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ON STRICT WHITNEY ARCS AND ¢-QUASI
SELF-SIMILAR ARCS

DAOWEI MA, XIN WEI AND ZHI-YING WEN

ABSTRACT. A connected compact subset E of RY is said to be
a strict Whitney set if there exists a real-valued C' function f
on RY with Vf|g =0 such that f is constant on no non-empty
relatively open subsets of E. We prove that each self-similar arc
of Hausdorff dimension s > 1 in RY is a strict Whitney set with
criticality s. We also study a special kind of self-similar arcs,
which we call “regular” self-similar arcs. We obtain necessary
and sufficient conditions for a regular self-similar arc A to be a
t-quasi-arc, and for the Hausdorff measure function on A to be
a strict Whitney function. We prove that if a regular self-similar
arc has “minimal corner angle” Omin > 0, then it is a l-quasi-
arc and hence its Hausdorff measure function is a strict Whitney
function. We provide an example of a one-parameter family of
regular self-similar arcs with various features. For some values
of the parameter 7, the Hausdorff measure function of the self-
similar arc is a strict Whitney function on the arc, and hence
the self-similar arc is an s-quasi-arc, where s is the Hausdorff
dimension of the arc. For each to > 1, there is a value of 7 such
that the corresponding self-similar arc is a t-quasi-arc for each
t > to, but it is not a to-quasi-arc. For each ty > 1, there is a value
of 7 such that the corresponding self-similar arc is a to-quasi-arc,
but it is a ¢t-quasi-arc for no ¢ € [1,to).
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1. Introduction

In fractal geometry, Morse-Sard theorem (see [5]) states that if f €
Ck(R™,RY) with k > max(m — N + 1,1), then the set of critical values of
f has zero Lebesgue measure in RY. However, Whitney in 1935 constructed
a differentiable function f:R? — R whose critical set is a fractal planar arc
~ with Hausdorff dimension log4/log3, and whose set f(v) of critical values
contains an interval and therefore has positive Lebesgue measure (see [9]).
This is called Whitney phenomenon; it seems to contradict the Morse—Sard
theorem. It is due to the fact that the arc v is a fractal and f has lower
smoothness. Such a set is called a Whitney set.

Definition 1.1. A connected set £ C RY is said to be a Whitney set, if there
is a C! function f: RN — R such that Vf|z =0 but f|z is not constant. The
function f is said to be a Whitney function for E, and its restriction f|g to
E is said to be a Whitney function on E. If a Whitney function f|g on E
is non-constant on each non-empty relatively open subset of E, then f|g is
said to be a strict Whitney function on E, f is said to be a strict Whitney
function for E, and the set E is said to be a strict Whitney set.

The following special case of the Whitney Extension Theorem [8] will be
used.

LEMMA 1.2. Suppose that E C RY is compact and f: E — R is a function.
If for each € > 0, there exists § > 0 such that for each pair of points x,y € E
with |z —y| < &, one has |f(x) — f(y)| <elx —y|, then there is a C' extension
f:RN SR of f such that f|E:f and Vf|EEO.

Lemma 1.2 suggests the following definition.

Definition 1.3. A compact connected metric space A is said to be a Whitney
set if there is a non-constant function f: A — R such that |f(z) — f(y)| =
o(da(z,y)) for z,y € A.

By Lemma 1.2, for a compact connected subset A of RN Definition 1.3 is
consistent with Definition 1.1.
About Whitney sets, we know the following.

(a) Foraset E C RV, if every pair of points in E are connected by a rectifiable
arc lying in E, then F is not a Whitney set (Whyburn [10], 1929).

(b) For a continuous function g: R — R, the graph G of g is not a Whitney
set (Choquet [2], 1944).

Due to lack of work on critical sets with fractal feature, it is natural to ask
how to characterize Whitney sets geometrically. Whitney posted this problem
in his original paper [9]. The problem can be stated as follows.

Given a function f, how far from rectifiable must a closed connected set be
to be a critical set for f on which f is not constant?
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Definition 1.4 ([7]). Let A be an arc, a homeomorphic image of the interval
[0,1] in RY, and let A be a Whitney set. Then A is said to be a monotone
Whitney arc if there is an increasing Whitney function f on A.

Xi and Wu ([11]) in 2003 gave an interesting example of a Whitney arc
which is not a monotone Whitney arc.

Xi and Wu’s Whitney arc v mentioned above is not a strict Whitney set
because it contains small line segments, and each Whitney function on v must
be constant on those line segments. It is not known whether there exists a
strict Whitney arc which is not a monotone Whitney arc.

A mapping f:(A,da) — (B,dp) between two metric spaces is said to be
non-expanding if dg(f(z), f(y)) <da(z,y) for z,y € A.

Wen and Xi obtained the following geometric characterization of Whitney
sets (see 7, Theorem 1]).

A compact connected metric space A is a Whitney set if and only if there
is a non-expanding mapping from A onto a monotone Whitney arc.

The “if” part is immediate because the “pull-back” of a Whitney function
on the monotone Whitney arc is a Whitney function on A. The “only if” part
can be seen as follows.

Suppose that f is a Whitney function on A with f(A) =10,1]. Let B =[0,1].
For 0<s<t<1, set

n—1
dB(S,t) = 1nf{z D(ti,ti+1) s=tg <t < <ty = t},
i=0
D(s,t) = inf da(z,y).
(%) flz)=s,f(y)=t (=9)
Then dp extends in an obvious way to be a distance function on B. The
metric space (B,dp) is a monotone Whitney arc since the identity map 7 :
B — [0,1] is a monotone Whitney function on B. Moreover, f: A — B is a
non-expanding map. For details, see [7, p. 315].

Definition 1.5. Let A be an arc, a homeomorphic image of the interval [0, 1]
in RV, and let ¢t > 1. The arc A is said to be a t-quasi-arc, if there is a constant
A > 0 such that

(1) [A(z, )| < Az —y]

for each pair of points z,y € A, where |A(z,y)| is the diameter of the subarc
A(z,y) lying between = and y. A 1-quasi-arc is called a quasi-arc.

Note that (1) does not hold when ¢ < 1, because |A(z,y)| > |z — y|. One
can see that if an arc A is a tg-quasi-arc, then A will be a t-quasi-arc for all
t > tg. Therefore, each quasi-arc is a t-quasi-arc for each ¢t > 1.
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With the above definition of ¢-quasi-arcs, Norton (see [4]) obtained the
following sufficient condition for an arc A to be a Whitney set: if A is a t¢-
quasi-arc and if ¢ is less than the Hausdorff dimension dimy(A) of A, then A
is a Whitney set.

Seeking for necessary conditions for a t-quasi-arc to be a Whitney set,
Norton posed the following question (see [4]): is there an arc A and a C*
function f critical but not constant on A such that for every subarc n of A on
which f is not constant, 7 is a t-quasi-arc for no ¢ € [1,00)?

In [6], Wen and Xi gave an affirmative answer to the above question. They
gave a Whitney function f on a self-similar arc A such that each subarc of A
is a t-quasi-arc for no t € [1,00). In that paper, the function f is constant on
some subarcs of A, which means that f is not a strict Whitney function on A.
We are interested in finding a strict Whitney function on A.

In [4], Norton also considered the criticality of Whitney sets.

Definition 1.6. For a Whitney set F, the Criticality of E is defined to be

Cr(E) =sup{r: there exists a non-constant function f: E — R
and an M >0 such that |f(z) — f(y)| < M|z —y|" Va,y € E}.

If E is a Whitney set, then 1 < Cr(E) < dimg(F) (see [4]). Recall that
dimg (E) is the Hausdorff dimension of E.

Wen and Xi worked on self-similar arcs in [6], and obtained that each self-
similar arc of Hausdorff dimension greater than 1 is a Whitney set. In this
paper, we obtain the following result.

THEOREM 1.7. Let A be a self-similar arc of Hausdorff dimension s> 1.
Then A is a strict Whitney set with criticality Cr(A) = s.

Theorem 1.7 improves the main result in [6] in two aspects. First, the con-
structed Whitney function is strictly monotone. Second, the involved Hélder
component § is arbitrarily close to the Hausdorff dimension s, hence it deter-
mines the criticality to be exactly s.

In Section 4, we define “Condition W,” for a self-similar arc at the p-th
vertex, and prove that for a self-similar arc A with £+ 1 vertices, the Hausdorff
measure function is a Whitney function on A if and only if Condition W), is
satisfied for p=1,...,¢ — 1. We also define “Condition Q;”, and prove that a
self-similar arc is a t-quasi-arc if and only if Condition Q’; is satisfied for all
“inner vertices”.

In order to have a better understanding of self-similar arcs, we introduce
the notion of regular self-similar arcs in Section 5. Roughly speaking, a regular
self-similar arc is a self-similar arc in R? generated by a “basic figure” with
certain properties. One classical example of regular self-similar arc is the Koch
curve.
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In Section 6, we further analyze Conditions W, and Q; for regular self-
similar arcs, and reduce them to certain inequalities. We first prove that if
the p-th corner angle 6, > 0 then Conditions W), and Q; (for each t > 1)
are satisfied. Consequently, a regular self-similar arc with positive corner an-
gles is necessarily a quasi-arc and its Hausdorff measure function is a strictly
monotone Whitney function.

