum groupoid on a finite
basis. This definition is far more tractable since it allows us to circumvent the
use of relative tensor products and fiber products.

In the following, we fix a finite-dimensional C*-algebra N :=
@D1<i<x Mn,(C) endowed with the nonnormalized Markov trace e :=
D1 <i<r 7 - Tri, where Tr; denotes the nonnormalized trace on My, (C).
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We refer to §A.2 of the Appendix for the definitions of vg, and ggq. Let
us a fix a measured quantum groupoid G = (N, M, «,8,T,T,T’,€). We have
a unital normal *-isomorphism M gxo M — qgo (M @ M)qga; = — v/*gafwga
(cf. Proposition-Definition A.2.14). Let A: M — M ® M be the (nonneces-
sarily unital) faithful normal *-homomorphism given by A(x) = vj,I'(z)vga
for all « € M. We have A(1) = ggo. This has led De Commer to the following
equivalent definition of a measured quantum groupoid on a finite basis.

DEFINITION 3.1.1 (¢f 11.1.2 [11]). A measured quantum groupoid on the

finite-dimensional basis N is an octuple G = (N, M, «, 8, A, T, T’ €), where:

e M is a von Neumann algebra, oo: N — M and 8 : N° — M are unital faithful
normal x-homomorphisms;

e A: M — M ® M is a faithful normal *-homomorphism;

o T: M, — a(N)¥* and T" : My — B(N°)F* are n.s.f. operator-valued
weights;

such that the following conditions are satisfied:

. Ja(n'),B(n®)] =0, for all n,n’ € N;

. A1) = gga;

(A®IdDA =(1d @ A)A;

. Ala(n))=A1)(a(n)®1) and A(B(n°)) =A(1)(1 ® B(n°)), for all n € N;

. the n.s.f. weights ¢ and 1) on M given by p:=coa"toT and 1) :=€oB 1o
T’ satisfy:

Tk W N~

T(z)=(id® p)A(z) for all z € M},
T'(z) = (Y ®@id)A(x), for all x € ME,;
6. ol o=/ and af/oa:a, for all t € R.
Let us fix a measured quantum groupoid G = (N, M, o, B, A, T, T’ ¢).
NOTATION 3.1.2. Let us consider the injective bounded linear map
B B(H a@5 K, H 500 H) = B(AH @A) X 05, Xvas.

Similarly, we also define LE‘B and L% 5 Let

Vi=i£ (1), Wi=u5(F) and Vi=i,(7),

o Bp
where ¥ =%, Y =W and ¥ = W(goye (cf. Notation 3.4).
In what follows, we recall the main properties satisfied by V, W, and V.

The proof of the results below are deArived from the properties satisfied by the
pseudo-multiplicative unitaries ¥, ¥, and ¥ (cf. [17], §11 [11], and §2 [2]).

ProPOSITION 3.1.3 (cf. 3.11 (iii), 3.12 (v), (vi) [17], 2.2 [2]). The operators
VW and V' are multiplicative partial isometries acting on 7 ® 7 such that:
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L W=sUo)VU*@ 1), V=s1eU)V1e UL = (U U)W({U*®
U*);
2. V=@ NVIJ), W =(J@ J)W(J®J);
3. the initial and final projections are given by
V'V =qap=VV* — W'W=qz,=VV",
WW* = Uop and V*V = U5a
PROPOSITION 3.1.4 (cf. 3.8, 3.12 [17]).
1. The von Neumann algebra M (resp., J/W\) is the weak closure of {(id ®
W)(W); w € B} (resp., {(w®id)(W); w € B).}).
2. Wehaowe WeMM,VeM @M, and VeM @ M'. In particular, we
have the commutation relations [Wia, Vag) =0 and [Vlg,V23] 0.

3. The coproduct A: M — M @ M of G (resp., A:M s MeM of g)
satisfies

Al)=V(e )V =W*"(1ox)W, foradlzeM
(resp., Alz)=V*(1@z)V=V(E@e)V*, for allm€]\7’).
PROPOSITION 3.1.5 (cf. 3.2. (i), 3.6. (ii) [17] and 11.1.2 [11]). For alln € N,

we have:

L Via(n)®1]=0, [V,f(n°)® 1] =0, [V,1®@a(n)] =0, [V,1® B(n°)] = 0;
2. V(1®a( N=(@n) NV, V(Bn°)®1)=(11L(n°))V;

3. [W,B(n °)@1] =0, [W,a(n)®1] =0, [W,1® 5(n°)] =0, [W,1® a(n)] =0;
4. W (1®5( o)) =( (~n°)®1)W7 W(a(q)@l):(l@a(n))W, R

5. [~V,a( n)®1]= O,A[V,B(no)@llz 0, [V,1® a(n)]=0, [V,l@ﬂ(no)]:o7
6. V(1@ B(n°) = (B(n°) @ 1)V, V(a(n) @1) = (1@ a(n))V.

PROPOSITION 3.1.6 (cf. 11.1.4 [11]). For all n € N, we have:
L W) @ 1) =W ©a(n), (10 Fn)W = (a(n) @ )I;
2. V(L@ B(n) = V(@n) & 1), (1@ a(m)V = (3(n°) & V;
3. V(@Bm)el)=VI1eam), 1o8n°)V=(an)x1)V.

3.2. Weak Hopf C*-algebras associated with a measured quan-
tum groupoid on a finite basis. We recall the definitions and the main
results concerning the weak Hopf C*-algebras associated with a measured
quantum groupoid on a finite basis, cf. §11.2 [11] (with different notation
and conventions; cf. §2.3 [2]). Let us fix a measured quantum groupoid G =
(N, M,a, 3, A, T, T €) on the finite-dimensional basis N = ®1<l<k M, (C).

NotaTION 3.2.1. With the notation of §3.1, we denote by S (resp., §) the
norm closure of the subalgebra

{weid)(V);weB(#).}  (resp., {(id@w)(V);we B(H).}).
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According to §11.2 [11], we have the following statements:

e the Banach space S (resp., §) is a nondegenerate C*-subalgebra of B(J7),
weakly dense in M (resp., 1\7’);

e the C*-algebra S (resp., §) is endowed with the faithful nondegenerate
x-representations:

L:S— B(2); T T R:S— B(J); x— UL(x)U*
(resp.,p:§%B(<%”); x> T A: S — B(A); z— Up(z)U*);

e a(N)C M(S), B(N°)C M(S), B(N°) C M(g) and a(N) C M(§),

e VEM(S®S), WeM(S®AS)) and Ve M(R(S)® S):;

e A (resp., 3) restricts to a strictly continuous #-homomorphism § : .S —
M(S®S) (resp., 5:8— M(§® g)), which uniquely extends to a strictly
continuous *-homomorphism ¢ : M(S) - M(S ® S) (resp., 5 M(g) —
M(S ® S)) satisfying 6(1s) = gga (resp., 6(1g) = qap);

e 0 (resp., ;5\) is coassociative and satisfies [5(5)(15 ®9)]=0(1s)(S®S) =
[6(S)(S ® 1s)] (resp., [3(S)(15® 8)| =d(15)(S @ §) = [3(9)(S @ 1 5)]

e the unital faithful *-homomorphisms «: N — M(S) and 5: N
satisfy

);
= M(S)

§(a(n)) =6(1g)(a(n)®1g) and
5(ﬁ(n°)) = 6(15)(13 ®ﬁ(n°)), for all n € N;

e the unital faithful *-homomorphisms 3 : N° — M(S) and & : N — M(S)
satisfy

3(8(n°)) =5(15)(B(n°) ®15)  and
5(a(n)) =d(1g)(1g®a(n)), forallneN.

DEFINITION 3.2.2. With the above notation, we call the pair (5,4) (resp.,
(S,0)) the weak Hopf C*-algebra (resp., dual weak Hopf C*-algebra) associ-
ated with the measured quantum groupoid G.

REMARK 3.2.3. With the notations of the above definition, the pair (g, S)
is the weak Hopf C*-algebra of G while its dual weak Hopf C*-algebra is
the pair (R(S),0r), where R(S) =USU* and the coproduct dg is given by
Sr(y) ==V*(1@y)V for all y € R(S).

3.3. Measured quantum groupoid associated with a monoidal equiv-
alence. We will recall the construction of the measured quantum groupoid
associated with a monoidal equivalence between two locally compact quantum
groups provided by De Commer [11], [12]. First of all, we will need to recall
the definitions and the crucial results of De Commer [11], [12].
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DEFINITION 3.3.1. Let G be a locally compact quantum group. A right
(resp., left) Galois action of G on a von Neumann algebra N is an ergodic
integrable right (resp., left) action ay : N — N ® L>°(G) (resp., vy : N —
L>(G) ® N) such that the crossed product N x4, G (resp., G, x N) is a
type I factor. Then the pair (N, ay) (resp., (N,vn)) is called a right (resp.,
left) Galois object for G.

Let G be a locally compact quantum group and let us fix a right Galois
object (N,ay) for G. In his thesis, De Commer was able to build a locally
compact quantum group H equipped with a left Galois action vy on N com-
muting with ay, i.e. (Id ® ay)yy = (yn ® id)ay. This construction is called
the refiection technique and H is called the reflected locally compact quantum
group across (N,ap).

In a canonical way, he was also able to associate a right Galois object
(0,00) for H and a left Galois action vo: O = L>®(G) ® O of G on O com-
muting with ap. Finally, De Commer has built a measured quantum groupoid

g]HI,G = (C2,M,Oé,ﬁ,A,T,T/,€),

where: M =L*(H)® N@O®L>(G); A: M — M ® M is made up of the coac-
tions and coproducts of the constituents of M; the operator-valued weights T’
and T” are given by the invariants weights; the nonnormalized Markov trace e
on C? is simply given by €(a,b) = a+b for all (a,b) € C2. Moreover, the source
and target maps o and (3 have range in Z(M) and generate a copy of C*.

Conversely, if G = (C?, M, a, 3,A,T,T’,€) is a measured quantum groupoid
whose source and target maps have range in Z(M) and generate a copy of
C*, then G is of the form Gy g in a unique way, where H and G are locally
compact quantum groups canonically associated with G.

In what follows, we fix a measured quantum groupoid G = (C?, M, «, 3, A,
T, T’ €) whose source and target maps have range in Z(M) and generate a
copy of C*. It is worth noticing that for such a groupoid we have the following.

LEMMA 3.3.2 (cf. 2.21 [2]). 4=/ and B=a.

Following the notation introduced in [11], we recall the precise description
of the left and right regular representations W and V of G introduced in
the previous section. We identify M with its image by 7 in B(5¢), where
(A, m,A) is the G.N.S. construction for M endowed with the n.s.f. weight
p=eoa " toT. We also consider the n.s.f. weight ¢ = eo 71 o T". Denote by
(1,€2) the standard basis of the vector space C2.

NOTATION 3.3.3. Let us introduce some useful notation and make some
remarks concerning them.

e Fori,j=1,2, we define the following nonzero central self-adjoint projection
of M:

Pij = Oé(€i)5(5j)~
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It follows from B(e1) + B(e2) = 1y and afe1) + a(ez) = 1y that
a(e;) =pi1 +pi2 and  B(g;) =p1j +p2j, foralli,j=1,2.
e We have
A(l)=a(e1) ® Ber) + afe2) ® B(e2) and

since a = 3.

o Let M;; :=pi; M, for i,5 =1,2. Then M,; is a nonzero von Neumann sub-
algebra of M.

o Let J4; :=p;; 7, for 1,5 =1,2. Then J%; is a nonzero Hilbert subspace of
S for all 4,5 =1,2.

o Let pij = (), and Vi == [(ar,,),, for 4,5 =1,2. Then ¢;; and 9;;
are n.s.f. weights on M;;.

e For all ¢,5,k=1,2, we denote by Afj : M;; — My, ® My the unital normal
x-homomorphism given by

Afj (x) == (pir @ prj)A(z), for all x € M;;.

e We have Jpg; = priJ, jpkl :plkj and Upy = piU for all k,1=1,2. We
define the anti-unitaries Jy; : 57, — «%’7@[7Ajkl : fﬁclA—> ), and the unitary
Uk : Hia — Ak by setting Jy = priJpris ot = purJ pri and Upr = puUpr =
Jr1 k-

e For 7, k},l =1,2, let 2ij®kl = E%J-@(}fkl :%]‘ Q S — oy D %j

We readily obtain:

MZ@Mij; %:®f%ﬂij§

ij=1,2 i=1,2
A(pij) = pi1 @ p1j + pi2 @ p2j, foralli,j=1,2.

Note that in terms of the parts Afj of A, the coassociativity condition reads
as follows:

(AL, ®idar,, ) AY, = (ida, ® A{;)N

y ijo foralld, gk l=1,2.

The G.N.S. representation for (M;;,p;;) is obtained by restriction of the
G.N.S. representation of (M, ¢) to M;;. In particular, the G.N.S. space J7,,,
is identified with J#;.

ProrosiTION 3.3.4. For all i,7,k,l=1,2, we have:
(pi; @ DV (pr1 © 1) = 64 (pi; @ pj1)V (pir @ pj1);
(1@ pij)W (1@ pr) = 04 (pir @ pij )W (Dire ® Pij);
(1@p)V(@py) = 8% (i @ pii)V (Dri @ pji)-
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NoOTATION 3.3.5. The operators V, W, and V each splits up into eight
unitaries

V}i[ F G Q I — I Q Ay,

W, : A @ Aoy — Hiy, @ A5 and

‘7152 F I @ Ky — Ky @ Iy
for i,j,k,0 =12, given by Vi = (pij © pj)V(pa @ pjr), Wi, = (pir ®
Pij)W (pir © prj) and Vi = (ki @ pji)V (Pri @ pj)-

Let 4,j,k,1,I'’ =1,2. These unitaries are related to each other by the fol-
lowing relations (cf. Proposition 3.1.3):

Wfk =%ieik(U;i @ 1)Vz]k( e ©1) Sirons
Vi = Sjiani(1® Uin) Vi, (BU) Shisji;
Vi = (U @ Uiy W3, (U, @ Uf).
Furthermore, we also have:
(V)" = (Ja @ Jij)Vis(Jij © Jn) - and
(Wh)" = (Jui ® T Wi (T @ Jiy).

Moreover, these unitaries satisfy the following pentagonal equations:

(lek) 12 (Vkil) 13 (ijl)zg = (Vlgl)zg( jZ ) 127
(Wi5) 12 (W) 15 (Wik) g5 = (Wik) 5 (W5) 105
(Vﬁ) 12 (lez) 13 (Vklj)23 - (Vklz')23 (Vﬁ) 12
We also have the following commutation relations:
(Vi) s (W) 2= (Wi, (V/cl.;'>23;
(Vklz) 12 (ijz) 23 (Vk]z) 23 (Vkli) 12°
Furthermore, we have
Afj(m) = (Wfk)*(l Q)W) = Vii(z® 1)(V,§j)*7 for all z € M;;.
Note that for all w € B(5), we have:
(id @ pjiwp;) (V}y) = pi; (id @ w) (V)pa;
(Pirwpir ®id) (Wfk) = pij(w @id)(W)psy;
(Priwpri ®id) (vka) =pji(id®w) (V)ij-
PRrROPOSITION 3.3.6. Let i,j = 1,2 such that i # j. With the notation of
Notation 3.3.3, we have:
1. G; := (Myi, AL, 0i5,%4) is a locally compact quantum group whose left

(resp., right) regular representation is W (resp., Vii);
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2. (Mij_, Agj) is a right Galois object for G; whose canonical implementation
is Vi
3. (Mij,Aﬁj) is a left Galois object for G; whose canonical implementation is

4. the actions Aj; and Al on My; commute;
5. the Galois isometry associated with the right Galois object (Mij,Agj) for

G]‘ (Cf 641, 6.4.2 [11]) is the unitary Zij@jj(Wi@)*Ei‘j(@iT

DEFINITION 3.3.7. A measured quantum groupoid (C2, M, a, 3, A, T,T",¢)
such that the source and target maps have range in Z(M) and generate a copy
of C* will be denoted by Gg, G,, where G; = (M;;, A%, pii,1::) (cf. Proposi-
tion 3.3.6) and will be called a colinking measured quantum groupoid.

DEFINITION 3.3.8. Let G and H be two locally compact quantum groups.
We say that G and H are monoidally equivalent if there exists a colinking
measured quantum groupoid Gg, g, between two locally compact quantum
groups G; and Gy such that H (resp., G) is isomorphic to Gy (resp., G2).

Let (S,0) be the weak Hopf C*-algebra associated with G. Note that
pij = o(e)B(egj) € Z(M(S)), foralli,j=1,2.

NOTATION 3.3.9. Let us recall the notation below (cf. 2.26 [2]).

1. Let S;; :=p;; S, for i,j =1,2. Then, S,; is a C*-algebra (actually a closed
two-sided ideal) of S weakly dense in M;;.

2. For i,7,k=1,2, let ij : M(Sip ® Skj) = M(S® S) be the unique strictly
continuous extension of the inclusion map Si; ® Sk; C S ® S satisfying
v (s,8y,;) = Pik @ Prj-

3. Let 51%- :8i; = M(Sir, ® Si;) be the unique *-homomorphism such that

ij o 55(@ = (pik @ pr;)0(z), forall x €S;;.
With these notation, we have the following.

PROPOSITION 3.3.10 (cf. 7.4.13, 7.4.14 [11], 2.27 [2]). Let i,5,k,1=1,2.

L (0h, ®ids,,)d5; = (ids, © 675)d%;.

2. 0f5(x) = (W) * (Lo, @ o)Wy, = V(2 @ 1, )(Vi)*, for all z € Sy

3. [5Z(Sij)(18m ® Skj)] = Sirk ® Sj = [(55(51-]-)(51'1@ ® 1s,,;)]- In particular, we
have

Skj = [(ldS@k ®w)5fj(x), X € Sij,w € B(%J)*]

4. The pair (Sjj75§j) is the Hopf C*-algebra associated with G;.
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4. Contributions to the notions of semi-regularity and regularity

The notion of regular measured quantum groupoid has been introduced in
[16] and studied in the compact case. Note that this notion has been general-
ized in the setting of pseudo-multiplicative unitaries; cf. [24], [23]. The notion
of semi-regular measured quantum groupoid has been introduced in [2], [9],
where the notions of regularity and semi-regularity have been studied in the
case of a finite-dimensional basis.

In this chapter, we fix a measured quantum groupoid G = (N, M, a,
B,A,T,T',€) on the finite-dimensional basis N =P, <;; Mn, (C) and we use
all the notation introduced in §3.1, §3.2. In the Appendix (cf. Definition A.2.1),
for any £ € # we have given the definition of the operator

R¢ € B(2, ) (resp., L? € B(A, )
and the definition of the weakly dense ideal of a(N)’ (resp., S(N°))
Ko = [R?(Rg)*;&nejf} (resp.7 Kg:= [LB(LB) &, 776%”])

Note that K, and Kg are C*-subalgebras of K := (7).
We first recall the following important consequence of the irreducibility (cf.
2.13 [2]) of G.

PROPOSITION 4.1 (cf. 2.15 [2]). The Banach spaces [SS] and C(V) (cf.
2.1.2) are C*-algebras and we have [SS]|=UC(V)U

DEFINITION 4.2 (cf. 4.7 [16], 2.37 [2]). The groupoid G is said to be semi-
regular (resp., regular) if we have Kg C C(V) (resp., Kg=C(V)).

PROPOSITION 4.3 (cf. 2.8 [2], 3.2.8 [9]). The following statements are equiv-
alent:

(i) G is semi-regular (resp., reqular), that is, Ko C C(W) (resp., Ko = C(W));
(ii) G is semi-regular (resp., reqular), that is, K CC(V) (resp., Kg=C(V));
(ili) (G°)° is semi-reqular (resp., regular), that is, K C C(V) (resp., Kg =

c(vV)).
PROPOSITION 4.4 (cf. 2.8 [2], 3.2.9 [9]). The following statements are equiv-
alent:

(i) G is semi-regular (resp., reqular);
(i) K5C[SS] (resp., K5 =[SS]);
(iii) Ko C[R(S)S)] (resp., Ko = [R(S)
(iv) Ka C [SA(S)] (resp., Ka = [SA(S)]

In particular, if G is reqular we have [SS] C K, [R(S)S] C K and [SA(S)] € K
(and also C(V) C K, C(W)C K and C(V) C K).

The semi-regularity and the regularity of colinking measured quantum
groupoids have been treated in detail in §2.5 [2].

-~

1)
).
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THEOREM 4.5 (cf. 2.45 [2]). Let Gg, ¢, be a colinking measured quantum
groupoid associated with two monoidally equivalent locally compact quantum
groups Gy and Go. The groupoid Gg, g, is semi-regular (resp., regular) if, and
only if, Gy and Gy are semi-regular (resp., reqular).

In the following, we use the multi-index notation introduced in the Appen-
dix of this article (cf. Notations A.2.21, A.2.22, and Remarks A.2.23) with
v: =« and 7:=g.

LEMMA 4.6. For all £,m € €, we have

RE(R) = Yniteeger and L) = St 8t
les Iey

Proof. Forn,( € A, let X, ¢ € N be defined by X, ¢ :=> ;. , ny e, ¢)-
er. For all z € N and n € 7, we have RyAc(v) = a(x)n=>_;c s x1-ern. Let
n,(e€H,and [ € 7. <(R$)*C,A€(€I)> = (¢,ern). By disjunction elimination,
we prove that e(e;r) = 5‘7]711 for all I,J € .#. On the other hand, we have

(Ac(X ), Aelen)) = (X cex)

= o)
= nj (¢ ezmelesr)

Jes
= <C7€I77>~
Hence, ((R%)*C,AE(E[» = (Ae(Xp,¢),Ac(er)). Hence, (Ry)¢= Ac(X,) ) for
all n,( € . Let £,n € 5. For all ( € 7€, we have

RE(RY)" ¢ =REA(Xy0) =Y (Xpo)r-er€

Icey

= nyt(n,erC) - eré

Iey

=Y 0y 0eseem(C)-

Ies

Hence, R¢(Ry)" = Zfeynz_l - e;0¢ ner. The second formula is proved in a
similar way. O
We refer to Proposition-Definition A.2.15 and Proposition A.2.18 for the
definition of the operators ¢., gg and g4. Propositions 4.7, 4.8, and 4.9 below
have to be compared with their corresponding statements in the quantum
group case; cf. 3.2 b), 3.6 b), and 3.6 d) [4].
PROPOSITION 4.7. The following statements are equivalent:

(i) G is regular (resp., semi-reqular);
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(i) (Ko HW A e K)]=[(K®1)g(1eK)] (resp., D [(K & 1)ga (1@ K)]);
(iii) (Ke)V(AeK)]=[(Ke1)g(leK)] (resp., O [(K®1)gs(1 & K)]);
(iv) [([KeHV(IeK)]=[(K®1)¢a(1®K)] (resp., D [(K® 1)ga(1 @ K)]).

__ Proof. Tt is known that G is regular (resp., semi-regular) if, and only if,
G is regular (resp., semi-regular). Therefore, it suffices to prove that (i) is
equivalent to (ii). We have

(Ko)W1 ®K)|=S(C(W)®K) (cf 3.1[4])

(C(W) is a C*-algebra regardless of the regularity of G). Note that G is reg-
ular (resp., semi-regular) if, and only if, Z(C(W) ® K) = £(K, ® K) (resp.,
ZCW)®K) DXLy, ®K)). Let £,n,(,x € 5. We have e;0¢ pe; @ 0, =
eelg,em & 0@)( = 9615(@(,@1”@” for all I € .#. Hence, 2(61957,767 ® GC,X) =

Ocwere,ernax = 0c,ein @ Ociex = Ocner @ e,be  for all I € 7. By Lemma 4.6,
we obtain

E(R? (R?z)* ® QC»X) = (QC,U ®1)ga(1® 96»()'
Hence, Z(Ky @ K) = [(K ® 1)go(1 ® K)] and the equivalence ((i) < (ii)) is
proved. O

PROPOSITION 4.8. If G is reqular (resp., semi-reqular), we have:

L [(S@DWARK)]=[(S®1)gl®K)] (resp., D [(S®1)ga(1®K)]);
2. [(Keh)V(1e 9 =[Kel)g(l®S)] (resp, D[(K®1)gs(1© S5));
3. %%S)@l) (1@ K)]=[(R(S) @ 1)ga(1@K)] (resp., O [(R(S) @ 1)ga(l®

Proof. Assume that G is regular (resp., semi-regular). Let us prove the
first statement. The others will be obtained by using similar arguments. Let
a,be K, weB(H), and y = (id ® aw)(W). We have

yeW(A®b) = (id®weid)(Wi2Wis(1®a®b))
= ([dow®id)(WasWiz (1@ W (a®b))).

However, W*(K ® K) = gz (K ® K). Moreover, since [W,1® 8(n°)] =0 for all
n € N, we have [Wi2, ¢gq 23] = 0. Hence, WasWi2qga,23 = WagWia. We obtain
(cf. Proposition 4.7)

[(Se)W(1eK)]

[(id ® aw ®@id) (WasW12(1® 1®b)); w € B(H )+, a,,be K]

[( 1d®wa®1d)(W23W12 191®0b)); we B(H).,a,beK]
[(([d®w®id)(((a W(1®b)),,Wia); w € B(H)x,a,be K]

= [(id®w®1d)(((a®1)qa(1®b)) 2); w e B(H).,a,be K]

(resp., D [([d@w®@id)(((a® 1)ga(1® b))y, Wi2); w € B(H)+,a,b € K]).
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However, for all w € B(%), and a,b € K we have
(ld RDw® ld) (((a X 1)(]@(1 X b))23W12)
= (ld ® wa ® ld) (QQ,23W12(1 ® 1 ® b)) .

Since (1@ a(n))W =W (a(n)®1) for all n € N, we have gq 23W12 = Wi2ga, 13-
Hence,

(ld RwR ld) (((a X l)qu(l ® b))23W12)
= (([d®wa)(W)®1)q.(1®0b)
and the result is proved. O

PROPOSITION 4.9. If G is reqular (resp., semi-regular), then we have:

L [(S @)W e M) =[(S @ 1)ga(l @ AB))] (resp., D [(S @ aa(l @

S A A
2. (S@DV(1® 9] = [(§ & Dgs(1 @ S)] (resp., > [(§ & Dga(l @ 5)]);

3. (RS @ V(1 ®8)] =[(R(S) @ 1)ga(1® 5)] (resp., D [(R(S) @ 1)ga(1®

S))-

In particular, we have [(S®@ )W (1@ A(S))] € S@A(S), [(Se 1)V (1 e S)| C
S®S and [(R(S)®@ 1)V (1®5)] C R(S)® 5.

Proof. We have the pentagonal equation ViaViz = VagViaVss. Since V €
M(S ® S) is a partial isometry, we have V*(S ® S) = ¢55(S ® S). Since
[V.1®a(n)] =0 for all n € N, we have [Vi2,qap 23] = 0. Hence, VagVi2qap 23 =
Vo3Vio. Hence,

[(Se1)V(IeS)
([dew)(V)®
id®w®id)(Vi2Vis(1®1®y)); w € B(H#).,y € 5]
id@w®id)(VasVieVas(1@ 2 ®9)); weB(%)*,yGS,meﬂ

)(
)(

(
(
(i[d@w®id)(VasVis(1@z®y)); w € B(A#).,z €5,y € S]
(
(

DV(1®y);weBA).,yeS]

id®w®id)(Vas(1® 1@ y)Vis); w € B(H#).,y € 5]
idow®id)(((a@ V(1 ®y)),,Viz); w e B(H)sac K,y e S].

