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ON STRICT WHITNEY ARCS AND t-QUASI

SELF-SIMILAR ARCS

DAOWEI MA, XIN WEI AND ZHI-YING WEN

Abstract. A connected compact subset E of RN is said to be
a strict Whitney set if there exists a real-valued C1 function f

on R
N with ∇f |E ≡ 0 such that f is constant on no non-empty

relatively open subsets of E. We prove that each self-similar arc

of Hausdorff dimension s > 1 in R
N is a strict Whitney set with

criticality s. We also study a special kind of self-similar arcs,

which we call “regular” self-similar arcs. We obtain necessary

and sufficient conditions for a regular self-similar arc Λ to be a

t-quasi-arc, and for the Hausdorff measure function on Λ to be

a strict Whitney function. We prove that if a regular self-similar

arc has “minimal corner angle” θmin > 0, then it is a 1-quasi-
arc and hence its Hausdorff measure function is a strict Whitney

function. We provide an example of a one-parameter family of

regular self-similar arcs with various features. For some values

of the parameter τ , the Hausdorff measure function of the self-
similar arc is a strict Whitney function on the arc, and hence

the self-similar arc is an s-quasi-arc, where s is the Hausdorff

dimension of the arc. For each t0 ≥ 1, there is a value of τ such

that the corresponding self-similar arc is a t-quasi-arc for each

t > t0, but it is not a t0-quasi-arc. For each t0 > 1, there is a value

of τ such that the corresponding self-similar arc is a t0-quasi-arc,
but it is a t-quasi-arc for no t ∈ [1, t0).
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1. Introduction

In fractal geometry, Morse–Sard theorem (see [5]) states that if f ∈
Ck(Rm,RN ) with k ≥ max(m − N + 1,1), then the set of critical values of
f has zero Lebesgue measure in R

N . However, Whitney in 1935 constructed
a differentiable function f : R2 → R whose critical set is a fractal planar arc
γ with Hausdorff dimension log 4/ log 3, and whose set f(γ) of critical values
contains an interval and therefore has positive Lebesgue measure (see [9]).
This is called Whitney phenomenon; it seems to contradict the Morse–Sard
theorem. It is due to the fact that the arc γ is a fractal and f has lower
smoothness. Such a set is called a Whitney set.

Definition 1.1. A connected set E ⊂RN is said to be a Whitney set, if there
is a C1 function f :RN →R such that ∇f |E ≡ 0 but f |E is not constant. The
function f is said to be a Whitney function for E, and its restriction f |E to
E is said to be a Whitney function on E. If a Whitney function f |E on E
is non-constant on each non-empty relatively open subset of E, then f |E is
said to be a strict Whitney function on E, f is said to be a strict Whitney
function for E, and the set E is said to be a strict Whitney set.

The following special case of the Whitney Extension Theorem [8] will be
used.

Lemma 1.2. Suppose that E ⊂RN is compact and f :E →R is a function.
If for each ε > 0, there exists δ > 0 such that for each pair of points x, y ∈E
with |x− y|< δ, one has |f(x)− f(y)| ≤ ε|x− y|, then there is a C1 extension

f̃ :RN →R of f such that f̃ |E = f and ∇f̃ |E ≡ 0.

Lemma 1.2 suggests the following definition.

Definition 1.3. A compact connected metric space A is said to be a Whitney
set if there is a non-constant function f : A → R such that |f(x) − f(y)| =
o(dA(x, y)) for x, y ∈A.

By Lemma 1.2, for a compact connected subset A of RN , Definition 1.3 is
consistent with Definition 1.1.

About Whitney sets, we know the following.

(a) For a set E ⊂R
N , if every pair of points in E are connected by a rectifiable

arc lying in E, then E is not a Whitney set (Whyburn [10], 1929).
(b) For a continuous function g : R→ R, the graph G of g is not a Whitney

set (Choquet [2], 1944).

Due to lack of work on critical sets with fractal feature, it is natural to ask
how to characterize Whitney sets geometrically. Whitney posted this problem
in his original paper [9]. The problem can be stated as follows.

Given a function f , how far from rectifiable must a closed connected set be
to be a critical set for f on which f is not constant?
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Definition 1.4 ([7]). Let Λ be an arc, a homeomorphic image of the interval
[0,1] in R

N , and let Λ be a Whitney set. Then Λ is said to be a monotone
Whitney arc if there is an increasing Whitney function f on Λ.

Xi and Wu ([11]) in 2003 gave an interesting example of a Whitney arc
which is not a monotone Whitney arc.

Xi and Wu’s Whitney arc γ mentioned above is not a strict Whitney set
because it contains small line segments, and each Whitney function on γ must
be constant on those line segments. It is not known whether there exists a
strict Whitney arc which is not a monotone Whitney arc.

A mapping f : (A,dA)→ (B,dB) between two metric spaces is said to be
non-expanding if dB(f(x), f(y))≤ dA(x, y) for x, y ∈A.

Wen and Xi obtained the following geometric characterization of Whitney
sets (see [7, Theorem 1]).

A compact connected metric space A is a Whitney set if and only if there
is a non-expanding mapping from A onto a monotone Whitney arc.

The “if” part is immediate because the “pull-back” of a Whitney function
on the monotone Whitney arc is a Whitney function on A. The “only if” part
can be seen as follows.

Suppose that f is a Whitney function on A with f(A) = [0,1]. Let B = [0,1].
For 0≤ s < t≤ 1, set

dB(s, t) = inf

{
n−1∑
i=0

D(ti, ti+1) : s= t0 < t1 < · · ·< tn = t

}
,

D(s, t) = inf
f(x)=s,f(y)=t

dA(x, y).

Then dB extends in an obvious way to be a distance function on B. The
metric space (B,dB) is a monotone Whitney arc since the identity map τ :
B → [0,1] is a monotone Whitney function on B. Moreover, f : A→ B is a
non-expanding map. For details, see [7, p. 315].

Definition 1.5. Let Λ be an arc, a homeomorphic image of the interval [0,1]
in R

N , and let t≥ 1. The arc Λ is said to be a t-quasi-arc, if there is a constant
λ > 0 such that ∣∣Λ(x, y)∣∣t ≤ λ|x− y|(1)

for each pair of points x, y ∈ Λ, where |Λ(x, y)| is the diameter of the subarc
Λ(x, y) lying between x and y. A 1-quasi-arc is called a quasi-arc.

Note that (1) does not hold when t < 1, because |Λ(x, y)| ≥ |x− y|. One
can see that if an arc Λ is a t0-quasi-arc, then Λ will be a t-quasi-arc for all
t≥ t0. Therefore, each quasi-arc is a t-quasi-arc for each t≥ 1.
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With the above definition of t-quasi-arcs, Norton (see [4]) obtained the
following sufficient condition for an arc Λ to be a Whitney set: if Λ is a t-
quasi-arc and if t is less than the Hausdorff dimension dimH(Λ) of Λ, then Λ
is a Whitney set.

Seeking for necessary conditions for a t-quasi-arc to be a Whitney set,
Norton posed the following question (see [4]): is there an arc Λ and a C1

function f critical but not constant on Λ such that for every subarc η of Λ on
which f is not constant, η is a t-quasi-arc for no t ∈ [1,∞)?

In [6], Wen and Xi gave an affirmative answer to the above question. They
gave a Whitney function f on a self-similar arc Λ such that each subarc of Λ
is a t-quasi-arc for no t ∈ [1,∞). In that paper, the function f is constant on
some subarcs of Λ, which means that f is not a strict Whitney function on Λ.
We are interested in finding a strict Whitney function on Λ.

In [4], Norton also considered the criticality of Whitney sets.

Definition 1.6. For a Whitney set E, the Criticality of E is defined to be

Cr(E) = sup
{
r : there exists a non-constant function f :E →R

and an M > 0 such that
∣∣f(x)− f(y)

∣∣ ≤M |x− y|r ∀x, y ∈E
}
.

If E is a Whitney set, then 1 ≤ Cr(E) ≤ dimH(E) (see [4]). Recall that
dimH(E) is the Hausdorff dimension of E.

Wen and Xi worked on self-similar arcs in [6], and obtained that each self-
similar arc of Hausdorff dimension greater than 1 is a Whitney set. In this
paper, we obtain the following result.

Theorem 1.7. Let Λ be a self-similar arc of Hausdorff dimension s > 1.
Then Λ is a strict Whitney set with criticality Cr(Λ) = s.

Theorem 1.7 improves the main result in [6] in two aspects. First, the con-
structed Whitney function is strictly monotone. Second, the involved Hölder
component s̃ is arbitrarily close to the Hausdorff dimension s, hence it deter-
mines the criticality to be exactly s.

In Section 4, we define “Condition Wp” for a self-similar arc at the p-th
vertex, and prove that for a self-similar arc Λ with �+1 vertices, the Hausdorff
measure function is a Whitney function on Λ if and only if Condition Wp is
satisfied for p= 1, . . . , �− 1. We also define “Condition Qt

p”, and prove that a

self-similar arc is a t-quasi-arc if and only if Condition Qt
p is satisfied for all

“inner vertices”.
In order to have a better understanding of self-similar arcs, we introduce

the notion of regular self-similar arcs in Section 5. Roughly speaking, a regular
self-similar arc is a self-similar arc in R

2 generated by a “basic figure” with
certain properties. One classical example of regular self-similar arc is the Koch
curve.
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In Section 6, we further analyze Conditions Wp and Qt
p for regular self-

similar arcs, and reduce them to certain inequalities. We first prove that if
the p-th corner angle θp > 0 then Conditions Wp and Qt

p (for each t ≥ 1)
are satisfied. Consequently, a regular self-similar arc with positive corner an-
gles is necessarily a quasi-arc and its Hausdorff measure function is a strictly
monotone Whitney function.

In case a corner angle is zero, Condition Wp and Condition Qt
p are reduced

to inequalities about specific parameters of the self-similar arc. By using these
algebraic expressions, we could easily recognize t-quasi-arcs among regular
self-similar arcs and determine whether the Hausdorff measure function on a
regular self-similar arc is a Whitney function.

In the last section, we provide an example of a one-parameter family of
regular self-similar arcs with various features. For some values of the parame-
ter τ , the Hausdorff measure function on the self-similar arc is a strict Whitney
function, and hence the self-similar arc is an s-quasi-arc, where s is the Haus-
dorff dimension of the arc. For each t0 ≥ 1, there is a value of τ such that the
corresponding self-similar arc is a t-quasi-arc for each t > t0, but it is not a
t0-quasi-arc. For each t0 > 1, there is a value of τ such that the corresponding
self-similar arc is a t0-quasi-arc, but it is a t-quasi-arc for no t ∈ [1, t0).

In the construction of the above mentioned one-parameter family of self-
similar arcs, a crucial step in the reasoning is that the self-similar arc is
a t-quasi-arc if and only if the parameter τ has approximation property
J(t−1) log(15/7). See Definition 7.1 for the definition of approximation prop-
erty Ja.