In case a corner angle is zero, Condition W), and Condition @}, are reduced
to inequalities about specific parameters of the self-similar arc. By using these
algebraic expressions, we could easily recognize t-quasi-arcs among regular
self-similar arcs and determine whether the Hausdorff measure function on a
regular self-similar arc is a Whitney function.

In the last section, we provide an example of a one-parameter family of
regular self-similar arcs with various features. For some values of the parame-
ter 7, the Hausdorff measure function on the self-similar arc is a strict Whitney
function, and hence the self-similar arc is an s-quasi-arc, where s is the Haus-
dorff dimension of the arc. For each ty > 1, there is a value of 7 such that the
corresponding self-similar arc is a t-quasi-arc for each ¢ > ty, but it is not a
to-quasi-arc. For each ty > 1, there is a value of 7 such that the corresponding
self-similar arc is a to-quasi-arc, but it is a ¢t-quasi-arc for no ¢ € [1,%).

In the construction of the above mentioned one-parameter family of self-
similar arcs, a crucial step in the reasoning is that the self-similar arc is
a t-quasi-arc if and only if the parameter 7 has approximation property
J(t—1)10g(15/7)- See Definition 7.1 for the definition of approximation prop-
erty Jy.

The significance of the given family of self-similar arcs lies in that it provides
a method to produce various examples.

2. Self-similar arcs

A mapping F : RY — RY is said to be a contractive mapping if there exists
k €[0,1) such that |F(z) — F(y)| < k|lz — y| for all x,y € RV.

A compact set K C RY is said to be invariant with respect to a finite set
S={51,...,5¢} of contractive mappings on K, if

4
K=]JS;(K).

In [3], Hutchinson gave the following theorem.

THEOREM 2.1. Let X = (X,d) be a complete metric space and let S =
{S1,...,5¢} be a finite set of contractive mappings on X. Then there exists a
unique closed bounded set K such that K = U§:1 S;(K). Furthermore, K is
compact and is the closure of the set of fized points sj, .. ;, of finite composi-
tions Sj, o---08S;, of members of S.
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A mapping S : RY — R¥ is called a similitude if there is an r > 0 such that
|S(x) - S(y)| =rlz—y|, forazy cRY.

If 0 <r <1, we say that S is a contractive similitude.
Suppose that S :={S1,...,S¢} is a family of contractive similitudes with
ratios rq,...,7¢. Then there is a unique set E satisfying

¢
E=]Jsi(B).
i=1
The set FE is called the self-similar set associated to S.

Definition 2.2. The compact self-similar set A associated to a family of con-
tractive similitudes S = {S; }1<i<¢ is called a self-similar arc if the following
two conditions are satisfied:

(1) S;(A)Nn.S;(A) is a singleton for |i — j| = 1;

(2) Si(A)NSj(A) =0 for |i — j| > 1.

Let A be the self-similar arc associate to a family & ={S1,...,S¢}. The
Hausdorff dimension s of A is determined by the equation
I

Zr? =1,

Jj=1

where {rj}le are the contractive ratios of {Sj}le (see [3]). We say that a
self-similar arc A is non-trivial if the Hausdorff dimension of A is s > 1, i.e., A
is not a line segment.

Suppose that the non-trivial self-similar arc A is defined by a homeomor-
phism h:[0,1] = A so that h(0) € S1(A). For x,y € A, we say that z pre-
cedes y, and write z <y, if h=(z) < h=!(y). Then we define intervals on A,
[,y ={2 € A:x <z =<y}. Now on A, there are points zg < 21 < -+ < 2z SO
that S](A) = [ijl,Zj]. Set S(k) = {Sj1 Sjk 01 S jl,...,jk S 6} for k Z 1
and S = {Id}. Here S;S;, = S; 0 S;, Sk =8;---8; (k times), etc.

By Definition 1.5, for 2,y € A, A(z,y) is the subarc between x and y. Here,
we denote by [z, y] the subarc from  to y. So A(z,y) = [x,y] or A(z,y) = [y, z].

The sets S, ---Sj, (A) are intervals on A overlapping only at end points.

Thus there are points zj(k),j =1,...,¢% and a numbering {S](k) 1< <k} of
elements of S*) such that zék) =< z§k) <= Zéf) and S](-k) (A) = [z;li)l,z](-k)]. In
other works, Sj(k) is the unique member of S*) which maps A to [z(k) (k)].

=107
If K <m, we have

k m
(2) 2 =2,

Note that S§k) is not necessarily equal to S¥, because S; may be “order
reversing”.
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A similitude S}, - -- S}, is order-preserving if S}, ---S;, (20) < S}, - -+ S, (20);
otherwise it is called order-reversing.

Let 7 be the function on the collection of finite sequences (ji,...,jx) of
members of {1,...,¢} defined by

. 1, S, -8,
(3) T(]la"'vjk)_{ ! !

order-preserving,

-1, if S;, ---9;, order-reversing.

The mapping Sj,S;, is order-preserving if S;, and S;, are both order-
preserving or both order-reversing; it follows that 7(j1,...,5k) =7(j1) - - 7(4k)-

It would be more convenient for us if S; and S, are order-preserving. Of
course, that is not the case in general. One might hope that when S; and S
are not both order-preserving, S%k) and Sé,]f) could be made order-preserving
by choosing k suitably. Unfortunately, that could not be achieved either. In
other words, [6, Lemma 1] is incorrect.

Example 2.3. Suppose that S is order-preserving, Sy is order-reversing,
and k > 1. Since S(k) is the unique composition Sj, -- S“ such that
Sy -+ S;. (A) 3 z¢, and since Sp(SF™1)(20) = 2, it follows that Sek = S50t

Therefore, Sék) is order-reversing for each k > 1.

By arguments similar to above, we obtain

SM =gt S =5k ifr(1)=1,7() =1,
SYC):S{C7 Sgk _SKSk la lfT(l):laT(é):_L
@) sP=s857t  sW=s ifr(1)=-1,7(0) =1,

SV =(180F, SEY = (Ses0)F, it r(1) =—1,7(0) = -1,
S = (518081, STV = (881)kSp, if r(1) =—1,7(0) =—1.

We now define a homeomorphism g from [0, 1] onto A, which has properties
necessary for the proofs of several theorems. Set

= {":k>1,0<)< ),

Q= {Ek E>1 0<]<£’“}c[0,1].

Let g: Q — T be defined by

(5) g(éﬂ) A9,

By (2), g is well defined. By its very definition, the function g is bijective
and order-preserving, that is, u < v implies that g(u) < g(v). Since @ is dense
in [0,1] and T is dense in A, g extends to be a homeomorphism from [0, 1]
onto A.
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Suppose that « € [0,1]\ Q. Then we can uniquely split [0, 1] into (A4, B) such
that a < a < b for a € A and b € B. Then the unique point on A which split A
in (g(A),g(B)) is denoted by g(a). We have proved the following lemma.

LEMMA 2.4. There is an order-preserving homeomorphism g :[0,1] — A
such that for each k> 1 and each j =1,2,...,0%, we have

Jj—17 k) (K
9([7@}) [1,2°]-

3. Proof of Theorem 1.7

LEMMA 3.1. Let A be the self-similar arc associated to similitudes
S1,...,85¢, let s> 1 be the Hausdorff dimension of A, let 5 € (1,s), and let
{ex} be a sequence of positive numbers with 1 <1 and e \, 0. Suppose that
the ratios v; of S; satisfy

‘
(6) T’f+7’§<27‘]§71.

Then there exists a number s’ € (8,s), a sequence {11} of positive numbers
with 7, \(0, and a probability measure p on A such that
(i) 7% <min(r{,r,ed);
(i) p([z, ]) >0 if v,y € A and x < y;
(iii) S5 (B)) < (1+e1)(rj, ---rjk)slu(E) for each Borel subset E of

(iv)

Proof. By (6), we have Zj 275

of the self-similar set A, we obtain that Z
an s’ € (8,s) such that

(
( Si,(A) =117 if in=1o0r ¥ form=1,... k.
#> 1. By the basic property, ZJ 1y =1

= 27'] < 1. So we see that there is

~

-1

(7) re =1

J

I|
N

J
Let r = mino<j<¢—17;. Since s’ < s, we can choose v >0 so that s’ +v < s

and r—(7)/6 < 1 4 ¢, Therefore, s’ < s’ +7/k? < s for any k € N. It is easy
to see that when we raise s’ to s’ +v/k? in (7), we have the sum

-1
(8) ers IR 1, for each ke N.