Let X = [(id ® w ®id)(((e ® 1)ga(l ® y))23Vi2); w € B(H)s,a € K,y € S].
Since G is regular (resp., semi- regular) it follows from Proposition 4.8 that

(SeVvies)]=X (resp, [(S©1)V(1S)]DX).
However, since (1® 8(n°))V =V (8(n°)®1) for all n € N, we have

= [(id®wa®id)(gp23V12(1®1®Yy)); w € B(H)r,a€ K,y €S|

:[(1d®w®1d)(V12q313 1®1®y) we B *,yES]

=
=
=
=
=
=
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=[([dew)(V)®1)gs(1@y);w e B(A).,y €S|

= [(S@Dgs(1®9)].
TheAsecond statement is proved and the third one follows by applying it
to G. We obtain the first statement by combining the third one with the
formulas W = (U*QU*)V(U®U) and @ = Ady oa. Finally, the last statement
follows from the inclusions S(N°) C M(S), S(N°) C M(S), a(N) C M(S)
and a(N) C M(S). O

In the result below, we refer again to Proposition-Definition A.2.15 and
Proposition A.2.18 for the definition of the operators g5 Gaa and 455

COROLLARY 4.10. If G is reqular (resp., semi-reqular), then we have:
1. [(1eA(S )W (Sel)]= [(1®>\(S))qﬂ5(5® 1)] (resp., D [(1®/\(§))qﬁ[§(5®
o
2. (I S)V(S'® ]=11®98)q EQ(S’® 1)] (resp.,, D [(1® S’)qaa/(\ ®1)]);
3. [1@S)V(R(S)®1)] = [(1© S)gz5(R(S) @ 1)] (resp., O [(1@8)q;,(R(S) ®
D))
If G is regular, then we have (1@ AS)W(S® 1)] C S®)\(§), [(1 ®S)V(§®
DcS®S and (1@ S)V(R(S)®1)]C R(S )®S

Proof. This is a direct consequence of Proposition 4.9 and the formulas B
Adyof, a=Adyoa, W =S(Ua)V({U*®1)Land V=2(10U)V(10U*)L.
The second statement follows from the inclusions B(N°) C M(S), B(N°)
M(S), a(N) € M(S) and &(N) C M(8S).

On

5. Measured quantum groupoids on a finite basis in action

5.1. Continuous actions, crossed product, and biduality. In this sec-
tion, we fix a measured quantum groupoid G = (N, M, a, 3,A, T, T’ €) on the
finite-dimensional basis N = EBlsz M,,, (C) and we use all the notation in-
troduced in §3.1, §3.2. In the following, we recall the definitions, notations
and results of §3.1, §3.2.1, §3.2.2, and §3.3.1 [2] (see also [9] Chapter 4).

5.1.1. Notion of actions of measured quantum groupoids on a finite basis.

LEMMA 5.1.1. Let A and B be two C*-algebras, f: A — M(B) a *-
homomorphism and e € M(B). The following statements are equivalent:

(i) there exists an approximate unit (uy)x of A such that f(uy) — e with
respect to the strict topology;

(ii) f extends to a strictly continuous *-homomorphism f: M(A) — M(B),
necessarily unique, such that f(14)=e;

(iii) [f(A)B]=eB.
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In that case, e is a self-adjoint projection, for all approzimate unit (v,), of
A we have f(v,) — e with respect to the strict topology and [Bf(A)] = Be.

DEFINITION 5.1.2. An action of G on a C*-algebra A is a pair (84,04) con-
sisting of a nondegenerate *-homomorphism 84 : N° — M(A) and a faithful
*-homomorphism d4 : A - M(A® S) such that:

1. 4 extends to a strictly continuous *-homomorphism d4 : M(A) - M(A®

S) such that d4(14) = gp,a (cf. Proposition-Definition A.2.19);

2. (04®idg)da = (ida ®)d4;
3. 64(Ba(n®)) =ggra(la ® B(n°)), for all n e N.
We say that the action (84,d4) is strongly continuous if we have

[04(A)(14 ® 9)] = g3,a(A® S).
If that case, we say that the triple (A, a,d4) is a G-C*-algebra.

REMARKS 5.1.3.

e By Lemma 5.1.1, the condition 1 is equivalent to requiring that for some
(and then any) approximate unit (uy) of A, we have d4(ur) = ¢g.a
with respect to the strict topology of M(A® S). It is also equivalent to
[04(A)(A®S5)] = gpra(A®S).

e Condition 1 implies that the x-homomorphisms §4 ® idg and id4 ® § ex-
tend uniquely to strictly continuous *-homomorphisms from M(A ® S) to
M(A®S®S) such that (64 ®ids)(lags) =GBaa,12 and (ida ®6)(lags) =
gBa,23- In particular, condition 2 does make sense and we denote by
6% = (04 ®idg)da: A= M(A® S ®S) the iterated coaction map.

EXAMPLES 5.1.4. Let us give two basic examples.

e (5,5,0) is a G-C*-algebra.

e Let Bno :=1idno. Let dno : N° = M(N° ® S) be the faithful unital *-
homomorphism given by dn0(1n°) := ggyoa(lne ® 3(n°)) for all n € N. Then
the pair (8ne,dn0) is an action of G on N° called the trivial action.

PROPOSITION 5.1.5. Let (04,84) be an action of G on A. We have the
following statements:

1. the iterated coaction map 0% extends uniquely to a strictly continu-
ous *-homomorphism 64 : M(A) = M(A® S ® S) such that 63(14) =
4B0120Ba,23; moreover, we have 63(m) = (4 ® idg)da(m) = (ida @
8)0a(m) for all m e M(A);

. for alln € N, we have §4(54(n°)) = (14 ® B(n°))@s,a;

3. if (Ba,04) is strongly continuous, then we have [(14 ® S)d4(A)] = (A ®

S)qﬁAa'

Let us provide a more explicit definition of what an action of the dual
measured quantum groupoid G on a C*-algebra B is.

[\
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DEFINITION 5.1.6. An action of G on a C*-algebra B is a pair (ap,0p) con-
sisting of a nondegenerate *-homomorphism ap: N — M(B) and a faithful
*-homomorphism 65 : B — M (B ® S) such that:

1. dp extends to a strictly continuous *-homomorphism ég : M(B) - M(B®

-~

S) such that 0p(1p) = ¢a,p (cf. Proposition-Definition A.2.19);
2. 0p® id§)5B = (idp ® 0)dp;
3. dp(ap(n)) =quys(le ®@a(n)), for all n € N.

We say that the action (ap,dp) is strongly continuous if we have
[6B(B>(1B ®§)] = anﬂ(B® §)

If (6p,ap) is a strongly continuous action of G on B, we say that the triple
(B,ap,dp) is a G-C*-algebra.
REMARKS 5.1.7. As for actions of G, we have:

e the condition 1 is equivalent to requiring that for some (and then any)
approximate unit (uy)x of B we have dp(ux) — gops With respect to the
strict topology, which is also equivalent to the relation [05(B)(B ® S)] =
QaBﬁ(B ® 5); R

e the *-homomorphisms idp ® § and dp ® idg extend uniquely to strictly
continuous *-homomorphisms from M(B® S) to M(B® S ® S) such that
(idp ®0)(1553) = dap23 and (0p ®idg)(1z,3) = dapp,12- In particular,
condition 2 does make sense and we denote by 6% := (6p ® idg)dp : B —
M(B® S® S) the iterated coaction map.

ExAMPLES 5.1.8. Let us give two basic examples:

. (§, aQ, g) is a Q\—C*—algebra;

e Let ay :=idy and oy : N = M(N ® S); n— dans(1y ® @(n)); then the
pair (ay,dx) is an action of G on N called the trivial action.

PROPOSITION 5.1.9. Let (ap,d0p) be an action of G on B. We have the
following statements:

1. the iterated coaction map 8% extends uniquely to a strictly continu-
ous x-homomorphism 6% : M(B) - M(B ® S®S) such that 8% (1p) =
Qapp129ap.23; moreover, we have d%(m) = (6p ® idg)ép(m) = (idp ®
g)éB(m) for all m € M(B);

2. for alln € N, we have dg(ap(n)) = (1 ® &(1n))qays;

3. if (ap,dp) is strongly continuous, then we have [(1p @ S)65(B)] = (B®
S)dapp-

DEFINITION 5.1.10. For i = 1,2, let A; (resp., B;) be a C*-algebra.

For i = 1,2, let (Ba,,04,) (vesp., (ap,,0p,)) be an action of G (resp.,

G) on A; (resp., B;). A nondegenerate *-homomorphism f : A; — M(As)
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(resp., f: By — M(B3)) is said to be G-equivariant (resp., é—equivariant) if
(f®idg)da, =04, 0 f and foBa, = Ba, (vesp., (f ®idg)ép, =0p, o f and
f ocap, = OZBQ).

REMARK 5.1.11. With the notation and hypotheses of Definition 5.1.10, if
[ satisfies the relation (f ®ids)da, =04, o f (resp., (f ®idg)dp, =B, o f),
then f satisfies necessarily the relation fo 84, = B4, (resp., foap, =ag,),
that is, f is G-equivariant (resp., é—equivariant). Indeed, let n € N. For all
a€ Ay and z € Ay, we have

54,(f(Ba, (n°))f(a)z) = (f ®1ds)da, (Ba, (n°)a)da,(x)

4: @ B(n°))(f ®ids)da, (a)da,(x)
4, ® B(n°)) 0, (f(a)2)

45 (Ba, (n°) fa)z).

Hence, f(B4,(n°))f(a)z = B4,(n°)f(a)z for all a € A; and z € Ay since d4,
is faithful. Hence, we have f(84,(n°)) = 84,(n°) since f is nondegenerate.

1
1

(
(
5

NoTATION 5.1.12. We denote by Algg the category whose objects are the
G-C*-algebras and whose set of arrows between G-C*-algebras is the set of
G-equivariant nondegenerate x-homomorphisms.

5.1.2. Crossed product and dual action. Let us fix a strongly continuous action
(Ba,04) of G on a C*-algebra A.

NoOTATION 5.1.13. The *-representation
mp=(da®L)ods: A= LIAR IH)

of A on the Hilbert A-module A ® S extends uniquely to a strictly/x-
strongly continuous faithful *-representation 7, : M(A) — L(A ® S#) such
that 71,(14) = ¢g,a. Moreover, we have 7r,(m) = 7 (Mm)¢s,a = ¢8aamL(Mm)
for all m € M(A). Consider the Hilbert A-module

gA,L = qﬁAa(A@)%”).

By restricting 7y, we obtain a strictly/+-strongly continuous faithful unital
s-representation

T M(A) = L(EaL); m = mr(m)le, -

We have [14 @ T, g, o] =0 for all T € M(S). We then obtain a strictly /-
strongly continuous unital *-representation

0:M(S) = L(Ear); T (1a®T)le,,.

Note that if 54 is faithful, then so is 0.
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PROPOSITION-DEFINITION 5.1.14. The norm closed subspace of L(EarL)

spanned by the products of the form w(a)f ( ) fora€ A and x € S isa C*-
subalgebra called the (reduced) crossed product of A by the strongly continuous
action (84,04) of G and denoted by A x G.

In particular, the morphism 7 (resp., é\) defines a faithful unital x-
homomorphism (resp., unital *-homomorphism) 7 : M(A) - M(A x G)
(resp., 6: 5 — M(A % G)).

Since [V a(n)®1] =0, we have [Vgg, ¢Baa,12) = 0. The operator Vas € L(A®
H ® H) restricts to a partial isometry

X:= ‘723rfA,L®éf€ ’C(“:A,L ® %)v

whose initial and final projections are X*X
Gap,23lea L+

= Y9Ba,23 lea L@ and XX* =

PROPOSITION-DEFINITION 5.1.15. Let
0axg  AXG—=L(EALRI) and aaxwg:N— M(AxG)
be the linear maps defined by:
o 64xg(b):i=X(b®1)X*, for allbe Ax G;
o aaxg(n):=0(@n))=(1a@a(n))le, ,, for allneN.

Then, daxg s a faithful x-homomorphism and aaxg is a nondegenerate *-
homomorphism. Moreover, we have the following statements:

1. Sarxg(m(a)b(z)) = (7(a) ® )(9 ®idg)d 5(x), for all a€ A and z € S;
particular, daxg takes its values in M((Ax g) ®S); R

2. aaxg(n)m(a)f(z) = ﬂ(a)H(&(z})x) and 7(a)0(z)asxg(n) = m(a)d(xa(n))
forallne N;ae A andx € S.

PROPOSITION-DEFINITION 5.1.16. With the notation of Proposition-
Definition 5.1.15, the pair (cawg,daxg) s a strongly continuous action of
G on A G called the dual action of (Ba,04).

In a similar way, we define the crossed product of a C*-algebra B
by a strongly continuous action (ap,dp) of the dual measured quantum

groupoid G.
NOTATION 5.1.17. The *-representation
T :(1d3®)\)0533—>£(3®%)

of B on the Hilbert B-module B ® ¢ extends uniquely to a strictly/x-
strongly continuous faithful #-representation 7y : M(B) — L(B ® 4¢) such
that mx(1s) = q,,, 3. Moreover, we have m\(m) =mA(m)q, 5 = q,,57r(m),
for all m € M(B). Consider the Hilbert B-module

Epri=q, 3(BRIX).

apf
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By restricting 7y, we obtain a strictly/#-strongly continuous faithful unital
*-representation

R M(B) = L(Epr);  merA(m)lep -

We have [1p ®T',q,, 5] =0 for all T'€ M(S). We then obtain a strictly/x-
strongly continuous unital *-representation

0: M(S)— L(EA); T (1p@T) ey -
Note that if ap is faithful, then so is 6.

PROPOSITION-DEFINITION 5.1.18. The norm closed subspace of L(Ep )
spanned by the products of the form w(b)0(x) for b€ B and x € S is a C*-
subalgebra called the (reduced) crossed product of B by the strongly continuous
action (ap,0p) of G and denoted by B x G.

In particular, the morphism 7 (resp., 6) defines a faithful unital *-

homomorphism (resp., unital x-homomorphism) 7 : M(B) = M(B x Q\)
(resp., 0: S — M(B % G)).
Since [V,8(n°) @ 1] =0, we have [Vas,qazp,12) = 0. The operator Vas €

L(B® 5 ® ) restricts to a partial isometry
Y = Vasle, \@w€ L(Ep A ® ),

whose initial and final projections are Y*Y = qaga3le; 0 and YY™ =
9Ba,23lep \ 0. -

PROPOSITION-DEFINITION 5.1.19. Let
Opug  BxG—LEGA®H) and By 5:N°—L(Ep)

be the linear maps defined by:
® 03,5(c) =Y (c®1y)Y™", for all c€ B x G
® Bpg(n°)=0(B(n°)=(1p ® B(n°))les \os, for alln € N.

Then, 6., is a faithful x-homomorphism and Bg, & is a nondegenerate *-
homomorphism. Moreover, we have the following statements:

L. 65,5(@0)0(x)) = (7(b) ® 15)(0 @ ids)d(z), for all b€ B and x € S; in
particular, 05 & takes its values in M((B x G)® 9):;

2. Bpg)m(0)0(z) = 7(b)O(B(n°)x) and T(b)0(x)Bg,g(n°) = 7(b) x
O(xB(n°)) for allne N, be B, and x € S.

PROPOSITION-DEFINITION 5.1.20. With the notation of Proposition-
Definition 5.1.19, the pair (6Bx6753x§) is a strongly continuous action of

G on Bx G called the dual action of (ap,dp).
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5.1.3. Takesaki-Takai duality. Let (84,04) be a strongly continuous action
of the groupoid G on a C*-algebra A.

NOTATION 5.1.21. The *-representation
TR = (idA®R)O(5A A—%C(A@jf)

of A on the Hilbert A-module A ® 5 extends uniquely to a strictly/x-
strongly continuous faithful *-representation g : M(A) = L(A® H) satisfy-
ing mr(m) = (idg ® R)da(m) for all m € M(A) and wr(1l4) = gg,a. Consider
the Hilbert A-module

Ear=qpra(AQ ).

We recall that the Banach space
D= [rr(a)(1a @ A(z)L(y)); a€ A,z € S,y € 5]

is a C*-subalgebra of L(A ® ) such that dgg,a =d =dgg,s for all d € D.
Moreover, we have D(A® ) = £4 r. We also recall that there exists a unique
strictly/+-strongly continuous faithful x-representation jp : M(D) — L(A ®
J€) extending the inclusion map D C L(A ® 4€) such that jp(1p) =gp,a-

PROPOSITION 5.1.22. There exists a unique *-isomorphism ¢ : (A x G) x
G — D such that ¢(7(mw(a)b(x))0(y)) = mr(a)(la @ AN(z)L(y)) for all a € A,
r€S andyeSs.

NoTATION 5.1.23. We denote K := k() for short. Let §p: A® K —
M(AR K ®S) be the s-homomorphism defined by dp(a @ k) =d4(a)13(la ®
k®1g) for all a € A and k € K. The morphism Jy extends uniquely to a
strictly continuous x-homomorphism dp : M(A® K) > M(A® K ® S) such
that do(lagk) = gpaa,13- Let V € L(H ® S) be the unique partial isometry
such that (ide @ L)(V) =V.

THEOREM 5.1.24. There exists a wunique strongly continuous action
(Bp,0p) of G on the C*-algebra D = [rr(a)(1a @ A(x)L(y));a€ A,z € S,y €
S] defined by the relations:

(jD ®1ds)(5[)(d) :V2350(d)V§3, dGD,
ip(Bp(n°)) =qp.a(la®B(n°)), neN.
Moreover, the canonical *-isomorphism ¢ : (A x G) % G- D (¢f. Proposi-

tion 5.1.22) is G-equivariant. If the groupoid G is regular, then we have
D =qs,a(A®K)qs,a-

The G-C*-algebra D defined above will be referred to as the bidual G-C*-
algebra of A.
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5.2. Case of a colinking measured quantum groupoid. In this section,
we fix a colinking measured quantum groupoid G := Gg, ¢, associated with two
monoidally equivalent locally compact quantum groups G; and G,. We follow
all the notation recalled in §3.3 concerning the objects associated with G.

In the following, we recall the notation and the main results of §3.2.3 [2]
concerning the equivalent description of the G-C*-algebras in terms of G;-C*-
algebras and Go-C*-algebras. Let us fix a G-C*-algebra (A, 84,d4).

NoTATION 5.2.1.

e The morphism (4 : C* — M(A) is central. Let ¢; := Ba(g;) for j =1,2.
Then, g; is a central self-adjoint projection of M(A) and ¢1 +¢2 =14. Let
Aj:=q;Afor j=1,2. For j=1,2, A; is a C*-subalgebra (actually a closed
two-sided ideal) of A and we have A= A; ® A,.

e Forj k=1,2,1let 7TJ’-“ : M(Ag ® Skj) = M(A®S) be the unique strictly con-
tinuous extension of the inclusion Ay ® Si; C A® S such that ﬂf(lAmgkj) =
Qi @ Pkj-

In case of ambiguity, we will denote ﬂi’ ; and g4 ; instead of 71';? and g;.

PROPOSITION 5.2.2. For all j,k=1,2, there exists a unique faithful non-
degenerate x-homomorphism

8%, Aj = M(A ® Si;)
such that for all x € Aj;, we have
w0 0% () = (g ® pry)da(z) = (qr @ 15)5a()
= (1A (29 Oé(Ek))(SA(.Z') = (1,4 ®pkj)(5,4(a?).

Moreover, we have:

L da(a) =32 ;= 1 27r;C 061121_ (gja), for all a € A;
2. (04, ®ids,,)0k = (ida, ® 653)8 , for all j,k,1=1,2;
3. [51121_ (A;)(1a, ® Skj)] A ® Skj, for all j,k=1,2; in particular, we have

Ar = [(ida, ®w)5ff,j (a); a € Aj,w € B(Hij);
4. 5%1, tA; = M(A; ®8S;5) is a strongly continuous action of G; on Aj.

From this concrete description of G-C*-algebras, we can also give a con-
venient description of the G-equivariant s-homomorphisms. With the above
notation, we have the result below.

PRrROPOSITION 5.2.3. Let A and B be two G-C*-algebras. For k=1,2, let iy, :
M(By) = M(B) be the unique strictly continuous extension of the inclusion
map By, C B such that tx(1B,) = ¢B k-
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1. Let f: A— M(B) be a non-degenerate G-equivariant -homomorphism.
Then, for all j = 1,2, there exists a unique nondegenerate *-homomorphism
fij 1 Aj = M(Bj) such that for k=1,2 we have

(5.1) (fr ©ids,,) 0 8%, =05, o f;.

Moreover, we have f(a) =110 fi(aga,1) + 20 fa(agaz) for all a € A.

2. Conwversely, for j =1,2 let f; : Aj - M(Bj) be a nondegenerate -
homomorphism such that (5.1) holds for all j,k =1,2. Then, the map
f:A—= M(B), defined for all a € A by

f(a) =110 fi(aga) + 20 f2(aqa,2),

is a nondegenerate G-equivariant x-homomorphism.

The above results show that for j = 1,2 we have a functor
Algg —Algg,;  (A,Ba,0a) = (45,6 ).

In §4 [2], it has been proved that if G is regular (cf. Theorem 4.5), then
(A,04,84) — (A1,61141) is an equivalence of categories. Moreover, the authors
build explicitly the inverse functor (Ay,04,) — (4, 84,04). More precisely, to
any Gi-C*-algebra (Aj,d4,) they associate a Go-C*-algebra (Az,d4,) in a
canonical way. Then the C*-algebra A := A; @ Az can be equipped with a
strongly continuous action (84,04) of the groupoid G. This allowed them to
build the inverse functor (Ay,d4,) — (A, 84,94). The equivalence of categories
(A1,04,) — (A2,04,) generalizes the correspondence of actions for monoidally
equivalent compact quantum groups of De Rijdt and Vander Vennet [15]. We
bring to the reader’s attention that an induction procedure has been developed
by De Commer in the von Neumann algebraic setting (cf. §8 [11]).

In the following, we recall the notations and the main results of §4 [2]. We
assume that the quantum groups G; and G, are regular.

NOTATION 5.2.4. Let 64, : A1 — M(A; ® S11) be a continuous action of
G1 on a C*-algebra A;. Let us denote:

§h, =04y, 09 = (ida, ®624)0a, : Al = M(A ® S12 ® Sa1).

Then, 51(421) is a faithful nondegenerate x-homomorphism. In the following, we
will identify So; with a C*-subalgebra of B(7%;). Let

IdS2 (A1) := [(ida,@s,, ®w)8Y) (a); a € Ay,w e B(Hs1)]
C M(A; ® Si2).

PROPOSITION 5.2.5. The Banach space Ay := Indgf (A1) C M(A1® 512) is
a C*-algebra. Moreover, we have:
1. [A2(1A1 X 512)] = A1 ® S19 = [(1A1 X 512)A2]; m particular, A2 C M(Al ®
S12) defines a faithful nondegenerate *-homomorphism and M(As) C
M(Al & 512);
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2. let 04, = (ida, ® 6%5)] 4,, we have d4,(As) C M(As @ S22) and 64, is a
continuous action of Go on As;
3. the correspondence Indgf :Algg, — Algg, is functorial.

By exchanging the roles of the quantum groups G; and Gy, we obtain
mutatis mutandis a functor Indg; :Algg, — Algg, .

PROPOSITION 5.2.6. Let j,k=1,2 with j# k. Let (Aj,04,) be a G;-C*-
algebra. Let
Ay = Indgf (AJ) CM(A]‘ ®Sjk) and
G,
C:=Ind (Ax) C M(Ax ® Si;)
endowed with the continuous actions 04, = (ida; ® 6fk) 4, and 0c =
(ida, ® 5%)[0 respectively. Then we have:
1. C'C M(Ag ® Skj) € M(A; @ Sj1, @ Sij) and C =3 (4));
2. A - C; a— 5%?@) = (ida; ® 6%,)04,(a) is a Gj-equivariant x-
1somorphism,
3. 0%+ Aj = M(Ak ® Siy); a0 (a) = (ida, ® 0)04,(a) is a faithful
nondegenerate *-homomorphism.

The above result shows that the functors Indgf and Indg; are inverse of
each other.

NoTATION 5.2.7. Let (Bi,dp,) be a G1-C*-algebra. Let (Ba,dp,) be
the induced Gy-C*-algebra, that is to say By = Indgf(Bl) and dp, =
(idp, ® 6%5)[ B, In virtue of Proposition 5.2.6, we have four *-homomorphisms:

8, : Bj = M(By ® Sij), j,k=1,2.

Let us give a precise description of them. We denote d3, = dp, and 63, :=0p,.
The *-homomorphism 5%1 : By = M(B2 ® Sa1) is given by

be By 0% (b) =05 (b)
€ M(B:®Sa1)  (with 65 (b) := (idp, ®6%)0h, (b),for be By)
whereas the *-homomorphism (5}32 : By = M(B1 ® S12) is defined by the rela-
nr (11 ®ids,, )8k, (b) =85 (b) for be B,
where 65312) := (idp, ® 63,)0%, and w1 : By — Indg;(Bg); b (Sgl)(b) (cf. Propo-
sition 5.2.6(2)).

PROPOSITION 5.2.8. Let (A,54,04) be a G-C*-algebra. Let j, k=1,2 with
j # k. With the notation of Proposition 5.2.2, let

(Zj,égj) =1Indg’ (A, 0%,).
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If x € A, then we have 51133_ (z) € A; C M(A®Skj) and the map wj : Aj — Zj;
T 61’&_ (z) is a Gj-equivariant x-isomorphism.

PROPOSITION 5.2.9. Let (Bi,0p,) be a G1-C*-algebra. Let By = Ind3* (B1)
be the induced Go-C*-algebra. Let B := By & By. For j,k=1,2 with j #k, let
7 M(By ® Sij) = M(B ® S) be the strictly continuous x-homomorphism
extending the canonical injection By ® S; — B ® S and 6?3] B = M(B,p ®
Sk;) the x-homomorphisms defined in Notation 5.2.7. Let S : C* — M(B)
and 0g : B— M(B®S) be the x-homomorphisms defined by:

g0 = () 1) e

5p(b):= Y mrody (b;), b=(b1,b2)€B.

k,j=1,2

Therefore, we have:

1. (BB,0B) is a strongly continuous action of G on B;
2. the correspondence Algg, — Algg; (B1,9p,) — (B, B,0B) is functorial;
3. the functors Algg, — Algg and Algg — Algg, are inverse of each other.

5.3. Actions of (semi-)regular measured quantum groupoids. In this
section, we fix a measured quantum groupoid G = (N, M, «, 8, A, T,T,¢) on a
finite-dimensional basis N := P, (<), My, (C) endowed with the nonnormal-
ized Markov trace € = @1<l<k n; - Tr; and we use all the notation introduced
in §3.1.

We begin this section by a characterization of the regularity (resp., semi-
regularity) of G in terms of the action of G on itself (cf. Examples 5.1.4), which
generalizes 2.6 [5] to the setting of measured quantum groupoids on a finite
basis.

PROPOSITION 5.3.1. Let S x G be the crossed product of S by the strongly
continuous action (8,6) of G. Then we have a canonical x-isomorphism S %

G ~ [SS]. In particular, G is regular (resp., semi-regular) if, and only if, we
have Kz =S5 x G (resp., K5 C S % G).

Proof. Let us identify L(Es,1) ={T € L(S® H); Tqsa =T = qpoT'}. Let
us denote by jsug : S X G — B(A @ ), the faithful x-representation defined
by jsxg(u) =(L®idk)(u) for all ue S x G C L(Es,1.). Let m:.5 — M(S % G)
and 6 : § — M(S x G) be the canonical morphisms (cf. Notation 5.1.13). We
claim that there exists a unique #-isomorphism ¢ : S x G — [SS] such that

~

¢(m(s)0(x)) = L(s)p(z), foralls€S and z€ S.
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-~

Let s€ S and 2 € S. Since W € M @ M and ( CM we have
1®

Jsxg (m(8)0(x)) = (L@ L)3(s) (1 & p())
=W*(1® L(s))W (1@ p(x))
=W*(1® L(s)p(x))W.

