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PURELY INFINITE TOTALLY DISCONNECTED
TOPOLOGICAL GRAPH ALGEBRAS

HUI LI

Abstract. We give a sufficient condition on totally disconnected
topological graphs such that their associated topological graph
algebras are purely infinite.

1. Introduction

The Elliott program developed rapidly over the last twenty years with the
goal of classifying all simple separable nuclear C∗-algebras by the so-called
Elliott’s invariants. (Notice that different types of classification might have
different invariants.) In the purely infinite case, Kirchberg in [9] and Phillips
in [14] separately showed that all simple separable nuclear purely infinite C∗-
algebras in the UCT class can be classified by their K-theoretic data. Katsura
in [7] gave a sufficient condition on simple topological graph algebras such that
they are purely infinite, and constructed all simple separable nuclear purely
infinite C∗-algebras in the UCT class.

Graph algebras were firstly defined by Kumjian, Pask, Raeburn, and Re-
nault in [12] using the groupoid C∗-algebras method. Topological graph al-
gebras studied by Katsura (see [4]), which are seen to be a generalization of
graph algebras, were defined by using a modified version of Pimsner’s con-
struction (see [15]). A few people then tried to realize topological graph
algebras as groupoid C∗-algebras, and these results can naturally be regarded
as a generalization of Kumjian, Pask, Raeburn, and Renault’s approach to
graph algebras in [12]. For example, Katsura in [8] showed that the topo-
logical graph algebra of a compact topological graph with a surjective range
map is isomorphic to a Renault–Deaconu groupoid C∗-algebra. Yeend in [22]
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proved that every topological graph algebra is indeed an étale groupoid C∗-
algebra. Kumjian and Li in [10] strengthened Yeend’s result by showing that
every topological graph algebra is indeed a Renault–Deaconu groupoid C∗-
algebra (Yeend’s result, and Kumjian and Li’s result both cover a result of
Brownlowe, Carlsen, and Whittaker from [3, Proposition 2.2]).

In this article, we give a sufficient condition on totally disconnected topo-
logical graphs such that their associated topological graph algebras are purely
infinite. Our approach is different than Katsura’s. Our strategy is that we
deal with topological graph algebras under the groupoid model, and we apply
Anantharaman-Delaroche’s criterion in [1], which yields purely infinite étale
groupoid C∗-algebras, to our settings.

This paper is organized as follows. In Section 2, we give a background
review on topological graph algebras and state the main theorem of [10]. In
Section 3, we prove our main theorem, that is Theorem 22, which is a sufficient
condition giving rise to purely infinite topological graph algebras. In Section 4,
we give some remarks on our main theorem.

2. Preliminaries

Throughout this paper, all the topological spaces are assumed to be sec-
ond countable; and all the topological groupoids are assumed to be second
countable. Our work in this article utilizes the Hilbert module, the C∗-
correspondence, and the Cuntz–Pimsner algebra machinery. These materials
can be referred to [5], [13], [15], [16], etc. This paper also involves groupoids,
groupoid C∗-algebras, which can be found in [17].

2.1. Topological graph algebras. In this subsection, we recap some back-
ground about topological graphs and topological graph algebras from [4],
[10].

Definition 1. Let T be a locally compact Hausdorff space. Then T is
said to be totally disconnected if T has an open base consisting of compact
open subsets of T .

Definition 2 ([4, Definition 2.1]). A quadruple E = (E0,E1, r, s) is called
a topological graph if E0, E1 are locally compact Hausdorff spaces, r :E1 →E0

is a continuous map, and s :E1 →E0 is a local homeomorphism. In addition,
E is said to be totally disconnected if E0, E1 are both totally disconnected.

Definition 3 ([4]). Let E be a topological graph. For x, y ∈ Cc(E
1),

f ∈C0(E
0), e ∈E1, and for v ∈E0, define

(x · f)(e) := x(e)f
(
s(e)

)
; (f · x)(e) := f

(
r(e)

)
x(e); and

〈x, y〉C0(E0)(v) :=
∑

s(e)=v

x(e)y(e).
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Then Cc(E
1) is a right inner product C0(E

0)-module with an adjointable left
C0(E

0)-action. Its completion X(E) under the ‖ · ‖C0(E0)-norm is called the
graph correspondence associated to E. The Cuntz–Pimsner algebra of X(E),
which is denoted by O(E), is called the topological graph algebra of E.