Now let 7}, be such that
—1

(9) 27 + 3 r T 1
j=2
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Because of (9) and

-1
1—r1+r@+Zr <r1+re+2rs+“’/k
j=2 j=2

we have 0 < 27, <r§+rj]. By (7) and (9), we know that

- =
" 1 ,
(10) klggoTk - hm < E o+/ ) =5 (1 - E rj) =0.
i=2

j=2

Let 7, = min(r§, 7§, &5, 7/). Then

—1
om+ 3 r T <o +Z SR,
Jj=2 j=2

and then we can choose s < s’ +v/k? so that
-1
Sk
(11) 2m + Y 1k =1
=

By comparing (7) and (11), it follows that s’ < sg. Then s’ < s < s’ + /k?
and therefore s, — s’ as k — oo. Since we choose 75 to be less than or equal
to 77, and since (10), we know that 74, \, 0 as k — oo.

For j=1,...,4, k=1,2,..., we define numbers r;; by

o rj", if j£1,¢,
ik — e -
T, ifj=1or/.

Then we have

¢
(12) > k=1
j=1
We now define a probability measure p by

(13) N(A):lv /‘L(Sjl Sjk(A)) =Tj1,1" " Thp k-
Equality (12) implies that for k=1,2,...

/‘(Sjl" s ( ZN it S 1S](A))‘

Thus the definition (13) is consistent.
Now (i), (ii), and (iv) are satisfied; it remains to prove (iii). It suffices
to show that (iii) holds for £ =S;, ---S;, (A), i.e., for arbitrary ji,...,Jk,

7'17 Z?ﬂ

’

N(Sjl e 85,8y - Si, (M) < (T +e1)(rg, - 75,)° (S, -+ Si, (A)).
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We know that if 2 <j </ —1, then

Sk+m
Tjk+m _'j < Tf(smfsk_,.m) <,’n7(5m75/) < T,f'y/mZ;

) Sm =
Tjm T

if j=1 or ¢, then
Diktm _ Thtm g o p—y/m?
Tim Tk
Thus,
Tj;nl]c# <T—7/m2’ i=12,...4m=1,2,....

On the other hand we have that rj; < rj/ for j=1,...,¢, k=1,2,.... There-
fore,

#(Ss - S Sin -5i, (A) TG TG
p(Siy -+ S, (A)) o R i Tin.n
S/ S/ > _ m2
Sfrjl...fr‘ijrr ’7/
m=1
o 7T2
:(Irjl...rjk)sT Y7 /6
< (1+51)(7’j1 "'Tjk)sl. O

Proof of Theorem 1.7. Let § € (1,s) be given. We prove that there exists a
function f on A, constant on no non-empty relatively open subsets of A, and
a constant C such that |f(z) — f(y)| < Clz — y|® for all z,y € A.

Suppose that A is the self-similar arc associated to a family S :=
{S1,...,5¢} of contractive similitudes with ratios rq,...,r. Let g:[0,1] = A
be the homeomorphism defined in Lemma 2.4.

Suppose that S;(A) =[zj_1,2;], j=1,...,£. For each j=1,...,0 -1, we
consider sequences of points {a; }72, and {5, }72, in A which are converging

to z;j, where
J 1
Qjk =g 7w )

J 1
5jk=9<z+£—k)'

So Q1 =251 and ﬁjl = Zj+41-
In the following, let dis(X,Y") denote the euclidean distance between the
two sets X, Y. Set

ery = min{1,dis([zj-1, a5 x11], [25, 2541]), dis([z5-1, 23], [Bikt1, 2j41)) |

and ey =min{eg;: j=1,...,0—1}.
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Since 5 < s, we have E 75 —1>0, hence (6) holds provided that ry,
r¢ are sufficiently small. Note that the quantity on the right-hand side of (6)
becomes larger when S is replaced by S*). Therefore, replacing S by S*) if
necessary, we assume that r, and r, are so small that (6) holds.

By Lemma 3.1, there is a probability measure p on A with properties
(i)—(iv) specified in the lemma.

Now we define a function f:A — R by letting f(x) = u([20,2]). By (ii), if
x <y, then f(y) — f(x) = p[z,y], hence f is non-constant on each subarc of A.
We shall show that there is a constant C' > 0 such that

(14) [f(@) = f(y)] <Cle—yl*, fora,yeA.

Consider two distinct points x, y in A. Let L be the diameter of A and let
R =maxrj. Set

W(z,y) = {/<; ck>0,2,y € S](R)(A) for some 5,1 <j < 6“}.

Then 0 € W(xz,y) and W(z,y) # 0. When « > log(|z — y|/L)/log R, the di-
ameter of S](”) (A) has estimate diam(S](-K) (A)) < R*L < |x —y|, which implies
that {z,y} ¢ S (-K) (A), and hence k ¢ W (x,y). Thus, x <log(|lz —y|/L)/log R
for k € W(x y) Let k = maxW (x,y). Then z,y € SJ(-k) (A) for some j with
1<j <k Let 2,y € A be such that = = S (2/), y = Sj(k)(y’). Without loss

J
of generality, we assume that 2’ < y’. Choose integers d1, ds so that 2’ € Sy, (A)

and y’ € Sg,(A). By the maximality of k, di < dy. We consider the following
two cases.

Case 1. Sq, (A) N Sa, (A) = 0.

By the definition of f and Lemma 3.1, there exists s’ € (3, s) such that

[f(@) = F@)] < u(Ss, -+ Sj () < (Le)(rjy - -75) " w(A).

Let 0 be the least distance between two disjoint subarcs S;(A) and S;(A) with
1<i+1<j</{. Then

|z —y| > dis(S}, - S}, Sa, (A), Sjy - S, Sa, (M)
=TTy diS(Sd1 (A)7 Sd2 (A))
>y,
It follows that

’

@)~ W) _ Q) )"

|x*y‘§ o (le ..,,r,jk)g(;g
Therefore,
|z —yl*

Case 2. Sq, (A) N Sy, (A) #0.
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In this case, we assume that d; =p and do =p+ 1. Then 2’ € [z,_1,2p] =
Sp(A), ¥ € [2p, Zp+1] = Sp+1(A). By the maximality of k, we have 2’ < 2z, < y/'.
Set z =S, ---S5j,(2p). Let m be the least positive integer such that z’ <
Qp.mt1. 30 Qpm =& < 1. Similarly, let ¢ be the unique positive integer
so that 8, q+1 <¥' =< Bpq. Then we have

|z —y| = dis(Sj, - Sy ([ap1, apmt1])s Sji -~ S ([Bpg+1, Bpal))
=T T dis([aplvapm-i-l]a [Bp.g+15 ﬁpl])
> 71, 15, Max(Em, Eq)-

We also have

|£(z) = ()]

p([z, 2]) + u([z,9])

1(Sj -+ S ([opm 2p]) ) + 16(Ss -+~ S ([2p+ Bpal))
(1+e1)(rj, "‘rjk)S/ (1(lapm, 2p]) + 1([2p: Bpal))
(14e1)(r;, ...Tjk)s’ (Fig 1 Timom + T 1 Tug.q)

(L4 ) (s 75" Fim +T1gq)-

Here v 1 =1y, 11 :rf,brl, ri, ;=15 for j>1,and r, , =7, forn>1. 1If

m>1, then r;, /e =7 /e <1<ey®. Also, r;, 1/e <1/ej <e7®. In any
case, i, .m/€y, <€ . Similarly, r, ,/e; <e;°. Therefore,

|f(z) — f(y)] < (1 +e1)(r, "'rjk>3/(7"im,m +Tig)
(16) le—yl> = (o) max(em, gg)°
<2e7°%(14¢€1).
It follows from (15) and (16) that
|[f(@) = f(y)| < Cla —yI,

where C'=max(2¢*,67%)(1 +¢1). Since 5 > 1 is arbitrarily close to s, we see
that the self-similar arc A is a strict Whitney set and Cr(A) = s. O

IIAIA

IN

4. Localization

In this section, we define “Condition W,” for a self-similar arc at the p-th
vertex, and prove that for a self-similar arc A with ¢4 1 vertices, the Hausdorff
measure function is a Whitney function on A if and only if Condition W, is
satisfied for p=1,...,¢ — 1. We also define “Condition Q;”, and prove that a
self-similar arc is a t-quasi-arc if and only if Condition Q; is satisfied for all
inner vertices.

Suppose that A is the self-similar arc associated to a family S :=
{S1,...,5¢} of contractive similitudes with ratios ri,...,ry, and that the
Hausdorff dimension of A is s > 1. Recall that for z,y € A with = <y, [z,y]

is the subarc of A from z to y. Let H*([x,y]) be the s-dimensional Hausdorff
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measure of [z,y], and let f(x) = H*([20,%]), where 2y is the “initial point”
of A.
As in the proof of Theorem 1.7, for distinct points z,y € A, let W(x,y)

denote the set of positive integers k such that z,y € Sj(k) for some j with
1< <k,

Definition 4.1. Let A be a self-similar arc with £ 4+ 1 vertices, and let 1 <
p <{—1. The arc A is said to satisfy Condition W), if

(17) [f(@) = ()| =o(jz—yl) forzp1 <2<z y=zp

or, equivalently, if for each € > 0 there is a u, > 0 such that

|f(a:) — f(y)‘ <elr —y| whenever z,_1 <z =z, XY =< zp41 and |z — y| < pyp.
PROPOSITION 4.2. The function f has the property

(18) [f@) = fW)]=o(z—yl), zyeA
if and only if A satisfies Condition Wy, forp=1,...,0—1.