Let C:=im(jgug) = {W*(1 ® 2)W; z € [SS]}. The representation jgxg in-
duces a *-isomorphism ¢ :.S x G — C. Since WIWW* = U0p and [1® z, qaﬁ] =0
for all z € [SS], the map

X:[S8]=C 2o W)W

is a *-homomorphism satisfying Wx(z)W* = q,5(1 ® 2) for all z € [S5]. Let
w € B(A), such that wo o =e. We have

(w@id)(Wx(z)W*) =z, forall ze 155).

Hence, y is a #-isomorphism. Hence, ¢ :=y Lot : 8 x G — [SS]; 7(s)0(z) —
L(s)0(x) is a x-isomorphism. The second statement of the proposition follows
from Proposition 4.4. O

Proposition 5.3.4 and Theorem 5.3.6 are the generalizations of 5.7 and 5.8
of [5] to measured quantum groupoids on a finite basis.

NOTATION 5.3.2. Let (84,94) be an action of G on a C*-algebra A. With
the notation of Notations A.2.21 and A.2.22, let e; := a(ey) and g7 := Ba(er)
forall [ € .7.

LEMMA 5.3.3. Let (Ba,04) be an action of G on a C*-algebra A. With the
notation of Notation 5.3.2, we have:

1. g84a :Zley nl_qu ® er;
2. (1 ®1g)da(a)=(1a®er)dala), forallac A and I € .,
3. 0a(a)(qr®1g)=0d4(a)(la®er), forallac A and I € 7.

Proof. Statement 1 is just restatement of Proposition A.2.18. By a straight-
forward computation, we verify that (¢r ® 1s)gp.a = (14 ® er)gs,q for all
I € .#. Statement 2 then follows from the fact that d4(14) =¢s,a. The last
statement follows from the second one by taking the adjoint. O

PROPOSITION 5.3.4. Let (84,94) be an action of G on a C*-algebra A. If G
is semi-regqular, the Banach space [(idg ®@w)da(a); a € A,w € B(H),] C M(A)
is a C*-algebra.

Proof. Let us denote T := [(ida ®w)da(a); a € A,w € B(5),]. Forallae A
and w € B(H€)., we have (ida ®w)(04(a))* = (ida ®wW)da(a*). Hence, T* C T
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Let us prove that TT CT. Let w, ¢ € B()., a,b€ A and z,y € K. We have
(ida ® yw)da(a)(ida ® ¢px)da(b)
=(ida ® ¢ @w)(0a(a)13(la @z @y)da(b)i2).
By Lemma 5.3.3(1), (2), we have
04(a)13(la®@x®@Yy)da(b)12

= an da(a)13(la @z ®@ery)(qr ®1®1)d4(b)12
Ies

= an 5,4 13 1A®I61®61y)5,4( )
Ieys

=da(a)13 ((JJ ®1)g.(1® y))236A(b)12

It follows from Proposition 4.7 that (idg ® yw)da(a)(ida ® ¢x)d(b) is the
norm limit of finite sums of elements of the form

¢:=(da®¢@w)(6a(a)i3((z' @)W (1©Y')),504(b)12)
= (ida ® ¢’ @ y'w) (64(a)13Wazda(b)12),
where 2,7’ € K. By combining the following formulas;
624 (a) = W33 4(a)13Was; WW* = U055
[(5A(a)13,qa3’23] =0 (since B(NO) cM');

we obtain §4(a)13Was = Wa3d% (a). Hence, we have ¢ = (ida @ ¢)(6%(a)13 ¥
04(b)12), where ¢ := (¢pz' @ yw)W € B(H @ H).. Therefore, ¢ is the norm
limit of finite sums of elements of the form (id4 ® ¢' ® w')(6%(a)1304(b)12) =
(id ® ¢")04((ida ® w')da(a)b), where ¢, € B(F).. Hence, (ida ® yw) x
0a(a)(ida ® ¢x)da(b) €T. U

DEFINITION 5.3.5. Let (84,04) be an action of G on a C*-algebra A. We
say that (8a,04) is weakly continuous if we have A = [(id4 @ w)da(a); a €
Aw € B(I).).

Note that any strongly continuous action (84,94) of G on a C*-algebra A is
necessarily continuous in the weak sense. Indeed, if (84,04) is strongly contin-
uous we have the inclusion §4(A4)(14®S) C A®S. Hence, [(ida ®w)da(a); a €
A,w € B(s).] C A since S C B(s) is nondegenerate. Conversely, let w €
B(H). such that woa =e€. We have (id4 ®w)(¢8,q) = 14. By writing w = yw’
for some w’ € B(A), and y € S, we obtain (ida @ w')(¢s.a(a®y)) = a for all
a € A.

THEOREM 5.3.6. If the groupoid G is regqular, then any weakly continuous
action of G is strongly continuous.
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Proof. Let us fix an action (84,94) of G on a C*-algebra A. Let us as-
sume that (84,04) is weakly continuous. Since W € M(S ® K) is a partial
isometry such that W*W = ggn, we have (S @ K)W = (S ® K)gga. We recall
that d4(a)13Wag = Wa3d%(a) for all a € A (cf. proof of Proposition 5.3.4). By
Proposition 5.1.5(1), we have ggq,236%(a) = 6% (a) for all a € A. By combin-
ing the assertions of the above discussion with Lemma 5.3.3(3) and Proposi-
tion 4.8(1), we have

(A® S)gpsa

=[((ida ®w)da(a) ®Y)qp.a; a € A,y € S,w € B(H).]

= [(ida ®ids ® 2w) (64(a)13(14a ® Yy ® 15)ga,a,12); a € A,z €K,y €S,
w € B(A),]

= [(ida ®ids ®w)(6a(a)13((y ® 1x)ga(ls ®x))23); acAzek,yes,
w € B(A),]

= [(idA ®idg ®w)((5,4(a)13((y® 1)W(ls ®w))23); acA,xel,yes,
w € B(A).]

=[(ida ®ids ®w)((1a @y ®1)da(a)13Was); a€ A,z €K,y €S,
w € B(A),]

=[(da ®ids ®@w)((1a ® (y@2)W)d%(a));a € A,z €K,y €S,
w € B(A),]

= [([da ®ids ®w)((la @y @ x)03(a)); a € A,z € K,y € S,w e B(A).]

=[(1a®y)éa((ida @wz)dala));a € A,z €K,y € S,we B(H).]

=[(1a®S)da(A)]. O

As a first application, we have the result below.

PRrROPOSITION 5.3.7. If the groupoid G is regular, then the trivial action of
Q on N° (c¢f. Examples 5.1.4) is strongly continuous and there exists a unique
G-equivariant *- isomorphism T: N°x G — S such that T(m (no)e(x)) = p(n%)x
forallme N and z € S.

Proof. In this proof, we use the notation of Notation 5.3.2 with A := N°. In
this case, we have g; =9 for all I € .#. According to Theorem 5.3.6, it suffices
to show that the trivial action is weakly continuous. Since the C*-algebra N
is finite-dimensional, it amounts to proving that €9 € ((idye @ w)dne(n°); n €
N,we B(s),) for all I € #. Let I € .#. For all n’ € N, there exists w €
B(). such that w(a(n)) =e(n'n) for all n € N (extension of normal linear
forms). In particular, there exists w € B(#). such that w(a(e;)) = né} for all
J € Z. By a straightforward computation, we have €9 = (idyeo ® w)dne(1n0)
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and the weak continuity of the trivial action is then proved since N° is uni-
tal. Since N° is unital, we have 0(z) = m(1y0)8(z) € N° x G for all z € 5.
Moreover, we have w(no)é(x) = a(ﬁ(no)z) for all n € N and z € 5. Hence, the
morphism 0 induces a *-isomorphism S~ N° x G. The equivariance is easily
obtained from the definitions. O

6. Notion of equivariant Hilbert C*-modules

6.1. Actions of measured quantum groupoids on Hilbert C*-
modules. In this section, we introduce a notion of G-equivariant Hilbert
C*-module for a measured quantum groupoid G on a finite basis in the
spirit of [3]. We fix a measured quantum groupoid G on a finite-dimensional
basis N = @, ¢;<; Mn, (C) endowed with the nonnormalized Markov trace
€=, <1<, - Tri. We use all the notation introduced in §3.1, §3.2. Let us
fix a G-C*-algebra A.

The three pictures. Following §2 [3], an action of G on a Hilbert A-module &

will be defined by three equivalent data:

e a pair (Bg,0¢) consisting of a x-homomorphism fg : N° — L(&) and a
linear map dg : & — ./W(éa ® S); cf. Definition 6.1.1;

e a pair (Be, ¥s) consisting of a *-homomorphism Bg : N° — £(&) and an
isometry ¥ € L(& ®;5, (A® S),& ®5); cf. Definition 6.1.4;

e an action (57,d5) of G on J :=K(& @ A); cf. Definition 6.1.8;

satisfying some conditions.
We have the following unitary equivalences of Hilbert modules:

A®5A (A®S) _>qBAOt(A®S)§

(6.1) o e

(6.2) (A®S) ®s 015 (ARS®S) = qpaa,12(ABS®S);
T @5 ,0ids Y (04 @1ds)(x)y;

(6.3) (A® ) Bidse5 (AQ5©S) = pa,23(A© S ® S);

T id 06 Y = (Ida @ 0)(2)y.

In the following, we fix a Hilbert A-module &. We will apply the usual
identifications M(A® S)=L(A® S), K(&)@S=K(&®S) and M(K(&) ®
S)=L(E®S).

DEFINITION 6.1.1. An action of G on the Hilbert A-module & is a pair
(Be,0¢), where Bg : N° — L(&) is a nondegenerate *-homomorphism and
0g: & — Mv(cg’ ® S) is a linear map such that:

1. foralla€ A and £, € &, we have

6s(6a)=0s(£)da(a) and (6s(€),05(n)) =0a((&m));
2. [66(6)(A®9)] =qpsa(E®95);
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3. for all £ € & and n € N, we have dg(8s(n°)¢) = (1o @ £(n°))de(£);
4. the linear maps dg ® idg and idg ® § extend to linear maps from L£(A ®
S,E®85) to LLA®S®S,6®S5S®S) and we have
(65 ®1ids)de(§) = (ide ® 6)de (§)
ELIARS®S,E@S5®S), foraleéd.

REMARKS 6.1.2.

e If the second formula of the condition 1 holds, then d¢ is isometric (cf. [4],
Remarks A.3.2(1)).
e If the condition 1 holds, then the condition 2 is equivalent to:

[06(6) (14 ® S)] = gp,0(€ @ 5).
Indeed, if (uy)» is an approximate unit of A we have

de(§) = hin(if('fux) = Hiﬂ@(f)%(ux) =0s(£)qa,a, forall{eé.

By strong continuity of the action (84,d4), the condition 1 of Defini-
tion 6.1.1 and the equality £A = &, we then have [0¢(&)(A ® S)] =
[0e(£)(1a ® S)] and the equivalence follows.

o Note that we have ¢g,00s(§) =0de(§) =0s(€)qp 0 for all { € &.

e We will prove (cf. Remarks 6.1.7) that if §s satisfies the conditions 1 and 2
of Definition 6.1.1, then the extensions of d¢ ® idg and idg ® § always exist
and satisfy the formulas:

(ide ®0)(T)(ida ® 0)(x) = (ide ® §)(Tz);
(0 ®1dg)(T) (04 ®ids)(z) = (g ®idg)(Tx);
foralz€e A S and T€ LIAR S, &R S).

NOTATION 6.1.3. For £ € &, let us denote by Te € LIA® S, & ®5, (A® S))
the operator defined by

Te(x):=(R®s,z, forallze A®S.

We have 17 (n ®s, y) =64({§;m)y for all n € & and y € A® S. In particular,
we have 17T, =04((§,n)) for all {,n e &.

DEFINITION 6.1.4. Let ¥ € L(& ®5, (A® S),6 ® S) be an isometry and
Be : N° — L(&) a nondegenerate *-homomorphism such that:
1. 7/7/* = Qﬁga;
2. V(Be(n®)®5, 1) =(1le @ B(n°))¥, for all n € N.
Then, ¥ is said to be admissible if we further have:
3. ¥YTe e M(E®S), for all £ € &;
4. (V @cids) (¥ ®s,0ids 1) =7 ®iaaes 1 € L(E Rz (ARS®S),&@5®S).



ACTIONS OF MEASURED QUANTUM GROUPOIDS ON A FINITE BASIS 155

The fourth statement in the previous definition makes sense since we have
used the canonical identifications thereafter. By combining the associativity
of the internal tensor product with the unitary equivalences (6.2) and (6.3),
we obtain the following unitary equivalences of Hilbert A ® S-modules:

(€ ®5, (A®S)) Q5,015 (ARS®S) = ERp (ARS®S),
(€ ®5, @) Bsa0ids Y § Bsz (04 ®ids)(w)y;
(€ @5, (A®9)) Qidsws (ARS®S) = ER5p (ARS®S),
(€ ®5, @) Pidaws Y £ @sz (1da @ 6)(2)y.
We also have the following:

(6.4)

(6.5)

(66) (£ ®8S) Dsazids (ARS®S) = (£ R5, (AR S)) @S,
' (£ @ 8) ®s,mids (T@1) = (£ ®5, ) ® st;
67 (62 8) Didpes (ADSDS) = a3 @S2S)CERS®S,

§ Qidaws ¥+ (ide ®6)()y.

In particular, ¥ ®s,gids 1 € L(6 @53 (ARS®S), (6 ®S) ®5,0ids (AR SR S))
(6.4) and ¥ @cids € L((E R S) Rs,0ids (ARS®S),£R5®S) (6.6).
The next result provides an equivalence of Definitions 6.1.1 and 6.1.4.

PROPOSITION 6.1.5.

(a) Let 65 :& — M(E® S) be a linear map and Be : N° — L(&) a non-
degenerate x-homomorphism which satisfy the conditions 1, 2, and 3 of
Definition 6.1.1. Then there exists a unique isometry ¥ € L(& ®s, (A®
S),&®S) such that dg (&) =V T for all & € . Moreover, the pair (Bg, )
satisfies the conditions 1, 2, and 3 of Definition 6.1.4.

(b) Conversely, let ¥ € L(E®s, (AR S),E®S) be an isometry and Bg : N° —
L(&) a nondegenerate x-homomorphism, which satisfy the conditions 1, 2,
and 3 of Definition 6.1.4. Let us consider the map dg : & — L(A®RS,£RS)
given by 0g(&) == VT¢ for all £ € &. Then the pair (Bs,ds) satisfies the
conditions 1, 2, and 3 of Definition 6.1.1.

(¢) Let us assume that the above statements hold. Then the pair (Beg,0¢) is
an action of G on & if, and only if, ¥ is admissible.

In the proof, we will use the following notation.

NOTATION 6.1.6. Let £ and F be Hilbert C*-modules. Let ¢ € L(E) be a
self—adpmt projection and T € L(¢€, .7-') Let T : € — F be the map defined
by T§ =Tq¢€, for all £ € £. Therefore, Te L(E,F) and T* = qI™. By abuse
of notation, we will still denote by 7' the adjointable operator T.

Proof of Proposition 6.1.5. (a) By definition of the internal tensor product
and Definition 6.1.1(1), there exists a unique isometric (A ® S)-linear map
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V.8 R®s5, (A®S)— & ® S such that
V(ERs, )=0g(l)x, forall{e& andze AR S.

In other words, we have ¥Tr = d¢(§) for all £ € &. Now, it follows from
Definition 6.1.1(2) that the ranges of ¥ and ¢g, are equal. Then denote by
v the range restriction of ¥. Hence, the map v=!¢s,, is an adjoint for .
Indeed, for all z € &® S and y € & R, (AR S) we have

(v g az,y) = (Yv " qpsax),Vy) (V¥ is isometric)
= (48sat; V'Y)
= (2.7y) = (1 = gp.0) (@), Vy)
=(z,7y) (Vy€im(gs,a)).
Hence, ¥ € L(& ®5, (A® S5),& ® S) and then ¥*¥ =1 and ¥ 7* =

%U_lqﬂga =d4Bsa-
The conditions 1 and 3 of Definition 6.1.4 are then fulfilled. Now, we have

7/(/65 (no) ®sa 1) (f Q54 93) = 65 (ﬁéD (no)g)z
= (s @ B(n°))ds(&)x
= (15 ® B(no))qf/(g Q54 T),
forall €&, r€ A® S and n € N. Hence, the condition 2 of Definition 6.1.4
holds.
(b) is straightforward.
(c)Let T € LIA® S, £ ®S). By using Notation 6.1.6 and the identifications

(6.3), (6.7), we have T ®iq .5 1 € LIA®S®S,6®S®.S). Now, we can define
the extension

ide®06: LIARS,ERS) > LIARS®S,£RS5®S)
by setting
(ide ®0)(T) :=T Qig,gs 1, foral Te LIA®RS,&®S).

We also have T ®s ,gids 1 € LIARS® S, (6 ®s5, (A® S)) ®S) by using again
Notation 6.1.6 and the identifications (6.2), (6.6). Let us define the extension

0 ®idg: LIARS,ERS) > LIARS®S,ERS®S)
by setting
(b ®1dg)(T) == (¥ ®c 15)(T ®s,0ids 1), forall T e LIA® S, & ®S).
Therefore, for all £ € & we have:
(0s ®ids)ds(§) = (¥ @c Ls)(V @s4ids 1)(Te ®sa0ids 1)
ELARS®S,ERS®S);
(ide ®0)de(8) = (¥ ®idaws 1) (Tt Qidags 1)
ELIARS®S,ER5®S);
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where:
T Q54mids 1€EL(AR®S® S, @5 (A®S®S));
Te @ias05 LEL(ARS®S,6 @5 (AR S®S));

by using the identifications (6.2), (6.4) and (6.3), (6.5), respectively, and No-
tation 6.1.6. In particular, if ¥ is admissible, then the condition 4 of Defini-
tion 6.1.1 holds.

Conversely, let us assume that the above condition is satisfied. In order
to show that ¥ is admissible, we only have to prove that the restrictions
of the operators Ty ®s,mids 1 and T ®iq,es 1 to the Hilbert submodule
GBaa,129B0,23(A® S ® S) are surjective.

Letac A,z € A®Sand yc A®S®S. Let us set z = (04 ®idg)(da(a)x)y.
It is clear that z € ¢3,4,12¢80,23(A®S®S). By a straightforward computation,
we have

(Te ®s,0ids 1)(2) = Ea ®sz (04 @ids)(2)y.
Hence, the restriction of T¢ ®5,@ids 1 t0 ¢84a,12¢8q,23(A® S ® S) is surjective
in virtue of (6.4) and the fact that &A = &. The same statement is also true
for Te ®id @6 1. O

REMARKS 6.1.7. In the proof of Proposition 6.1.5, we have proved the
statements below.

e By applying Notation 6.1.6 and the identifications (6.3), (6.7), we have
obtained a linear map idg ®6: LIA® S, £RS5) = LIARS®S,ERS®.S)
given by

(ide ®0)(T) :=T Qig s 1, foral Te LIA®S, & ®S);

o If 04 satisfies the conditions 1 and 2 of Definition 6.1.1, let #” be the isometry
associated with dg (cf. Proposition 6.1.5(a)). By applying Notation 6.1.6
and the identifications (6.2), (6.6), the linear map 0 ® idg : L(A® S, & ®
S)—=>LA®S®S,6®S®S) is defined by
(b ®1dg)(T) == (¥ ®c 15)(T ®s,0ids 1), forall T € LIA® S, & ®S).

Note that the extensions idg ® § and ds ® idg satisfy the following formulas:
(ide ® 6)(T')(ida ® 6)(z) = (idg ® 6)(Tx);

(0 @ids)(T) (64 ®ids)(z) = (65 @ids)(Tx);

forallz€e A®Sand T€ LIA® S, & ®S).

Let us denote by J:=K(& @ A) the linking C*-algebra associated with

the Hilbert A-module &. In the following, we apply the usual identifications
M =LEDA) and M(JRS)=L(E@S)D (AR S)).

DEFINITION 6.1.8. An action (37,0;) of G on J is said to be compatible
with the action (84,04) if:

(6.8)
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1. 05:J—= M(J®S) is compatible with d4, that is, tags ©da =05 0 ia;
2. By : N°— M(J) is compatible with 54, that is, ta(8a(n°)a) = B5(n°) x
ta(a), for all n e N and a € A.

PROPOSITION 6.1.9. Let (87,65) be a compatible action of G on J. There
exists a unique non-degenerate x-homomorphism Bg : N© — L(&) such that

B (no) _ (ﬂgéﬂo) 514?710))’ for allne N.

_ [9Bs« 0
qﬁ.]a—< 0 Qﬂ4a>.

Proof. Note that since t4, B4, and §; are x-homomorphisms, the condi-
tion 2 of Definition 6.1.8 is equivalent to

LA(aﬂA(nO)) = LA(a)/J’J(nO)7 forallae A,n e N.

Therefore, there exists a map fSg : N° — L(&) necessarily unique such that

By (n°) = (5£E)no) BA?TLO))’

for all n € N. Then it is clear that Sg is a nondegenerate *-homomorphism
and the last statement is then an immediate consequence. O

Moreover, we have

REMARKS 6.1.10. Note that if 54 is injective, then so is (§;. For all
neN, {edé and k€ K(&), we have tc(g)(Bs(n°)k) = B (n°) i ey (k) and
te(Be(n®)€) = Bs(n°)Le(&). In particular, we have Bg(n°)0¢ , = 03, (noye,n for
all n € N and ¢,n € & (cf. Proposition 2.3.2(2)).

ProPOSITION 6.1.11.

(a) Let us assume that the C*-algebra J is endowed with a compatible action
(B7,61) of G such that 6;(J) C M(J ® S). Then we have the following
statements:

o there exists a unique linear map dg : & — Mv(é’ ® S) such that Legs ©
de = dj0u1g; furthermore, the pair (Bg,d¢) is an action of G on &, where
Be : N° — L(&) is the x-homomorphism defined in Proposition 6.1.9;

e there exists a unique faithful *-homomorphism dxs) : K(&) —
MV(IC(é’) ® S) such that ii(sgs) © Oxs) = 05 © Li(s); moreover, the
pair (Bg,0x(s)) is an action of G on K(&).

(b) Conversely, let (Be,0s) be an action of G on the Hilbert A-module &.
Then there exists a faithful *x-homomorphism &y :J — M(J ® S) such
that Legs © 0e =0y 0 Le. Moreover, we define a unique action (85,0;5) of
G on J compatible with (84,04) by setting

B (no) _ (ﬂgéﬂo) 5A?Tl°)>’ for alln € N.
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Proof. (a) Let us assume that the C*-algebra J is endowed with a com-
patible action (87,05) of G. Let B¢ : N° — L(&) be the *-homomorphism
defined in Proposition 6.1.9. By strict continuity and Definition 6.1.8(1), we
have d7(ta(m)) =tags(da(m)) for all m € M(A). It then follows from Propo-
sition 6.1.9 that

05 (k) (Le)) =05(1s) =07 (ea(la)) = dp,a — taws(@paa)
= ix(¢s) (1Bsa)-

Let £ € &. We have 1) (16)te(§) = te(§) and te(§)ix(s)(le) = 0. Hence,

Uc(e@s)(45sa)d5 (16 (€)) =0 (1s(€))  and

8.7 (1e(8))ixc(ces) (@ssa) =0
We have 14gs5(2)07(te(§)) = taws(®)ir(s0s)(@sa)ds(te(§)) =0, for all x €
A®S. Now, let (uy)x be an approximate unit of A. We have
65(e(€)) = 11}\115](11&(5“)\)) = hin(SJ (te(€))taws (0a(ur)).

)

Hence, 05(te(§))tews(n) =0 for all n € & ® S. Hence, there exists a unique
linear map dg : & - LA ® S,& ® S) such that tggs 0 dg = 5 0 te (cf.
Lemma 2.3.4(1)). Moreover, Jg actually takes its values in the subspace
M(ﬁ@ S) of LIA® S,&® S). Indeed, let us fix £ € & and s € S. By as-
sumption, we have that

Lews ((le ©5)05(€)) = (1, ©5)81(1s(€)) and

Lews (0£(6)(1a®s)) =0,(te(9)) (1 ®s)
belong to JRS=K((£®5) D (A®S)). It then follows that (1¢ ® $)ds(§) €
ERS and §5(£)(1a®s) € &R S. The first condition of Definition 6.1.1 is easily

derived from the compatibility of § ;. The vector subspace of §;(1;)((£® A)®
S) spanned by

{5J(0569a,77€9b)(<); 5,77 € gaaab € AaC € (éa @ A) ® S}

is dense. However, we have

8.1 (Bcanen) () = (55 (€) @ 8a(a)) (82 (1) ® 34 (b)) (€),
where 6¢(&) ® da(a),de(n) ®oab) e LIARS,ERS)PLA®RS) CLAR®
S, (& @ A)® S). In particular, the vector subspace of §;(1;)((& & A) ® S)
spanned by
{0z ®da(a)r; E€Ea€e A,z e AR S}
is dense. Therefore, the relation [0¢(&)(A® S)] = ¢psa(é ® S) follows since
we also have §;(1,)((E B A)®S) =qa,a(€RS) D¢a,a(ARS).
Let us fix £ € & and n € N. We have

tews (05 (Be (n°)€)) = 6 (1 (Bs (n°)€))
=067(8s(n°)ee(€))
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= (17 ®B8(n°))ds(te(€))
= te0s((le ® B(n°)ds(8)).-

Hence, d5(Bs(n°)€) = (s ® B(n®))ds(§).

Let us consider the linear maps idg ® 6 : L(AR S, &R S) > L(A® S®
S,E®S®S) and ds ®idg: LIA® S, ER5) = LIARS®S,ER5®S) (cf.
Remarks 6.1.7). By using (6.8) and the compatibility of §; with 4 and dg,
it follows from a straightforward computation that

Lewses ((ide ©6)(T)) = (ids @ 6) (tews(T));
Lewsws (05 @idg)(T)) = (6, ®ids) (tees(T));

forall T € LIA® S, ® S). In particular, tegses((ide @ §)dg(€)) = (idy ®
0)d5(te(€)) and tegsgs((de ®ids)de(€)) = (05 ®1idg)ds(te(€)) for all £ € &.
Hence, for all £ € & we have (dg ®1dg)de(§) = (ide ® 0)dg(€). Therefore, the
pair (Bg,ds) is an action of G on &.

We claim that there exists a unique *-homomorphism dx(s) : K(&) —
M(K(E) ® S) such that tiegs) © dke) = 0 © ti(s). We recall that
01(tk(e)(18)) = ti(e25)(qasa). We also have tags ()i (ses)(dssa) =0 and
tk(ews) (@psa)tags(z) =0 for all x € A® S. It follows that tags(z) x
07 (i) (k) =0 and 05 (tic(s)(k))tags(x) =0 for all k € K(&) and 1€ A® S.
Hence, 6, (L)C((@ (k) € tic(eas) (L(E @ 9)) (cf. Lemma 2.3.4) and the claim
is proved since tx(sgs) is faithful. Since tx(sgs) is isometric and §; o 1x ()
is strictly continuous, the *-homomorphism dx(s) is strictly continuous and
extend uniquely to a strictly continuous *-homomorphism dx (g : L(&) —
M(K(&) ® S) such that dx(s)(1g) = gza. Moreover, for all £, € & we have
(cf. Proposition 2.3.2(2))

(6.9) 51c((g°)(957n) =0¢g(§)0de(n)* = 95@ €),0s(n)
eL(M(E®S)) c M(K(&) @ S).
Hence, dx(s) (K (&) € M(K(£)®5). We have dxs) (Be(n°)) = (Le ®B(n°)) x

4Bsa, for all n € N (cf. (6.9), Remarks 6.1.10). By strict continuity, we have
the formulas:

Ues@ses) (idis) ® 0)(T) = (idy ®0) (tx(s0s)(T));
Ue(s@ses) (Ok(s) @ids)(m)) = (0 @ ids) (i sws) (1))
for all T € M(K(&) ® S) = L(& ® S). By applying the above formulas to
T:= (5;C(g)(k) for k € K(&), we show that (5/¢(5) ® ids)(slc(g)(k) = (id)c(g) &®
0)dk ey (k).
(b) First, it is clear that §; is a nondegenerate *-homomorphism. It is also
clear that 8 is compatible with the fibration map B4, that is, B;(n°)ta(a) =

ta(Ba(n®)a), forallaec Aandne N.Let ¥ € L(E®s, (AR S),& ®S) be the
isometry associated with the action dg. Let i:¢g,0(A®S) > A® S be the
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inclusion map. We verify that ¢ is an (A ® S)-linear adjointable map and i* =
gBa- In particular, the map ¢ is an isometry since we have i*i(z) = ¢g, ot ==
for all z € ¢gg,o(A®S). Let

W=V @icLl((60s5, (ARS)) B qsa(A®9), (£S5 & (A®S)).