A subset N of E1 is called an s-section if s|N :N → s(N) is a homeomor-
phism with respect to the subspace topologies.

Define some useful subsets of E0 as follows. Define

(1) E0
sce :=E0 \ r(E1).

(2) E0
fin := {v ∈ E0 : there exists an open neighborhood N of v such that

r−1(N) is compact}.
(3) E0

rg :=E0
fin \E0

sce.

(4) E0
sg :=E0 \E0

rg.

For n≥ 2, define

En :=

{
μ= (μ1, . . . , μn) ∈

n∏
i=1

E1 : s(μi) = r(μi+1), i= 1, . . . , n− 1

}

regarded as a subspace of the product space
∏n

i=1E
1. Define the finite-path

space E∗ :=
∐∞

n=0E
n with the disjoint union topology. Define the infinite-

path space

E∞ :=

{
μ ∈

∞∏
i=1

E1 : s(μi) = r(μi+1), i= 1,2, . . .

}
.

Denote the length of a path μ ∈E∗ �E∞ by |μ|.
A finite path μ ∈E∗ \E0 is called a cycle if r(μ) = s(μ). The vertex r(μ)

is called the base point of μ. The cycle μ is said to be without entrances if
r−1(r(μi)) = {μi}, for i= 1, . . . , |μ|. On the other hand, the cycle μ is said to
have entrances if there exists 1≤ i≤ |μ| such that r−1(r(μi)) 
= {μi}.

Definition 4 ([4, Definition 5.4]). Let E be a topological graph. Then
E is said to be topologically free if the set of base points of cycles without
entrances has empty interior.

Definition 5 ([10, Definitions 4.1, 4.7]). Let E be a topological graph.
Define the boundary path space to be ∂E :=E∞�{μ ∈E∗ : s(μ) ∈E0

sg}. For a
subset S ⊂E∗, define the cylinder set by Z(S) := {μ ∈ ∂E : there exists α ∈ S,
such that μ= αβ}. Define a locally compact Hausdorff topology on ∂E to be
generated by the basic open sets Z(U)∩Z(K)c, where U is an open set of E∗

and K is a compact set of E∗.

By [10, Lemma 7.1], the one-sided shift map σ : ∂E \E0
sg → ∂E is a local

homeomorphism.
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Definition 6. Let E be a topological graph and let v ∈ E0. Define the
positive orbit space of v (see [6, Definition 4.1]) by

Orb+(v) :=
{
w ∈E0 : there exists ν ∈E∗, such that r(ν) =w,s(ν) = v

}
.

E is said to be cofinal if for any μ ∈ ∂E, Orb+(r(μ))∪ (
⋃|μ|

i=1Orb+(s(μi))) is
dense in E0.

Remark 7. The cofinality for topological graphs is a generalization of the
cofinality for directed graphs (see [11], [12]). Let E be a directed graph, the
cofinality of E means that for any v ∈ E0, and for any μ ∈ ∂E, there exists

ν ∈E∗, such that r(ν) = v, s(ν) ∈ {r(μ)} ∪ (
⋃|μ|

i=1{s(μi)}).

Theorem 8 ([6, Proposition 8.9, Theorem 8.12]). Let E be a topological
graph. Then O(E) is simple if and only if E is topologically free and cofinal.

2.2. Groupoid C∗-algebras. In this subsection, we state one of the main
theorems of [10].

A topological groupoid is called a locally compact groupoid if its topology
is locally compact Hausdorff. A locally compact groupoid is said to be étale
if its range map is a local homeomorphism.

Let Γ be a locally compact groupoid and let N ⊂ Γ. Then N is called an
s-section if s|N :N → s(N) is a homeomorphism with respect to the subspace
topologies; N is called an r-section if r|N : N → r(N) is a homeomorphism
with respect to the subspace topologies; and N is called a bisection if s|N ,
r|N are both homeomorphisms with respect to the subspace topologies.