Proof. The “only if” part is trivial.

Suppose that A satisfies Condition W, for p=1,...,£/ — 1. Let € >0 be
given. Let p, > 0 be the associated number in Definition 4.1, p=1,...,
£—1. Set p=min{py,...,pe—1} and r =max{ry,...,r¢}. Let dy be the least
distance between two disjoint subarcs S;(A) and S;(A) with 2<i4+1<j </

Let
s\ 1/(s—1
5 (550> /( )’
B

5 <€MS)1/(S_1)
2 B )

4 =min(dy,d2),

where s is the Hausdorff dimension of A and §= H*(A).

Suppose that z,y € A with 0 < |z —y| < 0. Let k = max W (z,y). Then x,y €
S](k) (A) for some j with 1 <j </¢*. Let 2/,4' € A be such that z = S](-k) (x')
and y = S](-k) (y'). Without loss of generality, we assume that 2’ < y’. There
are integers di < ds such that z' € Sg, (A), ¢y € S4,(A). By the maximality of
k, di < dy. We consider the following three cases.

Case 1. dy — d; > 1. Write SJ(-k) =8j, -+ Sj.. Then (rj, ---r;)|z" —y'| =
|z — y| < 61 implies that (r;, ---7j,) < 01/d9. Thus

@) =T (el i) )
|x—y| Ji Ik |x/—y/\
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Case 2. dy —dy =1 and |2’ —y'| < p. For convenience, set p=dy,p+1=ds.
Since |' — y'| < pp, Condition W), tells us that
|f(z) — f(¥)] s lf&) = FW)I
|z =yl " — /|
< (rjl o 'Tjk)s_lg <e.

= (rj 75

Case 3. dy —dy; =1 and |2/ —¢'| > p. As above, set p=d;,p+1=ds. Since
(1, -+ 15,) = |z —yl/|2" — | < d2/p, it follows that

@ I, e @) 1)

|z —yl lz" — /|
(S s—1
< (—2> b
% %

Therefore, |f(z) — f(y)| < €|z — y| whenever |z —y| < §. The proof is com-
plete. (I

Let t > 1. Set L(z,y) = |[A(z,y)|'/|x — y|. Here |A(z,y)| is the diameter
of the subarc A(z,y) of A between z and y. For p=1,...,¢/ — 1 we define
Condition @}, as follows.

Definition 4.3. A self-similar arc A is said to satisfy Condition Q;, if there
is a constant C, > 0 such that [A(z,y)|" < Cplz —y| when z,_1 S 2 <z, <y <
Zp+1 .

PrOPOSITION 4.4. A self-similar arc A is a t-quasi-arc if and only if A
satisfies Condition Q! forp=1,...,0—1.

Proof. The “only if” part is trivial.

Suppose that A satisfies Condition Q; forp=1,....,0—1. Let C1,...,C¢_1
be the numbers in Definition 4.3 for the vertices z1,...,2¢_1, and set C =
max{C1,...,C¢_1}. Let L =|A| denote the diameter of A. As in the proof of
Proposition 4.2, let §g denote the least distance between two disjoint subarcs
Si(A) and S;(A), 0<i<j<{. Set M =max(C,L"/d).

Consider distinct points x,y € A. Let k = max W (z,y). Then z,y € SJ(-k)(A)
for some j with 1 <j < /¢*. Let 2/, € A be such that z = S](»k)(as’) and y =
S J(k) (y"). Without loss of generality, we assume that &’ < y’. There are integers
dy <dg such that 2’ € Sy, (A), ¥’ € Sg,(A). By the maximality of k, di < ds.
We consider the following two cases.

Case 1. dy — di > 1. Write S =S, ---S;,. Then [A(z,y)[* = (rj, -
ri ) A2 )|t and |x — y| = (rj, - 7). )2’ — y'|. Therefore,

AL _ L

L(:an) = (Tj1 ) “Tjk)tilL('rlay,) S (rjl o rjk) = ¢
o — do
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Case 2. dy — dy = 1. For convenience, set p=d;,p+ 1 =dy. Since z,_1 =
x' =2z, <y =< zp11, we have

L(z,y) = (rj, -7, 7 L' y) < (rj, - r5) T Cp < C.

Therefore, L(z,y) < M for distinct points z,y € A. By Definition 1.5, A is
a t-quasi-arc. [l

5. Regular self-similar arcs in R?

In this section, we study “regular” self-similar arcs. We identify the eu-
clidean plane with the complex plane C and consider the similitudes on C.
It is an elementary fact that an orientation preserving similitude S is of the
form S(z) = az + b, where a,b € C, while an orientation reversing similitude
S has the form S(z) =aZz +b.

Let 2 be a polygon formed by a sequence of successive segments in the
plane. Suppose that €2 has £+ 1 vertices {Ag, A1, ..., A¢}, and that the points
Ay, Ay lie on segment AygA; and the point A,_; lies on segment A;A,.
Suppose that there is a vertex A, such that all vertices of the polygon belong
to the set II, which is defined to be the union of the point A, the segment
ApA,, and the set Iy, which is in turn defined to be the interior of triangle
AoArAy. Let 1I; be the closure of 1ly. For j =1,...,¢, there is a unique
orientation preserving similitude S; such that S;(Ag) = A;_1 and S;(A4¢) =
A;. We assume that the similitudes S; are contractive, that the sets S;(Ilp)
are pairwise disjoint, and that S;(A,) € II; for j =1,...,¢. Finally, we assume
that

(19) SJ(Hl)O(AqAOUAqu):@, 1f]7é1,€,q,q+1

If all the above conditions are satisfied, we say that € is a basic figure (see
Figure 1), and II; (and/or Triangle AgA;A,, which is the union of the three
sides) is the corresponding basic triangle.

Let Q2 be a basic figure with vertices {29, 21,...,2¢} and let S = {S1,...,S¢}
be the corresponding contractive similitudes for Q2. Let A be the self-similar set
associated to S, that is, A is the unique compact set such that A = Ule Si(A).

We now discuss under what conditions A is an arc. For convenience, we
assume that zo =0, zp = 1.

FIGURE 1. Basic figure.
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PROPOSITION 5.1. The self-similar set A is an arc if and only if
(20) SJ(A)QSJ+1(A):{ZJ}, jzl,,é—l

Proof. Suppose that A is an arc. Let 1 < j < /. Then S;(A) is the subarc
of A from z;_; to zj, and Sj;1(A) is the subarc from z; to zj41. Thus, (20)
is satisfied.

Conversely, suppose that (20) holds. In order to prove that A is an arc, we
only need to prove that there is a homeomorphism between [0,1] and A.

Since S; are orientation preserving contractive similitudes for 2, we know
that S;(z) =b;z + zj_1, where b; =z; — z;_1 for j=1,...,£. Now each z €
[0,1] has a unique expansion z = Z;‘;l u; /07, where u; =0,...,¢ — 1. Recall
that

Q::{;—k:k>1,o<j<£’“}c[0,1},

I':= {zj(k) :kzl,OSjSEk} CA.
The function g:@Q — T" defined in (5) now has the form
J k k
g<£_k) - ZJ( : = S]( )(1) = Su1+15“2+1 o .Suk—1+1suk+1(1)v
where

. k
Ui
ok o

i=1
It is straightforward but somewhat tedious to verify that

L k
J f§ :
g T aj—l(ula . -~,Uj—1)Zuj7
Jj=1 J=1

where

j
ap=1, a;(ul,..., u;) = Hbuerh j>1.

m=1
By Lemma 2.4, the function g extends to be a homeomorphism g :
[0,1] — A, which is given by

9(@) = a;1(2)z,,
j=1
where

J 0
. W
G/O(x)::l, a](ﬂf): H bum+1, ]217 €Tr = g g_;

m=1 j=1

The proposition has been proved. O
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1/2+43i/6

0 1/3 2/3 1

FIGURE 2. Basic figure of Koch curve.

Suppose that € is a basic figure with corresponding contractive, orientation
preserving similitudes & = {S1,..., S} and self-similar set A. If A is an arc,
then A is a self-similar arc by Definition 2.2; in this case we say that A is the
self-similar arc generated by the basic figure 2. For example, the Koch curve
is the self-similar arc generated by the basic figure which is the polygon with
vertices {0,1/3,1/2 +/3i/6,2/3,1} (see Figure 2), where we identify points
on the complex plane with their complex number representations. Figure 1
gives us an example of a basic figure with 7 vertices. Triangle A3 AyAg is the
corresponding basic triangle.