We have #*# =1, then # is an isometry. Henceforth, we will use the fol-
lowing identification (see (6.1)):

(€ @54 (A® ) @ Gpra(A®S) = (6 @5, (A0 5)) & (A@s, (A0 S5))
=(EDA) @5, (AR S).
Hence, # e L(E B A) ®5, (AR S), (D A)R®S). Let us define
oj(x)=# (x5, W e M(J®S), forallzeld
In that way, we define a strictly continuous *-homomorphism é6; : J —
M(J @ S) satisfying 6;(15) = #W* = qao0 D QBaa = 48,a- Let a € A.
Let us prove that tags(da(a)) = 05(ta(a)). Since tags(0a(a))# W™ =
tags(0a(a)) and 05(ta(a)# W™ = 5;5(ta(a)), it amounts to proving that
tags(04(a)# =6;5(taa))¥, for all a € A. Therefore, it is enough to prove
that tags(da(a))# =# (1a(a)®s, 1) since #*# = 1. However, for all n € &,
be Aand x € A® S we have
V/((n ®b) Rs, 33) =Y (NRs, x) Doa(b)x =0g(n)x D 5a(b)x.
We finally obtain
W (1a(a) @5, 1) ((n© 1) ©5, ) =¥ ((0® ab) ®s,, )
=V ®i)(0®da(ab)x)
=0®da(a)da(b)x
=1aps(0a(a)) (0s(n)z & da(b)x)
=tags(0a(a) 7 (n@b) @5, ),

forallne &, be A, and x € A® S. By using similar arguments, we also prove
that tegs(de(§)) =05 (te(§)) for all £ € &. By strict continuity, we obtain the
formulas:

(67 ®ids)tags(m) = tagses(da ®ids)(m);
(ids ® 6)rags(m) = tagsgs(ida @ d)(m);

for all m € M(A®S). By applying the above formulas to m :=d4(a) fora € A
and by using again the compatibility of §; with 6 4, we obtain the formulas:

(§J ® ids)5J (LA(CL)) = LA®S®S(5A oy idS)aA(a);
(idy ®d)dy (LA(CL)) =tlagses(ida ®d)da(a).

Hence, (65 ®idg)ds(ta(a)) = (idy®6)ds(ta(a)) for all a € A. In a similar way,
we have (67 ®1dg)ds(te(€)) = (1dy ®6)05(te(§)) for all £ € &. However, since
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J is generated by tg(&) Uta(A) as a C*-algebra, the coassociativity of 4 is
then proved.
Forallne &, be A,z € A® S, and n € N, we have

57 (Bs(n°))# ((n®b) ®s, x) =# (8(n°)(n®b) @5, x)
=W ((Bs(n°)n® Ba(n°)b) ©s, )
=05 (B (n )77)97@5A(ﬁA( °)b)z
= (Ly®B(n°)) (0s (M) © 4(b)2)
= (1, ®@B(n°))# ((n®b) ®s, ).

Hence, 5](,@J(TLO)) = 5J(5J(no))W7/* = (lJ X ﬁ(nO))WV/* e (1J X ﬁ(no)) X
05(1y), for all n € N. Therefore, (85,0) is an action of G on J, compatible
with (6A,5A). O

FEquivariant unitary equivalence. In this paragraph, we define a notion of
equivariance for unitary equivalences of Hilbert modules acted upon by G.
We refer the reader to §A.3 for the definitions and notation used below.

DEFINITION 6.1.12. Let A and B be two G-C*-algebras and ¢ : A — B
a G-equivariant *-isomorphism. Let & and % be two Hilbert modules over
respectively A and B acted upon by G. A ¢-compatible unitary operator
d: & — F is said to be G-equivariant if we have

07 (P) = (P®idg)oe(§), forall {e€é.

We recall that the linear map ® ® idg: LIA® S, §®S5) = L(B®S,.F ®5)
(Notation A.3.6) is the extension of the ¢ ® idg-compatible unitary operator
P®ids:&®S — . @S (Proposition-Definition A.3.4).

ProPOSITION 6.1.13. With the notation and hypotheses of Definition
6.1.12, for all n € N we have Bz (n°) o ® = ® o fg(n°).

Proof. Tt is clear that (P®ids)((le®s)T) = (12 ®s)(PRidg)(T) forall s €
Sand T e L(A®S,£®S). Let n€ N and € € &. We have 62 (P (Bg(n°)E)) =
0.7 (B (n°)®E) by Definition 6.1.1(3). Hence, ®(Sg(n°)§) = Bz (n°)PE by Re-
marks 6.1.2(1). O

DEFINITION 6.1.14. Two Hilbert C*-modules & and .% acted upon by G are
said to be G-equivariantly unitarily equivalent if there exists a G-equivariant
unitary operator from & onto .%.

It is clear that the G-equivariant unitary equivalence defines an equivalence
relation on the class consisting of the Hilbert C*-modules acted upon by G. In
the following, we provide equivalent definitions of the G-equivariant unitary
equivalence in the two other pictures.
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Let A and B be two G-C*-algebras and ¢ : A — B a G-equivariant -
isomomorphism. Let & and % be two Hilbert C*-modules over A and B
respectively and & : & — .F a ¢-compatible unitary operator.

LEMMA 6.1.15. The linear map
ERs, (AR S) = F Rs5, (B®S);
£ @5,z BE Qs (¢ @ids)(2)
is a ¢ ® idg-compatible unitary operator.
Proof. For all €&, ac Aand z€ A® S, we have
D(€a) @5, (P @ids)(z) = 2(§)d(a) ®s, (¢ @ids)(2)
=€ ®5, 05 ((a)) (¢ @ids)(z)
=0 ®5, (9 ®idg)(6a(a)z).
Therefore, we have a well-defined linear map
V:804(ARS)— F s, (BRS);
EOar— PERs, (¢ ®idg)(x).

For all {,n € &, we have 65((®¢, Pn)) = dp(o((&,m)) = (¢ ®ids)da((&,n))-
Therefore, for all £,n€ & and z,y € A® S, we have

(D€ @5, (9 @ids)(x), 0 @5, (9 @ ids)(y))
= (¢ ® lds) (<§ Roa L1 D4 y>)
Hence, (¥(t), U (")) = (¢p®ids)((¢t,t')) for all t,¢' € £@4 (A®S). In particular,
we have | U(t)]| = ||t|| forallt € £ @4 (A®S) (¢p®idg is isometric). Therefore,
¥ extends uniquely to a bounded operator from & ®;, (A®S) to F Qs, (B®
S) still denoted by . We have (U(t), U(t')) = (¢ ® idg)((¢,t')) for all ¢, ¢’ €
& Rs, (A®S). Since ¥ is isometric and has a dense range, we conclude that

U is surjective. A staightforward computation shows that U(tz) = U(t)(¢ ®
idg)(z) forallte & ®;5, (A®S)and z € A® S. O

PROPOSITION 6.1.16. Let (Bg,ds) (resp., (Bz,02)) be an action of G on
& (resp., F). Denote by Vg € L(E ®s, (A®S), & ®S) (resp., Vg € LIF Ry,
(B®S),Z ®8)) the isometry associated with (Bg,0¢) (resp., (B#,0%)). As-
sume that ® o fg(n°) = Bz(n°)o® for alln € N. Then ® is G-equivariant if,
and only if, we have

V3 (P @ids)Ve(E @5, 1) = PE s, (¢ @ids) (),
forallée& andx e AR S.
Proof. Let ¥:8 ®;5, (A®S) = F Qs, (B®S) be the ¢ ® idg-compatible

unitary operator defined in the above lemma. For all £ € & and z € A® S, we
have

07(0)(¢ @ids)(x) = Ve (P Qs 1) = V7 0 W(E D5, )



164 J. CRESPO

and (®®ids)(ds(£)) (¢ @ids)(2) = (2 ®ids)(0e()z) = (P ®ids) Ve (£ @, ).
Therefore, o 0 ® = (P ®idg) o dg if, and only if, ¥z o ¥ = (P ®ids)¥s. In
order for the formula ¥z o ¥ = (® ® idg) ¥ to hold true, it is necessary and
sufficient that ¥ = 7 (® ®idg) ¥. Indeed, it is necessary since 757z = 1. It
is also sufficient since we have Y275 = (3, a, §85a(P ®idg) = (P ®ids)gs,a
(by assumption) and gg,o%s = Y. O

REMARK 6.1.17. Let A be a G-C*-algebra. Let & and .% be two Hilbert
A-modules acted upon by G. Let ® € L(&,.#) be a unitary. The following
statements are equivalent:

(i) @ is G-equivariant;
(ii) @ofe(n®)=pFz(n°)od forallne N and V5 (P®15)%s =P ®s5, laws;
(i) ® o Be(n°) = Bz (n®) o @ for all n € N and 72 (P s, lags)¥s =
QBga((I) & 15).

PROPOSITION 6.1.18. Let A and B be two G-C*-algebras and ¢ : A — B
a G-equivariant *-isomorphism. Let & and F be two Hilbert modules over
respectively A and B acted upon by G. Let & : & — F be a ¢-compatible unitary
operator. Denote by f:K(& ® A) — K(F ® B) the unique x-homomorphism
such that foreg =1z 0T and fois=1po¢ (cf Proposition A.3.5). Then ®
is G-equivariant if, and only if, f is G-equivariant.

Proof. Let J:=K(&® A) and L:=K(.Z @ B). Assume that ® is equivari-
ant. The following formulas are immediate consequences of the definitions:

tpes © (¢ ®idg)(m) = (f ®ids) o tags(m), me M(A®S);
LF®S © ((I> ®1d5)(T) = (f@lds) o Lg@g(T), Te E(A@S,g(@ S)

By combining the first (resp., second) formula with the G-equivariance of ¢
(resp., ®) and the fact that fora =150 ¢ (resp., fote =tz o P), we obtain

60 f(rala)) =(f ®idg)ds(tala)), forallac A
(resp., 6p 0 f(1e(8)) = (f ®ids)ds(1e(€)), forallE€&).

Therefore, we have dr(f(z)) = (f ® idg)ds(z) for all z € J. Moreover, by
definition of the fibration map on a linking C*-algebra (cf. Proposition 6.1.11)
and the G-equivariance of ®, we have

f(Bs(n°)) = (ngno) BA?no))
:(q)oﬂg(%o)o(pl 0 )ZﬂL(TLO)v

for all n € N. The converse is proved in a similar way. O
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Continuous actions. In this paragraph, we introduce the notion of continuity
for actions of the quantum groupoid G on Hilbert A-modules. If G is regular,
we prove that any action of G is necessarily continuous.

DEFINITION 6.1.19. An action (Bg,ds) of G on a Hilbert A-module & is said
to be continuous if we have [(1¢ ® S)dg(&)] = (6 ® S)gpaa. A G-equivariant
Hilbert A-module is a Hilbert A-module & endowed with a continuous action

of G.

PROPOSITION 6.1.20. Let & be a G-equivariant Hilbert A-module. Let B :=
K(&). We have the following statements:
1. the action (Bp,08) of G on B defined in Proposition 6.1.11 is strongly
continuous;
2. we define a continuous action of G on the Hilbert B-module &* by setting:
o Be:(n°)T :=Pa(n°)oT, for allne N and T € &*,
o g«(TNx :=0s(T*) ox, for al T €E* and x € BR S;
where we have applied the usual identifications B® S = K(& ® S) and
E=K(A,&).

Proof. 1. We have [65(B)(1p ® S)] = [05(0¢,))(1g @ y); &n € &,y € S).
However, we have 0g(0¢,)(1p ® y) = ds(£)de(n)* (1 @ y) = d6(§)((1p ®
y*)og(n))* for all y € S and & n € &. It then follows from the continuity of
the action (8¢,0¢) and Remarks 6.1.2 that

[53(3)(13 ®S)] = [65(5))(1[34a(5* ®S)] = [55(5)(5* ®S)]

Now, by combining the formulas [§(&)(ls ® S)] = ¢a,a(é6 ® S) and B =
[£&*] with the fact that any element of S can be written as a product of
two elements of S, we obtain [05(B)(1p ® S)] =[0¢(&€)(le ® S)(E* @ S)] =
QBga(B ®5).

2. Straightforward. U

PROPOSITION 6.1.21. Let & be a Hilbert A-module endowed with an action
(Be,dg) of G on &. Let J := K(E® A) be the associated linking C*-algebra. Let
(87,07) be the action defined in Proposition 6.1.11. Then the action (Bg,0s)
is continuous if, and only if, the action (8,07) is strongly continuous.

Proof. Assume that the action (8¢,0¢) is continuous. Let B :=K(&). Let
us prove that (5,0) is strongly continuous. Let = € J and s € S. Let us write

ac:(nb* 2), where a € A,;b€ B and {,n€ &.

Then, we have
67(x)(17 ®s) = 1Bes (08(0) (15 ©5)) + tegs (0s(£)(1a ® s))
+isvws(0s (1) (1p ®5)) + tags (0a(a)(1a @ s)).
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Then the continuity of (3,9) follows from the continuity of (84,04), (Be,d¢)
and the continuity of (8p,dp) and (Bg«,0e+) (Proposition 6.1.20). Conversely,
assume that (8,07) is continuous. We have tggs5((6 ® S)ga,a) = (1e(&) ®
S)qa,a- Let ¢ € & and y € S. As in the above computation, we prove that
tews((C®Y)ga,a) is the norm limit of finite sums of elements of the following
forms: tpes((1p ® s)0p(h)), tews((le ® $)0s(§)), texos((lex ® s)dex(n™)),
and tags((1a ® $)da(a)). By multiplying by tpgs(lpgs) on the left and by
tazs(lags) on the right, we have that texs((( ® ¥)¢s,a) is the norm limit
of finite sums of elements of the form tegs((le ® $)dg(£)). The continuity of
(Be,d¢) follows from the fact that tegs is isometric. O

DEFINITION 6.1.22. A linking G-C*-algebra is a quintuple (J, 5,07, e1,e2)
consisting of a C*-algebra J endowed with a continuous action (8;,07) and
nonzero self-adjoint projections ey, es € M(J) satisfying the following condi-
tions:

1. e1 +ex=1y;
2. [JejJ]=J, for all j=1,2;
3. 6;5(ej) =qs,al(ej ®1g), for all j=1,2.

REMARKS 6.1.23.

o Let (A,54,04) be a G-C*-algebra and m € M(A) such that d4(m) =
4Baa(m @ 1g). Let n € N, we have [m,B4(n°)] = 0. Indeed, since «
and 8 commute pointwise we have [gg,0(1a ® B(n°)),¢s4a(m @ 15)] =0.
It then follows that d4([m,B4(n°)]) = [0a(mBa(n°)),d4(Ba(n®)m)] = 0.
Hence, [m, 54(n°)] =0 by faithfulness of §4. In particular, we have [gg,q,
m® lg] =0.

e Let (J,5,07,€1,e2) be a linking G-C*-algebra. By restriction of the action
(B87,0), the corner eaJes (resp., e;Jes) turns into a G-C*-algebra (resp.,
G-equivariant Hilbert C*-module over esJes). Furthermore, we also have
the identification of G-C*-algebras K(ejJea) =e1Je;.

e Conversely, if (&,8¢,0¢) is a G-equivariant Hilbert A-module, then the
C*-algebra J := K(& @& A) endowed with the continuous action (8y,07)
(cf. Propositions 6.1.11, 6.1.21) and the projections e; :=ts(1lg) and eg :=
ta(14) is a linking G-C*-algebra.

LEMMA 6.1.24. Let & be a Hilbert A-module endowed with an ac-
tion (Bg,ds) of G. We have & = [(idg @ w)dg(§); € € & ,w € B(H).] (cf.
Proposition-Definition 2.3.6).

Proof. We have & D [(idg ® w)dg(§); € € &,w € B(H).] (cf. Proposition-
Definition 2.3.6). To obtain the converse inclusion, we combine the fact that
there exists w € B(J¢). such that (ide ® w)(ggya) = l¢ with the formula
[06(€) (18 ® S)] = qssa( ®S5). 0

Now, we can state the main results of this chapter.
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THEOREM 6.1.25. Let A be a G-C*-algebra and & a Hilbert A-module acted
upon by G. Let J :=K(& @ A) be the associated linking C*-algebra endowed
with the action (B5,05) defined in Proposition 6.1.11. If G is semi-reqular
(resp., regular), then the action (81,87) is weakly (resp., strongly) continuous.

Proof. Assume that G is semi-regular. Denote by T :=[(id; @ w)ds(x); z €
J,w € B(J),] the C*-algebra of continuous elements (cf. Proposition 5.3.4).
By combining the compatibility of ; with d4 (resp., dg) with the fact that
(Ba,04) is (weakly) continuous (resp., Lemma 6.1.24), we obtain ¢t4(A) C T
(resp., te(&) C T). Hence, J C T. The converse inclusion also holds since
05(J) C //\/lv(,] ® S). Hence, (87,0) is weakly continuous. It follows from The-
orem 5.3.6 that the action (8,d;) is strongly continuous if G is regular. [

COROLLARY 6.1.26. Let & be a Hilbert A-module. If the quantum groupoid
G is regular, then any action of G on & is continuous.

Proof. This is an immediate consequence of Proposition 6.1.21 and Theo-
rem 6.1.25. O

6.2. Case of a colinking measured quantum groupoid. Let us fix
a colinking measured quantum groupoid G := Gg, g, between two monoidally
equivalent locally compact quantum groups G; and Gs. Let (A4, 84,94) be a G-
C*-algebra. We follow all the notation of §3.3 (resp., Notation 5.2.1 and Propo-
sition 5.2.2) concerning the objects associated with G (resp., (A, 54,d4)).

In the following, we provide a description of Hilbert modules acted upon by
G in terms of Hilbert modules acted upon by G, and Gs. Let us fix a Hilbert
A-module & endowed with an action (Bg,ds) of G.

NOTATION 6.2.1. We introduce some useful notation to describe the action

(Be,bg).

o Let go ;.= Be(e;) for j=1,2. Note that gs1 and ge o are orthogonal self-
adjoint projections of £(&) and gs 1+ ¢s2 =1s.

o Let J:=K(& @ A) be the linking C*-algebra associated with & endowed
with the action (B,d;) of G (cf. Proposition 6.1.11(b)). Since 3;(C?) C
Z(M(J)) (cf. 3.2.3 [2]), we have Be(n)é =£Ba(n) in L(A,&) for all n € C2
and £ € &, that is, (Bg(n)€)a=E&(Ba(n)a) for all n € C?, £ € & and a € A.
Hence,

(6.10) (ge,;6)a=¢&(ga a), forall{ed,ac A j=1,2.
In particular, we have

<q£7j£7qg,j77> = qA,j<£a77>7 for all 5777 €é&.

Indeed, fix £,n € & and write £ = a and 1 = n'b with ¢, € & and
a,b e A. Since the projection ¢a ; is central in A, we have (g5 ;&,qs ;1) =

((as,5€)a; (as 1)b) = (§'(qa,50),7'(44,30)) = qaja™ (€ 1")b = qa;(&m)-
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For j =1,2, we then define the following Hilbert A;-module &; := ¢z ;&.
Note that & = & ® &>.
e For j,k=1,2, let H;’? 16, ® Sk — & ® S be the inclusion map. It is clear

that H? isa W;?—compatible operator (cf. Definition A.3.1). We can consider

its canonical linear extension Hf (L(AK ® Sy, € ®Skj) > LIARS, &R S),
up to the canonical injective maps & ® Sk; — L(Ar ® Sk;, &k ® Sk;) and
ERS—LA®S,&®S), defined by H?(T)(m) = H? oT((ga,x ® prj)x) for
all T € ﬁ(Ak ®Skj7£)k ®Skj) andr € A®S.

LEMMA 6.2.2. With the above mnotations and hypotheses, we have a
canonical unitary equivalence of Hilbert A ® S-modules & Qs, (A® S) =

@j,k:l,z éaj ®6’3j (Ak ® Skj)~

Proof. This is a straightforward verification to see that we define a unitary
adjointable operator by the following formula:

s, (A0 S) = P & D (Ar ® Siy);

7,k=1,2

(@5, v P Q£g§®5k (qak ® prj)e.
7,k=1,2 O

PROPOSITION-DEFINITION 6.2.3. Let ¥ € L(& @5, (AR S),E R S) be the
isometry associated with the action (Bg,0¢) (cf. Proposition 6.1.5(a)). For all
4, k=1,2, there exists a unique unitary

vl erL(s ®55j(Ak ® Skj): 6k ® Skj)
such that
YV (§®s, 2)
Z (0656 @ (0ax ©pig)a), Jor allE€ & andz € A®S.

Proof. Let j,k=1,2. Fix{e€ &,z € A® S and write x = z'z” with 2/, 2" €
A®S. We have

Y (g6 ,5€ @64 (qa,k © Prj))
= (1e ® B(5)) ¥ (£ @5, (qar @ prj)z)  (Definition 6.1.4(2))
= (1s @ B(e;)) ¥ (£ @5, 2" (qak @ prj)x”)  (qa,k,prj are central)
= (1s @ B(e;)) ¥ (£ ®s5,2") (qar @ prj)z” (¥ is A® S-linear).
Now ifne &, y,s€ S and a € A, we have
(1e ® B(c))) (M@ y)(gak ® prj)(a® 5)
=n(qa,ka) @ B(g;)ypr;s
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=1(qa,x@) @ pr;ys

= qe kna @ pi;ys € & @ Sk;j
by using (6.10) and the fact that py; is central in S. In particular, for all { € &
and x € A® S we have ¥ (ge ;i€ Qs, (qak @ prj)T) € 6 @ Skj. By combining
the fact that ¥ is isometric with the fact that xéff‘j (a) =xda(a) for all a € A;
and z € Ay ® Si;, we obtain a well-defined isometric Ay ® Si;-linear map

"ijfgj@%';,j (Ak @ Skj) = 66 @ Skjs £ @gy 2> V(E @5, ).
It follows from im(¥) = ggza(& ® S) (Definition 6.1.4(1)) that ¥} is surjec-
tive. As a result, we have ¥}* € L(&} ®sr (Ag @ Skj), & ® Sk;) and VAR
unitary. ’ O

For j,k,1=1,2 we have the following set of unitary equivalences of Hilbert
modules:

Aj ®5}Z~(Ak & Skj) — AL ® Skj,

(6.11) a®512j x*—)éff,j (a)x;
(Ar ® Skj) ®5f4k,®idskj(Al ® Stk ® Skj) = A ® Sii ® Sk,
(6.12) & ®pt, gids,, Y (64, ®ids,,)(z)y;
(A ® Si5) ®idAl®5ﬁ_(Al ® Si, @ Skj) — AL @ Si @ Skjs
(6.13) T ®id a0k Y (ida, ® 5113)(1”)?/,
(5 @5 (Ar© St5)) @1, gias,, (A1 © S © Siy)
(6.14) = 65 ®st,, @ids, ok, (A1 @ Stk @ Sj),
(€ Dt ) Ot gids,, Y € Do, wids, )5k (0%, ®ids,, ) (z)y;
(6 @31, (A1 ® 515)) ©iax, @a; (A1 @ Sy @ Siy)
(6.15) = & By, ELATI ,(Al ® Stk @ Skj)
(€ ®5LA], ) ®ida, @8 Y 3 ®(ida, @3}, )8, (ldAz ® 51;)( )Y;
6.16) (6k ® Skj) B, @ids,, (A1 @ Sk @ Sij) = (cfk D5, (Ai® Sik)) ® Skj,
((®s)®y, _®ids,, (@)= (€ Rst, T T) ® st;
617 (61 © 1) @ia, wst, (Al®slk®skg)_>@@l®slk®5kja

£®idAl®5l’“j y— (idg ® 51@)(5)#
PRrROPOSITION 6.2.4. For all j, k,1=1,2, we have

1 . k l
(7 ®cids,,) (7] ®s, wids,, 1) =75 Qianasp; -
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For j7 kal = 17 27 7/kl Qc idSkj € E((éak) ®Sktj) ®§E4k®id5kj (Al ®SU€ ®Sk:j>7 éal &
Suk @ Sks) (6.16), 1 @51, gias, 1€ LI O, wias, o, (4SS @ Sks), (6@
Skj) Dst, wids,, (A1 © S @5k;)) (6.14) and 7} Ridy, @t 1 € L(E] Bida, 00})8)
(A ® Si ® Skj), & @ Sik @ Skj) (6.17). Moreover, the composition (¥ ®c
idskj)(”i/jk ®sl, ®@ids, 1) does make sense since (84 ©idg,,)0% = (ida, @

k J J
5{‘})52.
J

Proof. Straightforward consequence of (¥ ®c idg)(¥ ®s,ids 1) =
Y Rid, s 1. O

PROPOSITION-DEFINITION 6.2.5. For j, k=1,2, let 5123 (& = L(Ag ®
Skj, &k @ Skj) be the linear map defined by

6§aj(§)x = ”I/jk(g ®gr ), for all § €&} and v € Ay ® Sy

For all j,k,l=1,2, we have:
(i) (&) = Zk,j:Lz H? °© 5% (96,5€), for all § € &;
(i) 0%, (&5) C M(8) ® Sij);
(i) 0%, (€a) = 0%, (€)0%, (a) and (3%, (€), 8%, (n)) = 0%, ((€,n)), for all &, n € &;
and a € Aj;
(iv) [5’(;]_ (&5)(1a, ® Skj)] = &k ® Sk;; in particular, we have
& = [(ids, @ w)0%, (€); w € B(Hy)s. € € )]
(¢f. Proposition-Definition 2.3.6).
(v) 6, @ids,, (resp., idg ® 5{3) extends to a linear map from L(Ar ®
Skjs 6% @ Skj) (resp., LIA;® 515,81 ® S15)) to LIA; @ Sie ® Skjr 61 @ Siie ®
Skj) and for all § € & we have
(05, ®ids,, ) 0%, (6) = (ide, ® 05) %, (€)
€ L(A; @ S @ Skj, &1 @ Sik, @ Skj);
(vi) if & is a G-equivariant Hilbert A-module, then we have [(1g, ® Skj) X
8¢, (87)] = 6 ® ;.
If & is a G-equivariant Hilbert module, then (5]7(5(7@]) is a Gj-equivariant
Hilbert Aj-module and ”i/j] is the associated unitary.

Proof. Tt is clear that 5’;.]_ 18— L(Ag ® Skj, 6% @ Sk;) is a well-defined lin-
ear map. Moreover, statement (i) follows straightforwardly from Proposition-
Definition 6.2.3 and the fact that dg(§)z = ¥ (£ ®s, ) for all £ € & and
r€A®S. Let £ € & and s € Sij. We have

I3 (0%, (6)(1a, @ 5)) = 0s(€)(1a ®s) and
11} ((1e, @ 5)6%,(€)) = (1s ® 5)3s(€)
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It then follows from d4(&) C M(& ® S) that H?(éf}j (€)(14, ® s)) and
H?((lgk ®5)5§3 (£)) belong to & ® S. Moreover, (ge x ®pkj)H?(T) = H?(T) for
all T € L(Ag ® Skj, 6, @ Sk;); hence, Hf(é(’gj (€)(1a, ®s)) € 115 (& ® Si;) and
H?((lgk ® 5)521_ ) € H?(é"k ® Skj). It then follows that 5’(}]_ (€)(14, ® s) and
(1g, ®s)(5<’f@j (&) belong to &, ® Sk; by injectivity of H? : L(Ak® Skj, 6@ Skj) =
L(A®S,&®S). Hence, statement (ii) is proved.