Definition 9 ([18, Definition 2.4]). Let T be a locally compact Hausdorff
space and let σ : dom(σ)→ ran(σ) be a partial local homeomorphism. Define
the Renault–Deaconu groupoid Γ(T,σ) as follows:

Γ(T,σ) :=
{
(t1, k1 − k2, t2) ∈ T ×Z× T : k1, k2 ≥ 0, t1 ∈ dom

(
σk1

)
,

t2 ∈ dom
(
σk2

)
, σk1(t1) = σk2(t2)

}
.

Define the unit space Γ0 := {(t,0, t) : t ∈ T}. For (t1, n, t2), (t2,m, t3) ∈
Γ(T,σ), define the multiplication, the inverse, the source and the range map
by

(t1, n, t2)(t2,m, t3) := (t1, n+m,t3); (t1, n, t2)
−1 := (t2,−n, t1);

r(t1, n, t2) := (t1,0, t1); s(t1, n, t2) := (t2,0, t2).

Define the topology on Γ(T,σ) to be generated by the basic open set

U(U,V, k1, k2) :=
{
(t1, k1 − k2, t2) : t1 ∈ U, t2 ∈ V,σk1(t1) = σk2(t2)

}
,

where U ⊂ dom(σk1), V ⊂ dom(σk2) are open in T , σk1 is injective on U , and
σk2 is injective on V .
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Definition 10 ([10, Definition 7.5]). Let E be a topological graph. Define
the boundary path groupoid to be the Renault–Deaconu groupoid

Γ(∂E,σ) :=
{
(μ,k− l, ν) ∈ ∂E ×Z× ∂E : μ ∈ dom

(
σk

)
, ν ∈ dom

(
σl
)
,

σk(μ) = σl(ν)
}
.

The following theorem is a special case of [10, Theorem 7.6].

Theorem 11. Let E be a topological graph. Then O(E) is isomorphic to
the groupoid C∗-algebra C∗(Γ(∂E,σ)).

3. Sufficient conditions of purely infinite topological
graph algebras

Definition 12 ([20]). Let A be a C∗-algebra. Then A is said to be purely
infinite if every nonzero hereditary C∗-subalgebra of A contains an infinite
projection.

We firstly prove the following two technical lemmas.

Lemma 13. Let E be a topological graph. Fix an open set U ⊂E∗, and fix

a compact set K ⊂E∗ satisfying Z(U)∩Z(K)c 
= ∅. Write K =
⋃k

i=0(K ∩Ei)
for some k ≥ 0. Then for any μ ∈ Z(U)∩Z(K)c with |μ| ≥ k, there exists an
open subset V of E∗ such that μ ∈ Z(V ) ⊂ Z(U) ∩ Z(K)c. In particular, if
|μ|= k, then V can be chosen to be an open neighborhood of μ in E|μ|.

Proof. We prove the first statement. Write μ= αβ where α ∈ U .
Case 1. K = ∅. Let V := U . Then we are done.
Case 2. K 
= ∅ and K ⊂E0. Then r(μ) /∈K. Take an open neighborhood

N of r(μ) which does not intersect with K. Let V := (r|α|)−1(N) ∩ U . We
have μ ∈ Z(V )⊂ Z(U)∩Z(K)c.

Case 3. K 
= ∅ and K 
⊂ E0. Then k ≥ 1. Since μ ∈ Z(K)c, then for
1≤ i≤ k there exists an open neighborhood Ni ⊂Ei of μ1 · · ·μi such that Ni

does not intersect with K ∩Ei and r(Ni) does not intersect with K ∩E0. Let

V :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
⋂k−1

i=1 (Ni ×Ek−i))∩Nk ∩ ((U ∩E|α|)×Ek−|α|) if k > |α|> 0,

(
⋂k

i=1(Ni ×E|α|−i))∩ (U ∩E|α|) if |α|> k,

(
⋂k−1

i=1 (Ni ×Ek−i))∩Nk ∩ (U ∩E|α|) if |α|= k,

(
⋂k−1

i=1 (Ni ×Ek−i))∩Nk ∩ (rk)−1(U ∩E|α|) if |α|= 0.