The significance of the given family of self-similar arcs lies in that it provides
a method to produce various examples.

2. Self-similar arcs

A mapping F :RN →R
N is said to be a contractive mapping if there exists

k ∈ [0,1) such that |F (x)− F (y)| ≤ k|x− y| for all x, y ∈R
N .

A compact set K ⊂ R
N is said to be invariant with respect to a finite set

S = {S1, . . . , S�} of contractive mappings on K, if

K =
�⋃

j=1

Sj(K).

In [3], Hutchinson gave the following theorem.

Theorem 2.1. Let X = (X,d) be a complete metric space and let S =
{S1, . . . , S�} be a finite set of contractive mappings on X . Then there exists a

unique closed bounded set K such that K =
⋃�

j=1 Sj(K). Furthermore, K is
compact and is the closure of the set of fixed points sj1...jp of finite composi-
tions Sj1 ◦ · · · ◦ Sj� of members of S .
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A mapping S :RN →R
N is called a similitude if there is an r > 0 such that∣∣S(x)− S(y)

∣∣ = r|x− y|, for x, y ∈R
N .

If 0< r < 1, we say that S is a contractive similitude.
Suppose that S := {S1, . . . , S�} is a family of contractive similitudes with

ratios r1, . . . , r�. Then there is a unique set E satisfying

E =

�⋃
i=1

Si(E).

The set E is called the self-similar set associated to S .

Definition 2.2. The compact self-similar set Λ associated to a family of con-
tractive similitudes S = {Si}1≤i≤� is called a self-similar arc if the following
two conditions are satisfied:

(1) Si(Λ)∩ Sj(Λ) is a singleton for |i− j|= 1;
(2) Si(Λ)∩ Sj(Λ) = ∅ for |i− j|> 1.

Let Λ be the self-similar arc associate to a family S = {S1, . . . , S�}. The
Hausdorff dimension s of Λ is determined by the equation

�∑
j=1

rsj = 1,

where {rj}�j=1 are the contractive ratios of {Sj}�j=1 (see [3]). We say that a
self-similar arc Λ is non-trivial if the Hausdorff dimension of Λ is s > 1, i.e., Λ
is not a line segment.

Suppose that the non-trivial self-similar arc Λ is defined by a homeomor-
phism h : [0,1] → Λ so that h(0) ∈ S1(Λ). For x, y ∈ Λ, we say that x pre-
cedes y, and write x≺ y, if h−1(x)< h−1(y). Then we define intervals on Λ,
[x, y] = {z ∈ Λ : x � z � y}. Now on Λ, there are points z0 ≺ z1 ≺ · · · ≺ z� so
that Sj(Λ) = [zj−1, zj ]. Set S(k) = {Sj1 · · ·Sjk : 1 ≤ j1, . . . , jk ≤ �} for k ≥ 1

and S(0) = {Id}. Here SjSi = Sj ◦ Si, S
k
j = Sj · · ·Sj (k times), etc.

By Definition 1.5, for x, y ∈ Λ , Λ(x, y) is the subarc between x and y. Here,
we denote by [x, y] the subarc from x to y. So Λ(x, y) = [x, y] or Λ(x, y) = [y,x].

The sets Sj1 · · ·Sjk(Λ) are intervals on Λ overlapping only at end points.

Thus there are points z
(k)
j , j = 1, . . . , �k, and a numbering {S(k)

j : 1≤ j ≤ �k} of

elements of S(k) such that z
(k)
0 ≺ z

(k)
1 ≺ · · · ≺ z

(k)

�k
and S

(k)
j (Λ) = [z

(k)
j−1, z

(k)
j ]. In

other works, S
(k)
j is the unique member of S(k) which maps Λ to [z

(k)
j−1, z

(k)
j ].

If k ≤m, we have

z
(k)
j = z

(m)

j�m−k .(2)

Note that S
(k)
1 is not necessarily equal to Sk

1 , because S1 may be “order
reversing”.
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A similitude Sj1 · · ·Sjk is order-preserving if Sj1 · · ·Sjk(z0)≺ Sj1 · · ·Sjk(z�);
otherwise it is called order-reversing.

Let τ be the function on the collection of finite sequences (j1, . . . , jk) of
members of {1, . . . , �} defined by

(3) τ(j1, . . . , jk) =

{
1, if Sj1 · · ·Sjk order-preserving,

−1, if Sj1 · · ·Sjk order-reversing.

The mapping Sj1Sj2 is order-preserving if Sj1 and Sj2 are both order-
preserving or both order-reversing; it follows that τ(j1, . . . , jk) = τ(j1) · · · τ(jk).

It would be more convenient for us if S1 and S� are order-preserving. Of
course, that is not the case in general. One might hope that when S1 and S�

are not both order-preserving, S
(k)
1 and S

(k)

�k
could be made order-preserving

by choosing k suitably. Unfortunately, that could not be achieved either. In
other words, [6, Lemma 1] is incorrect.

Example 2.3. Suppose that S1 is order-preserving, S� is order-reversing,

and k > 1. Since S
(k)

�k
is the unique composition Sj1 · · ·Sjk such that

Sj1 · · ·Sjk(Λ) � z�, and since S�(S
k−1
1 )(z0) = z�, it follows that S

(k)

�k
= S�S

k−1
1 .

Therefore, S
(k)

�k
is order-reversing for each k > 1.

By arguments similar to above, we obtain

S
(k)
1 = Sk

1 , S
(k)

�k
= Sk

� , if τ(1) = 1, τ(�) = 1,

S
(k)
1 = Sk

1 , S
(k)

�k
= S�S

k−1
1 , if τ(1) = 1, τ(�) =−1,

S
(k)
1 = S1S

k−1
� , S

(k)

�k
= Sk

� , if τ(1) =−1, τ(�) = 1,

S
(2k)
1 = (S1S�)

k, S
(2k)

�k
= (S�S1)

k, if τ(1) =−1, τ(�) =−1,

S
(2k+1)
1 = (S1S�)

kS1, S
(2k+1)

�k
= (S�S1)

kS�, if τ(1) =−1, τ(�) =−1.

(4)

We now define a homeomorphism g from [0,1] onto Λ, which has properties
necessary for the proofs of several theorems. Set

Γ =
{
z
(k)
j : k ≥ 1,0≤ j ≤ �k

}
,

Q=

{
j

�k
: k ≥ 1,0≤ j ≤ �k

}
⊂ [0,1].

Let g :Q→ Γ be defined by

g

(
j

�k

)
= z

(k)
j .(5)

By (2), g is well defined. By its very definition, the function g is bijective
and order-preserving, that is, u < v implies that g(u)≺ g(v). Since Q is dense
in [0,1] and Γ is dense in Λ, g extends to be a homeomorphism from [0,1]
onto Λ.
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Suppose that α ∈ [0,1]\Q. Then we can uniquely split [0,1] into (A,B) such
that a < α< b for a ∈A and b ∈B. Then the unique point on Λ which split Λ
in (g(A), g(B)) is denoted by g(α). We have proved the following lemma.

Lemma 2.4. There is an order-preserving homeomorphism g : [0,1] → Λ
such that for each k ≥ 1 and each j = 1,2, . . . , �k, we have

g

([
j − 1

�k
,
j

�k

])
=

[
z
(k)
j−1, z

(k)
j

]
.

3. Proof of Theorem 1.7

Lemma 3.1. Let Λ be the self-similar arc associated to similitudes
S1, . . . , S�, let s > 1 be the Hausdorff dimension of Λ, let s̃ ∈ (1, s), and let
{εk} be a sequence of positive numbers with ε1 ≤ 1 and εk ↘ 0. Suppose that
the ratios rj of Sj satisfy

rs̃1 + rs̃� <

�∑
j=1

rs̃j − 1.(6)

Then there exists a number s′ ∈ (s̃, s), a sequence {τk} of positive numbers
with τk ↘ 0, and a probability measure μ on Λ such that

(i) τk ≤min(rs1, r
s
� , ε

s̃
k);

(ii) μ([x, y])> 0 if x, y ∈ Λ and x≺ y;

(iii) μ(Sj1 · · ·Sjk(E))≤ (1 + ε1)(rj1 · · · rjk)s
′
μ(E) for each Borel subset E of

Λ;
(iv) μ(Si1 · · ·Sik(Λ)) = τ1 · · · τk if in = 1 or � for n= 1, . . . , k.

Proof. By (6), we have
∑�−1

j=2 r
s̃
j > 1. By the basic property,

∑�
j=1 r

s
j = 1,

of the self-similar set Λ, we obtain that
∑�−1

j=2 r
s
j < 1. So we see that there is

an s′ ∈ (s̃, s) such that

�−1∑
j=2

rs
′

j = 1.(7)

Let r =min2≤j≤�−1 rj . Since s′ < s, we can choose γ > 0 so that s′ + γ < s

and r−(γπ2)/6 < 1 + ε1. Therefore, s
′ < s′ + γ/k2 < s for any k ∈N. It is easy

to see that when we raise s′ to s′ + γ/k2 in (7), we have the sum

�−1∑
j=2

r
s′+γ/k2

j < 1, for each k ∈N.(8)

Now let τ ′k be such that

2τ ′k +
�−1∑
j=2

r
s′+γ/k2

j = 1.(9)



STRICT WHITNEY ARCS AND t-QUASI SELF-SIMILAR ARCS 451

Because of (9) and

1 = rs1 + rs� +

�−1∑
j=2

rsj < rs1 + rs� +

�−1∑
j=2

r
s′+γ/k2

j ,

we have 0< 2τ ′k < rs1 + rs� . By (7) and (9), we know that

lim
k→∞

τ ′k =
1

2
lim
k→∞

(
1−

�−1∑
j=2

r
s′+γ/k2

j

)
=

1

2

(
1−

�−1∑
j=2

rs
′

j

)
= 0.(10)

Let τk =min(rs1, r
s
� , ε

s̃
k, τ

′
k). Then

2τk +

�−1∑
j=2

r
s′+γ/k2

j ≤ 2τ ′k +
�−1∑
j=2

r
s′+γ/k2

j = 1,

and then we can choose sk ≤ s′ + γ/k2 so that

2τk +

�−1∑
j=2

rskj = 1.(11)

By comparing (7) and (11), it follows that s′ < sk. Then s′ < sk ≤ s′ + γ/k2

and therefore sk → s′ as k→∞. Since we choose τk to be less than or equal
to τ ′k and since (10), we know that τk ↘ 0 as k→∞.

For j = 1, . . . , �, k = 1,2, . . . , we define numbers rjk by

rjk =

{
rskj , if j �= 1, �,

τk, if j = 1 or �.

Then we have
�∑

j=1

rjk = 1.(12)

We now define a probability measure μ by

μ(Λ) = 1, μ
(
Sj1 · · ·Sjk(Λ)

)
= rj1,1 · · · rjk,k.(13)

Equality (12) implies that for k = 1,2, . . . ,

μ
(
Sj1 · · ·Sjk−1

(Λ)
)
=

�∑
j=1

μ
(
Sj1 · · ·Sjk−1

Sj(Λ)
)
.