Let &,m € &;. We have

m; ({86, (£) 06, (n))) = (115 (8¢, (£)), 157 (9%, () )

= ((qe,k @ prj)0s(£), (as.k @ prj)os(n))
(QAk®ka)5A(<f 77>)
=75 (8%, ((&m))-

Hence, (5’€ (€), 5k () =6k ,({&,m)) by injectivity of 7Tk The first formula of
statement (111) is derlved 1mmed1ately from the deﬁmtlon of 5’“

The surjectivity of ¥}* is just a restatement of [6(% (5)(Ak ® Skj)] =
&, ® Sk;. The identity [5% (&5)(La, ®Skj)] = €, ® Sk, follows by combining the
previous formula with the first relation of (iii) and the relation [61’&_ (A;)(1a, ®
Ski)] = Ak @ Skj. Let us prove the formula & = [(idg, ® w)(5<’}j (&), we
B(#i:5)«,€ € &;]. By statement (ii) and Proposition-Definition 2.3.6, we al-
ready have the relation & D [(idg, ® w)§§aj (&); w € B(H4,5)+,€ € &;]. Con-
versely, let us fix n € &. Let w € B(#;;)« and s € Sy; such that w(s) = 1.
It then follows from the formula [5(’% (&5)(1a, ® Skj)] = &, ® S; that n =
(idg, ® w)(n ® s) is the norm limit of finite sums of elements of the form
(idg, ®w)(5§»j ()14, ®y)) = (idg, ®yw)5§a7, (&), where £ € & and y € S. There-
fore, statement (iv) is proved.

By using the identifications (6.12) and (6.16) (resp., (6.13) and (6.17)), the

linear map

65%1 X idskj L(A® Skj, 6k @ Skj)
= L(A; ® S ® Sk 61 @ S ® Skj)
(resp., idg, ® 5113 : ,C(Al ® Slj, E® Slj)
= LA ® Si ® Skj, 61 @ Si ® Skj))

is defined for all T € L(Ag ® Sk, Ex @ Skj) (vesp., T € L(A; ® Sy, 61 @ Sij))
by

(6% @ids,,)(T) := (% @ 1s,, (T ®st, ®ids,, 1)
(resp.7 (idg, ® (5{3)(T) =T ®idAz®6lkj 1)-
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The relation (8, ® idsk].)élgaj (&) = (idg, ® (5{“]-)6% (&) for £ € & is then de-
rived from Proposition 6.2.4 as in the proof of Proposition 6.1.5. Assume

that (Be,0s) is continuous. Since py; is central in .S, we have
115 (& @ Skj) = (46,5 @ Prj ) (6 @ 9) g0
=(gs,; @ pij)[(1e ® S)ds(&)]
=11} [(1g, © Sk;)6%, (&5)]
and statement (vi) is proved. O

From this concrete description of G-equivariant Hilbert C*-modules, we can
also provide a corresponding description of the G-equivariant unitary equiva-
lences between them.

LEMMA 6.2.6. Let A and B be G-C*-algebras. Let & and F be Hilbert
C*-modules over A and B respectively acted upon by G.

1. Let ®: & — F be a G-equivariant unitary equivalence over a G-equivariant
x-isomorphism ¢ : A — B. For j = 1,2, there exists a unique map ®; :
&; — F; satisfying the formula ®(§) = P1(gs1§) + P2(ge,28) for allE € &.
Moreover, we have:

(i) for j =1,2, the map ®; is a unitary equivalence over the x-
isomorphism ¢, : A; — B; (cf. Proposition 5.2.3(1));
(i1) for all j,k=1,2, we have

(6.18) (Pr ®ids,,) 0 0k = 6% o ®;.

In particular, ®; is a G;-equivariant ¢;-compatible unitary operator.

2. Conwversely, for j =1,2 let ®; : & — F; be a Gj-equivariant unitary equiv-
alence over a Gj-equivariant x-isomorphism ¢; : A; — B; such that (5.1)
and (6.18) hold for all j,k =1,2. Then the map ®: & — F, defined by
D(&) := P1(ge1§) + Pa(qe2b) for all £ € &, is a G-equivariant unitary
equivalence over the G-equivariant x-isomorphism ¢ : A — B (cf. Propo-
sition 5.2.3(2)).

Proof. 1. Let j =1,2. Since ® is G-equivariant, we have ®oge ; =gz jo ®.
It then follows that ®(&}) C .%;. Let us denote ®; := ®[s,: 85 — F;. For{ € &,
we have { = qs 1§ + qs 2&; hence, ®(&) = P1(gs,1€) + P2(gs,2§). Moreover,
such a decomposition of ® is unique since .%; and %, are orthogonal in .%.
Statement (i) is straightforward. Let j,k =1,2 and z € Ay ® Si;. For all

Te ﬁ(Ak ® Skj, & ® Skj) we have
(@ @ids) (IT}(T)) (¢ ®ids)(z) = (P ®ids,, ) (T)(¢r ®ids,, ) (@).

In particular, (¢ ® ids)(I15 (6%, (€)))(¢ @ ids)(z) = (), @ ids,, ) (55, () (or @
ids,,)(z) for all £ € &}; hence, (P ®ids)(ds(£))(¢ ®ids)(x) = (Pr, ®@ids,,) ¥
((523 (£))(¢r ®ids,,)(z) (Proposition-Definition 6.2.5(i)) for all £ € &;. We
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also have 0z (® (E))(qu ® prj) = H?((S";Tj(éj(f))) for all ¢ € &;. Hence,

07 (®(§))(p®ids)(x) = ( 5(€))(¢r ®idg,, ) (z) for all £ € & and statement
(ii) is proved.
2. Straightforward. O

EXAMPLE 6.2.7. Let (8n,0n) be the trivial action (cf. Examples 5.1.4). Let
i =1,2. Consider the Hilbert N-module & := 51 ® 2. Let ¥ € L(& Rs,
(N®S),8®5S) and Bg : N — L(&) be the maps defined by the formulas:

V@)=Y ViEel), ety Bele)=piy, j=1,2
k=1,2

Then the pair (¥, 8¢) is an action of G on &.

6.3. Induction of equivariant Hilbert C*-modules. Let G; and Gy be

two monoidally equivalent regular locally compact quantum groups.

Fix a G;-C*-algebra (A41,d4,) and a Gi-equivariant Hilbert A;-module
(&1,08,). We denote by J; := K(&1 @ A;) the associated linking C*-algebra
endowed with the continuous action 07, of Gy.

NOTATION 6.3.1. Let us fix some notation.

o Let idgl ®5%1 : ,C(Al ®511, (g)l ®Sll) — ,C(Al & 512 ®521, (g)l ®S12 ®521) be
the unique linear extension of ide, ®6%; : & ® S11 — L(A] ® S12 ® S21, 6 @
S12 ® S21) such that (idg, ® 621)(T)(ida, ® 62))(x) = (idg, ® 62,)(Tx) for
all v € M(A; ® S11) and T' € L(A1 @ S11,61 @ S11).

o Let 6((;1) 18— L(A] ® S12 ® 521,81 @ S12 ® So1) be the linear map defined
by 650 (€) = (ids, © 03,)8s, (€) for all £ € &.

e Consider the Banach subspace of L£(A; ® S12,81 ® S12) defined by (cf.
Proposition-Definition 2.3.6):

Indgf (éal) [(1dg1®$12 ®LU) (g) f € ghw € B(%l) ]

PROPOSITION 6.3.2. We have [Indg?(£1)(14, ® S12)] = & ® S12 = [(1s, ®
Su)Indgj (&1)]. In particular, Indgf(éal) C M((g’l ® S12).

Proof. Let us prove the formula [Indgf(@ﬁl)(lAl ®S12)] =61 ®S12. Fix £ €
&1, s €812 and w € B(H51).. Write w = s'w’ with ¢’ € Sp1 and W’ € B(J#1)..
It follows from S12 ® S21 = [6%;(S11)(1s,, ® S21)] that

(ids, @51, ®w) (35 (€)) (14, ® 5)
= (idg1®512 Y w/) (5(2) (5) (1é”1 ®Ws®s ))
is the norm limit of finite sums of elements of the form
n= (idéal ®idg, ® w/) (§§§21) ) (151 ® 5%1 (t/) (1s,, ® t)))>
with t’ € S11 and t € So1.
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It follows from [0g, (£1)(14, ® S11)] = &1 ® S11 that
n=(idges, ©w')((ids, ®011) (36, (6) (15, @1)) (L 05:, @1))
is the norm limit of finite sums of elements of the form
7 = (ldegs, @) (( @67, (t")(1s,, ®t)), with (€& and t” € .
By using S12 = [(ids,, ® w)(6%,(y)); w € B(H51)+,y € S11], we obtain
7 =(® (ids,, ®tw') (07, (")) € & ® Sta.

Hence, (idg gs,, ® w)(&é?l) (£)(1a, ®s) €& ® S1p for all £ € &, w e B(H%1)x
and s € S15. Therefore, the inclusion

[Ind?(£1) (14, ® S12)] C & @ S

is proved. The converse inclusion is obtained by following backwards the above
argument.

By a similar argument, we prove by using the relation (1g ® S12)de, (£1) C
& ® S1o that (1g1 ®512) Indgf (Cg)l) C & ®S12. Hence, [(1,g>1 ®512) Indgf (@(()1)] -
&1 ® S12. For the converse inclusion, it suffices to follow backwards the proof
as above and to use the continuity of the action dg, . O

LEMMA 6.3.3. Foralla€ Ay, £€ &, ke K(&1) andw € B(#31)., we have:
1. tayms (ida,ms, ©w)8G) (@) = (idyes, ©@w)S (L4, (a));
2. 18,050 (1ds 051 @ w)IG (§) = (ids@s,s @ w)35 (1, (€));
3. te(giesin) (di(e)esie ® W) s, (k) = (idses., ®w)dT (i) (k).
Proof. These formulas are straightforward consequences of definitions and

the compatibility of d;, with 04, and ég, and dx(s) (2.7 (b), 2.8 (a) [3],
Proposition-Definition 2.3.6). O

PROPOSITION 6.3.4. Let Indgf(Al) be the induced C*-algebra. Then
Indgf (&1) is a Hilbert Indgf (Ay)-module for the right action by composi-
tion and the Indgf(Al)—valued inner product given by (£,n) :=&* on for
&m € Ind? ().

Proof. Let w,w’ € B(H#51)s, a € A1 and € € &. Let n:= (idg,gs,, ®
w)(S((;l) (&) and z := (ida, @5, ®w’)6f421)(a). We have

L& RS2 (771:)

=16 981, (Mta,®s,(a) (Proposition 2.3.2(1))

= (id s, 95» ®w)55i) (&, (9)) (id s, @5, ® w/)és? (ta(a)) (Lemma 6.3.3)
= (id)@s,, ®w W) (5321) (6, (9) 1235521) (ca(@))y54)-
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In virtue of 4.2 a) [2], we have tg,g5,,(nT) € Indgf (J1). Therefore, g, gs,,(nT)
is the norm limit of finite sums of elements of the form

. k
= (1dJ1®5'12 ® ¢)5L(]21) (X* g>7
with k € K(&1),( € &1, X € &, b€ Ay, ¢ € B(H51) .

We have (Lemma 6.3.3)
Y= (6 95:) (1 (8) @81, © )0 K(gl)(k)
+ 16,051 (105, @ 0)0% ()
+ e 05 (e g5, © 0)0% (X)*

+ LAL®S12 (ldA1®S12 ® ¢)51(421 ( )

By multiplying on the left (resp., right) by ti(ses,)(lees,) (resp.,
LA, 2515 (14,08,5)), we obtain (Lemma 2.3.4) that g gs,,(nx) is the norm
limit of finite sums of elements of the form

L6050 (ids, ®ids,, ©6)0%) (C), with ¢ € &1 and ¢ € B(H31)..

Since tg, s,, is isometric, we have proved that nx € Indgf(éﬁ).

Let us prove that (*ox € Indgf (Ay) for all ¢, x € Indgf(é"l) C LA ®
S12,8 ® S12). Let us fix £,n € & and w,v € B(3;).. Let us denote ¢ :=
(idgy@s,, ®w)0% (€) and x = (idges,, @ ¥)35 (). We have

LA1®512 (C* © X)
=& ®S12 (C)*Lg1®512 (X) (PI‘OpOSitiOI’l 2.3. 2(3))

= (id s, 080, @W)8% (1, (€)*) (id sy 050, © )05 (16, (7)) (Lemma 6.3.3)
= (ldJ1®512 Dw 1/’) (5(2) (Lg1 (5) )1235(2) (Lgl )) 124) :

Hence, ta,55,,(C* o x) € Ind 2(J1) (4.2 a) [2]). As above, we prove that
LA, ®S:,(C* 0 x) is the norm hmlt of finite sums of elements of the form
LA @81, (1A 051, ® q[))éfl)(a) with a € A; and ¢ € B(5%;).. We have proved
that (*ox € Indgf (A1) since 14, @s,, is isometric. O

Let us denote (Az,d4,) := Indgf (A1,04,) and (Jz,04,) := Indgf (J1,0y,) the
induced Go-C*-algebra of (A1,d4,) and (J1,0, ), respectively. We also denote
& = Indgf(éal) the induced Hilbert As-module as defined above.

In the technical lemma below, we make the identification M(A) = L(A). We
first recall a well-known corollary of the Cohen—Hewitt factorization theorem.

LEMMA 6.3.5. Let A be a C*-algebra and € a Hilbert A-module. If T : A —
€ is a map such that T(ab) =T (a)b for all a,b € A, then T is linear and
continuous.
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LEMMA 6.3.6. Let A be a C*-algebra, B C M(A) a nondegenerate C*-
subalgebra and € a Hilbert A-module. Let F C L(A,E) be a Hilbert B-module
(where B is acting on the right by composition and the B-valued inner product
is given by (n1,m2) :=n} ona, for all ni,ma € F) such that [FA]=E.

(i) There exists a unique map i: L(B,F) — L(A,E) such that i(T)(ba) =
(Tb)a for all T € L(B,F), be B and a € A. Moreover, i is an injective
linear map whose image is im(i) = {S € L(A,&); SB C F,S*F C B}.

(ii) There exists a unique map j: L(F & B) — L(E ® A) such that j(x)(na) =
(xzn)a for allz € L(F® B),n € F® B and a € A. Moreover, j is a unital
faithful *-homomorphism.

Proof. (i) We have A= BA. Let T € L(B,F). Let (uy) be an approximate
unit of B, we have (Th)a = limy[T(uxb)]a = limy[T (uy)bla = limy T (uy)ba,
for all b€ B and a € A. In particular, we have (Tb)a = (TV')a’ for all b, € B
and a,a’ € A such that ba =b'a’. Therefore, i(T) is well-defined. Moreover, we
have i(T)(aa’) = (i(T)a)a’ for all a,a’ € A. Indeed, let us fix a,a’ € A. Let us
write a = ba” with b€ B and a” € A. We have i(T)(aa’) = i(T)(b(a"a’)) =
(Th)a"a’ =i(T)(ba")a’ = (i(T)a)a’. By Lemma 6.3.5, it then follows that
i(T) is a bounded linear map. By a straightforward computation, we have
(#(T)(ba'),na) = (ba’,T*(n)a), for all b € B, a,a’ € A and n € F. Hence,
(#(T)x,na)y = (x,T*(n)a) for all z,a € A and n€ F. Let S € L(F,B). We
have

<$,zn:5(771)al> = <i(5*)l’7zn:mal>7
=1 =1

for all ay,...a, € A;n1,...,n € F and x € A.

As a consequence, the following map
I(S) (FA)y = A Y mar— Y S(m)ay
1=1 =1

is well-defined and we have (x,i(S)(&)) = (i(S*)x,&) for all & € (FA)
and z € A. Tt follows from the boundedness of the linear operator i(S*)
and the Cauchy-Schwarz inequality that [|i’(S)¢||? = ||(i'(S)&,4(9)€)|| =
146, i(S™) (@ (S)ENI < €l (S™) @ ()OI < €N Ie(S™) " (S)E]| for all £ € €.
Hence, [|i'(S)E]] < |li(S™)II€]| for all £ € €, which proves the continuity of
i'(S) since #'(S) is linear by definition. In particular, i'(S) extends uniquely
to a bounded linear map '(5) : £ = A. By continuity of the inner product,
we have proved that i'(S) € £(£,A) and #'(S)* =i(S*). As a result, we have
well-defined maps i: L(A,€) — L(B,F) and i’ : L(F,B) — L(£,A) such that
(T)* =4'(T*) for all T € L(A,E). Tt is clear that ¢ is linear and injective.

It remains to prove that im(i) = {S € L(A,€); SB C F,S*F C B}. Let
TeL(B,F)and be BC L(A). For all a € A, we have [i(T) obla =i(T)(ba) =
(Tb)a. Hence i(T) ob=T(b) € F. Fix n € F. Write n = (b with ( € F
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and b € B. For all a € A, we have [i(T)* o n]a = [/(T*)n]a = ' (T*)(na) =
i'(T*)(¢(ba)) = (T*¢)ba = T*(¢b)a = T*(n)a. Hence, i(T)* on =T*(n) € B.
Conversely, let us fix S € L(A,€) such that SB C F and S*F C B. Let
T:A— & and T': F — B be the maps defined by:
T(b):=Sob, beB; T'(n):=S*on, nerF.

For all b € B and n € F, we have (T'(b),n) = (Sob)*on=">b*(S*on) = (b,T'(n)).
Hence T € L(A,€) and T* =T’. Moreover, we have i(T)(ba) =T (b)a = S(ba)
for all @ € A and b € B. Thus, we have S =i(T).

(ii) Since [FA] =&, we have [(F & B)A] = £ @ A, which proves the
uniqueness of j. Let i15 := i and is := ¢'. By a similar argument as in
statement (i), we prove that there exists a unique map 411 : L(F) = L(E)
such that i11(T)(na) = (T'n)a for all n € F and a € A. The nondegenerate
inclusion of C*-algebras B C M(A) extends to a unital s-homomorphism
igo : M(B) = M(A). Then we consider the map j: L(F & B) = L(E @ A)
defined by j(x) := (iri(r1))ki=1,2 for all © = (xp1)r,i=1,2 € L(F @ B). It is
clear that j(z)(na) = (zn)a for all z € L(F @ B), n€ F® B and a € A. The
fact that j is a unital faithful *-homomorphism is then straightforward. O

REMARKS 6.3.7. With the notation and hypotheses of the previous propo-
sition, we have:

(i) for all T € £(B, F), j(ur(T)) = e (i(T));
(i) for all m € M(B), j(tg(m))=1a(m), where we identify M(B) C M(A).
LEMMA 6.3.8. Let j =1,2. We have a canonical embedding
L(A2 ® S2j,65 @ S2;) = L(A1 ® S12® S25, 81 @ S12 ® S2;);
T f,
where for T € L(Ay ® Saj,65 ® Sa;) the operator Tc L(A1 ® S12® S25, 8 ®
S12 ® Sa;) is defined by T(:ca) =T(x)a for allz € Ao ® Sy anda € A1 ®S12®
Saj. Moreover, the image of L(As ® Sa;,65 ® Sa5) = L(A1 @ S12 @ 525,61 ®
Slz & ng) 18
{X € L(A; ® 512 ® S35, 61 ® S12 ® Sa;);
X(A2 [029] ng) CéER 52]' and X*(gg ® ng) CA® ng}.
Proof. This follows from Lemma 6.3.6 with A := A; ® S12 ® Sy;, B :=
A2®ng, E:=4& ®512®52j and F := éa2®52j CE(A1 ®S12®Szj,(o@1®512®

Sj). The assumptions of Lemma 6.3.6 are satisfied in this case in virtue of
Propositions 5.2.5(1) and 6.3.2. O

NOTATION 6.3.9. Let
ide, ® 675 : L(A] ® S12,61 ® S12)
— L(A; ® S12 ® S22,61 ® S12 @ Sa2)
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be the unique linear extension of idg, ® 67, : & ® S12 — L(A1 ® S12 ® Sa9, &1 ®
S12 ® Sag) such that (idg ® 63,)(T)(ida, ® 6%)(z) = (idg, ® 635)(Tx) for all
x € M(A1 (9 512) and T € ,C(Al ® 812,81 ® 512).

PROPOSITION-DEFINITION 6.3.10. There exists a unique linear map
5g2 1 — ,C(AQ ® 522,52 [029] 522)

satisfying the relation [0g,(€)alb = (ide, @ 625)(&)(ab) for all £ € &, a € Ay @
Soo and b€ A1 @ S12 ® Sog.

Proof. Let us prove the inclusion (ide, ® 0%,)(&)(As ® Sa2) C & @ Sos.
It follows from Lemma 6.3.3(2) that tggs,,(62) C Jo. Fix £ €& and z €
Ay ® Sy9. We have

L& ®S12®S22 ((ldgl ® 6%2) (5) )
= (idJl & 5%2) (L£1®512 )LA1®S12®322 )
= 5-72 (L51®512( ))LA2®322( ) € Jo ® Saa.

As in the proof of Proposition 6.3.4, Lg 05,05, ((idg, @ 6%5)(€)z) is the norm
limit of finite sums of elements of the form g, g5,,%5,, ((idg, @51, ®w)6(2) (n)®

s) with n € &, w € B(#4;). and s € Soz. Hence, (idg, ® 0%5)(&)x € & ® Soo
since tg, 95,,08,, 1 isSometric. Therefore, we have (idg, ®6f2)(é”2)(A2 ®S22) C
& @ Saz. The inclusion (ideg, ® 635)(6%)* (& @ S9a) C Ag ® Sao is obtained
by a similar argument. Then the existence and uniqueness of the operator
0g,(&) € L(Ay ® S92, ® Saz) follows as an application of Lemma 6.3.8 with
j=2. It is clear that the map dg, : & = L(As ® Saa,E5 @ Sa2) is linear. O

In the following, we prove that g, is a continuous action of G2 on &.
We also show that the induction procedure for equivariant Hilbert modules is
equivalent to that of §4.3 [2].

NOTATION 6.3.11. Let €11 := tx(g,)(le,) € M(J1) and ez1 :=ta,(14,) €
M(Jl), where we identify M(Jl) = ,C(gl D Al) Let (J2,6J2,€172762,2) be the
induced linking Go-C*-algebra, with e, 2 :=¢;1 ® 1g,, € M(J3) for | =1,2
(cf. 4.14 [2]). Consider ez aJz2e22 and eq2Jzez 2 endowed with their struc-
ture of Go-C*-algebra and (G2 equivariant Hilbert es 2J2e2 o-module [3]. Re-
call that the morphism Ind 21a,  Ag = Jo; = (14, ®idg,,)(x) induces a
Go-equivariant *- 1som0rmorphlsm Ag — ez 9J2ea2 (cf. 4.17, 4.18 [2]).

PROPOSITION 6.3.12. We use the above notation:

(i) The map dg, : &2 — LAz ® Saa, & ® Saa) is a continuous action of G
on &.
(ii) There exists a unique bounded linear map Indgf Le, 1 & — Jo such that

IdS2 1, ((idsyws, ®@w)3% (€)) = (idres, ®w)dS (1 (€)),
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for all £ € & and w € B(41).. Moreover, we have Indgf L (E2) =
e12Ja2e22 and Indgf te, induces a Ga-equivariant unitary equivalence
& — e1,2J2e2.9; £ Indgf g, (€) over the Go-equivariant x-isomorphism
A2 — 6272J26272; atr—r Indgf LA, (a)

(iii) There exists a unique x-homomorphism 7 :K(& & Ag) — Jy such that
TOlLg = Indgf Le, and ToLa, = Indgf LA, - Moreover, T is an isomorphism
of linking Go-C*-algebras.

(iV) If T e Indgf (K((a(al)) C [,(éal ® 512) and 1 € & C E(Al ® S12,61 ® 512),
then we have T on € &. Moreover, for all T € Indgf (K(&1)), we have
[n— Ton] € K(&). More precisely, the map Indgf (K(&1)) = K(&2); T —
[n— T on] is a Ga-equivariant x-isomorphism.

Proof. Let us denote B :=e32.J2e29 and & :=ej 2J2e2 2 for short.
(i)-(i) We have tg,@s,,(62) C J2 (cf. Lemma 6.3.3). Let Indgf Le =

L& ®S51s &0 G2 — Ja. 1t also follows from the formulas (5521)(61’1) =e2® lg,,

for 1 =1,2 (4.14 [2]) that

[(idJ1®512 ® w)é(le)(6171x6271); reJ,we B(%l)*]
[(idses, @W)8T (16, (€)); € € &1 w € B(H31).]
Indg? ts, (£2).
Let &,m € &. Since (£,7n) € Ay, we have (cf. Proposition 2.3.2(3))

<Indg? L&y (5)7 Indgf L& (77)> =Ll&®S12 (5)*1/51@512 (77) =LlA1®S12 (<£7 77))
=TIndg? ta, ((€,m)).
We also have Indgf Le (&) = Indgf Le (&) Indgf L4, (a) forall a € Ay and € € &
(cf. Proposition 2.3.2(1)). The map ®: & — F; {— Indgf L& (€) is a uni-
tary equivalence of Hilbert modules over the x-isomorphism ¢ : Ay — B;
a— Indgf LA, (a).

Let us prove that (¢ ® idg,,) 0 dg, = 07 o ®. It is immediately verified
that for £ € & ® S12, the formula (16,65, @ ids,,)(ids ® 615)(€) = (id, ®
825) (L&, 05,5 (€)) holds true. Let us fix € € L(A; ® S12,61 @ S12). For all a €
A1 ® S12 and z € A1 ® S12 ® S, we have

L& ®812® 822 ((ldéﬁ & 6%2) (5)) LA1®S12®S22 ((idA1 @ 5%2) (a)x)
= (idJl ® 5%2) (L51®S12 (ga))LA1®512®5'22 (l‘)
and (idJl ® 5%2)(L£1®512 (fa)) = (idJl ® 5%2)(L51®312 (5))LA1®312®5'22((idA1 ®
52,)(a)). Hence,
L& ®S512®S22 ((ldgl ® 5%2) (f))LA1®512®522 ((idAl Y 6%2) (a)x)
= (idJl ® 5%2) (Lé”1®512 (g))LA1®512®522 ((idAl & 5%2) (a)m) .

e12J2e20 =
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ThUS, Lg1®512®522((idg1 ® 5%2)(5))LA1®S12®522 (l‘) = (idJl ® 6%2)(%501@512 (5)) X
LA ®S12®S4, (T) forall £ € L{A1 ®S12,61®512) and a € A1 ® S12 ® Sag in virtue
of the non-degeneracy of id 4, ® 0%,. Let us fix £ € &. For all 2 € Ay ® Spo and
y € A1 ® S12 ® S21 we have

(@ ®ids,, )06, (E)(0® id522)( )] tar@51:05m: ()
= 16,0510 ((05,(6)T)Yy)
= 16,®512®Sas ((1d(g»1 ® (512) )
= (ids, ® 6%2) (tér050 (f))LA1®512®522 (zy)
=[07(P(9)) (¢ ®ids,,)(x)] A, 081205, ()

which also holds for all y € M(A; ® S12 ® Sa2) by strict continuity. In partic-
ular, by applying this formula for y € As ® Sa92, we have then proved that

((I) ® idSzz) (6éa2 (f)) (¢ b2y id522 ) (l‘) =dg ((I)(f)) (¢ 0y idSzz)(x)

for all € Ay ® Sao. Hence, (P ®ids,,)(de, (£)) =0.2(P(€)) for all £ € &. This
proves that g, is a continuous action of G on & and @ is Ga-equivariant.
(iii) There exists a unique unital faithful *-homomorphism

VR 5(6502 (&) Ag) — ﬁ((éﬁ ® 512) D (Al ® 512))

such that j(z)(na) = (zn)a for all x € L(E,B As), n € 2D Az and a € A; ® 512
(Lemma 638(11), with A := A1 ® 5127 B := AQ, = éal & 512 and F := gg)
Now, it should be noted that we have the following canonical identifications:

JQ C M(J1 ® 512) = »C((éal ® Al) ® 512)
=L((& ® S12) ® (A1 ® S12)).