Then V is an open subset of Emax{|α|,k} and μ ∈ Z(V )⊂ Z(U)∩Z(K)c.
We prove the second statement. If K = ∅, let

V :=

⎧⎪⎨⎪⎩
(U ∩E|α|)×E|β| if |α|> 0, |β|> 0,

(rk)−1(U) if |α|= 0, |β|> 0,

U ∩Ek if |β|= 0.
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Then V is an open neighborhood of μ in E|μ|, and Z(V )⊂ Z(U)∩Z(K)c. If
K 
= ∅, then it follows directly from the above construction. �

Lemma 14. Let E be a topological graph. Suppose that E0
sce = ∅. Then for

any open set U ⊂E∗ and any compact set K ⊂E∗ satisfying Z(U)∩Z(K)c 
=
∅, there exists an open subset V of E∗ such that ∅ 
= Z(V )⊂ Z(U)∩Z(K)c.

Proof. The assumption E0
sce = ∅ gives E0

sg = E0 \ E0
fin E0 = E0

rg ∪ (E0
fin)

c.
Fix an open set U ⊂ E∗ and fix a compact set K ⊂ E∗ satisfying Z(U) ∩
Z(K)c 
= ∅. Write K =

⋃k
i=0(K ∩Ei), for some k ≥ 0. Fix μ ∈ Z(U)∩Z(K)c.

If |μ| ≥ k then by Lemma 13 we are done. So we may assume that |μ| < k.
By Lemma 13, there exists an open neighborhood V ⊂ E|μ| of μ such that

Z(V ) ⊂ Z(U) ∩ Z(
⋃|μ|

i=0(K ∩ Ei))c. Then s(V ) is an open neighborhood of
s(μ). Since μ ∈ ∂E and E0

sg = E0 \E0
fin, we have s(μ) ∈ E0 \E0

fin. Consider
the set

F :=
{
α|μ|+1 ∈E1 : α ∈K, |α| ≥ |μ|+ 1

}
,

which is a compact subset of E1. Then there exists e ∈ r−1(s(V )) such that
e /∈ F . Take an open neighborhood W ⊂ E1 of e which does not intersect
with F . Let

O :=

{
(V ×W )∩E|μ|+1 if |μ|> 0,

W if |μ|= 0.

So ∅ 
= Z(O)⊂ Z(U)∩Z(K)c. �
Definition 15 ([1, page 202]). Let Γ be an étale groupoid. Then Γ is said

to be essentially free if the set of elements in Γ0 whose isotropy group are
trivial form a dense subset of Γ0.

Lemma 16. Let T be a locally compact Hausdorff space and let σ :
dom(σ) → ran(σ) be a partial local homeomorphism. Then the Renault–
Deaconu groupoid Γ(T,σ) is essentially free if and only if the set {t ∈ T :
t, σ(t), . . . are distinct} is dense in T .

Proof. It is straightforward to see. �
Definition 17. Let E be a topological graph. Then E is said to be

essentially free if the boundary path groupoid Γ(∂E,σ) is essentially free.

The following proposition is a generalization of [11, Lemma 3.4].

Proposition 18. Let E be a topological graph. Then E is topologically
free if and only if E is essentially free.

Proof. First of all, suppose that E is not essentially free. We aim to
show that E is not topologically free. Since E is not essentially free,
there exists a nonempty open set N ⊂ ∂E which does not intersect with
{μ ∈ ∂E : μ,σ(μ), . . . are distinct} due to Lemma 16. For each 0 ≤ p < q,
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define a closed subset of ∂E to be Bp,q := {μ ∈ ∂E : σp(μ) = σq(ν)}. For
each 0≤ p < q, let Ap,q :=Bp,q ∩N , then Ap,q is a closed subset of the sub-
space N . Notice that N =

⋃
0≤p<q Ap,q because N does not intersect with

{μ ∈ ∂E : μ,σ(μ), . . . are distinct}. By the Baire’s category theorem, there
exists a nonempty open subset O of N (O is also open in ∂E) contained in
Ap0,q0 for some 1≤ p0 < q0. By Definition 5, there exist an open set U ⊂E∗