Thus the definition (13) is consistent.
Now (i), (ii), and (iv) are satisfied; it remains to prove (iii). It suffices

to show that (iii) holds for E = Si1 · · ·Sin(Λ), i.e., for arbitrary j1, . . . , jk,
i1, . . . , in,

μ
(
Sj1 · · ·SjkSi1 · · ·Sin(Λ)

)
≤ (1 + ε1)(rj1 · · · rjk)s

′
μ
(
Si1 · · ·Sin(Λ)

)
.
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We know that if 2≤ j ≤ �− 1, then

rj,k+m

rjm
=

r
sk+m

j

rsmj
≤ r−(sm−sk+m) ≤ r−(sm−s′) < r−γ/m2

;

if j = 1 or �, then

rj,k+m

rjm
=

τk+m

τk
≤ 1< r−γ/m2

.

Thus,

rj,k+m

rjm
< r−γ/m2

, j = 1,2, . . . , �,m= 1,2, . . . .

On the other hand we have that rjk < rs
′

j for j = 1, . . . , �, k = 1,2, . . .. There-
fore,

μ(Sj1 · · ·SjkSi1 · · ·Sin(Λ))

μ(Si1 · · ·Sin(Λ))
= rj1,1 · · · rjk,k

ri1,(k+1)

ri1,1
· · ·

ri�,(k+n)

rin,n

≤ rs
′

j1 · · · r
s′

jk

∞∏
m=1

r−γ/m2

= (rj1 · · · rjk)s
′
r−γπ2/6

< (1 + ε1)(rj1 · · · rjk)s
′
. �

Proof of Theorem 1.7. Let s̃ ∈ (1, s) be given. We prove that there exists a
function f on Λ, constant on no non-empty relatively open subsets of Λ, and
a constant C such that |f(x)− f(y)| ≤C|x− y|s̃ for all x, y ∈ Λ.

Suppose that Λ is the self-similar arc associated to a family S :=
{S1, . . . , S�} of contractive similitudes with ratios r1, . . . , r�. Let g : [0,1]→ Λ
be the homeomorphism defined in Lemma 2.4.

Suppose that Sj(Λ) = [zj−1, zj ], j = 1, . . . , �. For each j = 1, . . . , �− 1, we
consider sequences of points {αjk}∞k=1 and {βjk}∞k=1 in Λ which are converging
to zj , where

αjk = g

(
j

�
− 1

�k

)
,

βjk = g

(
j

�
+

1

�k

)
.

So αj1 = zj−1 and βj1 = zj+1.
In the following, let dis(X,Y ) denote the euclidean distance between the

two sets X , Y . Set

εkj =min
{
1,dis

(
[zj−1, αj,k+1], [zj , zj+1]

)
,dis

(
[zj−1, zj ], [βj,k+1, zj+1]

)}
,

and εk =min{εkj : j = 1, . . . , �− 1}.
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Since s̃ < s, we have
∑�

j=1 r
s̃
j − 1 > 0, hence (6) holds provided that r1,

r� are sufficiently small. Note that the quantity on the right-hand side of (6)
becomes larger when S is replaced by S(k). Therefore, replacing S by S(k) if
necessary, we assume that r1 and r� are so small that (6) holds.

By Lemma 3.1, there is a probability measure μ on Λ with properties
(i)–(iv) specified in the lemma.

Now we define a function f : Λ→ R by letting f(x) = μ([z0, x]). By (ii), if
x≺ y, then f(y)−f(x) = μ[x, y], hence f is non-constant on each subarc of Λ.
We shall show that there is a constant C > 0 such that∣∣f(x)− f(y)

∣∣ ≤C|x− y|s̃, for x, y ∈ Λ.(14)

Consider two distinct points x, y in Λ. Let L be the diameter of Λ and let
R=max rj . Set

W (x, y) =
{
κ : κ≥ 0, x, y ∈ S

(κ)
j (Λ) for some j,1≤ j ≤ �κ

}
.

Then 0 ∈W (x, y) and W (x, y) �= ∅. When κ > log(|x − y|/L)/ logR, the di-

ameter of S
(κ)
j (Λ) has estimate diam(S

(κ)
j (Λ))≤RκL< |x− y|, which implies

that {x, y} �⊂ S
(κ)
j (Λ), and hence κ /∈W (x, y). Thus, κ≤ log(|x− y|/L)/ logR

for κ ∈ W (x, y). Let k = maxW (x, y). Then x, y ∈ S
(k)
j (Λ) for some j with

1≤ j ≤ �k. Let x′, y′ ∈ Λ be such that x= S
(k)
j (x′), y = S

(k)
j (y′). Without loss

of generality, we assume that x′ ≺ y′. Choose integers d1, d2 so that x
′ ∈ Sd1(Λ)

and y′ ∈ Sd2(Λ). By the maximality of k, d1 < d2. We consider the following
two cases.

Case 1. Sd1(Λ)∩ Sd2(Λ) = ∅.
By the definition of f and Lemma 3.1, there exists s′ ∈ (s̃, s) such that∣∣f(x)− f(y)

∣∣ ≤ μ
(
Sj1 · · ·Sjk(Λ)

)
≤ (1 + ε1)(rj1 · · · rjk)s

′
μ(Λ).

Let δ be the least distance between two disjoint subarcs Si(Λ) and Sj(Λ) with
1≤ i+ 1< j ≤ �. Then

|x− y| ≥ dis
(
Sj1 · · ·SjkSd1(Λ), Sj1 · · ·SjkSd2(Λ)

)
= rj1 · · · rjk dis

(
Sd1(Λ), Sd2(Λ)

)
≥ rj1 · · · rjkδ.

It follows that

|f(x)− f(y)|
|x− y|s̃ ≤ (1 + ε1)(rj1 · · · rjk)s

′

(rj1 · · · rjk)s̃δs̃
.

Therefore,

|f(x)− f(y)|
|x− y|s̃ ≤ δ−s̃(1 + ε1).(15)

Case 2. Sd1(Λ)∩ Sd2(Λ) �= ∅.
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In this case, we assume that d1 = p and d2 = p+ 1. Then x′ ∈ [zp−1, zp] =
Sp(Λ), y

′ ∈ [zp, zp+1] = Sp+1(Λ). By the maximality of k, we have x′ ≺ zp ≺ y′.
Set z = Sj1 · · ·Sjk(zp). Let m be the least positive integer such that x′ ≺
αp,m+1. So αpm � x′ ≺ αp,m+1. Similarly, let q be the unique positive integer
so that βp,q+1 ≺ y′ � βpq . Then we have

|x− y| ≥ dis
(
Sj1 · · ·Sjk

(
[αp1, αp,m+1]

)
, Sj1 · · ·Sjk

(
[βp,q+1, βp1]

))
= rj1 · · · rjk dis

(
[αp1, αp,m+1], [βp,q+1, βp1]

)
≥ rj1 · · · rjk max(εm, εq).

We also have∣∣f(x)− f(y)
∣∣ = μ

(
[x, z]

)
+ μ

(
[z, y]

)
≤ μ

(
Sj1 · · ·Sjk

(
[αpm, zp]

))
+ μ

(
Sj1 · · ·Sjk

(
[zp, βpq]

))
≤ (1 + ε1)(rj1 · · · rjk)s

′(
μ
(
[αpm, zp]

)
+ μ

(
[zp, βpq]

))
= (1+ ε1)(rj1 · · · rjk)s

′
(ri1,1 · · · rim,m + rι1,1 · · · rιq,q)

≤ (1 + ε1)(rj1 · · · rjk)s
′
(rim,m + rιq,q).

Here ri1,1 = rs1p , rι1,1 = rs1p+1, rij ,j = τj for j > 1, and rιn,n = τn for n > 1. If

m> 1, then rim,m/εs̃m = τm/εs̃m ≤ 1≤ ε−s
1 . Also, ri1,1/ε

s̃
1 ≤ 1/εs̃1 ≤ ε−s

1 . In any
case, rim,m/εs̃m ≤ ε−s

1 . Similarly, rιq,q/ε
s̃
q ≤ ε−s

1 . Therefore,

|f(x)− f(y)|
|x− y|s̃ ≤

(1 + ε1)(rj1 · · · rjk)s
′
(rim,m + rιq,q)

(rj1 · · · rjk)s̃max(εm, εq)s̃

≤ 2ε−s
1 (1 + ε1).

(16)

It follows from (15) and (16) that∣∣f(x)− f(y)
∣∣ ≤C|x− y|s̃,

where C =max(2ε−s
1 , δ−s̃)(1+ ε1). Since s̃ > 1 is arbitrarily close to s, we see

that the self-similar arc Λ is a strict Whitney set and Cr(Λ) = s. �

4. Localization

In this section, we define “Condition Wp” for a self-similar arc at the p-th
vertex, and prove that for a self-similar arc Λ with �+1 vertices, the Hausdorff
measure function is a Whitney function on Λ if and only if Condition Wp is
satisfied for p= 1, . . . , �− 1. We also define “Condition Qt

p”, and prove that a

self-similar arc is a t-quasi-arc if and only if Condition Qt
p is satisfied for all

inner vertices.
Suppose that Λ is the self-similar arc associated to a family S :=

{S1, . . . , S�} of contractive similitudes with ratios r1, . . . , r�, and that the
Hausdorff dimension of Λ is s > 1. Recall that for x, y ∈ Λ with x≺ y, [x, y]
is the subarc of Λ from x to y. Let Hs([x, y]) be the s-dimensional Hausdorff
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measure of [x, y], and let f(x) = Hs([z0, x]), where z0 is the “initial point”
of Λ.

As in the proof of Theorem 1.7, for distinct points x, y ∈ Λ, let W (x, y)

denote the set of positive integers k such that x, y ∈ S
(k)
j for some j with

1≤ j ≤ �k.

Definition 4.1. Let Λ be a self-similar arc with �+ 1 vertices, and let 1 ≤
p≤ �− 1. The arc Λ is said to satisfy Condition Wp if∣∣f(x)− f(y)

∣∣ = o
(
|x− y|

)
for zp−1 � x� zp � y � zp+1(17)

or, equivalently, if for each ε > 0 there is a μp > 0 such that∣∣f(x)− f(y)
∣∣ ≤ ε|x− y| whenever zp−1 � x� zp � y � zp+1 and |x− y|< μp.

Proposition 4.2. The function f has the property∣∣f(x)− f(y)
∣∣ = o

(
|x− y|

)
, x, y ∈ Λ(18)

if and only if Λ satisfies Condition Wp for p= 1, . . . , �− 1.