Suppose that A is a self-similar arc generated by some basic figure and the
associated similitudes S = {S1,...,S¢} have contractive ratios ri,...,rs. The
vertices of the generating basic figure are not collinear, which implies that
r1+ .-+ 7y > 1. Since the Hausdorff dimension s of A is determined by the
equation 7§ +---+ 77 =1, it follows that s > 1.

Let © be a basic figure with vertices {zo, z1,...,2¢}, and let Azgzpz¢ be the
corresponding basic triangle. From now on, we have a standing assumption
that

Zg — 20
L= >0,
Zp — 20

which simplifies to Sz, >0 when 290 =0 and 2z, =1. For p=1,...,/ -1, set

Sp(2) = 2p

9 =
P Sp+1(2q) — 2p

, 0<460, <27

Here 0, is the argument of the fraction, so it is the angle between the two
segments from the vertex z, to Sp(24) and Sp11(24), respectively. We call 6,
the corner angle at vertex z,. Set Opin = min{6y,...,0,_1}.

We now consider which points of A lie on the sides Z;zp and Z;z; of the
basic triangle. First, points {S7(z,)} lie on Z;z and accumulate at zo; while
{5 (2,)} lie on Z;z7 and accumulate at z,. For some basic figure, the side Zzg
may contain more points of A. For example, for the Koch curve, g =2, £ =4,
and the points {5557 (22)} lie on the side Zzz5 and accumulate at zs.
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For the self-similar arc A, we define angles 7, 172 by

S _ _
(21) n1=arg7q('zq> “, Ny = arg g — b

) 0 S N, M2 < 2.
70~ Zq +1(2q) — 2q

(For the Koch curve n; =12 =0.) Set
(22) no=min(ni,n2),  &:=Omin + Mo

The angle £ is said to be the characteristic angle of A and of the corresponding
basic figure €.

For example, in Figure 1, the basic figure Q has 7 vertices { Ao, 41, Ag, A3,
Ay, As, Ag} with Ag, A1, As, Ag collinear. We also have a family of contractive
similitudes S ={S;:j=1,...,6}, where

The triangle AAsAgAg is the basic triangle, and its images under the simil-
itudes are the smaller triangles: ABjAgA; = S1(AA3AgAg), ABy A1 Ay =
Sa(ANAyApAg), ete. Therefore, the corner angle 6, = /By A1 By, 05 is the re-
flex angle Z/B3AsBs, and 0, is the reflex angle /Bs A4 By, etc. The angles 7,
ne are m = LAgAaBa, n2 = £B3As Ag.

Definition 5.2. A regular self-similar arc is a self-similar arc generated by
some basic figure with a positive characteristic angle.

As in Proposition 5.1, let Q be a basic figure with vertices {29, z1,...,2¢},
where zp =0, z; = 1. We now express the condition (20) in terms of the corner
angles and other parameters of Q). Let A be the self-similar set generated by
Q.

We fix an index p, where 1 <p < /¢ — 1. We first consider the case where
6, > 0. Recall that II; is the union of the basic triangle and its interior. Since
0, > 0, we see that S,(II1) N Sp41(I11) = {z,}, and 2z, = Sp(z¢) = Sp+1(20)- It
follows that

Sp(A) N Sp1(A) = {2}

Therefore condition (20) holds for j =p when 6, > 0.

Now we assume that 8, =0. Let v be the segment S,(Z;Z¢), and let w =
Sp+1(Z4%0). That 6, = 0 means that one of the two segments ~, w is contained
in the other. Since S,(A) C Sp(I11) and Sp41(A) C Spy1(II1), we see that

Sp(A) N Spy1(A) C Sp(Il) N Spia(Il) =y Nw.
For j,k=0,1,2,..., let
Z; = 8,57 (24),
Wi :SpHSf(zq).
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Since 19 + Omin > 0, the assumption 6, =0 implies that 7y = min(n,n2) > 0,
hence S,(A) N (1\ {zp}) = 175 = 1,2,.... } and Spir ()N (@) {2p}) = (Wi
k=1,2,...}. It follows that

(Sp(A) N Spra (M) \ {zp} = (Sp(A) N (7 \ {2p})) N (Sps1(A) N (w\ {2}))
={Z;:j=0,1,..}n{Wy:k=0,1,...}.
Therefore
Sp(A) N Spy1(A) = {2}
if and only if
(23) (Z;:7=0,1,2,.. }n{Wi:k=0,1,2,...} = 0.

To summarize, we conclude that A is an arc if and only if for each p with
1<p<{—1and¥f,=0, (23) holds.
Since S;(z) =bjz + zj_1 and b; = z; — z;_1, it follows that

Zj=2p— bprg(l = 2g),
Wk :Zp+bp+17']fzq.
Here r; = |b;|, for i=1,...,¢. Set

(24) Q= ’rp(l - Zq) ) B= |rp+lzq|a
(25) A=Ty, w=r, 1= (2o — zp) /| Zo — 2p].

Since 0, =0, we have

Zj—Zp o Wk—Zp -
9

|Z; — 2] B Wik — zp] B

hence
(26) Zj—zp=aNy, Wy — 2, = Bu*,
(27) Z; — Wi = (aN — Bu")..
Set
(28) z=—logA, y=—logp, u=log(a/p).
Then
. aN
(29) u—jx—i—ky:logﬁ—uk.

Therefore, Z; # Wy, for j,k=0,1,2,... if and only if v — jo + ky # 0 for
4, k=0,1,2,....
As a conclusion of the above discussion, we have the following proposition.
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PROPOSITION 5.3. Let € be a basic figure with corner angles 8,, p =
1,....0 =1, and let A be the self-similar set generated by 2. Then A is a
reqular self-similar arc if and only if for each p with 1 <p<{—1 and 6, =0
the following holds:

u—jr+ky#0, forjk=0,1,2....

6. Reduction of conditions W, and Q;,

In this section, we assume that A is the regular self-similar arc generated by
a basic figure Q and {S1,...,S¢} are the corresponding contractive similitudes.
Let r; be the ratio of S; for j=1,...,¢. Recall that |A(z,y)| is the diameter
of the subarc A(z,y) of A between x and y, and that L =|A|. Recall also that
when x <y, [z,y] denotes the subarc from z to y.

PROPOSITION 6.1. Suppose that 1 <p < /¢ —1 and that the corner angle
0, >0. Then A satisfies Condition W,.

Proof. Recall that the s-dimensional Hausdorff measure function f: A — R
is defined by

f(x) = HS([ZOaxDv

where 2 is the initial point of A. It is clear that f is non-constant on each
subarc of A. We shall prove that there is a constant M > 0 such that

(30) |f(@) = f(y)| < M|z —y|* whenever z,_1 <2 < 2, <y < 2pt1,

which implies (17).

Suppose that 2,1 <z < 2, <y < 2p+1. Let m >0 be the greatest integer
such that z € S,S)(A). Then z € S,S)(A) and x ¢ S,S;" T (A). Upon setting
x' = 5,5, ™5, (z) we obtain that z’ € S,(A) \ S,S¢(A). Let A denote the

positive number
A:=sup{|f(w) — f(zp)|/Jw — zp|* 1w € Sp(A) \ SpSe(A)}.

Since the similitude 5,5, mSIj ! maps z, z, to @/, z,, respectively, it follows
that

[f(zp) = (@) _ |f(2p) = F(&)]

1 = < A.
(31 el ol
Similarly,

ly — 2pl*
where

B i=sup{ | F(w) — F(z)|/lw = 25| :w € Spar (A) \ Sp1S1(A)}.
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Let
Op 1= argw, 0 < pp < 2m,
Zp—1 — Zp
be the positive angle from line segment Z,2z,—1 to line segment Z,z,;1. Set
¥p =min(6y, 0p).
It follows from the law of sines that
(33) =zl <Jz—ylescty,  ly— 2l < |z — ylescd,.
By (31), (32) and (33), we obtain that
|f(@) = f)| = (@) = F(zp)| + [f(y) = f(z)]
< Alz —2p|° + Bly — z|°
<(A+ B) (cscs 1/Jp) |z —y|°.
Thus, (30) holds with M = (A + B)(csc® ¢,). O

PROPOSITION 6.2. Suppose that 1 <p <{—1 and that the corner angle
0, >0. Then A satisfies Condition Q; fort>1.

Proof. Fix a number ¢ > 1. We need to prove that there is a constant M > 0
such that

(34) }A(x,y)|t < M|z —y| whenever z,_ 1 <T <2, <Y < Zpi1.-

Recall that |A(z,y)| is the diameter of the subarc A(z,y) of A between x
and y, and that L is the diameter of A. Suppose that z,y € A satisfy z,_1 <
T <2y <Yy < zpy1. Let m >0 be the greatest integer such that z € 5,57 (A).
Then z € S, Sy (A)\ SpS;" ™' (A). As in the proof of Proposition 6.1, the point
a’ = 85,8, "S5, () satisfies 2’ € Sp(A) \ SpS¢(A). Upon setting
6 =min(dis(zo, A\ S1(A)),dis(z¢, A\ Se(A))),
we obtain
|2’ — 2p| = dis(zp, Sp(A) \ SpSe(A)) =rpdis(ze, A\ Se(A)) > rp6.