We have j(is,(€)) = Indg? s, () for all £ € & and j(1a, (b)) = Indg® ta, (b)
for all b€ Ay (cf. Remarks 6.3.7). In particular, we have j(K(& @ As)) C Jo.
Let 7:= jli(smpa.): K(E2 @ Az) — Jo. Since J is generated by e; 2Jze2 2 and
ez2J2e2 9 as a C*-algebra, 7 has dense range (cf. (ii)); moreover, 7 is also
isometric (faithful), therefore 7 is surjective. Thus, we have proved that 7 is
a *-isomorphism. The Gs-equivariance of 7 is derived from straightforward
computations.
(iv) Consider the Ga-equivariant *-isomorphism

¢ Ind3? (K(£1)) = 12026125 k> IndE? e, (k)

(cf. 4.18 [2], note that IC(F) = e1 2J2¢1 2). By statement (ii), 7 induces by re-
striction a Ga-equivariant *-isomorphism 7 : fi 2]C(&2 @ A2) f1,2 — €1.2J2€1,2,
where fi2:=1g(ls,) and foo :=14,(la,). We have an isomorphism 1 :
K(&2) = f1,2K(& © A2) f1,2; k = ti(s,) (k) of Go-C*-algebras. Hence, x :=
v lor logp: Indgf (K(&1)) = K(&2) is an isomorphism of G3-C*-algebras.
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It is clear that x(T){ =T o& for all T € Indgf (K(&1)) C L(&1 ® S12) and
£E£QC£(A1®512,£)1®S12). O

PROPOSITION-DEFINITION 6.3.13. Let us fiz some notation. Consider:

o two Gi-C*-algebras A1 and Bu;

o two Gy-equivariant Hilbert modules & and %, over Ay and By, respectively;

e a Gy-equivariant unitary equivalence ®1 : & — F1 over a Gy-equivariant
x-isomorphism ¢1 : Ay — Bi.

Denote by:

o A= Indgf (A1) and By := Indgf (B1) the induced Go-C*-algebras;

° Indgf (¢1) : Aa — By the induced Go-equivariant *-isomorphism,

o & = Indgf (&) and Fy = Indgf (%) the induced Go-equivariant Hilbert
modules over Ay and Bs, respectively;

o Oy ®id512 : ﬁ(Al ® S12,8E1 ®512) — £(31 ® S1s2, F1 ®512) the unique linear
map such that (P71 ® idg,,)(T)(¢1 ® ids,,)(z) = (P1 ® idg,,)(Tx) for all
[,(Al ® 512,51 X 512) and x € A1 ® Si2 (Cf Notation A36)

Then, (®1 ® ids,,)(&) C F2 and the map Indg(P1) := (1 ®ids,,) &

& — Fo is a Go-equivariant unitary equivalence over Indgf (¢1): Ay — Bs.

Moreover, for all £ € & and w € B(1). we have Indgf(q)l)((idgl@s12 ®

wW)3E(€)) = (ides,, @wW)OF) (B1€).

Proof. Denote by J; := K(& @ A1) and K; := K(%1 @ B;y) the linking
G1-C*-algebras, whose linking structures are respectively defined by: e; ; :=
Lg1<1g1), €21 ‘= LAl(lAl); fl,l = Lgl(lgzl), f2)1 = LBl(lBl)- We also de-
note by (Jz2,04,,€1,2,€22) and (K2,0k,, f1,2, f2,2) the induced linking Go-C*-
algebras, where ¢; 2 :=¢;1 ®1g,, and fi2:= f11®1g,, for [ =1,2 (cf. 4.14 [2]).
There exists a unique *-isomorphism 7 : J; — K such that 101, =12, 0P
and 7y 014, =tp, 0 ¢ (cf. Propositions A.3.5 and 6.1.18). We then denote by

T2 ::Indgf 71 :Jo — Ko

the induced morphism. Since 75 is an isomorphism of linking G,-C*-algebras,
it induces a Go-equivariant unitary equivalence W :ejaJrez2 — f12K2f22
over the isomorphism of G,-C*-algebras ¢ : ez 2 J2€2 2 = f2,2K5 f2 2. Since 7 0
LA, =B, ©¢1, we have

Ty O Indgf LA, = Indgf LB, © 2.

Therefore, by composition of Ge-equivariant unitary equivalences (cf. Re-
marks A.3.2(2)) and by applying Proposition 6.3.12, we obtain a Go-
equivariant ¢o-compatible unitary operator ®s : & — %5, By a straightfor-
ward computation, we show that &3 = (&1 ®idgs,,)ls,- O

By exchanging the roles of G; and Gg, we define as above an induction
procedure for Gg-equivariant Hilbert modules.
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In the following, we investigate the composition of Indgf and Indg;. Let
Ay be a G1-C*-algebra and & a Gi-equivariant Hilbert A;-module. Denote
by:

o Ay :=Indi?(A;1) and & = Indg?(61) C L(A; ® Si2,61 ® Sia) the induced
Go-C*-algebra and the induced Gs-equivariant Hilbert As-module;

o C=Ind¢! (A:) and F :=Indg! (&) C L(A2 ® S21,6 @ S21) the induced
G1-C*-algebra and the induced Gq-equivariant Hilbert C-module.
PROPOSITION 6.3.14. With the above notation and hypotheses, we have the

following statements:

1. there exists a unique map Iy : & — F such that

(M1 (&)z)a =65 (&) (wa),
forallée &,z € Ay ® Sy, and a € A ® S12 ® Sa1;

moreover, 11y is a Gi-equivariant unitary equivalence over the Gi-

equivariant *-isomorphism m : A1 — C; a— (55421)((1);
2. 6(29@1 (& = ﬂ(é”g ® S21); £ 111 (€) is a well-defined linear map such that:

(i) 0%, (€a) = 0%, (£)0%, (a) and (0%, (€),0%, (n)) = 0%, ((&m)) for all &, €

& and a € Ay,

(i) [0%,(61)(1a, ® S21)] = &2 ® Sa1 = [(1g, ® S21)5% (61)].

Proof. 1. The existence and uniqueness of II; is an immediate application
of Lemma 6.3.8 with j =1 and the proof is very similar to that of Proposi-
tion 6.3.10. The fact that II; is a Gi-equivariant unitary equivalence over my

is a straightforward consequence of Proposition 6.3.12(ii), (iii) and Proposi-
tion 5.2.6(2).

2. Statement (ii) and the fact that 62 takes its values in Mv(é’g ® So1) are
proved by combining the formulas [.7 (14, ® S21)] = &2 ® S21 = [(1g, ® S21)-F]
(cf. Proposition 6.3.2) with the fact that II; is bijective. Statement (i) follows
from the compatibility of II; with 7. [l

We have proved the following result:

THEOREM 6.3.15. Let G; and Go be two monoidally equivalent reqular
locally compact quantum groups. The map

Indg? : (&1,08,)
— (5)2 = Indgf (é()l), 5g2 €€ &y — [J? € Ay ® Syg (ldg1 X 5%2) (f)l‘} ),

where & is a Hilbert module over the G1-C*-algebra A1 and Ay = Indgf (4y)
denotes the induced Go-C*-algebra, is a one-to-one correspondence up to uni-
tary equivalence. The inverse map, up to unitary equivalence, is

Indg! : (F2,0,)
— (91 = Indg;(fg),(s'gl €€ F1 [.’L‘ € B1 ®S11— (ldg2 ®(5%1)(£).’E}),
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where F5 is a Hilbert module over the Go-C*-algebra By and By = Indgf (B2)
denotes the induced G1-C*-algebra.

Proof. This is a consequence of Propositions 6.3.14, 6.3.13, and the corre-
sponding results obtained by exchanging the roles of G; and Gs. O

Let By be a G;-C*-algebra. Let us denote by B := Indgf(Bl) the in-
duced Go-C*-algebra. Let (55“3], : Bj = M(Bj, ® Si;) for j,k=1,2 be the *-
homomorphisms defined in Notation 5.2.7.

NOTATION 6.3.16. Let & be a Gi-equivariant Hilbert Bi-module. Let us

denote by % = Ind ( 1) the induced Ga-equivariant Hilbert Bs-module.
We have four linear maps

0.+ Fj — L(Br @ Sij, Fr @ Sky),  for jk=1,2,
defined as follows:
° 51971 :=0d4, and 5?% =0g,;
° 5?% 1. F1 — L(By ® S21,.F2 ® S31) is the unique linear map such that

(6%,()2)b= 6% (¢)(xb)

forall £ €., x € Bo® So1 and b € B ® S15 ® Sag, where 5;3 (&) :=(idg, ®
821)8.7,(€) (cf. Proposition 6.3.14);

° (5{1% 1 Fo — L(B1 ® S12, F1 ®512) is the unique linear map such that for all
fE 9\27 A Indg; (BQ) ® S12 and Yy e By ® S51 ® Slg, we have

(M ®1ds,,) (81, (9)e]y = 3 () (xy),

where 5;2‘ (€)== (idg, ®035)07,(€) and Iy : F1 — Indg; (Z2) (cf. Proposi-
tion 6.3.14(1)).
LEMMA 6.3.17. For all j,k,1=1,2, we have the following statements:

1. 0% (F)) C M(F1, ® Siy);
55, (€b) = 6% ()8, (b) and (8% (€), 8%, (n) = 0%, ((€,m) for all &, € F;
and b € Bj;

3. [0%,(F5) (1B, ® Skj)l = T ® Sus = (L7, ® Sij)0%, (F5)];

4. 64 ®1d5k (resp., idz, ®5’“) extends uniquely to a lmear map from L(By &
Sk]7 &% @ Skj) to L(B; ® Slk: ® Skj, & @ Sip ® Sk;) such that

(d@k ® ldSkj)( )(6Bk ®ldskj)(x) = (53% ® ldskj)( ‘T)
(resp., (idz, ® Jlkj)(T) (idp, ® 55)(@ =idg, ® 5{3)(Tx))

for all T € L(By, ® Skj, &x @ Skj) and x € By, @ Si;;
5. (5lgk ®idskj)5§gj =(idg, ® (5;3)55%.
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Proof. Let C :=1Indg!(Bs), D :=Ind@*(C), # =IndZ\ () and £ =
Indgf (). There exists a unique Gy-equivariant unitary equivalence IIs :
Fa — £ (Proposition 6.3.14(1), after exchanging the roles of G; and Gs)
over the Ga-equivariant #-isomorphism s : By — D.

1. This statement will follow straightforwardly from the third one.

2. This statement has already been proved for (j,k) = (1,1) (by defini-
tion), (4,k) = (2,2) (cf. Proposition 6.3.12(i)) and for (j, k) = (1,2) (cf. Propo-
sition 6.3.14). Moreover, the case (j, k) = (2,1) follows from the formulas
%, = (I ' ®idg,, )z and 0, = (77 ' ®ids,, ).

3. This statement is true by assumption for (j,k) = (1,1), for (j, k) = (2,2)
(cf. Proposition 6.3.12(i)) and for (j,k) = (1,2) (cf. Proposition 6.3.14(2)(ii)).
By Propositions 6.3.2 and 6.3.14, we have [Z(C ® S12)] = H# ® S12, £ =
II5(%#2) and # =11;(:#;). Therefore, we have

(05, (F2)(B1 @ S12)| = [(I]! ®ids,, ) (£) (77! ®ids,,) (D ® S12)]
= [(H;l &® idsm) (X(D ® 512)>]
=71 ® S12.
It then follows from the second statement and the fact that [0, (B2)(1p, ®
512)] = B; ® Si5 that [5}92 (9\2)(131 X 512)] =71 ® 512, which is statement 3
for (j,k)=(2,1).
4. Let j,k,I =1,2. The uniqueness of the extensions is obvious by the

nondegeneracy of 5;“]- and 6§Bk. The linear map idg, ® (5{3— :L(By @ Skj, 6, Q@

Skj) — ﬁ(Bl QR Si ® Skj, E Q8 ® Skj) is defined by
(ids @ 65)(T) =T ®iqyy gop, 1, for all T € L(By, ® Skj, 6 © Sij),

where we use the identifications (6.13) and (6.17). As in 2.4 (a) [3], there
exists a unique unitary ”//kl € L(Z, ®st, (B ® Six),-Z1 ® Six) such that
k

13 Dst, T) = 8, (§)z, for all £ € Py and z € B @ Sy

The linear extension (5% ® ids,, : L(Br ® Skj,x ® Sks) — L(B1 ® Sy ®
Skj> 1 ® Si ® Sk;) is defined by (8, ®ids,,)(T) := (¥} @c 1)(T @4, _@ids,, 1)
for all T € L(By ® Skj, 8k ® Sk;), up to the identifications (6.12) and (6.16).

5. The formula ((Sf%c ®idg,,)0" o =(idz, ® 5;3.)5?% is derived from Propo-
sition 6.3.12 after long but straightforward computations. O

Let us consider the C*-algebra B := By ® By endowed with the continuous
action (8p,dp) (cf. Proposition 5.2.9).

PROPOSITION 6.3.18. Let %, be a Gi-equivariant Hilbert Bi-module. Let
Fo = Indgf (Z1) be the induced Go-equivariant Hilbert Ba-module. Consider
the Hilbert B-module .7 := %, & %5. Denote by Hf : L(Bg ® Skj, Fi @ S;) —
L(B®S,F ®585) the linear extension of the canonical injection F ® Si; —
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F ®S. Let us consider the linear maps 6z : F — L(B® S, % ®S) and Bz :
C% — L(F) defined by:
57(€):= > Miodk (&), €=(&.%) €7,
k,j=1,2
A0 )
A ) = , (A p)eC=.
sr= (5 ) O

Then, the triple (F,84,0) is a G-equivariant Hilbert B-module.

Proof. Let us consider Jy := K(%#, @ By) (resp., K(Z%2 @ Bs)) the linking
G1-C*-algebra (resp., linking Go-C*-algebra) associated with #; (resp., F#2).
Let Jo:= Indgf (J1) be the induced Gy-C*-algebra. Let us consider J := J; @
Ja endowed with the continuous action (87,d;) of G (see above). We denote
L:=K(Z% @ B) the linking C*-algebra associated with % and we identify
L=J,®K(F2 @ Bsz). We have an isomorphism of linking C*-algebras f:=
idy, ®7: L — J (Proposition 6.3.12(ii)). Let (5L, dr) be the continuous action
of G on L obtained by transport of structure, i.e.:

5L($) = (f—l ®id5)5J(f(1‘)), reL;
Br(n):=f"(8s(n)), neC>

By straightforward computations, we show that (81,d1) is compatible with
(BB,dp) (cf. Definition 6.1.8) and we prove that 61 (t#(€)) = tegs(d#(£)),
for all £ € % . Therefore, the result follows from Propositions 6.1.11(a) and
6.1.21. (]

PROPOSITION 6.3.19. Let (&, Sg,ds) be a G-equivariant Hilbert A-module.
In the following, we use the notation of Proposition-Definition 6.2.5. Let j, k =
1,2 with j # k. Let

Aj=Indg (A, 0%,) and & :=Indg’ (6,05,).
If € € &, then we have (5(’% (&) € & € M(&. @ Si;) and the map 11 : & —

@gj; & 523 (&) is a Gj-equivariant unitary equivalence over 7; : A; — Aj (cf.
Proposition 5.2.8).

Proof. We have &; = [(idg, ® w)(%c (&); w € B(H1)+, & € &%) (cf. Propo-
sition-Definition 6.2.5(iv)) and for all £ € &; and w € B(.#). we have

= (idg,es,, ®w)OL ()

(cf. Proposition-Definition 6.2.5(v)), where 52]6)(5) = (idg; ® 5;2-)53% (€). As a

consequence, statement 1 is proved as well as the surjectivity of ﬁj. The fact
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that ﬁj is a Gj-equivariant 7;-compatible unitary operator is just a restate-
ment of Proposition-Definition 6.2.5(iii) and (idg, ®5ij)(5(’j@j = ((5(’2@3_ ®id5jj)5fgj
(Proposition-Definition 6.2.5(v)). O

THEOREM 6.3.20. Let Gg, g, be a colinking measured quantum groupoid
between two regular monoidally equivalent locally compact quantum groups G,
and Ga. Let j =1,2. The map (&,Bs,08) — (é‘},&jgj) is a one-to-one cor-
respondence up to unitary equivalence (cf. Proposition-Definition 6.2.5 and
Lemma 6.2.6(1)). The inverse map, up to unitary equivalence, is (F;,67,) =
(Z,B#,0%) (cf. Propositions 6.3.18, 6.3.13 and Lemma 6.2.6(2)).

Proof. Let A be a G-C*-algebra and & a G-equivariant Hilbert A-module.
Let us use all the notation introduced in §6.2. Let us denote:

(B1,65,) = (A1,64,), (Ba,0p,) ::Indg’;‘ (B1,0B,);
(Z1,07,) = (&,0%,), (F2,07,) =Ind@*(F1,05,).

Let us endow the C*-algebra B := By ® By with the continuous action (8g,05)
of G and ¥ := %1 & %5 with the structure of G-equivariant Hilbert B-module
(B#,0%) (ct. Propositions 5.2.9, 6.3.18). Let ¢4 : A — B the canonical G-
equivariant *-isomorphism defined for all a € A by ¥ 4(a) := (¢a.1a,T2(qa 20a))
(cf. 4.10 [2]). Then we consider the map U : & — .F given by

() == (qs,1€, o (qs 28)), forall E€ 8.

It is clear from Proposition 6.3.19 that ¥ is a ¥ 4-compatible unitary operator.
Let us consider the G-C*-algebras K :=K(& @ A) and L:=K(.F @ B). Let
f: K — L be the associated isomorphism of linking C*-algebras (cf. Propo-
sition A.3.5). In virtue of Proposition 6.1.18, it only remains to prove that
f is G-equivariant. We also consider the Gi-C*-algebra J; := K(%1 @ By)
and the induced Go-C*-algebra Jo := Indgf(Jl). We recall that we have a
canonical isomorphism 7 : k(%3 @ By) — J2 (cf. Proposition 6.3.12(ii)). Let
us endow the C*-algebra J := J; @ J with the continuous action (8;,05) of G.
Therefore, it amounts to proving that the x-isomorphism (idy, & 7)f: K — J
is G-equivariant (we identify L = J; & K(%2 ¢ Bs)). We apply the notation
of §6.2 to the G-C*-algebra K and identify K, :=qx ;K = K(&; & A;) for
j=1,2. Let us consider as above (by exchanging the roles of A and K) the
G-equivariant *-isomorphism ¢ : K — J. By evaluating on elements of the
form tg(§) for £ € & and ta(a) for a € A, it is staightforward to see that
(idy, & 7)f =vk. g

7. Takesaki—Takai duality and equivariant Morita equivalence

In this section, we fix a measured quantum groupoid G = (N, M, «, 5, A, T,
T",¢) on the finite-dimensional basis N =P, ;<, My, (C) and we use all the
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notation introduced in §3.1 and §3.2. We will use the notation and results of
§5.1, §5.3, and §6.1.

Equivariant Hilbert bimodules and Morita equivalence. In this para-
graph, we introduce the notion of equivariant representation of a G-C*-algebra
on a Hilbert module acted upon by G. We then introduce the notion of equi-
variant Morita equivalence.

NOTATION 7.1. Let A and B be C*-algebras. Let & be a Hilbert B-module.
If v: A — L(&) is a *-homomorphism then, up to the identification M(K(&)®
S)=L(E®S), we can extend v ®1idg to a *-homomorphism v ®idg : M(A®
S) = L(E®S) (ct. 81).

As in 2.9 [3], we have:

DEFINITION 7.2. Let A and B be two G-C*-algebras, & a Hilbert B-
module, (Bg,ds) an action of G on & and v: A — L(&) a x-representation.
We say that v is G-equivariant if we have the following.

1. de(v(a)f) = (y®idg)(da(a)) 0 dg (&), for all a € A and € € &;
2. Be(n®)ovy(a) =v(Ba(n®)a), for all n € N and a € A.

REMARKS 7.3.

1. Provided that the second condition in the above definition is verified, the
first condition is equivalent to:

(7.1) YV (v(a) ®s, 1)V = (y®idg)da(a), for all a€ A,

where ¥ € L(& ®;5,, (B®S),& ®S) denotes the isometry defined in Propo-
sition 6.1.5(a). Indeed, we can interpret it as follows: ¥ (y(a) ®s, 1) =
(v®idg)(da(a))?, for all a € A. Moreover, for all a € A we have

(Y®ids)(54(a)) ¥ ¥* = (y®ids) (54(a))gpea
= (y®ids)(6a(a)gs.a)
= (y®idg)da(a).
Hence, (7(1(a) @5, 1) = (7 @ ids)(0a(a)) ¥ & ¥ (1(a) @5, DI* = (7 &

ids)da(a)), for all a € A.

2. We recall that the action dx(s) of G on K(&) is defined by dx(s)(k) :=
YV (k ®sp 1)¥* for all k € K(&). Hence, (7.1) can be restated as follows:
dkey(v(a)) = (v ® ids)da(a) for all @ € A. In particular, if v is non-
degenerate, then Definition 7.2 simply means that the s-homomorphism
v: A= M(K(&)) is G-equivariant (cf. Definition 5.1.10).

3. If v: A— L(&) is a nondegenerate *-representation such that

be(v(a)f) = (y®idg)(da(a)) 0 6s(E), forallac Aand €&,

then we have Sg(n°)ov(a) =v(Ba(n°)a) for all n € N and a € A. Indeed,
this will be inferred from Remark 5.1.11 and the previous remark.
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DEFINITION 7.4 (cf. §6 [22]). Let A and B be two C*-algebras. An im-
primitivity A-B-bimodule is an A-B-bimodule &, which is a full left Hilbert
A-module for an A-valued inner product 4(:,-) and a full right Hilbert B-
module for a B-valued inner product (-,-)p such that 4(¢,n){ =¢&(n,()p for
all £,n,(€é&.

REMARKS 7.5. Let A and B be two C*-algebras and & an imprimitivity A-
B-bimodule. We recall that the norms defined by the inner products 4(,-) on
A& and (-,-)p on &p coincide. We also recall that the left (resp., right) action
of A (resp., B) on & defines a non-degenerate x-homomorphism v: A — £L(&p)
(resp., p: B — L(4&)).

DEFINITION 7.6. Let A and B be two G-C*-algebras. A G-equivariant im-
primitivity A-B-bimodule is an imprimitivity A-B-bimodule & endowed with
a continuous action of G on &g such that the left action v : A — L(&p) is
G-equivariant.

EXAMPLES 7.7. Let A and B be two G-C*-algebras.

(i) B is a G-equivariant imprimitivity B-B-bimodule for the inner products
given by p(z,y):=zy* and (z,y)p :=z*y for all z,y € B.

(ii) Let & be a G-equivariant Hilbert B-module. If & is full, then & is a
G-equivariant imprimitivity K(&)-B-bimodule for the natural left action
and the inner product given by x(s)(§,n) := 0¢, for all £,n € &. Con-
versely, if & is a G-equivariant imprimitivity A-B-bimodule, then the
the left action v: A — L(&p) induces an isomorphism of G-C*-algebras

(iii) Let (J,8s,07,e1,e2) be a linking G-C*-algebra (cf. Definition 6.1.22).
Let A:=ejJe; and B :=esJes be the corner C*-algebras endowed
with the continuous actions of G induced by (5s,05). Let us endow
& = ey Jey with its structure of G-equivariant Hilbert B-module (cf. Re-
marks 6.1.23). Then, & is a G-equivariant imprimitivity A-B-module
whose actions and inner products are defined as in (i).

(iv) If & is a G-equivariant imprimitivity A-B-bimodule, then &* turns into
a G-equivariant imprimitivity B-A-bimodule for the actions and inner
products given by the following formulas: b{*a := (a*£b*)*, for £* € £*,
a€Aandbe Ba B<£*777*> = <£a77>3 and <€*777*>A = A<§777>7 for 5*777* €
E*.

PROPOSITION 7.8. Let A and B be G-C*-algebras. The following statements
are equivalent:

(i) there exists a G-equivariant imprimitivity A-B-bimodule;

(ii) there exists a full G-equivariant Hilbert B-module & such that we have
an isomorphism A~ K(&) of G-C*-algebras;

(iii) there exists a linking G-C*-algebra (J,By,05,e1,e2) such that we have
G-equivariant x-isomorphisms A~ ey Jey and B ~ ey Jes.
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Proof. This is a straightforward consequence of Examples 7.7(ii), (iii),
Proposition 6.1.11(b), and Remarks 6.1.23. O

Now, we investigate the tensor product construction (cf. 2.10 [3] for the
quantum group case).

PROPOSITION 7.9. Let C (resp., B) be a G-C*-algebra. Let & (resp., &2) be
a Hilbert module over C (resp., B) endowed with an action (Beg,,ds,) (resp.,
(Beg,,08,)) of G. Let o : C — L(&) be a G-equivariant x-representation. Con-
sider the Hilbert B-module & := & ®~, &. Denote by

A(&1,&) = (06, (&1) @5amias 1) 006, (E2),  for &1 € & and & € &.

We have A(€1,&) € M(E®S) for all €, € & and & € &. Let Be : N° = L(&)
be the x-homomorphism defined by

Be (n0> = B& (TLO) ®~, 1,  forallme N.

There exists a unique map 6g : & — ./W(éa ® S) defined by the formula
06 (§1 @y &2) 1= A(&1,&2) for & € & and & € & such that the pair (Be,de)
is an action of G on &.

The operator d¢, (€;) is considered here as an element of £(C® S, & ® S) D

M(& ® S). In particular, we have dg, (§1) ®7,0ids 1 € L(62® 5,8 ® S) since
we use the identifications:
(C@8) @501 (0 8) =638,
T ®5,0ids 1 (2 ®idg) (z)n;
(61®5) ®5,014s (620 5)=E6® S,
(&1 ® 5) @5,0idg (L2 @) = (&1 ®n, &) ® st.

(7.2)
(7.3)

Proof. The proof is basically the same as that of 2.10 [3]. For example, we
refer the reader to it for the proof of the fact that A(&;,&;) € M(f@ S) for all
&1 €8 and & € &. Let ¥4 and ¥, be the isometries associated with g, and
dg,. Since ¥ intertwines the left actions ¢ — 2(¢) ®5, 1 and (12 ®idg)dc of C,
there exists a unique isometry %5 € L(E @55 (B®RS), 1 @(1,0ids)sc (62 ® S))
such that

V2 (€1 O €2) Dsp ) = &1 D(rp@ids)sc Ya(2 @iy ),
for all & Eéal,fg € andxeBR®S.

Let us prove that Y is a unitary. It amounts to proving that ¥ is surjec-
tive. Since im(¥2) = im(qggQQ), we have im(%2) = [§ ®(y,@ids)se QBa,al; § €
E,mesHRS]. Let £€& and n€ & ®S. Write € = ¢'c with ¢ € & and
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c€ C. Since ¥, 75" = qg,a, we have (12 ®ids)dc(c)qpa, o = (72 ®ids)dc(c) (cf.
Remarks 7.3). Hence,
£ ®(1omids)sc UBayall =& D(neids)se (Y2 @1ds)dc(c)qps,an
=& ®O(pids)sc (12 ®ids)dc(c)n
= £ O(yo@ids)sc -

Therefore, we have shown that im(”/%) = &1 D(y,ids)sc (62 @ S), which proves
that 75 is unitary. Let us identify

(61 Qs (C©8)) Rypids (62 ® ) = 61 O(ypide)sc (62 ®5),
(61 ®s¢c T) @rp@ids 1 €1 D(ye@ids)se (Yo @ids)(w)n
and (&1 ® S) @y,eids (620 8) =& ® S (cf. (7.3)). Let

V= (Y @rmias 1) ¥ € L(E®5, (B2 S),E@S).