Proof. The “only if” part is trivial.
Suppose that Λ satisfies Condition Wp for p = 1, . . . , � − 1. Let ε > 0 be

given. Let μp > 0 be the associated number in Definition 4.1, p = 1, . . . ,
�− 1. Set μ=min{μ1, . . . , μ�−1} and r =max{r1, . . . , r�}. Let δ0 be the least
distance between two disjoint subarcs Si(Λ) and Sj(Λ) with 2≤ i+1< j ≤ �.
Let

δ1 =

(
εδs0
β

)1/(s−1)

,

δ2 =

(
εμs

β

)1/(s−1)

,

δ =min(δ1, δ2),

where s is the Hausdorff dimension of Λ and β =Hs(Λ).
Suppose that x, y ∈ Λ with 0< |x−y|< δ. Let k =maxW (x, y). Then x, y ∈

S
(k)
j (Λ) for some j with 1 ≤ j ≤ �k. Let x′, y′ ∈ Λ be such that x = S

(k)
j (x′)

and y = S
(k)
j (y′). Without loss of generality, we assume that x′ ≺ y′. There

are integers d1 ≤ d2 such that x′ ∈ Sd1(Λ), y
′ ∈ Sd2(Λ). By the maximality of

k, d1 < d2. We consider the following three cases.

Case 1. d2 − d1 > 1. Write S
(k)
j = Sj1 · · ·Sjk . Then (rj1 · · · rjk)|x′ − y′| =

|x− y|< δ1 implies that (rj1 · · · rjk)< δ1/δ0. Thus

|f(x)− f(y)|
|x− y| = (rj1 · · · rjk)s−1 |f(x′)− f(y′)|

|x′ − y′|

<

(
δ1
δ0

)s−1
β

δ0
= ε.
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Case 2. d2−d1 = 1 and |x′−y′|< μ. For convenience, set p= d1, p+1= d2.
Since |x′ − y′|< μp, Condition Wp tells us that

|f(x)− f(y)|
|x− y| = (rj1 · · · rjk)s−1 |f(x′)− f(y′)|

|x′ − y′|
< (rj1 · · · rjk)s−1ε≤ ε.

Case 3. d2− d1 = 1 and |x′− y′| ≥ μ. As above, set p= d1, p+1= d2. Since
(rj1 · · · rjk) = |x− y|/|x′ − y′|< δ2/μ, it follows that

|f(x)− f(y)|
|x− y| = (rj1 · · · rjk)s−1 |f(x′)− f(y′)|

|x′ − y′|

<

(
δ2
μ

)s−1
β

μ
= ε.

Therefore, |f(x)− f(y)|< ε|x− y| whenever |x− y|< δ. The proof is com-
plete. �

Let t ≥ 1. Set L(x, y) = |Λ(x, y)|t/|x − y|. Here |Λ(x, y)| is the diameter
of the subarc Λ(x, y) of Λ between x and y. For p = 1, . . . , � − 1 we define
Condition Qt

p as follows.

Definition 4.3. A self-similar arc Λ is said to satisfy Condition Qt
p, if there

is a constant Cp > 0 such that |Λ(x, y)|t ≤Cp|x−y| when zp−1 � x� zp � y �
zp+1.

Proposition 4.4. A self-similar arc Λ is a t-quasi-arc if and only if Λ
satisfies Condition Qt

p for p= 1, . . . , �− 1.

Proof. The “only if” part is trivial.
Suppose that Λ satisfies Condition Qt

p for p= 1, . . . , �− 1. Let C1, . . . ,C�−1

be the numbers in Definition 4.3 for the vertices z1, . . . , z�−1, and set C =
max{C1, . . . ,C�−1}. Let L= |Λ| denote the diameter of Λ. As in the proof of
Proposition 4.2, let δ0 denote the least distance between two disjoint subarcs
Si(Λ) and Sj(Λ), 0≤ i < j ≤ �. Set M =max(C,Lt/δ0).

Consider distinct points x, y ∈ Λ. Let k =maxW (x, y). Then x, y ∈ S
(k)
j (Λ)

for some j with 1≤ j ≤ �k. Let x′, y′ ∈ Λ be such that x= S
(k)
j (x′) and y =

S
(k)
j (y′). Without loss of generality, we assume that x′ ≺ y′. There are integers

d1 ≤ d2 such that x′ ∈ Sd1(Λ), y
′ ∈ Sd2(Λ). By the maximality of k, d1 < d2.

We consider the following two cases.

Case 1. d2 − d1 > 1. Write S
(k)
j = Sj1 · · ·Sjk . Then |Λ(x, y)|t = (rj1 · · ·

rjk)
t|Λ(x′, y′)|t and |x− y|= (rj1 · · · rjk)|x′ − y′|. Therefore,

L(x, y) = (rj1 · · · rjk)t−1L
(
x′, y′

)
≤ (rj1 · · · rjk)t−1L

t

δ0
≤ Lt

δ0
.
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Case 2. d2 − d1 = 1. For convenience, set p = d1, p+ 1 = d2. Since zp−1 �
x′ � zp � y′ � zp+1, we have

L(x, y) = (rj1 · · · rjk)t−1L
(
x′, y′

)
≤ (rj1 · · · rjk)t−1Cp ≤C.

Therefore, L(x, y)≤M for distinct points x, y ∈ Λ. By Definition 1.5, Λ is
a t-quasi-arc. �

5. Regular self-similar arcs in R
2

In this section, we study “regular” self-similar arcs. We identify the eu-
clidean plane with the complex plane C and consider the similitudes on C.
It is an elementary fact that an orientation preserving similitude S is of the
form S(z) = az + b, where a, b ∈ C, while an orientation reversing similitude
S has the form S(z) = az̄ + b.

Let Ω be a polygon formed by a sequence of successive segments in the
plane. Suppose that Ω has �+1 vertices {A0,A1, . . . ,A�}, and that the points
A1, A�−1 lie on segment A0A� and the point A�−1 lies on segment A1A�.
Suppose that there is a vertex Aq such that all vertices of the polygon belong
to the set Π, which is defined to be the union of the point Aq , the segment

A0A�, and the set Π0, which is in turn defined to be the interior of triangle
A0A�Aq . Let Π1 be the closure of Π0. For j = 1, . . . , �, there is a unique
orientation preserving similitude Sj such that Sj(A0) = Aj−1 and Sj(A�) =
Aj . We assume that the similitudes Sj are contractive, that the sets Sj(Π0)
are pairwise disjoint, and that Sj(Aq) ∈Π1 for j = 1, . . . , �. Finally, we assume
that

Sj(Π1)∩ (AqA0 ∪AqA�) = ∅, if j �= 1, �, q, q+ 1.(19)

If all the above conditions are satisfied, we say that Ω is a basic figure (see
Figure 1), and Π1 (and/or Triangle A0A�Aq , which is the union of the three
sides) is the corresponding basic triangle.

Let Ω be a basic figure with vertices {z0, z1, . . . , z�} and let S = {S1, . . . , S�}
be the corresponding contractive similitudes for Ω. Let Λ be the self-similar set

associated to S , that is, Λ is the unique compact set such that Λ =
⋃�

i=1 Si(Λ).
We now discuss under what conditions Λ is an arc. For convenience, we

assume that z0 = 0, z� = 1.

Figure 1. Basic figure.
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Proposition 5.1. The self-similar set Λ is an arc if and only if

Sj(Λ)∩ Sj+1(Λ) = {zj}, j = 1, . . . , �− 1.(20)

Proof. Suppose that Λ is an arc. Let 1≤ j ≤ �. Then Sj(Λ) is the subarc
of Λ from zj−1 to zj , and Sj+1(Λ) is the subarc from zj to zj+1. Thus, (20)
is satisfied.

Conversely, suppose that (20) holds. In order to prove that Λ is an arc, we
only need to prove that there is a homeomorphism between [0,1] and Λ.

Since Sj are orientation preserving contractive similitudes for Ω, we know
that Sj(z) = bjz + zj−1, where bj = zj − zj−1 for j = 1, . . . , �. Now each x ∈
[0,1] has a unique expansion x=

∑∞
j=1 uj/�

j , where uj = 0, . . . , �− 1. Recall
that

Q :=

{
j

�k
: k ≥ 1,0≤ j ≤ �k

}
⊂ [0,1],

Γ :=
{
z
(k)
j : k ≥ 1,0≤ j ≤ �k

}
⊂ Λ.

The function g :Q→ Γ defined in (5) now has the form

g

(
j

�k

)
= z

(k)
j = S

(k)
j (1) = Su1+1Su2+1 · · ·Suk−1+1Suk+1(1),

where

j

�k
=

k∑
i=1

ui

�i
.

It is straightforward but somewhat tedious to verify that

g

(
k∑

j=1

uj

�j

)
=

k∑
j=1

aj−1(u1, . . . , uj−1)zuj ,

where

a0 = 1, aj(u1, . . . , uj) =

j∏
m=1

bum+1, j ≥ 1.

By Lemma 2.4, the function g extends to be a homeomorphism g :
[0,1]→ Λ, which is given by

g(x) =

∞∑
j=1

aj−1(x)zuj ,

where

a0(x) = 1, aj(x) =

j∏
m=1

bum+1, j ≥ 1; x=

∞∑
j=1

uj

�j
.

The proposition has been proved. �
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Figure 2. Basic figure of Koch curve.

Suppose that Ω is a basic figure with corresponding contractive, orientation
preserving similitudes S = {S1, . . . , S�} and self-similar set Λ. If Λ is an arc,
then Λ is a self-similar arc by Definition 2.2; in this case we say that Λ is the
self-similar arc generated by the basic figure Ω. For example, the Koch curve
is the self-similar arc generated by the basic figure which is the polygon with
vertices {0,1/3,1/2 +

√
3i/6,2/3,1} (see Figure 2), where we identify points

on the complex plane with their complex number representations. Figure 1
gives us an example of a basic figure with 7 vertices. Triangle A2A0A6 is the
corresponding basic triangle.

Suppose that Λ is a self-similar arc generated by some basic figure and the
associated similitudes S = {S1, . . . , S�} have contractive ratios r1, . . . , r�. The
vertices of the generating basic figure are not collinear, which implies that
r1 + · · ·+ r� > 1. Since the Hausdorff dimension s of Λ is determined by the
equation rs1 + · · ·+ rs� = 1, it follows that s > 1.

Let Ω be a basic figure with vertices {z0, z1, . . . , z�}, and let �zqz0z� be the
corresponding basic triangle. From now on, we have a standing assumption
that

�zq − z0
z� − z0

> 0,

which simplifies to �zq > 0 when z0 = 0 and z� = 1. For p= 1, . . . , �− 1, set

θp = arg
Sp(zq)− zp

Sp+1(zq)− zp
, 0≤ θp < 2π.

Here θp is the argument of the fraction, so it is the angle between the two
segments from the vertex zp to Sp(zq) and Sp+1(zq), respectively. We call θp
the corner angle at vertex zp. Set θmin =min{θ1, . . . , θ�−1}.