Thus,
|A(@, zp)| m(1-1/t) |AZ, 2p)|
35 = T |1/t
(%) RPN PPN I
< |A(Zp—17zp)|
= T,l,/t(Sl/t
:L(S—l/t,rzl)—l/t.
Similarly,
A _
(36) |A(y, 2p)] §L5_1/t7“;+i/t-

ly — Zp|1/t
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It follows from (33), (35) and (36) that
|A(z,y)| < |Al, 2)| + | Ay, 2)|
< L6~ 1/t( 1— l/t‘x |1/t+7,1 1/t|y_zp|1/t)

< L(5 csc¢p) ( 1-1/t +T1 1/t)| _ y|1/t.
Therefore,
1-1/t\t
‘A(m,y ’ < L'6~ (cscz/J )( 1= 1/t+7“p+1/t) |z — vy,

and (34) has been proved. O

By Propositions 4.2, 4.4, 6.1 and 6.2 we have the following theorem.

THEOREM 6.3. Let A be a regular self-similar arc and let s =dimg (A). If
Omin :=min{6, :p=1,...,£—1} >0, then A is a t-quasi-arc for eacht > 1 and
the s-dimensional Hausdorff measure function is a Whitney function on A.

When the minimal corner angle 0,,;;, = 0, the analysis of Hausdorff measure
function on A is more complicated. We now consider the case where 6, =0 for
some 1 <p</¢—1. As before, we assume that the three vertices of the basic
triangle of the basic figure (2 under consideration are zp =0, 2z, =1, and z,
with Sz > 0.

Let g:[0,1] = A be the homeomorphism in the proof of Proposition 5.1.
Note that g(p/l) =z, for p=0,...,£. Since 6, >0 and 0, =0, we see that

P#q.

Recall that b, = 2,41 — 2. In Section 5, we constructed two sequences of
points on the self-similar arc A,

Zj= SPSZ (29) = 2p = bﬂ?(l — Zq),
Wi = Spi1S¥(24) = 2p + bpiarizg.
Set
a:r;HS([zq,ze]),
(37) b:r;+1Hs([zo,zq]),
C:rPHZq?Zl”a
d:rp+1|[zo7zq]’,

where |[z,,z¢]| denotes the diameter of the subarc of A from z, to z,. Then
we have

H*([Z;, 2)) = aX™, H* ([2p, W)]) = bu™,
|[Zj,zp]|:c)\j, ’zp, ‘—d,u ,

where A, p1 are defined by (25).
As usual, let Z denote the set of integers, let N={1,2,...} be the set of
natural numbers, and let Z; ={0,1,2,...,}.
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LEMMA 6.4. Suppose that A is a regular self-similar arc with 0, =0 for
some 1 <p<{—1. Then there exists a constant T >0 such that if j, k € Z 4
and if
(38) ‘TGA(ZJVZ]")v |j_j/’:17 |x_Zj‘§|‘r_Zj/|v

y € AWy, Wi), |k—K|=1, ly — Wi| < |y — Wi/,
then
|Z; = Wi| < Y|z —yl.

Proof. Since O, = 0, the angles 1y, 171 and 7y defined by (21) and (22)
are positive. Let © denote the line containing the points {Z;} and {W}.
Since 71,m2 > 0 and since (19) holds, it follows that the subarc A(Zy, Z1)
intersects © at exactly two points Zy, Z;. The line © divides the plane into
two half planes. Let us denote by H; the closed half plane which contains
A(Zy, Z1). The other closed half plane is denoted by Ha. When x € A(Zy, Z1)
is sufficiently close to Zj, the law of sines provides an estimate

|z — Zo| < (cscmo)|z — x|, z€ Ha.
It follows that there exists a constant C' > 0 such that
|z —Zo| <Clz—=x|, if z€HyxeNZy,2Z1),|x—2Zo|<l|x—Zi]|.
Similarly, there is a C' > 0 so that
|z —Z1|<Clz—x|, if z€Hyxe€ANZy,2Z1),|x—Zo|>|x— Zi].
It follows that for some constant C' > 0, we have
(39) |z — Z;| < Cl|z — x|
whenever
reH,,  jef{0,1}, j=1-3j
x € N2y, Z1), |z — Z;| < |z — Zj|.
Since A(Z;,Zj41) = SpSZSIjl(A(ZO,Zl)) and since © and H are invariant

under the similitude SPSZ S, 1 it follows that for the same constant C, (39)
holds whenever

2 € Hy, jeN, li—J'|=1,
veMZj,Zy),  lo—Zj|<|x—Zyl
Similarly, there exists a constant C’ > 0 such that
2= Wil <Oz — g,
whenever
z€ Hy, keN, k—k|=1,
ye AW, Wi),  ly—=Wi|<ly —Wp|.
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Now suppose that j,k € N and (38) holds. Then
|Z; — Wi| < Clz — Wi| < CC'|z —yl.
The proof is complete. O

PROPOSITION 6.5. Suppose that 1 <p<{—1 and 6, =0. Then A satisfies
Condition W, if and only if

(40) (M +uF) =o(|laN = Bu*|), 4,k=0,1,2,....

Proof. Suppose that A satisfies Condition W,. By Definition 4.1, we know
that (17) holds for all Z; and Wy, i.e.,

(41) H*([Z;, W) = | f(Z;) = f(Wi)| = 0o(1Z; — Wi]).
By (37), we have

H*([Z;,Wy]) = aX + bp*,
which, together with (27) and (41), implies that

(42) a)\sj—l—b/fk:oqa)\j—ﬁuk‘).
The Hélder inequality tells us that
(43) (N + p*)” < F(ad¥ + bps*),

where F = (a=1/(=1) 4 p=1/(s=1))s=1 Now (40) is a consequence of (42) and
(43).

Conversely, suppose that (40) holds. Let =,y € A be such that z,_1 <z <
zp <Y = zp+1. Let m be the least positive integer such that x < Z,,, so z €
(Zm-1,2Zm). W & — Zp—1| < |z — Zn| let j =m —1 and j' = m; otherwise, let
j=m,j =m — 1. In either case we have

(44) reNZ;,Zy), lv — Z;| < |x— Zj|, li—J'|=1
Similarly, there are integers k, k' > 0 such that
45) Yy e AWy, Wi),  |y—Wil<|ly—Wi|,  |k—F|[=1

By Lemma 6.4, we have
|Z; = Wi| < T|z —y],
which, together with (40), implies that
(46) (N + 1) =o(|z — yl).
Setting Z_1 = Zy and W_; = Wy, we have
H*([z,y]) < H*([Zj—1,Wi1])
< aX* U= L pysth=1)
< (@A o) (A 4 )
< (@A +bu~ %) (M + 7).
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The last inequality and (46) imply that
H ([, y]) = o(|o —yl).
This completes the proof. O

PROPOSITION 6.6. Suppose that t>1, 1 <p<{—1, and 8, =0. Then A
satisfies Condition Q; if and only if there exists a constant C >0 such that

(47) (N + B <ClaN = Bub|, 4,k=0,1,2,....

Proof. Suppose that A satisfies Condition Q;. Then there exists a constant
C}p > 0 such that

(48) 12, Wil|" < CplZ; = Wil, 4, k=0,1,....
We have the following estimate
min(e,d) (N + p¥) < el +dpf = 125, )| + |[20, Wi]| < 2][Z;, Wil
which, together with (27) and (48), implies that
(N + 1) <12, Wi]|" < ClaN — Buk|,
where C'= C'C), = {2/min(c,d)}'C,. Thus (47) holds.
Conversely, suppose that there exists a constant C' > 0 such that (47) holds.

Let z,y € A be such that z,_1 <2 < 2z, <y < zp+1. We need to prove that
there exists constant M > 0 such that

\[z,9]|" < M|z —y].

As in the proof of previous proposition, there exist integers 7, 7/, k, k’ such
that (44) and (45) hold. By Lemma 6.4, we have

|Zj = Wi < Tl —yl,
which, together with (27) and (47), implies that
(49) (W + ) <O —y).
Now

|[xayHt < HijkaﬂHt

(1121, 2p)| + |12, Wi—1]])"
(cxi~? erukﬂ)t
(A~ +dp ) (W + ub)"
The last inequality and (49) imply that

IN A

IN

¢
[z, y]] < Mla—yl,
where M = (A~ +du~1)!CY. O
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PROPOSITION 6.7. Let A be a regular self-similar arc and let s = dimp (A).
If the s-dimensional Hausdorff measure function f is a Whitney function
on A, then A is an s-quasi-arc. If A is a t-quasi-arc for some t with s >t>1,
then f is a Whitney function on A.

Proof. By Theorem 6.3 and Proposition 6.6, the self-similar arc A is a
t-quasi arc if and only if for each p with 6, =0, one has

(50) ()\j —|—,uk)t:O(|a)\j —B,ukD, where j,k=0,1,2,....