and a compact set K ⊂E∗ such that ∅ 
= Z(U)∩Z(K)c ⊂O. By Lemma 13,
there exist n ≥ 0 and an open subset V ⊂ En such that ∅ 
= Z(V ) ⊂ O.
We may assume that n 
= 0. Let W := (V × (rp)−1(s(V ))) ∩ En+p0 . Then
Z(W )⊂ Z(V ). So Z(W )⊂Ap0,q0 . We deduce that every μ ∈ Z(W ) satisfies
that σn+p0(μ) = σn+q0(μ) since μ ∈ Ap0,q0 . [4, Proposition 2.8] assures that
for each α ∈W there exists μ ∈ Z(W ) such that μ= αβ. We then conclude
that s(W ) is an open subset of E0 consisting of base points of cycles. We
claim that s(W ) consists of base points of cycles without entrances. Sup-
pose not, for a contradiction. We obtain two infinite paths αβ,αβ′ ∈ Z(W ),
where α ∈W , β1 
= β2. Since ν := β1 · · ·βq0−p0 , ν

′ := β′
1 · · ·β′

q0−p0
are cycles,

ανν′νν′ · · · ∈ Z(W ) /∈ Ap0,q0 , which is a contradiction. Hence, s(W ) is an
open subset of E0 consisting of base points of cycles. Therefore, E is not
topologically free.

Conversely suppose that E is essentially free. Suppose that E is not
topologically free, for a contradiction. By Lemma 16, the set {μ ∈ ∂E :
μ,σ(μ), . . . are distinct} is dense in ∂E. By [6, Proposition 6.12], there ex-
ist a nonempty open set V ⊂ E0 consisting of base points of cycles without
entrances, and a homeomorphism σ on V such that σ = r ◦ (s|r−1(V ))

−1. By

[4, Proposition 2.8], V ⊂ E0
rg. Fix a vertex v ∈ V . Let ν be the unique

simple cycle such that r(ν) = v. By the assumption, there is a convergent
sequence (ν(n))∞n=1 ⊂ {μ ∈ ∂E : μ,σ(μ), . . . are distinct} with the limit ν. By
[10, Lemma 4.8], r(ν(n)) → r(ν) = v, and so there exists N ≥ 1 such that
r(ν(N)) ∈ V . Let α be the unique simple cycle with r(α) = r(ν(N)). Since V
consists of base points of cycles without entrances and V ⊂ E0

rg, we deduce

that ν(N) = αα · · · , which is a contradiction. So E is topologically free. �

Definition 19 ([1, Definition 2.1]). Let Γ be an étale groupoid. Then Γ
is said to be locally contracting if for any nonempty open set U ⊂ Γ0, there
exist an open subset V ⊂ U and an open bisection N ⊂ Γ such that V ⊂ s(N)
and s ◦ r|−1

N−1(V )� V .

Definition 20. Let E be a topological graph. Then E is said to be locally
contracting if the boundary path groupoid Γ(∂E,σ) is locally contracting.

Definition 21. Let E be a topological graph and let v ∈ E0. Then v is
said to connect to a cycle if there exists u ∈E0 such that v ∈Orb+(u) and u
is the base point of a cycle.
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The following theorem is a generalization of partial results from [11, The-
orem 3.9].

Theorem 22. Let E be a topologically free totally disconnected topological
graph. Suppose that the following subset of E0 is dense in E0.

B :=
{
v : v connects to a cycle μ with entrances so that any neighborhood

N of μ contains a neighborhood U of μ with r|μ|(U)⊂ s|μ|(U)
}
.

Then E is essentially free and locally contracting. Hence, O(E) is purely
infinite.

Proof. Since every cycle of E has entrances, E is topologically free. So E
is essentially free by Proposition 18.

We claim that E0
sce = ∅. Suppose that E0

sce 
= ∅, for a contradiction. Fix
v ∈ E0

sce. Then there exists an open neighborhood V of v not intersecting

with r(E1). Since B is dense in E0, V ∩B 
= ∅ which is a contradiction. So
E0

sce = ∅ and we finish proving the claim.
Now we prove that E is locally contracting. Fix a nonempty open set