We now consider which points of Λ lie on the sides zqz0 and zqz� of the

basic triangle. First, points {Sj
1(zq)} lie on zqz0 and accumulate at z0; while

{Sj
� (zq)} lie on zqz� and accumulate at z�. For some basic figure, the side zqz0

may contain more points of Λ. For example, for the Koch curve, q = 2, �= 4,
and the points {S2S

j
4(z2)} lie on the side z2z0 and accumulate at z2.
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For the self-similar arc Λ, we define angles η1, η2 by

η1 = arg
Sq(zq)− zq
z0 − zq

, η2 = arg
z� − zq

Sq+1(zq)− zq
, 0≤ η1, η2 < 2π.(21)

(For the Koch curve η1 = η2 = 0.) Set

η0 =min(η1, η2), ξ := θmin + η0.(22)

The angle ξ is said to be the characteristic angle of Λ and of the corresponding
basic figure Ω.

For example, in Figure 1, the basic figure Ω has 7 vertices {A0,A1,A2,A3,
A4,A5,A6} with A0, A1, A5, A6 collinear. We also have a family of contractive
similitudes S = {Sj : j = 1, . . . ,6}, where

Sj(z) =
Aj −Aj−1

A6 −A0
(z −A0) +Aj−1.

The triangle �A2A0A6 is the basic triangle, and its images under the simil-
itudes are the smaller triangles: �B1A0A1 = S1(�A2A0A6), �B2A1A2 =
S2(�A2A0A6), etc. Therefore, the corner angle θ1 = ∠B2A1B1, θ2 is the re-
flex angle ∠B3A2B2, and θ4 is the reflex angle ∠B5A4B4, etc. The angles η1,
η2 are η1 =∠A0A2B2, η2 =∠B3A2A6.

Definition 5.2. A regular self-similar arc is a self-similar arc generated by
some basic figure with a positive characteristic angle.

As in Proposition 5.1, let Ω be a basic figure with vertices {z0, z1, . . . , z�},
where z0 = 0, z� = 1. We now express the condition (20) in terms of the corner
angles and other parameters of Ω. Let Λ be the self-similar set generated by
Ω.

We fix an index p, where 1 ≤ p ≤ �− 1. We first consider the case where
θp > 0. Recall that Π1 is the union of the basic triangle and its interior. Since
θp > 0, we see that Sp(Π1)∩ Sp+1(Π1) = {zp}, and zp = Sp(z�) = Sp+1(z0). It
follows that

Sp(Λ)∩ Sp+1(Λ) = {zp}.

Therefore condition (20) holds for j = p when θp > 0.
Now we assume that θp = 0. Let γ be the segment Sp(zqz�), and let ω =

Sp+1(zqz0). That θp = 0 means that one of the two segments γ, ω is contained
in the other. Since Sp(Λ)⊂ Sp(Π1) and Sp+1(Λ)⊂ Sp+1(Π1), we see that

Sp(Λ)∩ Sp+1(Λ)⊂ Sp(Π1)∩ Sp+1(Π1) = γ ∩ ω.

For j, k = 0,1,2, . . . , let

Zj = SpS
j
� (zq),

Wk = Sp+1S
k
1 (zq).
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Since η0 + θmin > 0, the assumption θp = 0 implies that η0 =min(η1, η2)> 0,
hence Sp(Λ)∩ (γ \ {zp}) = {Zj : j = 1,2, . . .} and Sp+1(Λ)∩ (ω \ {zp}) = {Wk :
k = 1,2, . . .}. It follows that(

Sp(Λ)∩ Sp+1(Λ)
)
\ {zp}=

(
Sp(Λ)∩

(
γ \ {zp}

))
∩

(
Sp+1(Λ)∩

(
ω \ {zp}

))
= {Zj : j = 0,1, . . .} ∩ {Wk : k = 0,1, . . .}.

Therefore

Sp(Λ)∩ Sp+1(Λ) = {zp}

if and only if

{Zj : j = 0,1,2, . . .} ∩ {Wk : k = 0,1,2, . . .}= ∅.(23)

To summarize, we conclude that Λ is an arc if and only if for each p with
1≤ p≤ �− 1 and θp = 0, (23) holds.

Since Sj(z) = bjz + zj−1 and bj = zj − zj−1, it follows that

Zj = zp − bpr
j
�(1− zq),

Wk = zp + bp+1r
k
1zq.

Here ri = |bi|, for i= 1, . . . , �. Set

α=
∣∣rp(1− zq)

∣∣, β = |rp+1zq|,(24)

λ= r�, μ= r1, ι= (Z0 − zp)/|Z0 − zp|.(25)

Since θp = 0, we have

Zj − zp
|Zj − zp|

=
Wk − zp
|Wk − zp|

= ι,

hence

Zj − zp = αλjι, Wk − zp = βμkι,(26)

Zj −Wk =
(
αλj − βμk

)
ι.(27)

Set

x=− logλ, y =− logμ, u= log(α/β).(28)

Then

u− jx+ ky = log
αλj

βμk
.(29)

Therefore, Zj �= Wk for j, k = 0,1,2, . . . if and only if u − jx + ky �= 0 for
j, k = 0,1,2, . . . .

As a conclusion of the above discussion, we have the following proposition.
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Proposition 5.3. Let Ω be a basic figure with corner angles θp, p =
1, . . . , � − 1, and let Λ be the self-similar set generated by Ω. Then Λ is a
regular self-similar arc if and only if for each p with 1≤ p≤ �− 1 and θp = 0
the following holds:

u− jx+ ky �= 0, for j, k = 0,1,2, . . . .

6. Reduction of conditions Wp and Qt
p

In this section, we assume that Λ is the regular self-similar arc generated by
a basic figure Ω and {S1, . . . , S�} are the corresponding contractive similitudes.
Let rj be the ratio of Sj for j = 1, . . . , �. Recall that |Λ(x, y)| is the diameter
of the subarc Λ(x, y) of Λ between x and y, and that L= |Λ|. Recall also that
when x≺ y, [x, y] denotes the subarc from x to y.

Proposition 6.1. Suppose that 1 ≤ p ≤ � − 1 and that the corner angle
θp > 0. Then Λ satisfies Condition Wp.

Proof. Recall that the s-dimensional Hausdorff measure function f : Λ→R

is defined by

f(x) =Hs
(
[z0, x]

)
,

where z0 is the initial point of Λ. It is clear that f is non-constant on each
subarc of Λ. We shall prove that there is a constant M > 0 such that∣∣f(x)− f(y)

∣∣ ≤M |x− y|s whenever zp−1 ≺ x≺ zp ≺ y ≺ zp+1,(30)

which implies (17).
Suppose that zp−1 ≺ x≺ zp ≺ y ≺ zp+1. Let m≥ 0 be the greatest integer

such that x ∈ SpS
m
� (Λ). Then x ∈ SpS

m
� (Λ) and x /∈ SpS

m+1
� (Λ). Upon setting

x′ = SpS
−m
� S−1

p (x) we obtain that x′ ∈ Sp(Λ) \ SpS�(Λ). Let A denote the
positive number

A := sup
{∣∣f(w)− f(zp)

∣∣/|w− zp|s :w ∈ Sp(Λ) \ SpS�(Λ)
}
.

Since the similitude SpS
−m
� S−1

p maps x, zp to x′, zp, respectively, it follows
that

|f(zp)− f(x)|
|zp − x|s =

|f(zp)− f(x′)|
|zp − x′|s ≤A.(31)

Similarly,

|f(y)− f(zp)|
|y− zp|s

≤B,(32)

where

B := sup
{∣∣f(w)− f(zp)

∣∣/|w− zp|s :w ∈ Sp+1(Λ) \ Sp+1S1(Λ)
}
.
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Let

�p := arg
zp+1 − zp
zp−1 − zp

, 0< �p < 2π,

be the positive angle from line segment zpzp−1 to line segment zpzp+1. Set

ψp =min(θp, �p).

It follows from the law of sines that

|x− zp| ≤ |x− y| cscψp, |y− zp| ≤ |x− y| cscψp.(33)

By (31), (32) and (33), we obtain that∣∣f(x)− f(y)
∣∣ = ∣∣f(x)− f(zp)

∣∣+ ∣∣f(y)− f(zp)
∣∣

≤A|x− zp|s +B|y− zp|s

≤ (A+B)
(
cscsψp

)
|x− y|s.

Thus, (30) holds with M = (A+B)(cscsψp). �

Proposition 6.2. Suppose that 1 ≤ p ≤ � − 1 and that the corner angle
θp > 0. Then Λ satisfies Condition Qt

p for t≥ 1.

Proof. Fix a number t≥ 1. We need to prove that there is a constant M > 0
such that∣∣Λ(x, y)∣∣t ≤M |x− y| whenever zp−1 ≺ x≺ zp ≺ y ≺ zp+1.(34)

Recall that |Λ(x, y)| is the diameter of the subarc Λ(x, y) of Λ between x
and y, and that L is the diameter of Λ. Suppose that x, y ∈ Λ satisfy zp−1 ≺
x≺ zp ≺ y ≺ zp+1. Let m≥ 0 be the greatest integer such that x ∈ SpS

m
� (Λ).

Then x ∈ SpS
m
� (Λ)\SpS

m+1
� (Λ). As in the proof of Proposition 6.1, the point

x′ := SpS
−m
� S−1

p (x) satisfies x′ ∈ Sp(Λ) \ SpS�(Λ). Upon setting

δ =min
(
dis

(
z0,Λ \ S1(Λ)

)
,dis

(
z�,Λ \ S�(Λ)

))
,

we obtain∣∣x′ − zp
∣∣ ≥ dis

(
zp, Sp(Λ) \ SpS�(Λ)

)
= rp dis

(
z�,Λ \ S�(Λ)

)
≥ rpδ.

Thus,

|Λ(x, zp)|
|x− zp|1/t

= r
m(1−1/t)
�

|Λ(x′, zp)|
|x′ − zp|1/t

(35)

≤ |Λ(zp−1, zp)|
r
1/t
p δ1/t

= Lδ−1/tr1−1/t
p .

Similarly,

|Λ(y, zp)|
|y− zp|1/t

≤ Lδ−1/tr
1−1/t
p+1 .(36)
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It follows from (33), (35) and (36) that∣∣Λ(x, y)∣∣ ≤ ∣∣Λ(x, zp)∣∣+ ∣∣Λ(y, zp)∣∣
≤ Lδ−1/t

(
r1−1/t
p |x− zp|1/t + r

1−1/t
p+1 |y− zp|1/t

)
≤ L

(
δ−1 cscψp

)1/t(
r1−1/t
p + r

1−1/t
p+1

)
|x− y|1/t.

Therefore, ∣∣Λ(x, y)∣∣t ≤ Ltδ−1(cscψp)
(
r1−1/t
p + r

1−1/t
p+1

)t|x− y|,
and (34) has been proved. �

By Propositions 4.2, 4.4, 6.1 and 6.2 we have the following theorem.

Theorem 6.3. Let Λ be a regular self-similar arc and let s= dimH(Λ). If
θmin := min{θp : p= 1, . . . , �−1}> 0, then Λ is a t-quasi-arc for each t≥ 1 and
the s-dimensional Hausdorff measure function is a Whitney function on Λ.