By Theorem 6.3 and Proposition 6.5, the s-dimensional Hausdorff measure
function on A is a Whitney function if and only if for each p with 6, =0, one
has

(51) ()\j —l—,uk)s = 0(|a)\j — Buk

), where j,k=0,1,2,....

The proposition follows because (51) implies (50) when t = s, and because
(51) follows from (50) when 1 <t < s. O

The second part of Proposition 6.7 is contained in the result of Norton [4]
mentioned in the introduction of this paper.

By Proposition 6.6, Condition Q; is reduced to an inequality (47). In the
following proposition, it is further reduced to an inequality of a certain form
which is more convenient for determining whether a self-similar arc is a t-
quasi-arc and which is directly related to the degree to which a number u is
approximated by numbers of the form jz — ky, where x, y are fixed positive
numbers and j, k are non-negative integers.

Recall that A, p, x, y, u are defined by (25) and (28).

PROPOSITION 6.8. Suppose that 1 <p<{—1 and 0, =0. Then A satisfies
Condition Q; if and only if there exists a constant M >0 such that

(52) e VT < Mlu—jo+ky|, j,k=0,1,2,....

Proof. By Proposition 6.6, we only need to show that there exists a constant
C > 0 such that (47) holds if and only if there exists a constant M > 0 such
that (52) holds.

Suppose that there exists no constant C' such that (47) holds. Then there
are increasing sequences {j,} and {k,} of positive integers such that

- lan = Bt
53 —— =
(53) e (Nin 4 phn )t

Since (A7 + pkn) > (Mn 4 k)t when n is large enough, we see that

M — Bk A — Bukn
O e P TN e/ i
n—oo )\Jn + ukn n—o00 (Ajn + ukn)t

(54)
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This implies that when n is sufficiently large, the quotient |a\» — Buf~|/
(A7 + p¥n) does not exceed a /2, hence we have

aNn < |a>\jn _ 5’ukn
o o

N < [ Z kn'
2 = <2 +B)“

It follows that there is a constant @1 such that A\~ < Ql_l ,uk" for all n. Simi-
larly, there is a constant QQy such that p*» < QoM for all n. Therefore,
(55) QlAjn S uk7l S Q2>\jn.

Now

+Butn < % (X b)) + B,

(56) B(Q/»B))\j"ﬁb_k" —1 _aNn — Bk (NI 4 e t \in
A(E=1)jn (M 4 pkn )t Nin s

The first factor on the right-hand side of (56) tends to 0 as n — oo by (53),
while the second and third factors are bounded above and below because of
(55). It follows that

(57) fi (/AN 1

n-r00 AE—1)n =0.

Since the denominator in (57) is <1, it follows that the numerator tends to
0 as n — oco. By (57) and the equality lim,,_1[(logw)/(w —1)] =1, we have

o Tog((a/BNt)

(58) RS AC—Din =0
Substituting = —log A, y = —log p1, and v =log(a/B) into (58) yields that

u_]nx+kny_

(59) lim =0.

n—o00 e*jn(tfl)x
Thus, there exists no M such that (52) holds.

Conversely, suppose that there exists no M such that (52) holds. Then there
are increasing sequences {j,} and {k,} of positive integers such that (59)
holds, hence the equivalent equalities (58) and (57) hold. Since the numerator
in (57) tends to 0 as n — oo, it follows that 1/2 < (a/B) N u~k» < 2 for n large
enough, which implies (55). Then (53) follows from (55) and (57). Therefore
there exists no C such that (47) holds. O

PROPOSITION 6.9. Suppose that 1 <p<{—1 and 6, =0. Then A satisfies
Condition Qllj if and only if x/y is rational.

Proof. By Proposition 6.8, A satisfies Condition Qzl) if and only if the in-
equality (52) holds when ¢ = 1.
Suppose that 7:=x/y is rational. Then the set

II:={j7r—k:j,keN}
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is discrete. By Proposition 5.3, the distance from the point u/y to II is positive.
It follows that |u — jz + ky| > 0 for some ¢ > 0. Thus, the inequality (52) holds
with M =1/6.

Suppose that 7 =x/y is irrational. We show that the set II is dense in R,
which implies that (52) does not hold with ¢ =1 and that A does not satisfy
Condition Qll,. Let ce R and € > 0. There exist jo, kg € Z such that

(60) |(j07’—k0)—6| <€/2.

By Dirichlet’s Approximation theorem (see, e.g., [1, p. 143]), there are positive
integers j', k' > max(|ko|, |jo|,27/€) such that

g 1) 1 €

[T I TE R T

hence
(61) i’ — K| <e/2.

Set j=jo+j' and k=ko+ k’. Then j,k € N. It follows from (60) and (61)
that |(j7 — k) — ¢| < e. Therefore, II is dense in R. O

7. A one-parameter family of self-similar arcs

In this section, we construct and examine a one-parameter family of regular
self-similar arcs with 6, =0 for some fixed p. For different values of the pa-
rameter 7, the corresponding regular self-similar arcs have various features. It
turns out that the self-similar arc satisfies Condition Q]tg if and only if the num-
ber 7 satisfies a certain “approximation property” J;_1)¢, where ¢ =In(15/7).
We now define approximation property J,, a > 0, of irrational numbers.

Definition 7.1. Let a > 0. An irrational number 7 is said to have approxi-
mation property J, if

(62) 3C >0, |r—k/j|>Cj e ™ VkeZ,jeN.

It follows directly from the definition that if 7 has approximation property
Ja, then 7 has approximation property J, for each a > ag. By Liouville’s Ap-
proximation Theorem (see, e.g., [1, p. 146]), each algebraic irrational number
7 satisfies |7 — k/j| > Cj~™, where m is the degree of the irreducible polyno-
mial with integer coefficients of which 7 is a root, hence 7 has approximation
property J, for each a > 0.

THEOREM 7.2. Let ag >0 and let v € N. There exists a transcendental
number 7 with 1 <7 <14 27" such that T has approzimation property J,,,
but T has approximation property J, for no a € (0,agp).
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Proof. Define a number 7 by
T=142T 42T

np =ms, ng =mj + my, ng=mj+mg+ms,...,
(63)
m1 = max(8,v + 1),
mip1 =max([2" ag/log2] —ni,n; +2) fori>1,

where [-] is the ceiling function, i.e., [u] is the least integer greater than or
equal to u. Since m; — 0o as i — 00, we see that

T=1427" (1427427 ) <127 <1 27
For i > 1, set j;, =2™ and k; = j;7;, where
(64) T =142"" 42772 4. 427,
Then k; is an integer, and
Gir =k + (2*mi+1 QTR T M )
It follows that
(65) 0< jiT — k;y < 27misrtl

From the definition of m;1 in (63), we see that there is an ig € N such that
for i > 19 we have

(66) 2mitt Tl <27 exp (2™ ag) < 271
Combining inequalities (65) and (66), we obtain that
0<jiT—k; < 2j1‘67a0ji.

Consider a fixed number a € (0,ag). The above inequality tells us that for
1 > Z'O7

w < jSe(a—ao)ji_
Ji e~ aji

Since a — ag < 0 and hence the right-hand side of the above inequality tends
to 0 as @ approaches oo, we see that (62) does not hold. Thus 7 does not have
approximation property J,.

Now we assume that j > 2™ and k is an arbitrary integer. Then there is
an i > g such that 2™ < j < 2™+1. By (66), the integers n; and n; 1 satisfy

(67) 2m+171 < exp(2Mag) < 27+,
In order to obtain a lower bound for |j7 — k|, we write

(68) jT—]f:(j’Ti+1—k)+j(’r—’7’i+1).
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Recall that 7; is defined by (64). Since 2™i+17;1; is an odd integer, and since
J is not a multiple of 2"™+1  we see that 2™+!jr;,; is not a multiple of 2™+,
It follows that |2™i+1j7;,9 — 2™i+1k| > 1, and therefore

(69) ljTier — k[ =27
For the second term on the right-hand side of (68) we have
(T = Tigr) < QM (272 4 27 )
— 9 Mi+2 + QMit2—Mi43 + ..
< g et

Since m;12 > ni+1 + 2, by the definition of m;, the right-hand side of the last
inequality is < 2~ ™+1~1, Thus,

(70) 0<j(T—Tip1) <2 ™t L,
Now inequalities (68), (69) and (70) tell us that
(71) |j7 — k| > 27+t

From (71) and (67), we obtain that
ljT — k| > 2 M+t
> (1/4) exp(—2"ao)
> (1/4)e %7,

Therefore, the inequality in (62), with a replaced by ag, holds with C' =1/4

as long as j > 2™. This implies that 7 has approximation property Jg,.
Finally, since 7 does not have approximation property J, for a < ag, it

cannot be an algebraic number. Thus, 7 is a transcendental number. O

THEOREM 7.3. Let ag > 0 and let v € N. There exists a transcendental
number 7 with 1 <7 <1+27Y such that T has approzimation property J, for
each a > ag, but 7 does not have approzimation property Jg,.