It follows from the formulas “/72*772 =1, 772”/72* =1L, Y =1land "1 7" =qp,
that 7*7 =1 and V7™ = qp, o @,0ids | = qpea (by definition of B¢).
Let n € N. On one hand, we have

772(650 (no) ®Qsp 1) = (ﬁgl (no) O (r2®ids)dc 1)772
(by definition of B¢ and #5). On the other, we have

(" Oyo@ids 1) (ﬁcgﬁ (no) ®(12@ids)éc 1)

= ((151 ® B(no)) B @ids 1)(7/1 ®r,®ids 1)-

Hence, we have proved that ¥ (8¢(n°) ®s, 1) = (1 ® S(n°))¥ for all ne N.
Exactly as in the proof of 2.10 [3], we have ¥ T¢, g ¢, = A(£1,&2) for all §; € &
and & € &, (cf. Notation 6.1.3 for the definition of T¢). In particular, ¥T; €
M(E®S) for all £ € &. Tt then follows from Proposition 6.1.5(b) that the pair
(Bg,0e), where dg : & = M(E ® S) is defined for all £ € & by 0¢() := VT,
satisfies the conditions 1, 2, and 3 of Definition 6.1.4. The coassociativity

condition of d¢ is derived from those of dg, and dg, exactly as in the proof of
2.10 [3]. O

ProroSITION 7.10. We use all the notation and hypotheses of Propo-
sition 7.9. If A is a G-C*-algebra and vy : A — L(&1) is a G-equivariant
x-representation, then v: A — L(& ®,, &) the x-representation defined by
v(a) :=71(a) ®, 1 for all a € A is G-equivariant.

Proof. Through the identification (7.3), for all z € A® S the operator (71 ®
idg)(z) ®3,mids 1 is identified to (v ®idg)(x). This identification also holds

for 2 € M(A® S) (by using the fact that any element of S can be written
as a product of two elements of S). In particular, for all a € A the operator
(M ®idg)da(a) ®5,idg 1 is identified to (y ®idg)da(a). Hence, de(y(a)é) =
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(v®idg)da(a)odg(€) for all £ € & and a € A by definition of dg. The relation
Be(n°) ovy(a) =v(Ba(n°)a) for n € N and a € A is straightforward. O

From now on, we assume the quantum groupoid G to be regular. We recall
that any action of the quantum groupoid G on a Hilbert module is necessarily
continuous (cf. Corollary 6.1.26).

PROPOSITION-DEFINITION 7.11. Let A, C and B be G-C*-algebras. Let
& (resp., &) be a G-equivariant imprimitivity A-C-bimodule (resp., C-B-
bimodule). Denote by &1 @c & the internal tensor product & @, &, where
Yo : C = L(&) is the G-equivariant x-representation defined by the left action
of C on &. The Hilbert B-module & ®c & endowed with the action of G
defined in Proposition 7.9 is a G-equivariant imprimitivity A-B-bimodule for
the left action of A and the A-valued inner product defined by the formulas:
* a(§1 ®c &2) =a1 ®c &, for alla€ A, § € &1 and & € &;

o Al&1®c&,m @cne) = allr,me€e,ne)), for all&,m € &1 and &,n2 € &>.

Proof. Tt is known that & ®¢ & is an imprimitivity A-B-bimodule. The
rest of the proof is contained in Propositions 7.9 and 7.10. O

PROPOSITION 7.12. Let A and B be G-C*-algebras. Let & be a G-
equivariant imprimitivity A-B-bimodule. Then the map §* ®4 8 — B; * ®4
n— (§,m)p defines an isomorphism of G-equivariant imprimitivity B-B-
bimodules.

Proof. Tt is known that the map ®: &*®4 & — B; £* @an+— (£,n)p is an
isomorphism of imprimitivity B-B-bimodules. The G-equivariance of ® is a
restatement of the formula dp((§,n)p) =ds(€)* 0 de(n) for £,ne &. O

DEFINITION 7.13. Let A and B be G-C*-algebras. We say that A and
B are G-equivariantly Morita equivalent if there exists a G-equivariant im-
primitivity A-B-bimodule. The G-equivariant Morita equivalence is a reflexive
(Examples 7.7(1)), symmetric (Examples 7.7(iv)) and transitive (Proposition-
Definition 7.11) relation on the class of G-C*-algebras.

Biduality and equivariant Morita equivalence. In this paragraph, the
measured quantum groupoid G is assumed to be regular. Let us fix a G-C*-
algebras A. We show that there is a canonical G-equivariant Morita equiva-
lence between A and the double crossed product (A x G) x G.

NOTATION 7.14. Denote by K := K(5#) for short. Consider the Hilbert
A-modules £ :=A® 5 and £4 g :=qp,a(AR ). Let V € L(J€ ®S) be the
unique partial isometry such that (ide ® L)(V) =V.

PROPOSITION 7.15. There exists a unique bounded linear map ég, : Eg —
LA®S,E®S) such that dg,(a® () =Vazda(a)13(la ®(® 1g), for alla € A
and ( € H.
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Proof. If B is a C*-algebra and ¢ a Hilbert space, we identify M(B) ® %
with a closed vector subspace of L(B,B ® #). We have (04 ® idy)(§) €
LIARS,ARS® ) and (04 ®1idw)(€)* = (04 @ id e )(€*) for £ € &. Let
o€ L(S®H, # ®S5) be the flip map. Denote by dg, : Eg = LIA® S, E ® S)
the map defined by dg,(€) 1= Vago23(04 ®id ) (&) for € € &. It is clear that
dey : €0 — L(A®S,E ® 5) is linear map satsifying the formula dg,(a ® &) =
V235A(a)13(1A®€®15) for all a € A and ( € J7. O

PROPOSITION 7.16. We have the following statements:
Oy (§)*0g, (1) = 04 ({g8.a€5 apaam), for all &n € Eo;
0g,(€a) =dg,(§)da(a), for all £ € & and a € A;

550 (qﬁA&f) = 550(5)7 for all § € &y;
O, (50)(14 & S) C 5A,R ®S.

Proof. 1. Let &,n € &, we have 0g,(€)*dg,(n) = (64 ®1d)(£*)053Va5Vss X
095(04 ®id)(n). We have 0*V*Vo = gg5. Let n,n’ € N. For all a € A and
¢ € A, we have

(La®B(n°) @@ (n")) (04 @ ids)(a® )

Ll o

=(1a®B(n°))da(a)®a ( )¢
=04(Ba(n®)a) @ a(n')¢
= (04 ®ids)((Ba(n®) @a(n))(a® ().

Hence, (14®8(n°) @a(n'))(64 @idx)(n) = (64 ®@ide)((Ba(n®) @a(n))n). It
then follows that 033V55V23023(04 ®idsr)(n) = (04 ®idse)(gs,an). We finally
have

8, (£)6g, () = (64 @ ide- ) (%) (64 ®idsr)(gs,aan)
=04((& q0am))

=04 ({apaalsapaan)),

where the last equality follows from the fact that ¢g,a € £(&) is a self-adjoint
projection.

2. Let us fix a,b€ A, and ¢ € #. We have d4(a)13(14a ®(®1g) = (14 ®
(®1g)da(a) in LIAR S, & ®S). Hence, dg, (b® ()a) =dg, (b @ ()dala).

3. Let a€ A and ¢ € . For all n,n’ € N, we have

Oy (Ba(n®)a@a(n’)()
=Vas(la®@a(n') @1s)0a(Ba(n)a) ;14 © (@ 1s)
=Vys(la®a(n') @ B(n°))da(a)is(la @ (@ 1g).

Hence, d¢g,(q8,a(a ® Q) =Va3qap,2304(a)13(1a ® (® 15) = g, (a ® ().

4. It suffices to show that gg,a,120g,(§) = 0, (&) for all £ € &. We re-
call (cf. Proposition 3.1.5) that (@(n) ® 15)V =V(1x ® a(n)) for all n € N.
Hence, gg,a,12V23 = V23¢8,4a,13- It then follows from ¢g,o = 64(14) that
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qua’qu?,(sA(a)m = V236A(a)13 for all a (S A. Hence, q5A3712550<a ® C) =
dg,(a®() for all a € A and ¢ € 2. O

NOTATION 7.17. According to the previous proposition, Jg, restricts to a
linear map

Oean:€ar— LARS,EAR®S),
which satisfies the following statements:

d 55,4,3(5)*55;1,1%(77) = 6A(<§777>)a for all £, € gA,R;

o g, p(a) =0g, n(€)0a(a), for all £ € E4 g and a € A.

Since [a(n’), B(n°)] =0 for all n,n’ € N, we have [14 ® 8(n°),qp,a] =0 for all
n € N. We then have a nondegenerate *-homomorphism

ﬂgAYR:NOHE(EAvR); nr—>(1A®ﬂ(n°))[gAwR.

Since § and @ commute pointwise and VV* = qgo, we have [Vy3Vis,
qpaa12] =0. Hence, e, o = VasVislea ros€ L(EAR®S).

ProOPOSITION 7.18. We have the following statements:

L 8e, n(Ear) C M(Ear®S);
2. [5€A,R(8A7R)(A ® S)] = quA,Ra(gA,R & S);
3. 55,4,3(5&,3(”0)5) = (ISA,R ®ﬂ(ﬂ°))5gAwR(f), forall§ €€ r and n € N.

Proof. 1. Let us prove that dg, ,(§)(1a ®s) € Ea4r® S for all { € Ear
and s € S. It amounts to proving that 0g,(€)(14a ® s) € & ® S for all £ € &
and s € S (cf. Proposition 7.16(3), (4)). Let a € A and ¢ € 5. It follows from
the relation §4(A)(14 ® S) C A® S that dg,(a ®)(1a®s) = (14 @V ®
15))da(a)(14®s) is the norm limit of finite sums of the form >, a, ®V((®s;),
where a; € A and s; € S. Hence, 0g,(a @) (14 ®5) €& ® S.

Now, let us prove that (lg, , ® y)de, () € Ea,r ® S for all £ € E4 g and
y € S. This also amounts to proving that (lg, ® y)dg,(§) € En ® S for all
¢céandyeS. Letac A, (€ and y € S, we have (1g, ® y)dg,(a® () =
(14 ® (L @ y)V(C @ 15))4(a). Write ¢ = p(z)n with € § and n € 2. We
have (Lx ® y)V(C @ 1s) = (p®ids)((1g @ y)V(z @ 15))(n @ 1s). Since G is
regular, we have (1 ® y)V(r ® 1g) € S® S (cf. Corollary 4.10(2)). Hence,
(1g, ® Y)dg, (@ @ ¢) is the norm limit of finite sums of elements of the form
(14 ® p(2')n @ y')64(a) with 2/ € S and ¢’ € S. Hence, (1g, @ y)de,(a ® ) €
Eo® S since (14 ® 5)04(A) CA®S.

2. Since VV*V =V, we have Vy3V330¢,(§) = g, (§) for all £ € &. It then
follows that q;Bé'AYRQJEA‘R(S) =0g, (§), forall £ € £4 g. By the first statement,
we then obtain

55A,R(5A,R)(A®S) C QQSA,RQ(5A7R® S).
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Conversely, let a € A, ( € 7 and s € S. Since V23¢8,4,13 = ¢8.a,12V23, We
have

UBe 4 po (g1a(a® () ® s) =Vo3Visqs,a,12(a ® (@ s)
=V23¢8,0,13(a @V ((® 5)).

Hence, gg, , .a(gsaa(a® () ® s) is the norm limit of finite sums of elements
of the form:

Vas@saans(a®( @ s')
=V23(¢aa(a®5"))y(1a® (' @ 1s), where (' € 5,5 €85.

By continuity of the action (04,084), V23qg,a.13(a ® ¢’ @ ') is the norm limit
of finite sums of the form ), V2304 (ai)13(14a ® ¢’ ®5:) =, 0e4 (qaaa(a;i ®
¢("))(1a®s;), where a; € A and s; € S. As a result, we have

e, pa(@8aa(a® Q) ®s) € [0g, n(Ea,R)(A®S)]

foralla€ A, (€ # and s € S. Hence, qp;, . o(Ea,r®S) C[0g, n(Ea,R)(A®
9)].
3. Let £ =¢p,a(a® (), with a € A and ¢ € 7. We have
Bear(n®)é=(14®B(n°))gpra(a®¢) = gp,a(a® B(n°)¢).

Moreover, we have V(8(n°) ® 1g) = (1x ® 8(n°))V for all n € N (cf. Proposi-
tion 3.1.5). It then follows that

Oc4 5 (Bean(n°)€) =g, (a® B(n°)C) = (1g, ® B(n°))de, (a @ ()
= (15A,R ® B(no))é&x,a(f)- O

Consequently, d¢, , ®idg and idg, , ®d extend to linear maps from L(A®
S, EAR®S) 10 LIARS®S,E4r®S®S) (cf. Remarks 6.1.7) and we have:

(55A,R ®id5)(T)(6A ®idS)(x) = (55A,R ®idS)(T$)§
(idEA,R & 6)(T) (ldA X (5)(.%) = (idEA,R ® 5)(TI)7
foralz€e A® S and T € LIA®S,E4r®S).

PROPOSITION 7.19. For all § € EoRr, (0g, , ®ids)de, (&) = (ide, @
5)65;\‘}%(5)'

Proof. Let ac A, (€ 5 and t € A® S. Let £ :=qg,a(a ® (). We have
(04 n ®ids)de, »(§)(04 @ids)(x)
= (0g, ® ids)(Vgg ((5,4((1)96) 13(1,4 RC® 15)).
Forallbe A, ¢’ € # and s’ € S, we have
(g, ®ids) (b® (' ® ") =Va30a(b)13(1la @ ®1s® §).
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Hence, (0g, ® 1dg)(b ® X) =Va304(b)13X24 EL(ARS RS, AR X @S ®S)
forallbe A and X € 7 ® S. In particular, we have

(0, @ids) (Va3 (b® ¢ @ 5)) = (dg, @ 1ds) (0@ V(¢ @ 5))
=V2304(0)13V24(14 @ (® 15 ® s)
=V23V2404(0)13(1a ®(® 15 ® 5).

However, we have (idx ® §)(V) = V12V13. Hence, VasVou = (idagic ® 0)(Vas).
Moreover, we have 04(b)13(14 ®(®1s®s) = (04,13®1ds)(b®s)(1aQ@(R1s®
lg), for all be A and s € S, where d4,13: A+ M(A®K®S) is the strictly
continuous *-homomorphism defined by 4 13(a) :=da(a)13 for all a € A. As
a result, for all Y € A ® S we have

(g, ®1idg)(Va3Y13(1la ® (® 1g))
= (ldagx ®0)(V23)(04,13 ®idg)(Y)(1a ®(®1s @ 1g).
In particular, we have
(bg, ®1ids) (de,(a @ ¢)x)
= (idagk ® 6)(V23) (64,13 ®1ds) (54 (a)z) (14 ® ( ® 1s ® 1g)
= (idagk ®0)(Va3) (04,13 ®1ds)da(a)(1la ® (@1 ® 1g) (04 ® idg)(x).
Moreover, we have (04,13 ®1dg)da = (idagkx ® 6)d4,13. Hence,

(65A,R ®ids)5$A,R(€)x
= (i[dagk ®0)(Vasda(a)13)(1a © (@ 15 ® 1g)z,

for all € gg,a,12(A® S ®S). In particular, if © € ¢5,4,12¢8q,23(A® S ® 5)
we have

(0e4.n ®1ds)de, ()
= (idagk ®6)(V2304(a)13)qpa,34(14a ® (@ 15 @ 1g)x
— (idask ©8) (Vasba(a)is) (ide, @ 8)(14 ® ¢ ® 1g)z
— (ide, ® 8)5e, (a ® )z
= (ide, » ® 6)de, 5 ().
Hence, (0g, , ®idg)0e, (&) = (idg, r ®)de, (). O

Now, we can assemble the previous results (see also Corollary 6.1.26) in
the statement below.

PROPOSITION 7.20. The triple (Ea,R,Besp:0esr) 5 a G-equivariant
Hilbert A-module.

Let D be the bidual Q—C*—/e}lgebra of A. We have a canonical G-equivariant
*-isomorphism ¢ : (A x G) x G — D of G-C*-algebras (cf. Proposition 5.1.22).
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Let jp : M(D) — L(&) be the unique faithful continuous #-homomorphism
for the strict/-strong topologies such that jp(1p) =gg,a-

PROPOSITION 7.21. The x-representation (A x G) x G — L(EAR); T
¢(x)e, 15 G-equivariant.

Proof. We have to prove that dg,(d€) = (jp ® ids)(6p(d)) o dg, (&) for all
de D and € € & (cf. Remarks 7.3(3) and Proposition 7.16(3)). Let us prove
it in three steps:
eLetbe A, 2 €8 and ¢ € . We have

be, (0@ AN2)¢) = (1a®@V(A(2) @ 15))6a(b)13(14 ® (@ 1g).
However, [V, A(z) ® 15] =0 (as A(S) C M and V e M’ ® M). Hence,
Oz, (b @ M@)¢) = (14 ® Mx) @ 15)de, (b @ ()

and then dg, (14 @ AM())€) = (14 @ A(x) ® 15)dg, (£), for all x € S and € € &.
e Let y € S. Since L(y) € M C a(N)’, we have

V(L(y) © 1s5) =Vgap(L(y) @ 1s) = V(L(y) ® 15)qap
=V (L(y) ® 1)V*'V = (L ®idg)d(y)V.
For all b€ A and ¢ € 57, we have
e, (La®@ L(y) (b®@¢)) = (1a®@V(L(y) ®15))6a(b)13(1a @ ¢ @ 15)
= (14 ® (L ®ids)d(y))de, (b® ().

Hence, 0g, (14 ® L(y))§) = (14 @ (L ®@ids)d(y))de, (&) for all y € § and £ € &.
In virtue of the first two steps, for all £ € £4,r we have

dea,r ((1a ® A(2)L(y))E)
= (L4 ®A(@) @ 1) (14 ® (L ®1d5)3(y)) e 5 (6)-
e Let s € S. We have (cf. Proposition 3.1.3)
(R(s) @)V =Ue1)2(1®L(s)S(U* 1)V

Ue)E(1@L(s))WS(U"®1).

Besides, (1Q L(s))W = (1Q L(s))WW*W = WW*(1® L(s))W = W(s) since
)
1)

we have WIW* =¢q 5 and L(s) € M C B(N°)'. Therefore, since (U ® 1)SW =
V(U ®1)2 we have ( (5)@1)V=VE1®U)i(s)(1®U*)XZ. Hence, (R(s) ®
15)V =Vo(ids ® R)(4(s))o* for all s € S. We then have ((idsy ® R)(z) ®
15)Vasg = Va3023(idags ® R)((ida ® 0)(z))oss for all x € A® S. But, since R
and § are strictly continuous this equality also holds for all z € M(A® S). In
particular, we have mg(a)12Va3 = Va3023(idags @ R)(6%(a))oss for all a € A.
By coassociativity of d4, we have

7TR((Z)12])23 = V230'23(($A X ldjc) (WR(G))O';?), for all a € A.
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It then follows that

TR(a)120g, (§) = Va3023(04 @ idx) (mr(a)) (64 ® ide)(€)
= V23093(64 ®@idyp) (WR(G)g)
=dg, (ﬂ'R(a)f),

for all a € A and € € &. In particular, Tr(a)120g, (o) = 0, (Tr(a)éo) for all
acAand €8 )
We have proved that for alla€ A, x € S, y € S and £ € &, we have
deo (r(a) (1a @ A(z)L(y))€)
=7r(a)12(1a @ Mz) ® 15) (14 ® (L ©1d5)d(y))de, (£)-

However, for all a € A, € § and y € S we have (cf. 3.37 d) [2))

(jp ®idg)dp (7TR(CL) (1A ® )\(:C)L(y)))
=mr(a)12(14a @ Mz) ® 15) (14 ® (L®ids)d(y)).

If d=mg(a)(1a ® A(z)L(y)) € D, where a € A, z € § and y € S, we have
proved that g, (d€) = (jp ®idg)(0p(d)) o dg, (&) for all £ € &. Thus, the state-
ment is proved since D = [rr(a)(1a @ AM(x)L(y)); a € A,z € S,y € S]. O

THEOREM 7.22. The G-C*-algebras (Ax G) x G and A are Morita equiva-
lent via the G-equivariant imprimitivity (A x G) x G-A-bimodule £4 g.

Proof. Let us prove that the Hilbert A-module £4 r is full. Fix x € A
and write = a*b for a,b € A. There exists w € B(J), such that (ids ®
w)(gasa) = 1a. Hence, « is the norm limit of finite sums of elements of the
form a*(ids @ we 1) (gs,4a)b, where &, € 5. However, for all §,n € A we have

a*(ida ® we,y)(gs4a)b = (a ® &) qp,a(b@n)
= <QﬁA&(a®€)7qﬁA&(b®n)>'
Hence, A= [(£,n); {,n € Ea,r]. Now, we recall that D = gg,5(4A ® K)gs,
(cf. Theorem 5.1.24). It is easily seen that the left action of (A x G) x

(cf. Proposition 7.21) induces a G-equivariant *-isomorphism (A x G) x G
K(Ea.Rr)-

Q)

O R @

Appendix

A.1. Normal linear forms, weights and operator-valued weights on
von Neumann algebras [8]. Let M be a von Neumann algebra. Denote by
M, (resp., M) the Banach space (resp., positive cone) of the normal linear
forms (resp., positive normal linear forms) on M. Let w € M, and a,b€ M.
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Denote by aw € M, and wb € M, the normal linear functionals on M given
for all z € M by:

(aw)(x) := w(za); (wb)(z) := w(bx).
We have o' (aw) = (¢’a)w and (wb)b = w(bb'), for all a,a,b,b’ € M. We also
denote

awb := a(wd) = (aw)b; W = a*wa.
If we MJ, then w, € M. Note that (wg)p = wap for all a,be M. If w € M,
we define @ € M, by setting

w(z) :=w(z*), forallze M.

Let 4 be a Hilbert space and let us fix {,n € . Denote by we ,, € B(H).
the normal linear form defined by

we () = (& an), for all x € B(JZ).

Note that we have W¢, = wy¢, awe y = Wean and we pa = we=¢,y for all a €

B(#).

A.1.1. Tensor product of normal linear forms. Let M and N be von Neu-
mann algebras, ¢ € M, and 1 € N,. There exists a unique ¢ @ ¢ € (M ® N),
such that (¢ ® ¥)(z ® y) = ¢(x)Y(y) for all z € M and y € N. Moreover,
lo @ Y| < |14l - ||l Actually, it is known that we have an (completely) iso-
metric identification M, &, N, = (M ® N),, where ®, denotes the projective
tensor product of Banach spaces. In particular, any w € (M ® N), is the norm
limit of finite sums of the form ). ¢; ® 1);, where ¢; € M, and 1; € N,.

A.1.2. Slicing with normal linear forms. We will also need to slice maps
with normal linear forms. Let M; and Ms be von Neumann algebras, w; €
(M)« and wg € (My),. Therefore, the maps wy ®id : M7 ® My — M; and
id ®wsg : My ©® My — M extend uniquely to norm continuous normal linear
maps w1 ®id: My ® My — Ms and id ® wo : My ® My — M. Let 5 and 2
be Hilbert spaces, for £ € # and n € % we define 0 € B(# , 4 @ ) and
0y, € B(, 2 @ X') by setting:

0c(C):=€®¢, forall (€7 0,(¢):==C®n, forall (e

U TeBH X)), ¢p€B(KH). and w € B(H),, then the operators (id ®
$)(T) € B() and (w®1id)(T) € B(.£") are determined by the formulas:
(€1, (1A @ @) (T)&2) = ¢(0,Tbg,), &1,62 €
{m, (w®id)(T)n2) w(é?;,*lTG;]z)7 M,N2 € X .
In particular, we have:
(id @ wyy ) )(T) = 0;]*1 To mM,72 € K;

n2?

(w£17£2 & ld)(T) = 021T9§27 £1a§2 e .
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Let us recall some formulas that will be used several times. For all ¢ € B(.¥).,
weB(H), and T € B(H @ K), we have:

2(id® ¢)(T)y = (id ® ¢) ((z @ T (y @ 1)),

(ywz ®id)(T) = (w@id) ((z ® 1)T(y ® 1))
for all z,y € B(J2);

a(w®id)(T)b = (w®id)((1®a)T(1®b)),

(id®bga)(T) = (id @ ¢) (1 ® a)T(1 @ b))
for all a,be B(¢"). We also have

(id® ¢)(T)" = (id® ¢)(T”),

(w®id)(T)* = (W ®id)(T"),
(¢ @1d)(EwexTExen) = (1d® ¢)(T),
([dRw)(ZwexTEvew) = (w®id)(T),

foral Te B(# @ X)), p € B(H ). and w € B(H),.

DEFINITION A.1.3. A weight ¢ on M is a map ¢ : My — [0, 00] such that:
o forall 2,y € My, p(x+y) = () + 9(y);
e for all x € My and A € Ry, p(Az) = Ap(z).
We denote by Ny, := {x € M; p(z*z) < oo} the left ideal of square p-integrable
elements of M, 9t := {2z € My ; p(x) < oo} the cone of positive p-integrable
clements of M and M, := (M}) the space of p-integrable elements of M.

DEFINITION A.1.4. Let ¢ be a weight on M. The opposite weight of ¢ is
the weight ©° on M° given by ¢°(x°) := p(x) for all 2 € M. Then, we have
Ngo = (N3)°, ML = (MF)° and Mo = (M,)°.

DEFINITION A.1.5. A weight ¢ on M is called:

e semi-finite, if M, is o-weakly dense in M;
e faithful, if for € M, the condition ¢(z) =0 implies = = 0;
e normal, if ¢(sup,c7 ;) = sup;c7 ¢(x;) for all increasing bounded net (x;);ez

of M+ .

From now on, we will mainly use normal semi-finite faithful (n.s.f.) weights.
Fix a n.s.f. weight ¢ on M.

DEFINITION A.1.6. We define an inner product on 1, by setting
(@,y)p = <,0(;v*y)7 for all z,y € N,.

We denote by (J%,,A,) the Hilbert space completion of 91, with respect to
this inner product, where A, : 9, — S, is the canonical map. There exists a



200 J. CRESPO

unique unital normal *-representation m, : M — B(J¢,) such that
7o (2)Ap(y) = Ap(zy), forall z€ M and y € N,.
The triple (J€,,m,,A,) is called the G.N.S. construction for (M, ).

REMARKS A.1.7. The linear map A, is called the G.N.S. map. We have
that A, (91,) is dense in JZ, and (A, (2), Ap(y))p = p(a*y) for all z,y € M, In
particular, A, is injective. Moreover, we also call w, the G.N.S. representation.

We recall below the main objects of the Tomita—Takesaki modular theory.

PROPOSITION-DEFINITION A.1.8. Let M be a von Neumann algebra and
¢ a n.s.f. weight on M. The anti-linear map Ay (M, NNy) — Ay (N, NN,);
Ay (x) = Ay(z*) is closable and its closure is a possibly unbounded anti-linear
map Ty : D(T,) C I, — £, such that D(T,) =im T, and T, 0 Ty(x) =z for
all x € D(T,).

Let T, = JLPV;/2 be the polar decomposition of T,. The anti-unitary J, :
S — Hy is called the modular conjugation for ¢ and the injective positive
self-adjoint operator V, is called the modular operator for .

PROPOSITION-DEFINITION A.1.9. There exists a unique one-parameter
group (of)ier of automorphisms on M, called the modular automorphism
group of ¢, such that

7o (0f (2)) = Viim,(x)V,",  for allt €R and x € M.
Then, for all t € R and x € M we have of (z) € N, and A, (of (x)) =
VIA, ().