When the minimal corner angle θmin = 0, the analysis of Hausdorff measure
function on Λ is more complicated. We now consider the case where θp = 0 for
some 1≤ p≤ �− 1. As before, we assume that the three vertices of the basic
triangle of the basic figure Ω under consideration are z0 = 0, z� = 1, and zq
with �zq > 0.

Let g : [0,1]→ Λ be the homeomorphism in the proof of Proposition 5.1.
Note that g(p/�) = zp for p = 0, . . . , �. Since θq > 0 and θp = 0, we see that
p �= q.

Recall that bp = zp+1 − zp. In Section 5, we constructed two sequences of
points on the self-similar arc Λ,

Zj = SpS
j
� (zq) = zp − bpr

j
�(1− zq),

Wk = Sp+1S
k
1 (zq) = zp + bp+1r

k
1zq.

Set

(37)

a= rspH
s
(
[zq, z�]

)
,

b= rsp+1H
s
(
[z0, zq]

)
,

c= rp
∣∣[zq, z�]∣∣,

d= rp+1

∣∣[z0, zq]∣∣,
where |[zp, z�]| denotes the diameter of the subarc of Λ from zp to z�. Then
we have

Hs
(
[Zj , zp]

)
= aλsj , Hs

(
[zp,Wj ]

)
= bμsj ,∣∣[Zj , zp]

∣∣ = cλj ,
∣∣[zp,Wj ]

∣∣= dμj ,

where λ, μ are defined by (25).
As usual, let Z denote the set of integers, let N= {1,2, . . .} be the set of

natural numbers, and let Z+ = {0,1,2, . . . ,}.
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Lemma 6.4. Suppose that Λ is a regular self-similar arc with θp = 0 for
some 1≤ p≤ �− 1. Then there exists a constant Υ> 0 such that if j, k ∈ Z+

and if

(38)
x ∈ Λ(Zj ,Zj′),

∣∣j − j′
∣∣ = 1, |x−Zj | ≤ |x−Zj′ |,

y ∈ Λ(Wk,Wk′),
∣∣k− k′

∣∣ = 1, |y−Wk| ≤ |y−Wk′ |,
then

|Zj −Wk| ≤Υ|x− y|.

Proof. Since θmin = 0, the angles η0, η1 and η2 defined by (21) and (22)
are positive. Let Θ denote the line containing the points {Zj} and {Wk}.
Since η1, η2 > 0 and since (19) holds, it follows that the subarc Λ(Z0,Z1)
intersects Θ at exactly two points Z0, Z1. The line Θ divides the plane into
two half planes. Let us denote by H1 the closed half plane which contains
Λ(Z0,Z1). The other closed half plane is denoted by H2. When x ∈ Λ(Z0,Z1)
is sufficiently close to Z0, the law of sines provides an estimate

|z −Z0|< (cscη0)|z − x|, z ∈H2.

It follows that there exists a constant C > 0 such that

|z −Z0| ≤C|z − x|, if z ∈H2, x ∈ Λ(Z0,Z1), |x−Z0| ≤ |x−Z1|.
Similarly, there is a C > 0 so that

|z −Z1| ≤C|z − x|, if z ∈H2, x ∈ Λ(Z0,Z1), |x−Z0| ≥ |x−Z1|.
It follows that for some constant C > 0, we have

|z −Zj |<C|z − x|(39)

whenever

z ∈H2, j ∈ {0,1}, j′ = 1− j,

x ∈ Λ(Z0,Z1), |x−Zj | ≤ |x−Zj′ |.

Since Λ(Zj ,Zj+1) = SpS
j
�S

−1
p (Λ(Z0,Z1)) and since Θ and H are invariant

under the similitude SpS
j
�S

−1
p , it follows that for the same constant C, (39)

holds whenever

z ∈H2, j ∈N,
∣∣j − j′

∣∣ = 1,

x ∈ Λ(Zj ,Zj′), |x−Zj | ≤ |x−Zj′ |.
Similarly, there exists a constant C ′ > 0 such that

|z −Wk| ≤C ′|z − y|,
whenever

z ∈H1, k ∈N,
∣∣k− k′

∣∣= 1,

y ∈ Λ(Wk,Wk′), |y−Wk| ≤ |y−Wk′ |.
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Now suppose that j, k ∈N and (38) holds. Then

|Zj −Wk| ≤C|x−Wk| ≤CC ′|x− y|.
The proof is complete. �

Proposition 6.5. Suppose that 1≤ p≤ �− 1 and θp = 0. Then Λ satisfies
Condition Wp if and only if(

λj + μk
)s

= o
(∣∣αλj − βμk

∣∣), j, k = 0,1,2, . . . .(40)

Proof. Suppose that Λ satisfies Condition Wp. By Definition 4.1, we know
that (17) holds for all Zj and Wk, i.e.,

Hs
(
[Zj ,Wk]

)
=

∣∣f(Zj)− f(Wk)
∣∣ = o

(
|Zj −Wk|

)
.(41)

By (37), we have

Hs
(
[Zj ,Wk]

)
= aλsj + bμsk,

which, together with (27) and (41), implies that

aλsj + bμsk = o
(∣∣αλj − βμk

∣∣).(42)

The Hölder inequality tells us that(
λj + μk

)s ≤ F
(
aλsj + bμsk

)
,(43)

where F = (a−1/(s−1) + b−1/(s−1))s−1. Now (40) is a consequence of (42) and
(43).

Conversely, suppose that (40) holds. Let x, y ∈ Λ be such that zp−1 ≺ x≺
zp ≺ y ≺ zp+1. Let m be the least positive integer such that x ≺ Zm, so x ∈
[Zm−1,Zm]. If |x−Zm−1| ≤ |x−Zm| let j =m− 1 and j′ =m; otherwise, let
j =m,j′ =m− 1. In either case we have

x ∈ Λ(Zj ,Zj′), |x−Zj | ≤ |x−Zj′ |,
∣∣j − j′

∣∣ = 1.(44)

Similarly, there are integers k, k′ ≥ 0 such that

y ∈ Λ(Wk,Wk′), |y−Wk| ≤ |y−Wk′ |,
∣∣k− k′

∣∣ = 1.(45)

By Lemma 6.4, we have

|Zj −Wk| ≤Υ|x− y|,
which, together with (40), implies that(

λj + μk
)s

= o
(
|x− y|

)
.(46)

Setting Z−1 = Z0 and W−1 =W0, we have

Hs
(
[x, y]

)
≤Hs

(
[Zj−1,Wk−1]

)
≤ aλs(j−1) + bμs(k−1)

≤
(
aλ−s + bμ−s

)(
λsj + μsk

)
≤

(
aλ−s + bμ−s

)(
λj + μk

)s
.
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The last inequality and (46) imply that

Hs
(
[x, y]

)
= o

(
|x− y|

)
.

This completes the proof. �

Proposition 6.6. Suppose that t≥ 1, 1≤ p≤ �− 1, and θp = 0. Then Λ
satisfies Condition Qt

p if and only if there exists a constant C > 0 such that(
λj + μk

)t ≤C
∣∣αλj − βμk

∣∣, j, k = 0,1,2, . . . .(47)

Proof. Suppose that Λ satisfies Condition Qt
p. Then there exists a constant

Cp > 0 such that ∣∣[Zj ,Wk]
∣∣t ≤Cp|Zj −Wk|, j, k = 0,1, . . . .(48)

We have the following estimate

min(c, d)
(
λj + μk

)
≤ cλj + dμk =

∣∣[Zj , zp]
∣∣+ ∣∣[zp,Wk]

∣∣ ≤ 2
∣∣[Zj ,Wk]

∣∣,
which, together with (27) and (48), implies that(

λj + μk
)t ≤C ′∣∣[Zj ,Wk]

∣∣t ≤C
∣∣αλj − βμk

∣∣,
where C =C ′Cp = {2/min(c, d)}tCp. Thus (47) holds.

Conversely, suppose that there exists a constant C > 0 such that (47) holds.
Let x, y ∈ Λ be such that zp−1 ≺ x ≺ zp ≺ y ≺ zp+1. We need to prove that
there exists constant M > 0 such that∣∣[x, y]∣∣t ≤M |x− y|.
As in the proof of previous proposition, there exist integers j, j′, k, k′ such
that (44) and (45) hold. By Lemma 6.4, we have

|Zj −Wk| ≤Υ|x− y|,
which, together with (27) and (47), implies that(

λj + μk
)t ≤CΥ|x− y|.(49)

Now ∣∣[x, y]∣∣t ≤ ∣∣[Zj−1,Wk−1]
∣∣t

≤
(∣∣[Zj−1, zp]

∣∣+ ∣∣[zp,Wk−1]
∣∣)t

≤
(
cλj−1 + dμk−1

)t
≤

(
cλ−1 + dμ−1

)t(
λj + μk

)t
.

The last inequality and (49) imply that∣∣[x, y]∣∣t ≤M |x− y|,
where M = (cλ−1 + dμ−1)tCΥ. �
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Proposition 6.7. Let Λ be a regular self-similar arc and let s= dimH(Λ).
If the s-dimensional Hausdorff measure function f is a Whitney function
on Λ, then Λ is an s-quasi-arc. If Λ is a t-quasi-arc for some t with s > t≥ 1,
then f is a Whitney function on Λ.

Proof. By Theorem 6.3 and Proposition 6.6, the self-similar arc Λ is a
t-quasi arc if and only if for each p with θp = 0, one has(

λj + μk
)t

=O
(∣∣αλj − βμk

∣∣), where j, k = 0,1,2, . . . .(50)

By Theorem 6.3 and Proposition 6.5, the s-dimensional Hausdorff measure
function on Λ is a Whitney function if and only if for each p with θp = 0, one
has (

λj + μk
)s

= o
(∣∣αλj − βμk

∣∣), where j, k = 0,1,2, . . . .(51)

The proposition follows because (51) implies (50) when t = s, and because
(51) follows from (50) when 1≤ t < s. �

The second part of Proposition 6.7 is contained in the result of Norton [4]
mentioned in the introduction of this paper.

By Proposition 6.6, Condition Qt
p is reduced to an inequality (47). In the

following proposition, it is further reduced to an inequality of a certain form
which is more convenient for determining whether a self-similar arc is a t-
quasi-arc and which is directly related to the degree to which a number u is
approximated by numbers of the form jx− ky, where x, y are fixed positive
numbers and j, k are non-negative integers.

Recall that λ, μ, x, y, u are defined by (25) and (28).

Proposition 6.8. Suppose that 1≤ p≤ �− 1 and θp = 0. Then Λ satisfies
Condition Qt

p if and only if there exists a constant M > 0 such that

e−j(t−1)x ≤M |u− jx+ ky|, j, k = 0,1,2, . . . .(52)

Proof. By Proposition 6.6, we only need to show that there exists a constant
C > 0 such that (47) holds if and only if there exists a constant M > 0 such
that (52) holds.