N ⊂ ∂E. By Lemma 14, there exists a nonempty open subset U of E∗ such
that ∅ 
= Z(U) ⊂ N . Then s(U) is a nonempty open subset of E0. Since
B is dense in E0, there exist μνeβ,μναeβ ∈ ∂E such that μ ∈ U , α is a
cycle, and e 
= α1. We may assume that |μν| > 0 (the case |μν| = 0 would
follow a similar argument). Take a compact open s|μν|-sections O1 such that
μν ∈O1 and Z(O1)⊂ Z(U); and take compact open s|α|-sections O2 such that
α ∈O2, r

|α|(O2)⊂ s|μν|(O1) ∩ s|α|(O2), e /∈ {α′
1 : α

′ ∈O2}. Define a compact
open bisection of the boundary path groupoid Γ(∂E,σ) by S := U(Z((O1 ×
O2)∩E|μνα|),Z(O1), |μνα|, |μν|). Define a nonempty compact open subset of
N by W := s(S). Then W ⊂ s(S). For any μ′ν′, μ′′ν′′ ∈O1, α

′ ∈O2, β ∈ ∂E
such that (μ′ν′α′β, |μνα| − |μν|, μ′′ν′′β) ∈ S, there exist unique μ′′′, ν′′′ ∈O1,
α′′′ ∈ O2 such that μ′′′ν′′′α′′′α′β ∈ Z(Z((O1 × O2) ∩ E|μνα|)). So μ′ν′α′β =
s(μ′′′ν′′′α′′′α′β, |μνα| − |μν|, μ′ν′α′β) ∈ W . Hence s ◦ r−1

S−1(W ) ⊂ W . Pick
up an arbitrary γ ∈ s(e)∂E (see [4, Proposition 2.8]). Then μνeγ ∈W but
μνeγ /∈ s ◦ r−1

S−1(W ) because e /∈ {α′
1 : α

′ ∈O2}. Therefore s ◦ r−1
S−1(W )�W .

By Definition 20, Γ(∂E,σ) is locally contracting.
By Theorem 11, O(E) is isomorphic with C∗(Γ(∂E,σ)). Since E is essen-

tially free and locally contracting, [1, Proposition 2.4] gives O(E) is purely
infinite. �

Corollary 23. Let E be a totally disconnected topological graph such that
O(E) is simple. Suppose that there exists a cycle μ with entrances such that
any open neighborhood N of μ contains an open neighborhood U of μ with
r|μ|(U) ⊂ s|μ|(U). Then E is essentially free and locally contracting. Hence
O(E) is purely infinite.



PURELY INFINITE TOPOLOGICAL GRAPH ALGEBRAS 747

Proof. Since O(E) is simple, by Theorem 8 E is topologically free. By
Proposition 18 E is essentially free. Fix v ∈E0 and fix an open neighborhood

V of v. Since O(E) is simple, by Theorem 8 E is cofinal. So
⋃|μ|

i=1Orb+(s(μi))

is dense in E0. Hence, V ∩ (
⋃N

i=1Orb+(s(μi))) 
= ∅. Thus, V ∩ B 
= ∅ (see
Theorem 22). Theorem 22 implies that E is locally contracting. Therefore,
[1, Proposition 2.4] yields that O(E) is purely infinite. �

4. Concluding remarks

Katsura in [7] defined a concept called contracting topological graphs which
can provide purely infinite topological graph algebras. We recall the definition
of contracting topological graphs and state Katsura’s result.

Definition 24 ([7, Definition 2.3]). Let E be a topological graph.
A nonempty precompact open set V ⊂ E0 is said to be contracting if there
exists a finite family of nonempty open sets {Ui ⊂Eni : ni ≥ 1}ki=1 satisfying
the following.

(1) r(Ui)⊂ V , i= 1, . . . , k;
(2) for i 
= j, ni ≤ nj , we have {(μ1, . . . , μni) : (μ1, . . . , μni) ∈ Ui, μ ∈Enj}= ∅;

and
(3) V �

⋃k
i=1 s(Ui).

Moreover, E is said to be contracting at a vertex v ∈E0 if Orb+(v) =E0 and
every open neighborhood of v contains a contracting open set. Furthermore,
E is said to be contracting if E is contracting at some vertex in E0.

Theorem 25 ([7, Theorem A]). Let E be a topological graph. Suppose that
O(E) is simple. If E is contracting, then O(E) is purely infinite.

We provide two examples which indicate that both of the pure infinite-
ness conditions for simple totally disconnected topological graph algebras in
Corollary 23 and Theorem 25 are not comparable.