Proof. Define a number 7 by
T=142"" 427"
(72) n1=my, Ny =my +ma, ng =mi+mz+ms,...,
my = max(8,v + 1), Mir1 =N + max( (Q"iao/log 2] , 2) for 1 > 1.

Then 7 satisfies 1 <7< 1+27". As in the previous theorem, 7 is a transcen-
dental number because we shall show that 7 does not have property Jg,,.
Setting j; = 2™ and k; = j;7;, we obtain that

(73) g — ki < 27t
By the definition of m;1, there is an iy € N such that for ¢ > iy we have
(74) 2mii <2 exp (2 ag) < 2™
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We then combine (73) and (74) to obtain
i = kil < 2 e,
which implies that for ¢ > 1,
ki /i
T i/ il <91

ji_le—aoji i
Thus, 7 does not have approximation property Jg, .
Let a > ag. We now prove that 7 has approximation property J,. Choose

an integer i1 > i¢ such that whenever i > i1, the following inequality holds:
(75) Q- 2ni=2 exp(—2’”a0) > exp(—2"'i a).

Assume that ¢ > 41, 2™ < j < 2™+1 and k is an arbitrary integer. Similar to
the previous proof, we have

(76) 2t < 227 exp (27 qg) < 27,
and
(77) |j7 — k| > 27"+t

From (75), (76) and (77), we obtain that
g7 — k| = 27
> 97 ni—2 exp(fQ"iao)
> exp(f2""a)
>e Y,

Therefore, the inequality in (62) holds with C'=1 as long as j > 2™i1. This
implies that 7 has approximation property J,. (]

THEOREM 7.4. Let v € N. Then there exists a transcendental number T with
1 <7 <1427 such that T has approximation property J, for each a > 0.

Proof. Define a number 7 by
T=142"" 4272 4
(78) ny=mi, Ny = my + My, n3 =my +my+ms,...,
mp = max(8,2v), Mijy1 = 2mi/2 for i > 1.

Then 1 <7 <1+ 27%, as in the previous theorem. It is clear that for each i,
m; is an integer, and m;y1 > n; + 2, which will be needed later.
Setting j; = 2™ and k; = j;7;, we obtain that

(79) |jiT — k| < 27t = 97 VIiHL
It follows that for each positive integer n,
iT — ki
lim 97Kl

i—00 ]i_”
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By Liouville’s Approximation theorem, 7 must be a transcendental number.
Let a > 0. We now prove that 7 has approximation property J,. Choose ig
so that when i > iy, we have

iy — s —omi/2 A
g ni+1—l — g—ni—2 1>exp(—2”’a).

Assume that i > ig, 2™ < j < 2™+1 and k is an arbitrary integer. Similar to
the previous proof, since m;11 > n; + 2, we see that

j7 — k| > 27l
It follows that
jT — k| > exp(—2"1a) > e .
Therefore, 7 has approximation property J,. O

THEOREM 7.5. Let v € N. Then there exists a transcendental number T
with 1 <7 <1427" such that 7 has approzimation property J, for no a > 0.

Proof. Define a number 7 by

T=142"T" 4272
(80) ny=mi, ng =my + My, n3 =my +mg+ms,...,
my =max(8,v+ 1), miyr =22 fori>1.

Then 1 <7 <14 27%, as in the previous theorem.

Setting j; = 2™ and k; = j;7;, we obtain, as in the proof of the previous
theorem, that
(81) i — k| < 27l = gL
Consider a fixed number a > 0. Then (81) implies that

T
lim 2T =Rl
i—oo e i
and hence 7 does not have approximation property J,. By Liouville’s Approx-

imation theorem, 7 is necessarily a transcendental number. O

Now we construct a one-parameter family of regular self-similar arcs. We
start by constructing a family of basic figures depending on a parameter 7
with 1 <7 < 1.001.

For a fixed 7 with 1 < 7 < 1.001, the corresponding basic figure is as in
Figure 3. The points B, D, F lie on segment AG, and the magnitudes of the

F1GURE 3. Basic figure with a zero corner angle.
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segments are AG =1, AD =1/2, AB = (7/15)"/7, FG = 7/15. The magni-
tudes of the angles are ZOAG = ZCGA= 77@ ZCDE =m/9. The position
of point E is determined by DE = (7/15)'/*C'D, where

(82) 7—1

T, if 7 is irrational,
v= . . .
=5 if 7 is rational.

Note that v is always irrational and 1 <v <1.001.
Let E’ be the projection of E on AG. Then
DE’ = (1/2) tan(nr/18)(7/15)"/" sin(7 /9)
< (1/2)(7/15)1000/1001 (1 _ cos(7/9))
< 1/30.
Thus E’ is between D and F. It follows that ZEFG > /2 and F is in the
interior of triangle CAG. Therefore, polygon ABCDEFG is a basic figure
with basic triangle AC AG.
We denote polygon ABCDEFG by 2., and the corresponding self-similar
set by A.. The corner angles satisfy 6; > 0 for j # 3 and 63 = 0. It is clear that

1o > 0. By Proposition 5.3, in order to show that A, is a regular self-similar
arc, it suffices to verify

ué Y :={jx—ky:j keN}
where
CD-CG
83 = s frd _17 :1 1577 :1 = = _1.
(3) 2=C y=rC C=log(5/T),  u=log Tt —v7l
If 7 is rational, then v =7 — (7 — 1)/+/2 is irrational, and for j,k=0,1,2,...,
u— (jz — ky) :C(V_l —(j- k/T)) #0.
If 7 is irrational, then v =7, and for j,k=0,1,2,...,
u— (jx — ky) :T_lgj(—T-‘r (k+ 1)/j) #0.

Therefore u ¢ ¥ and A, is a regular self-similar arc.

When 7 is rational, x/y is rational, hence A, is a l-quasi-arc. We now
consider the case where 7 is irrational. In this case, we have v =7 and u =y.

By Proposition 6.8, A, is a t-quasi-arc if and only if there is a constant
M > 0 such that

(84) e DT <M u— ja + Kyl
In light of (83), inequality (84) is reduced to
(M, Q)i e 1T < |7 — (k+ 1) /4],
which is equivalent to
Craj e /D¢ < |7 — k/j|.
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Therefore, for ¢t > 1, A, is a t-quasi-arc if and only if 7 has approximation

property Ji_1)¢-
We summarize the above discussion as follows.

Example 7.6. For 1 <7 < 1.001, let A, be the regular self-similar arc gen-
erated by the basic figure 2, in Figure 3, where

AG=1, AD=1/2, AB=(7/15)Y7, FG=17/15,
/CAG=/CGA=7/18,  LCDE==/9, DE=(7/15)""CD,

where v is defined by (82). For ¢t > 1, A, is a t-quasi-arc if and only if 7 has

approximation property J(t,l)g.

(1) For a fixed to > 1, by Theorem 7.2, there is a transcendental number
7€ (1,1.001) such that 7 has approximation property J,_1)¢c, but 7 has
approximation property Ji_qy¢ for no t € (1,#9). For such a 7, A is a
to-quasi-arc, but A, is a t-quasi-arc for no ¢ < tg.

(2) For a fixed tp > 1, by Theorem 7.3, there is a transcendental number
7 € (1,1.001) such that 7 does not have approximation property J,_1)¢,
but 7 has approximation property Ji;_1)¢ for each ¢ > ¢y. For such a T,
A, is a t-quasi-arc for each t > tg, but A, is not a tg-quasi-arc.

(3) By Theorem 7.4, there is a transcendental number 7 € (1,1.001) such that
7 has approximation property J(;_1)¢ for each ¢ > 1. For such a 7, A is
a t-quasi-arc for each t > 1. Since z/y = 7, which is an irrational number,
it follows from Theorem 6.9 that A, is not a 1-quasi-arc.

(4) By Theorem 7.5, there is a transcendental number 7 € (1,1.001) such that
7 has approximation property J;_1)¢ for no ¢ > 1. For such a 7, A; is a
t-quasi-arc for no ¢t > 1.

As a consequence of the example, we obtain the following theorem.

THEOREM 7.7.

(1) There exists a regular self-similar arc A with Omin =0 such that A is t-
quasi-arc for no t > 1.

(2) Let to > 1. Then there exists a reqular self-similar arc A with Opin =0
such that A is a tg-quasi-arc, but A is a t-quasi-arc for no 1 <t <tg.

(3) Let to > 1. Then there exists a reqular self-similar arc A with 0y, =0
such that A is a t-quasi-arc for each t > tg, but A is not a tg-quasi-arc.

REMARK. When tg = 1, the third part of Theorem 7.7 says that there
exists a regular self-similar arc A with 6,;, =0 which is an t-quasi-arc for
each t € (1, s), where s is the Hausdorff dimension of A. Then by Theorem 6.7,
the Hausdorff measure function f is a Whitney function on A.
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