Suppose that there exists no constant C such that (47) holds. Then there
are increasing sequences {jn} and {kn} of positive integers such that

lim
n→∞

|αλjn − βμkn |
(λjn + μkn)t

= 0.(53)

Since (λjn + μkn)≥ (λjn + μkn)t when n is large enough, we see that

lim
n→∞

|αλjn − βμkn |
λjn + μkn

≤ lim
n→∞

|αλjn − βμkn |
(λjn + μkn)t

= 0.(54)
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This implies that when n is sufficiently large, the quotient |αλjn − βμkn |/
(λjn + μkn) does not exceed α/2, hence we have

αλjn ≤
∣∣αλjn − βμkn

∣∣+ βμkn ≤ α

2

(
λjn + μkn

)
+ βμkn ,

α

2
λjn ≤

(
α

2
+ β

)
μkn .

It follows that there is a constant Q1 such that λjn ≤Q−1
1 μkn for all n. Simi-

larly, there is a constant Q2 such that μkn ≤Q2λ
jn for all n. Therefore,

Q1λ
jn ≤ μkn ≤Q2λ

jn .(55)

Now

β
(α/β)λjnμ−kn − 1

λ(t−1)jn
=

αλjn − βμkn

(λjn + μkn)t

(
λjn + μkn

λjn

)t
λjn

μkn
.(56)

The first factor on the right-hand side of (56) tends to 0 as n→∞ by (53),
while the second and third factors are bounded above and below because of
(55). It follows that

lim
n→∞

(α/β)λjnμ−kn − 1

λ(t−1)jn
= 0.(57)

Since the denominator in (57) is ≤ 1, it follows that the numerator tends to
0 as n→∞. By (57) and the equality limw→1[(logw)/(w− 1)] = 1, we have

lim
n→∞

log((α/β)λjnμ−kn)

λ(t−1)jn
= 0.(58)

Substituting x=− logλ, y =− logμ, and u= log(α/β) into (58) yields that

lim
n→∞

u− jnx+ kny

e−jn(t−1)x
= 0.(59)

Thus, there exists no M such that (52) holds.
Conversely, suppose that there exists noM such that (52) holds. Then there

are increasing sequences {jn} and {kn} of positive integers such that (59)
holds, hence the equivalent equalities (58) and (57) hold. Since the numerator
in (57) tends to 0 as n→∞, it follows that 1/2< (α/β)λjnμ−kn < 2 for n large
enough, which implies (55). Then (53) follows from (55) and (57). Therefore
there exists no C such that (47) holds. �

Proposition 6.9. Suppose that 1≤ p≤ �− 1 and θp = 0. Then Λ satisfies
Condition Q1

p if and only if x/y is rational.

Proof. By Proposition 6.8, Λ satisfies Condition Q1
p if and only if the in-

equality (52) holds when t= 1.
Suppose that τ := x/y is rational. Then the set

Π := {jτ − k : j, k ∈N}
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is discrete. By Proposition 5.3, the distance from the point u/y to Π is positive.
It follows that |u− jx+ky|> δ for some δ > 0. Thus, the inequality (52) holds
with M = 1/δ.

Suppose that τ = x/y is irrational. We show that the set Π is dense in R,
which implies that (52) does not hold with t= 1 and that Λ does not satisfy
Condition Q1

p. Let c ∈R and ε > 0. There exist j0, k0 ∈ Z such that∣∣(j0τ − k0)− c
∣∣< ε/2.(60)

By Dirichlet’s Approximation theorem (see, e.g., [1, p. 143]), there are positive
integers j′, k′ >max(|k0|, |j0|,2τ/ε) such that∣∣∣∣ j′k′ − 1

τ

∣∣∣∣ < 1

k′2
<

ε

2k′τ
,

hence ∣∣j′τ − k′
∣∣ < ε/2.(61)

Set j = j0 + j′ and k = k0 + k′. Then j, k ∈ N. It follows from (60) and (61)
that |(jτ − k)− c|< ε. Therefore, Π is dense in R. �

7. A one-parameter family of self-similar arcs

In this section, we construct and examine a one-parameter family of regular
self-similar arcs with θp = 0 for some fixed p. For different values of the pa-
rameter τ , the corresponding regular self-similar arcs have various features. It
turns out that the self-similar arc satisfies Condition Qt

p if and only if the num-
ber τ satisfies a certain “approximation property” J(t−1)ζ , where ζ = ln(15/7).
We now define approximation property Ja, a > 0, of irrational numbers.

Definition 7.1. Let a > 0. An irrational number τ is said to have approxi-
mation property Ja if

∃C > 0, |τ − k/j| ≥Cj−1e−aj , ∀k ∈ Z, j ∈N.(62)

It follows directly from the definition that if τ has approximation property
Ja0 then τ has approximation property Ja for each a > a0. By Liouville’s Ap-
proximation Theorem (see, e.g., [1, p. 146]), each algebraic irrational number
τ satisfies |τ − k/j|>Cj−m, where m is the degree of the irreducible polyno-
mial with integer coefficients of which τ is a root, hence τ has approximation
property Ja for each a > 0.

Theorem 7.2. Let a0 > 0 and let ν ∈ N. There exists a transcendental
number τ with 1< τ < 1 + 2−ν such that τ has approximation property Ja0 ,
but τ has approximation property Ja for no a ∈ (0, a0).
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Proof. Define a number τ by

(63)

τ = 1+ 2−n1 + 2−n2 + · · · ,
n1 =m1, n2 =m1 +m2, n3 =m1 +m2 +m3, . . . ,

m1 =max(8, ν + 1),

mi+1 =max
(⌈
2nia0/ log 2

⌉
− ni, ni + 2

)
for i≥ 1,

where �·� is the ceiling function, i.e., �u� is the least integer greater than or
equal to u. Since mi →∞ as i→∞, we see that

τ = 1+ 2−m1
(
1 + 2−m2 + 2−m2−m3 + · · ·

)
< 1 + 2−m1+1 ≤ 1 + 2−ν .

For i≥ 1, set ji = 2ni and ki = jiτi, where

τi = 1+ 2−n1 + 2−n2 + · · ·+ 2−ni .(64)

Then ki is an integer, and

jiτ = ki +
(
2−mi+1 + 2−mi+1−mi+2 + · · ·

)
.

It follows that

0< jiτ − ki < 2−mi+1+1.(65)

From the definition of mi+1 in (63), we see that there is an i0 ∈ N such that
for i≥ i0 we have

2mi+1−1 < 2−ni exp
(
2nia0

)
≤ 2mi+1 .(66)

Combining inequalities (65) and (66), we obtain that

0< jiτ − ki < 2jie
−a0ji .

Consider a fixed number a ∈ (0, a0). The above inequality tells us that for
i≥ i0,

|τ − ki/ji|
j−1
i e−aji

< 2jie
(a−a0)ji .

Since a− a0 < 0 and hence the right-hand side of the above inequality tends
to 0 as i approaches ∞, we see that (62) does not hold. Thus τ does not have
approximation property Ja.

Now we assume that j ≥ 2ni0 and k is an arbitrary integer. Then there is
an i≥ i0 such that 2ni ≤ j < 2ni+1 . By (66), the integers ni and ni+1 satisfy

2ni+1−1 < exp
(
2nia0

)
≤ 2ni+1 .(67)

In order to obtain a lower bound for |jτ − k|, we write

jτ − k = (jτi+1 − k) + j(τ − τi+1).(68)
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Recall that τi is defined by (64). Since 2ni+1τi+1 is an odd integer, and since
j is not a multiple of 2ni+1 , we see that 2ni+1jτi+1 is not a multiple of 2ni+1 .
It follows that |2ni+1jτi+1 − 2ni+1k| ≥ 1, and therefore

|jτi+1 − k| ≥ 2−ni+1 .(69)

For the second term on the right-hand side of (68) we have

j(τ − τi+1)< 2ni+1
(
2−ni+2 + 2−ni+3 + · · ·

)
= 2−mi+2 + 2−mi+2−mi+3 + · · ·
< 2−mi+2+1.

Since mi+2 ≥ ni+1 +2, by the definition of mi, the right-hand side of the last
inequality is ≤ 2−ni+1−1. Thus,

0< j(τ − τi+1)< 2−ni+1−1.(70)

Now inequalities (68), (69) and (70) tell us that

|jτ − k| ≥ 2−ni+1−1.(71)

From (71) and (67), we obtain that

|jτ − k| ≥ 2−ni+1−1

> (1/4) exp
(
−2nia0

)
≥ (1/4)e−a0j .

Therefore, the inequality in (62), with a replaced by a0, holds with C = 1/4
as long as j ≥ 2ni0 . This implies that τ has approximation property Ja0 .

Finally, since τ does not have approximation property Ja for a < a0, it
cannot be an algebraic number. Thus, τ is a transcendental number. �

Theorem 7.3. Let a0 > 0 and let ν ∈ N. There exists a transcendental
number τ with 1< τ < 1+2−ν such that τ has approximation property Ja for
each a > a0, but τ does not have approximation property Ja0 .

Proof. Define a number τ by

(72)

τ = 1+ 2−n1 + 2−n2 + · · · ,
n1 =m1, n2 =m1 +m2, n3 =m1 +m2 +m3, . . . ,

m1 =max(8, ν + 1), mi+1 = ni +max
(⌈
2nia0/ log 2

⌉
,2

)
for i≥ 1.

Then τ satisfies 1< τ < 1+ 2−ν . As in the previous theorem, τ is a transcen-
dental number because we shall show that τ does not have property Ja0 .

Setting ji = 2ni and ki = jiτi, we obtain that

|jiτ − ki|< 2−mi+1+1.(73)

By the definition of mi+1, there is an i0 ∈N such that for i≥ i0 we have

2mi+1−1 < 2ni exp
(
2nia0

)
≤ 2mi+1 .(74)
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We then combine (73) and (74) to obtain

|jiτ − ki|< 2j−1
i e−a0ji ,

which implies that for i≥ i0,

|τ − ki/ji|
j−1
i e−a0ji

< 2j−1
i .

Thus, τ does not have approximation property Ja0 .
Let a > a0. We now prove that τ has approximation property Ja. Choose

an integer i1 ≥ i0 such that whenever i≥ i1, the following inequality holds:

2−2ni−2 exp
(
−2nia0

)
> exp

(
−2nia

)
.(75)

Assume that i≥ i1, 2
ni ≤ j < 2ni+1 , and k is an arbitrary integer. Similar to

the previous proof, we have

2ni+1−1 < 22ni exp
(
2nia0

)
≤ 2ni+1 ,(76)

and

|jτ − k| ≥ 2−ni+1−1.(77)

From (75), (76) and (77), we obtain that

|jτ − k| ≥ 2−ni+1−1

> 2−2ni−2 exp
(
−2nia0

)
> exp

(
−2nia

)
≥ e−aj .

Therefore, the inequality in (62) holds with C = 1 as long as j ≥ 2ni1 . This
implies that τ has approximation property Ja. �

Theorem 7.4. Let ν ∈N. Then there exists a transcendental number τ with
1< τ < 1 + 2−ν such that τ has approximation property Ja for each a > 0.