Example 26. Define E0 := {v}; E1 := {e0, e1}. Then O(E)∼=O2 which is
simple and purely infinite. Notice that e0 is a cycle with entrances and {e0}
is an open neighborhood of e0 with r({e0}) ⊂ s({e0}). So the assumption
of Corollary 23 is satisfied. However, it is easy to see that this graph is
not contracting. Therefore the assumption of Theorem 25 is not satisfied.
Furthermore, Katsura in [7, Remark 2.8] asked that whether the converse of
Theorem 25 is true and this is a counterexample of the question.

Example 27. Define E0 := {v}; E1 := {e0, e1}. This time we consider

the dual graph of Ê := (
∏∞

n=1{0,1},
∏∞

n=1{0,1}, id, σ) where σ is the one-

sided shift. By [10, Theorem 7.5], O(Ê) ∼= O(E) so O(Ê) is simple and

purely infinite. Since every cycle of Ê has no entrances, the assumption

of Corollary 23 is not satisfied. On the other hand, Orb+(000 . . . ) = Ê0 and
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Z(0 · · ·0︸ ︷︷ ︸
n

)⊂ Ê0 is contracting for all n≥ 1. To see that Z(0 · · ·0︸ ︷︷ ︸
n

) is contract-

ing, let U1 := Z(0 · · ·0︸ ︷︷ ︸
n+1

)⊂ Ê1, U2 := Z(0 · · ·0︸ ︷︷ ︸
n

1)⊂ Ê1. It is straightforward to

check that {U1,U2} satisfies Conditions (1)–(3) of Definition 24. So Z(0 · · ·0︸ ︷︷ ︸
n

)

is contracting. Hence, E is contracting and the assumption of Theorem 25 is
satisfied.

Yeend in [22] showed that topological 1-graph C∗-algebras coincide with
topological graph algebras (see also [10]). Later, Renault, Sims, Williams,
and Yeend in [19] provided a sufficient condition for simple compactly-aligned
topological higher-rank graph C∗-algebras to be purely infinite. In the follow-
ing we interpret their condition in the topological graph setting and present
their result.

Definition 28 ([19, Definition 5.7]). Let E be a topological graph.
A nonempty precompact open set U ⊂ E0 is said to be contracting if there
exist 0≤ n <m, a nonempty precompact open sn-section Yn, and a nonempty
precompact open sm-section Ym, such that

(1) sm(Ym) = sn(Yn);

(2) r(Ym)⊂ r(Yn) = U ;
(3) for μ ∈ Ym, ν ∈ Yn with rm(μ) = rn(ν), there exists γ ∈Em−n such that

μ= νγ;
(4) there exists a nonempty open subset W of YnE

∗ such that {ν1 · · ·νn : ν ∈
W}= Yn and that for μ ∈ Ym, ν ∈W there is no γ ∈E∗ satisfying μ= νγ
or ν = μγ.

Theorem 29 ([19, Proposition 5.8]). Let E be a topological graph. Suppose
that O(E) is simple and that for any v ∈ E0, there exist n≥ 0 and an open
subset U of En satisfying that v ∈ r(U) and s(U) is contracting in the sense
of Definition 28. Then O(E) is purely infinite.

The disadvantage of this theorem is that in order to prove the pure infinite-
ness of a topological graph algebra, one has to check the contracting condition
for every vertex.

Overall, both criteria of Katsura and Renault–Sims–Williams–Yeend for
topological graph algebras being purely infinite relies on the assumption of
the given topological graph algebras being simple. Our approach does not but
pays the price that we have to assume that the starting topological graphs
are totally disconnected.

Finally, we consider a compact totally disconnected topological graph
E such that the range, source map are surjective and O(E) is simple.
Schafhauser recently proved that O(E) is finite if and only if the source map
is injective (see [21, Theorem 6.7]). On the other hand, it is hard to get a
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completely graphic characterization for O(E) to be purely infinite. However,
by combining the recent work of Brown, Clark, and Sierakowski in [2] and the
work of Kumjian and Li [10], we are able to reduce the problem by only con-
sidering the projections on the vertex space. More precisely, O(E) is purely
infinite if and only if every nonzero projection on C(E0) is infinite.
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