PROPOSITION-DEFINITION A.1.10. The map Cp : M — M'; x — Jp X
7o (2)*Jy is a normal unital x-antihomomorphism.

DEFINITION A.1.11. Let N be a von Neumann algebra. The extended pos-
itive cone of N is the set N¢** consisting of the maps m : N}t — [0, 00], which
satisfy the following conditions:

e for all wy,ws € N, m(wy +ws) =m(wy) + m(ws);
e for all we N} and A € Ry, m(Aw) = dm(w);
e m is lower semicontinuous with respect to the norm topology on V..

NoOTATION A.1.12. Let N be a von Neumann algebra.

1. From now on, we will identify N, with its part inside N§**. Accordingly,
if me N$* and w € N}t we will denote by w(m) the evaluation of m at w.

2. Let a € N and m € N$*, we define a*ma € N$* by setting w(a*ma) :=
awa*(m) for allw € Nf. If m,n € N$* and A € Ry, we also define m+n €
N§* and Am € N$* by setting w(m + n) := w(m) + w(n) and w(Am) :=
Aw(m) for all w e NF.
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DEFINITION A.1.13. Let N C M be a unital normal inclusion of von Neu-
mann algebras. An operator-valued weight from M to N is a map T: My —
N$** such that:

o forall z,ye My, T(x+y)=T(z)+T(y);

o forall x € My, VA€ R, T(A\x) =T (x);

o for all z € My and a € N, T'(a*za) = a*T(z)a.

Let Ny :={z € M; T(z*z) € Ny}, Mf == {z € My; T(x) € Ny} and My =
(7).

DEFINITION A.1.14. Let N C M be a unital normal inclusion of von Neu-
mann algebras. An operator-valued weight T' from M to N is said to be:
e semi-finite, if 97 is o-weakly dense in M;
e faithful, if for © € M, the condition T'(x) =0 implies x = 0;
e normal, if for every increasing bounded net (z;);ez of elements of M, and
w € N, we have w(T(sup;ez ;) = lim;ez w(T'(x;)).

Note that if T': My — N_‘f‘t is an operator-valued weight, it extends
uniquely to a semi-linear map T : M — N, This will allow us to com-
pose n.s.f. operator-valued weights. Indeed, let P C N C M be unital normal
inclusions of von Neumann algebras. Let S (resp., T') be an operator-valued
weight from N (resp., M) to P (resp., N). We define an operator-valued
weight from M to P by setting (S oT)(x) :=S(T(z)) for all x € N,.

A.2. Relative tensor product of Hilbert spaces and fiber product of
von Neumann algebras. In this paragraph, we will recall the definitions,
notations and important results concerning the relative tensor product and
the fiber product which are the main technical tools of the theory of measured
quantum groupoids. For more information, we refer the reader to [7].

In the whole section, N is a von Neumann algebra endowed with a n.s.f.
weight ¢. Let m (resp., ) be a normal unital #-representation of N (resp.,
N°) on a Hilbert space H (resp., K).

Relative tensor product. The Hilbert space H (resp., K) may be considered as
a left (resp., right) N-module. Moreover, 7, is an N-bimodule whose actions
are given by

& =my(x)€ and
&y = J,m, (y*)Jq,ﬁ, for all § € 7, and x,y € V.
DEFINITION A.2.1. We define the set of right (resp., left) bounded vectors
with respect to ¢ and 7 (resp., ) to be:
M) 1= (€ € ;30 € Ro, Ve € T (€] < A}
(resp., (K,7)y:={€K;3IC R,V € N, Hv(mO)EH < CHA@O (z°) H})
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If § € ,(m,H), we denote by R{"¥ € B(H,,H) (or simply Rf if ¢ is under-
stood) the unique bounded operator such that

RPNy (x) =m(2)§, for all z € N,
Similarly, if £ € (K,7v), we denote L[ € B(,,K) (or simply L/ if ¢ is
understood) the unique bounded operator such that
LY JA, (%) =y (2°)¢, for all z €9,

where we have used the identification S0 — J; Ago(2°) = JoAy(z*).

Note that £ € IC is left bounded with respect to ¢ and « if, and only if, it is
right bounded with respect to the n.s.f. weight ¢°:=po C;,l on N’ and the
normal unital x-representation v¢:=+ o C’;,l of N'. It is important to note
that (IC,7), (resp., o(m,H)) is dense in K (resp., H) (cf. Lemma 2 of [7]).

If £ € o(m,H) (vesp., £ € (K,7),), we have that R{' (resp., L) is left
(resp., right) N-linear. Therefore, for all £,n € (7, H) (resp., (K,7),) we have
(R7#)'Rp# emy(N) =Cn(N) and R{¥(Rp%)" ex(N)

(resp., (Lg’“o)*L;“” €mp(N) and L} (L;”“’)* € ’y(NO)/).

NOTATION A.2.2 (¢f. 2.1 [16]). Let

Ko = [RE(55)" €€ (. )]
(resp., Ky = [L’YW(LW @0) &ne(H,7)e])

Note that ICr , (resp., K,,,) is a weakly dense ideal of 7(N)" (resp., v(N°)")
(cf. Proposition 3 of [7]). If ¢ is understood, we denote K, (resp., K,) instead
of Kr,, (resp., K0).

NotAaTION A.2.3. Let &, € (m,H) (resp., (K,7),), we denote
(& mne :=CN ((R#) Ry #)° € N°
(resp. (EnnN=m, (( ) LW’)eN).
™

PROPOSITION A.2.4. Forall,n € ,(n,H) (resp., &,n e (K,7),) andy e N

analytic for (of)ier, we have:

L (&m)no = (0, &)ne (resp., (&miy = (n,)n);
2. (&my°)ve = (&mne0)y(y)® (resp., (€ ny)n = (&mnoZ, 5 (y).

LEMMA A.2.5. For all &1,&2 € ,(m,H) and n1,m2 € (K,7),, we have
(v (&, €2) o) m2) e = (€, ({1, m2) ) Ea) 5, -
DEFINITION A.2.6. The relative tensor product

K ,®r M (or simply denoted by K,®, H)
%)
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is the Hausdorff completion of the pre-Hilbert space (K, 7), ® (7, H), whose
inner product is given by

(m @&,m2 @ &) i= (1, v (€1, &) we ) m2) o = (€ ({1 m2) v ) €2) 4,5

for all n1,m2 € (IC,7), and &1,&2 € o (m,H). lf ne (K,7v), and € € (7, H), we
will denote by

n ’Y®7T € (01" Simply 77'y®7r 6)
©
the image of n ® £ by the canonical map (K,7), @ (7, H) = K@ H (iso-
metric dense range).

REMARKS A.2.7.

1. By applying this construction to (N°, ¢°) instead of (N, ) we obtain the
relative tensor product H »®., K.

2. The relative tensor product K.,®,H is also the Hausdorff completion of
the pre-Hilbert space (K,7), ®@H (resp., K® (7, H)), whose inner product
is given by:

(m @&,m2 @ &) = (&, m((m,m2)v) &),
(resp., (m ®&1,m2 ® &a) == (11,7 ((€1,€2) No ) 2) i) -
3. Moreover, for all n € K, € € ,(m,H) and y € N analytic for (6] )icr we have
YY), @r € =15@r (07, 5 ())&

A.2.8. The relative flip map is the isomorphism 2" from K ,®; H onto
H ~®, K given by: ®
oo

o'lﬂ-(n 'y®7r 5) = f 7r®'y 777
®» ®°

for all £ € (KC,7), and n € ,(m,H) (or simply oyr).
Note that o)™ is unitary and (0)™)* = od. Then we can define a relative flip

*-homomorphism

)7 B(K y@r H) = B(H -®, K) (or simply denoted by ¢,r)
@ ®°
by setting )™ (X) := 0" X (o[")* for all X € B(K @~ H).
»

Fiber product of von Neumann algebras. We continue to use the notation of
the previous paragraph.

PROPOSITION-DEFINITION A.2.9. Let K; and H; be Hilbert spaces, and
vi: N° = B(K;) and m; : N — B(H;) be unital normal x-homomorphisms for
i=1,2. LetT € B(K1,K2) and S € B(H1,Ha) such that T oy, (n°) =~2(n°)oT
and Som(n) =ma(n) oS for alln € N. Then the linear map

(lcl,'}/l)g,o@go(ﬂlaﬂl)HK272®#2H2; §®n'_>T§’Y2®7T2 577
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extends uniquely to a bounded operator 1,1 ®r, Sz, € B(Ki 4, ®r, Hi,
K21, ®@r, Ho) (or simply denoted by T ., ®x, S), whose adjoint operator is
1 T @y S*ny (o1 simply T 1, @5, S*). In particular, if x € v(N°)' and
y € w(N)', then the linear map

(KiMe ©p(mHM) = K@ H; 00— a8,Qxyn
extends uniquely to a bounded operator on K ®rH denoted by = ,Qry €
B(K,@,H).

REMARK A.2.10. With the notations of Proposition-Definition A.2.9, let
T:Ky — He and S :Hy — Ko be bounded antilinear maps such that T o
Y1 (n®)* =ma(n)oT and Som;(n) =~2(n°)* oS for all n € N. In a similar way,
we define ,T 1, ®~, Sz, € B(K1 4, ®r, Hi, Ha 7y @4, K2) (or simply T, ®-, 5).
Note that these notation are different from those used in [17], [20].

Let M C B(K) and P C B(H) be two von Neumann algebras. Let us assume
that 7(N) C P and v(N°) C M.

DEFINITION A.2.11. The fiber product M %, P of M and P over N is
the commutant of {z,®,y; € M',ye P'} C B(K,®xH). Then M %, P is
a von Neumann algebra.

Note that we have ¢,r(M % P) = P %, M. We still denote by ¢y :
M %z P — P %, M the restriction of ¢,r to M ,x, P.

A.2.12. Slicing with normal linear forms. Now, let us recall how to slice
with normal linear forms. For £ € (K,7v), and n € ,(m,#H), we consider the
following bounded linear maps:

Agﬂ:’H%’C'y@ﬂ"H? CHS’Y@WC’
Py K= K @ H, (=@,
Let T € B(Ky®-H) and w € B(H). (resp., w € B(K).). By using the fact
that (KC,7), (resp., o(m,H)) is dense in H (resp., K), there exists a unique
(id y %7 w)(T) € B(K) (resp., (w*xid)(T) € B(H)) such that
(&1, (i yrr w)(T)&2) = w((ALT) 'TALT),  for all &,8 € (K,7),
(resp., (n1, (warr id) (D)) =w ((037) Tpy7 ), for all mu,mp € o (m, H)).
In particular, we have:
(id yxr Wiy ) (T') = (p;ﬁr)*Tp;;;r €B(K), forall ni,m2 € ,(m,H);
(We, 6 v 1) (T) = (AIT)"TAT € B(H), for all &1,& € (K, 7).
If v € M x; P, then for all w e B(H). (resp., w € B(K).) we have
(id y*r w)(x) € M (resp., (w*rid)(x) € P). We refrain from writing the de-
tails but we can easily define the slice maps if T" takes its values in a different

relative tensor product. Note that we can extend the notion of slice maps for
normal linear forms to normal semi-finite weights.
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Fiber product over a finite-dimensional von Neumann algebra. Now, let us

assume that
= @ Mm((c> and P = @ ’I‘rl(ﬂ_
1<i<k 1<I<k

where F] is a positive invertible matrix of M,,, (C) and Tr; is the nonnormalized
trace on M, (C). Denote by (Fj;)1<ign, the eigenvalues of Fj.

PROPOSITION-DEFINITION A.2.13 (87 [13]). The bounded linear map
v;" KOH =K ®x H;
@

ERN—EL®xn  (or simply denoted by v.yr)
%)

is a coisometry if, and only if, we have Zlgigm Ffil =1 forall1<I<Ek.
In the following, we assume the above condition to be satisfied.

PROPOSITION-DEFINITION A.2.14 (§7 [13]). Let us denote
qy" = (vg’r)*v;” (or simply qyr).
Then g7 is a self-adjoint projection of B(K @ H) such that

gy = Z Z F—1/2 —1/2 ((l) )®7r( (l))

1<IKk 1Ke,5<ny

where, for all 1 <1<k, (ez(';'))lgi,jgm is a system of matriz units (s.m.u.) di-
agonalizing Fy, that is, F; = Zlgignl Fl,ieg?. Moreover, M %, P — " (M®
P)q)™; o= (v27)*zv)™ is a unital normal x-isomorphism.

Since N is finite-dimensional, the inner product given by (x,y) := ¢(z*y)
for all x,y € N defines a structure of finite-dimensional Hilbert space on N.
We have a (bounded) linear map i, : N ® N — N defined for all z,y € N

by pe(x ®y) =zy, where N ® N is endowed with its canonical structure of
finite-dimensional Hilbert space.

PROPOSITION-DEFINITION A.2.15. For i =1,2, let m; : N — B(H;) be a
unital normal x-representation of N on a Hilbert space H;. Let us denote

g™ = (m @ m) (u,(1n)) € B(H1 @ Ha)  (or simply ¢, x,)-
We denote g :=qZ*™ (or simply qm) for short. Then we have

@@= > Film(el)) @m(el),

1<IKk 1<4,5<n;

where, for all 1 <1<k, (eg))lgi,jgm is a s.m.u. diagonalizing Fy.
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Proof. For 1 <1<k, fix a s.um. (egé))lgi,jgm of M,,, (C) diagonalizing F;.
It suffices to prove that

Bin= Y X Fded)

1<IKk 1K4,5<n;

Since 1y = Zl<l<k dici<n eg?, it is enough to prove that

Z F ®e(l) for all 1 <r,s < n;.
1<i<ny
@) —1/2 (z
Let (f;;") be the family of N given by f = I for all 1 <1<k and

1<4,j5 <ny. It is clear that (f-(.)) is an orthonormal ba31s of N. We have
go(eglq)) Trl Fle(l) ZFZ Trl e e )) =F T (egg) = Fl’ség.

‘We have

1 W

6(1 Z Z Z <% e(l (z ) ®f(z” >fi(]l'/) ®fz()é")

Ul'"=114,j =1p,q =1

nyr g

Z SN S E E (e, el Yell) g el

"=114,5 =1p,q =1

ny
_Z Z 5[/57“ [’1F‘ll_q90( )) (l)®e(l)
U'=17%,7,9 =1
se) o o)
=3 g )

J,q=1
ny
—1 ( l
=R o)
j=1

REMARKS A.2.16.

1. For i =1,2, let v; : N° = B(K;) be a unital normal x-representation of N°
on a Hilbert space ;. In a similar way, we define ¢t" € B(K; ® K3) (or
simply ¢,~,) such that

vlw_z Z Fu% )®7((l)0)

1<IKk 1K, 5€<n

O

where, for all 1 <1<k, (e (l))1<w<n, is a s.m.u. diagonalizing Fj.

2. It should be noted that ¢7'™ and q"’”z are self-adjoint but not idempotent
in general. If N is commutative (i.e., N = CF), then qz'™ and qsz
projections.

are
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Case of the nmonnormalized Markov trace. In this paragraph, we take for
¢ the nonnormalized Markov trace on N=@1<l<k M, (C), that is, € =
@D1<i<x ™ - Try. From now on, the operators ¢)7, gf', ¢7'™ and g0 will
be sirr;ply denoted by ¢yr, Gryy @rym, and gy,~,. As a corollary of Proposition-
Definition A.2.14, we have the following.

PROPOSITION A.2.17. For all s.u.m. (67(';'))1<l<k,1<i,j<m of N, we have

b= Yt Y Al on(el) and

1<ILk 1<i,5<n
_ § : § : (l) Do
(Jﬂ"y* nl (]Z )
1<ILk 1<i,5<ny

As a corollary of Proposition-Definition A.2.15, we have:

PROPOSITION A.2.18. For all s.u.m. (6,(»?)1<z<k,1<i,j<m of N, we have

T Z n; ! Z m (el(-é-))®7r2(e§-?) and

1<ISk 1<i, i<
_ -1 § : (l)o (l)
Qv = E : n ’7( )®’Y( )
1<Kk 1<4,5<m

The following result is a slight generalization of Proposition A.2.17 to the
setting of C*-algebras.

PROPOSITION-DEFINITION A.2.19 (2.6 [2]). Let A, B be two C*-algebras.
We consider two non-degenerate x-homomorphisms y4 : N°© — M(A) and 7p :
N — M(B). There exists a unique self-adjoint projection ¢, ., € M(A® B)
(1esp., Gnpya € M(B ® A)) such that

Grams = D m b > Aalelf?) @mp(el))

1<ISk 1<i,j<n

_ -1 @ (Do
(resps o= 35t 3 (el onalell))

1<I<k 1<i,j<ny

for all s.u.m. (egé))lglgk,lgi,jgm of N.

Proof. The uniqueness of such a self-adjoint projection is straightforward.
In virtue of the Gelfand—Naimark theorem, we can consider faithful nonde-
generate x-homomorphisms 04 : A — B(K) and 05 : B — B(H). Let us denote
v:=6040v4 and 7:=0gompg. Then v: N° — B(K) and 7: N — B(H) are
normal unital x-representations. Let us fix an arbitrary s.u.m. (65?)1@4@1
for My, (C) for each 1 <1< k. We define a self-adjoint projection ¢, ., €
M(A ® B) by setting:

Qyamp "= Z nl_1 Z VA( (l)0)®7T ( Elz))

1<Isk 1<i, i<
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By Proposition A.2.17, we have ¢y = (04 ®05)(¢y x5 )- By using again Propo-
sition A.2.17 and the fact that 64 ® 0p is faithful, we obtain that qy,r, is
independent of the chosen systems of matrix units. Moreover, the definition
of ¢y, shows that g,,~, is also independent of the chosen faithful nonde-
generate x-homomorphisms 64 and 6pg. (]

In a similar way, we have the following generalization of Proposition A.2.18
to the setting of C*-algebras.

PROPOSITION A.2.20. Fori=1,2, let B; (resp., A;) be a C*-algebra and
it N = M(B;) (resp., vi: N° = M(A;)) a nondegenerate x-homomorphism.
Then there exists a unique ¢r,~, € M(B1 ® Ba) (resp., Gy ~, € M(A1 ® Az))

such that
e = Y ot > mel)) @m(el))

1<ILk 1<4,j<ny
_ 1 (o (o
(resp., Qe = E n; E ’Yl(eij )®’Y2(€jz‘ ) )
1<k 1<ij<m

!
for all s.u.m. (egj))lglghlgi,jgm of N.

In the following, we adopt a multi-index notation to simplify formulas and
computations.

NoTATION A.2.21.

1. Consider the index sets .# := {(l,4,7); 1 <1< k,1<4,5 <nm} and F =
S U{z}.

2. For I =(l,i,7) € .#, we denote I :=(l,j,i) € .. Denote also & := &. The
map %y — ;I — I is involutive.

3. A pair of indices (I,J) € £ x . is said to be composable if we have I =
(l,4,m) and J = (I,m,j) for some indices 1 <I <k and 1<i,m,j <ny. In
this case, we denote IJ := (l,4,7) € #. We also denote IJ = if I and J
are not composable, I = @ or J = &. This defines a map % x Hy — H;
(I,J) s 1J. 1t is clear that I.J = JI for all I,J € .%,.

@
Let us fix a s.u.m. (eij )1<l§k,1<i7j<m of N.

NOTATION A.2.22.

1. Denote by ¢ := ef;;-) for I =(l,i,j) € # and €5 :=0. Denote by ey :=7(er)
and fr:=(e9) for I € #. Denote by n; :=mn; for I =(l,7,j) € & and
ng := 1. Notice that we have ny =n; for all I € .%,.

2. Since (e7)7e.s is a basis of N, for x € N we denote =) ;. , = -€, with
vy €C for I €.7. Note that z* =3, ,T7 €1
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REMARKS A.2.23. 1. For all I,J € .9, we have ¢} =¢7 and €165 =¢€1.
For all 1,J € ¥, we have:

G}ZGT, €rejg =e€ry; f;:ffv fIfJ:fJI~

2. We have gyr =3 1c yny  f1Q€7, Qe =Y 1e s M7 €1 I, G =Y e s €19
erand ¢y =) , f1® fr.

A.3. Unitary equivalence of Hilbert C*-modules. In the following, we
recall the notion of morphism between Hilbert modules over possibly different
C*-algebras.

DEFINITION A.3.1. Let A and B be two C*-algebras and ¢: A — B a
x-homomorphism. Let & and .# be two Hilbert C*-modules over A and B
respectively. A ¢-compatible operator from & to .# is a linear map ®: & — F
such that:

(i) forall € & and a € A, ®(€a) = ()P (a);
(i) for all {,n € &, (BE, ) = ¢ ((€,m))-

Furthermore, if ¢ is a *-isomorphism and @ is surjective, we say that @ is ¢-
compatible unitary operator (or a unitary equivalence over ¢) from & onto .%.

REMARKS A.3.2.

1. It follows from (ii) that ®:& — .% is bounded and even isometric if ¢ is
faithful. Indeed, we have [[(®E, Pn)|| = ||¢({&,n)|| = [|[{€,n)]|| for all £,n €
£. Then, for all € € & we have |¢]? = [[(b€, )| = (€, &) = €]
In particular, if ¢ is a *-isomorphism and ® is a ¢-compatible unitary
operator, then ® is bijective and the inverse map ®~!:.#% — & is a ¢~ !-
compatible unitary operator.

2. It is clear that idg is a id4-compatible unitary operator. Let A, B, and
C be C*-algebras and &, .%, and ¢ be Hilbert modules over A, B, and
C, respectively. Let ¢ : A — B and ¢ : B — C be *-homomorphisms (resp.,
x-isomorphisms). If & : & — .7 is a ¢-compatible operator (resp., unitary
operator) and ¥ :.% — ¢ a 1-compatible operator (resp., unitary oper-
ator), then Wo®:& — ¢ is a 1 o ¢-compatible operator (resp., unitary
operator).

3. Let & : & — % be a unitary equivalence over a given #-isomorphism ¢. If
T € L(&), then the map ®oT o ®~!:.% — .F is an adjointable operator
whose adjoint operator is ® ' oT* o ®. We define a *-isomorphism £(&) —
L(F); T ®oTod . Note that ®o g, 0P ! =0g¢ o, for all {,ne .
In particular, for all k € k(&) we have ®oko®~! € K(.#). More precisely,
the map K(&) — K(F); ks ®oko®~! is a *-isomorphism.

The notion of unitary equivalence defines an equivalence relation on the
class consisting of all Hilbert C*-modules (cf. Remarks A.3.2(1), (2)). Actually,
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this notion of morphism between Hilbert modules over possibly different C*-
algebra can be understood in terms of unitary adjointable operator between
two Hilbert modules over the same C*-algebra.

PRrOPOSITION A.3.3. Let A and B be two C*-algebras and ¢ : A— B a
x-isomorphism. Let & and ¥ be two Hilbert C*-modules over A and B, re-
spectively.

1. If ®: 8 — F is a surjective ¢p-compatible unitary operator, then there exists

a unique unitary adjointable operator U € L(& @4 B, F) such that U(§

b) =(&)b, for all £ €& and b e B.

2. Conwversely, if U € L(E ®qy B, F) is a unitary, then there exists a unique
¢-compatible unitary operator ® : & — F such that (§)b=U(£ ®4b) for

allé € & and be B.

As an application of the above proposition, we can the state the following
result.

PROPOSITION-DEFINITION A.3.4. Let Ay, By, Aa, and By be C*-algebras,
¢1: A1 — By and ¢o : Ay — By x-isomorphisms. Let &, F1, &, and Fo be
Hilbert C*-modules over Ay, By, As, and Bs, respectively. Let ®1 : & — F
and Oy : & — Fo be unitary equivalences over ¢ and ¢o respectively. Then
the linear map & © & — F1 Q@ Fo; & Q@ &a > P1(&1) ® Do(&2) extends to a
bounded linear map 1 @ &g : & ® & — F1 Q@ Fo. Moreover, &1 @ Oy is a
01 ® po-compatible unitary operator.

The notion of unitary equivalence can also be understood in terms of iso-
morphism between the associated linking C*-algebras.

ProrosITION A.3.5. Let A and B be two C*-algebras and ¢: A — B a
x-isomorphism. Let & and F be two Hilbert C*-modules over A and B, re-
spectively.

1. If ®: & — F is a p-compatible unitary operator, then there exists a unique
«-homomorphism f: K(& @& A) = K(F & B) such that fore =1z 0P and
foia=1tpoo. Moreover, f is a x-isomorphism.

2. Conwversely, let f: (& & A) = K(F @ B) be a x-isomorphism such that
foia=1po¢. Then there exists a unique map ® : & — F such that fore =
Lz o ®. Moreover, ® is a ¢p-compatible unitary operator.

Proof. 1. The *-homomorphism f: (& & A) — K(.Z @ B) is defined by
(cf. Remarks A.3.2(3)):

f(k g)l_(quoq)—l <1>g>
ntoa) o\ (Pn)T ¢(a))’
for all k e K(&),&,n € & and a € A.

2. This is a straightforward consequence of Lemma 2.3.4(1). O



ACTIONS OF MEASURED QUANTUM GROUPOIDS ON A FINITE BASIS 211

NoOTATION A.3.6. Let A, B be C*-algebras and & and % be two Hilbert

C*-modules over A and B, respectively. Let ¢: A — B be a *-isomorphism
and @ : & — .F a ¢-compatible unitary operator. If T € L(A, &), we define
the map 5(T) =®oTo¢p ':B—.%. By a straightforward computation, we
show that ®(T) € L(B,.Z) whose adjoint operator is ®(T)* = ¢ o T* o L.
We have a bounded linear map @ : £(A, &) — L£(B,.7), which is an extension
of ® up to the canonical injections & — L(A, &) and F — L(B,F).
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Algg, category of G-C*-algebras,
142
A x G, crossed product, 143

B x Q\, crossed product, 144

C(—), 121

Chr, 200

Af;, 132

o5, 134

6%, iterated coaction map, 140
D, bidual G-C*-algebra, 145
5112]_, 146

o), 147

(€1,€2), standard basis of C2, 131
Eap, 142

Ep.a, 144

EaR, 145

e, 208

€r, fla 208

GG, ,G,, colinking measured
quantum groupoid, 134

A, 132

LAsLE LE* LK (&), Canonical
morphisms, 122

Uy, 134

Indgf (A1), induced C*-algebra,
147

Indgf (&1), induced Hilbert
module, 173

., multi-index set, 208

jip, 145

K, C*-algebra of compact
operators on the G.N.S.
space L2(G), 135

Kar, Ky, 202

L, R, p, A\, canonical
representations of .S and S,
130

M,,, (C), square matrices of order
n; with entries in C, 115

M(& ® B), relative multiplier
module, 123

M;j, 132

N, M, 199

Nt extended positive cone, 200

N, ML, My, 201

@, 198
we , 198

Dij, 131

Pij, Yij, 132

T, 142

7, 0, 142

T, 143

m, 0, 144

TR, 145

ﬂf, 71'1]2’]47 146

m;, 148

7, 149

H?, 168, 184

II;, 182

Il;, 185

©°, opposite weight, 199
¢, commutant weight, 202

qj, 4A,j, 146
qr, 150
q,gyj, 167
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Qyms Grrys 205
QTI'17T27 Q7I'1? 205

Rg, unitary coinverse, 126
¢, L, 202

S, §, weak Hopf C*-algebras, 129

Sij, 134

Oyr/Syn, relative flip
map/*-homomorphism, 203

Tr;, non-normalized Markov trace
on M, (C), 127
Te, 154

U, 126

Vv,V 121
V, W, V, multiplicative partial
isometries, 128
i Wi, Vi, 133
V, 145
v}, 168, 184

U~x, canonical coisometry, 205

W, pseudo-multiplicative unitary,
126

Z(—), center, 126
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