Proof. Define a number τ by

(78)

τ = 1+ 2−n1 + 2−n2 + · · · ,
n1 =m1, n2 =m1 +m2, n3 =m1 +m2 +m3, . . . ,

m1 =max(8,2ν), mi+1 = 2ni/2 for i≥ 1.

Then 1< τ < 1 + 2−ν , as in the previous theorem. It is clear that for each i,
mi is an integer, and mi+1 > ni + 2, which will be needed later.

Setting ji = 2ni and ki = jiτi, we obtain that

|jiτ − ki|< 2−mi+1+1 = 2−
√
ji+1.(79)

It follows that for each positive integer n,

lim
i→∞

|jiτ − ki|
j−n
i

= 0.
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By Liouville’s Approximation theorem, τ must be a transcendental number.
Let a > 0. We now prove that τ has approximation property Ja. Choose i0

so that when i≥ i0, we have

2−ni+1−1 = 2−ni−2ni/2−1 > exp
(
−2nia

)
.

Assume that i≥ i0, 2
ni ≤ j < 2ni+1 , and k is an arbitrary integer. Similar to

the previous proof, since mi+1 > ni + 2, we see that

|jτ − k| ≥ 2−ni+1−1.

It follows that

|jτ − k|> exp
(
−2nia

)
≥ e−aj .

Therefore, τ has approximation property Ja. �
Theorem 7.5. Let ν ∈ N. Then there exists a transcendental number τ

with 1< τ < 1+ 2−ν such that τ has approximation property Ja for no a > 0.

Proof. Define a number τ by

(80)

τ = 1+ 2−n1 + 2−n2 + · · · ,
n1 =m1, n2 =m1 +m2, n3 =m1 +m2 +m3, . . . ,

m1 =max(8, ν + 1), mi+1 = 22ni for i≥ 1.

Then 1< τ < 1 + 2−ν , as in the previous theorem.
Setting ji = 2ni and ki = jiτi, we obtain, as in the proof of the previous

theorem, that

|jiτ − ki|< 2−mi+1+1 = 2−j2i +1.(81)

Consider a fixed number a > 0. Then (81) implies that

lim
i→∞

|jiτ − ki|
e−aji

= 0,

and hence τ does not have approximation property Ja. By Liouville’s Approx-
imation theorem, τ is necessarily a transcendental number. �

Now we construct a one-parameter family of regular self-similar arcs. We
start by constructing a family of basic figures depending on a parameter τ
with 1< τ < 1.001.

For a fixed τ with 1 < τ < 1.001, the corresponding basic figure is as in
Figure 3. The points B, D, F lie on segment AG, and the magnitudes of the

Figure 3. Basic figure with a zero corner angle.
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segments are AG = 1, AD = 1/2, AB = (7/15)1/τ , FG = 7/15. The magni-
tudes of the angles are ∠CAG=∠CGA= π/18, ∠CDE = π/9. The position
of point E is determined by DE = (7/15)1/νCD, where

ν =

{
τ, if τ is irrational,

τ − τ−1√
2
, if τ is rational.

(82)

Note that ν is always irrational and 1< ν < 1.001.
Let E′ be the projection of E on AG. Then

DE′ = (1/2) tan(π/18)(7/15)1/τ sin(π/9)

< (1/2)(7/15)1000/1001
(
1− cos(π/9)

)
< 1/30.

Thus E′ is between D and F . It follows that ∠EFG > π/2 and E is in the
interior of triangle CAG. Therefore, polygon ABCDEFG is a basic figure
with basic triangle �CAG.

We denote polygon ABCDEFG by Ωτ , and the corresponding self-similar
set by Λτ . The corner angles satisfy θj > 0 for j �= 3 and θ3 = 0. It is clear that
η0 > 0. By Proposition 5.3, in order to show that Λτ is a regular self-similar
arc, it suffices to verify

u /∈Σ := {jx− ky : j, k ∈N},
where

x= ζ, y = τ−1ζ, ζ = log(15/7), u= log
CD ·CG

DE ·AG
= ν−1ζ.(83)

If τ is rational, then ν = τ − (τ − 1)/
√
2 is irrational, and for j, k = 0,1,2, . . . ,

u− (jx− ky) = ζ
(
ν−1 − (j − k/τ)

)
�= 0.

If τ is irrational, then ν = τ , and for j, k = 0,1,2, . . . ,

u− (jx− ky) = τ−1ζj
(
−τ + (k+ 1)/j

)
�= 0.

Therefore u /∈Σ and Λτ is a regular self-similar arc.
When τ is rational, x/y is rational, hence Λτ is a 1-quasi-arc. We now

consider the case where τ is irrational. In this case, we have ν = τ and u= y.
By Proposition 6.8, Λτ is a t-quasi-arc if and only if there is a constant
Mτ,t > 0 such that

e−j(t−1)x ≤Mτ,t|u− jx+ ky|.(84)

In light of (83), inequality (84) is reduced to

τ(Mτ,tζ)
−1j−1e−j(t−1)ζ <

∣∣τ − (k+ 1)/j
∣∣,

which is equivalent to

Cτ,tj
−1e−j(t−1)ζ < |τ − k/j|.
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Therefore, for t > 1, Λτ is a t-quasi-arc if and only if τ has approximation
property J(t−1)ζ .

We summarize the above discussion as follows.

Example 7.6. For 1< τ < 1.001, let Λτ be the regular self-similar arc gen-
erated by the basic figure Ωτ in Figure 3, where

AG= 1, AD = 1/2, AB = (7/15)1/τ , FG= 7/15,

∠CAG=∠CGA= π/18, ∠CDE = π/9, DE = (7/15)1/νCD,

where ν is defined by (82). For t > 1, Λτ is a t-quasi-arc if and only if τ has
approximation property J(t−1)ζ .

(1) For a fixed t0 > 1, by Theorem 7.2, there is a transcendental number
τ ∈ (1,1.001) such that τ has approximation property J(t0−1)ζ , but τ has
approximation property J(t−1)ζ for no t ∈ (1, t0). For such a τ , Λτ is a
t0-quasi-arc, but Λτ is a t-quasi-arc for no t < t0.

(2) For a fixed t0 > 1, by Theorem 7.3, there is a transcendental number
τ ∈ (1,1.001) such that τ does not have approximation property J(t0−1)ζ ,
but τ has approximation property J(t−1)ζ for each t > t0. For such a τ ,
Λτ is a t-quasi-arc for each t > t0, but Λτ is not a t0-quasi-arc.

(3) By Theorem 7.4, there is a transcendental number τ ∈ (1,1.001) such that
τ has approximation property J(t−1)ζ for each t > 1. For such a τ , Λτ is
a t-quasi-arc for each t > 1. Since x/y = τ , which is an irrational number,
it follows from Theorem 6.9 that Λτ is not a 1-quasi-arc.

(4) By Theorem 7.5, there is a transcendental number τ ∈ (1,1.001) such that
τ has approximation property J(t−1)ζ for no t > 1. For such a τ , Λτ is a
t-quasi-arc for no t > 1.

As a consequence of the example, we obtain the following theorem.

Theorem 7.7.

(1) There exists a regular self-similar arc Λ with θmin = 0 such that Λ is t-
quasi-arc for no t≥ 1.

(2) Let t0 > 1. Then there exists a regular self-similar arc Λ with θmin = 0
such that Λ is a t0-quasi-arc, but Λ is a t-quasi-arc for no 1≤ t < t0.

(3) Let t0 ≥ 1. Then there exists a regular self-similar arc Λ with θmin = 0
such that Λ is a t-quasi-arc for each t > t0, but Λ is not a t0-quasi-arc.

Remark. When t0 = 1, the third part of Theorem 7.7 says that there
exists a regular self-similar arc Λ with θmin = 0 which is an t-quasi-arc for
each t ∈ (1, s), where s is the Hausdorff dimension of Λ. Then by Theorem 6.7,
the Hausdorff measure function f is a Whitney function on Λ.
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et la théorie de la measure, Math. Bucharest 20 (1944), 29–64. MR 0012317
[3] J. E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J. 30 (1981), 713–

747. MR 0625600
[4] A. Norton, Functions not constant on fractal quasi-arcs of critical points, Proc. Amer.

Math. Soc. 106 (1989), 397–405. MR 0969524
[5] A. Sard, The measure of critical values of differentiable maps, Bull. Amer. Math. Soc.

48 (1942), 883–890. MR 0007523
[6] Z.-Y. Wen and L.-F. Xi, Relations among Whitney sets, self-similar arcs and quasi-

arcs, Israel J. Math. 136 (2003), 251–267. MR 1998112
[7] Z.-Y. Wen and L.-F. Xi, The geometry of Whitney’s critical sets, Israel J. Math. 174

(2009), 303–348. MR 2581221
[8] H. Whitney, Analytic extensions of differentiable functions defined on closed sets,

Trans. Amer. Math. Soc. 36 (1934), 63–89. MR 1501735

[9] H. Whitney, A function not constant on a connected set of critical points, Duke Math.
J. 1 (1935), 514–517. MR 1545896

[10] W. M. Whyburn, Non-isolated critical points of functions, Bull. Amer. Math. Soc. 35
(1929), 701–708. MR 1561794

[11] L.-F. Xi and M. Wu, A note on Whitney’s critical sets, Prog. Nat. Sci. 13 (2003),
152–156. MR 1976882

Daowei Ma, Department of Mathematics, Wichita State University, Wichita,

KS 67260-0033, USA

E-mail address: dma@math.wichita.edu

Xin Wei, Department of Mathematics, Wichita State University, Wichita, KS

67260-0033, USA

E-mail address: wei@math.wichita.edu

Zhi-Ying Wen, Department of Mathematics, Tsinghua University, Beijing,

100080, P.R. China

E-mail address: wenzy@mail.tsinghua.edu.cn

http://www.ams.org/mathscinet-getitem?mr=1027834
http://www.ams.org/mathscinet-getitem?mr=0012317
http://www.ams.org/mathscinet-getitem?mr=0625600
http://www.ams.org/mathscinet-getitem?mr=0969524
http://www.ams.org/mathscinet-getitem?mr=0007523
http://www.ams.org/mathscinet-getitem?mr=1998112
http://www.ams.org/mathscinet-getitem?mr=2581221
http://www.ams.org/mathscinet-getitem?mr=1501735
http://www.ams.org/mathscinet-getitem?mr=1545896
http://www.ams.org/mathscinet-getitem?mr=1561794
http://www.ams.org/mathscinet-getitem?mr=1976882
mailto:dma@math.wichita.edu
mailto:wei@math.wichita.edu
mailto:wenzy@mail.tsinghua.edu.cn

	Introduction
	Self-similar arcs
	Proof of Theorem 1.7
	Localization
	Regular self-similar arcs in R 2
	Reduction of conditions Wp and Qtp
	A one-parameter family of self-similar arcs
	Acknowledgments
	References
	Author's Addresses

