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EXISTENCE RESULT FOR A CLASS OF QUASILINEAR
ELLIPTIC EQUATIONS WITH (p-q)-LAPLACIAN AND

VANISHING POTENTIALS

M. J. ALVES, R. B. ASSUNÇÃO AND O. H. MIYAGAKI

Abstract. The main purpose of this paper is to establish the
existence of positive solutions to a class of quasilinear elliptic

equations involving the (p-q)-Laplacian operator. We consider

a nonlinearity that can be subcritical at infinity and supercrit-
ical at the origin; we also consider potential functions that can

vanish at infinity. The approach is based on variational argu-
ments dealing with the mountain-pass lemma and an adaptation

of the penalization method. In order to overcome the lack of

compactness, we modify the original problem and the associated

energy functional. Finally, to show that the solution of the mod-
ified problem is also a solution of the original problem we use an
estimate obtained by the Moser iteration scheme.

1. Introduction and main result

In this paper, we consider a class of quasilinear elliptic equations involving
the (p-q)-Laplacian operator of the form{

−Δpu−Δqu+ a(x)|u|p−2u+ b(x)|u|q−2u= f(u), x ∈R
N ;

u(x)> 0, u ∈D1,p(RN )∩D1,q(RN ), x ∈R
N .

(1.1)

The m-Laplacian operator Δmu(x) is defined by

Δmu(x)≡ div
(∣∣∇u(x)

∣∣m−2∇u(x)
)
,
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for m ∈ {p, q}, where 2≤ q ≤ p <N . The Sobolev space D1,m(RN ) is defined
by

D1,m
(
R

N
)
≡
{
u ∈ Lm∗(

R
N
)
: (∂u/∂xi)(x) ∈ Lm

(
R

N
)
,1≤ i≤N

}
,

and the critical Sobolev exponent is given by m∗ ≡ Nm/(N −m), also for
m ∈ {p, q}.

The nonlinearity f : R→R is a continuous and nonnegative function that
is not a pure power and can be subcritical at infinity and supercritical at the
origin. More precisely, the following set of hypotheses on the nonlinearity f
is used.

(f1) limsups→0+ sf(s)/sp
∗
<+∞.

(f2) There exists τ ∈ (p, p∗) such that limsups→+∞ sf(s)/sτ = 0.
(f3) There exists θ > p such that 0≤ θF (s)≤ sf(s) for every s ∈ R

+, where
we use the notation F (s)≡

∫ s

0
f(t)dt.

(f4) f(t) = 0 for every t≤ 0.

The following properties are easily seen: under hypothesis (f1) there exists
c1 ∈ R

+ such that |sf(s)| ≤ c1|s|p
∗
for s close to zero; and under hypoth-

esis (f2) there exists c2 ∈ R
+ such that |sf(s)| ≤ c2|s|τ for s large enough.

Combining these results and defining c0 ≡max{c1, c2}, we have the pair of
inequalities

(1.2)
∣∣sf(s)∣∣≤ c0|s|p

∗
and

∣∣sf(s)∣∣≤ c0|s|τ (s ∈R).

It is worth noticing that hypothesis (f3) extends a well known condition
which was first formulated by Ambrosetti and Rabinowitz [5]. It states a suf-
ficient condition to ensure that the energy functional, associated in a natural
way to this type of problem, verifies the Palais–Smale condition. Recall that
a functional J : D1,m(RN )→ R is said to verify the Palais–Smale condition
at the level c if any sequence (un)n∈N ⊂D1,m(RN ) such that J(un)→ c and
J ′(un)→ 0, as n→+∞, possess a convergent subsequence. Hypothesis (f3)
also allows us to study the asymptotic behavior of the solution to the problem.

As an example of a nonlinearity f verifying the above set of hypotheses,
for σ > p∗ and for τ ∈ (p, p∗) given in hypothesis (f2), we define

f(t) =

{
tσ−1, if 0≤ t≤ 1;

tτ−1, if 1≤ t.

We also assume that the functions a, b : RN → R are continuous and non-
negative. Moreover, the following set of hypotheses on the potential functions
a and b is used.

(P1) a ∈ LN/p(RN ) and b ∈ LN/q(RN ).
(P2) a(x) ≤ a∞ and b(x) ≤ b∞ for every x ∈ B1(0), where a∞, b∞ ∈ R

+ are
positive constants and B1(0) denotes the unitary ball centered at the
origin.
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(P3) There exist constants Λ ∈R
+ and R0 > 1 such that

1

R
p2/(p−1)
0

inf
|x|≥R0

|x|p2/(p−1)a(x)≥ Λ.

As an example of a potential function a verifying this set of hypotheses,
for Λ ∈R

+ and R0 > 1 given in hypothesis (P3) we define

a(x) =

⎧⎪⎨⎪⎩
0, if |x| ≤R0 − 1;

ΛR
−p2/(p−1)
0 (|x| −R0 + 1), if R0 − 1< |x|<R0;

Λ|x|−p2/(p−1), if R0 ≤ |x|.

An example of a potential function b can be obtained in a similar way with
minor modifications.

The (p-q)-Laplacian operator generalizes several types of problems. For
example, in the case 2 = q = p with a(x) = b(x) = V (x) and f(u) = 2g(u),
problem (1.1) can be written in the form −Δu+V (x)u= g(u), which appears
in the study of stationary solutions of Schrödinger equation and has been
extensively studied by several authors; and in the case 2≤ q = p with a(x) =
b(x) =−V (x) and f(u) = 0, problem (1.1) assumes the form of the eigenvalue
problem −Δpu= V (x)|u|p−2u.

The interest in the study of this type of problem is twofold. On the one
hand, we have the physical motivations, since the quasilinear operator (p-q)-
Laplacian has been used to model steady-state solutions of reaction-diffusion
problems arising in biophysics, in plasma physics and in the study of chemical
reactions. More precisely, the prototype for these models can be written in
the form

ut =−div
[
D(u)∇u

]
+ f(x,u),

where D(u) = ap|∇u|p−2 + bq|∇u|q−2 and ap, bq ∈ R
+ are positive constants.

In this framework, the function u generally stands for a concentration, the
term div[D(u)∇u] corresponds to the diffusion with coefficient D(u), and
f(x,u) is the reaction term related to source and loss processes. See Cherfils
and Il’yasov [20], Figueiredo [26], [27], Benouhiba and Belyacine [15], Mercuri
and Squassina [31], Wu and Yang [41], Yin and Yang [44], Chaves, Ercole
and Miyagaki [18], [19], and references therein for more details. In addition,
a model of elementary particle physics was studied by Benci, D’Avenia, For-
tunato and Pisani [12] which yields an equation of the same class as that in
problem (1.1).

On the other hand, we have the purely mathematical interest in these
type of problems, mainly regarding the existence of nonnegative nontrivial
solutions as well as multiplicity results. In what follows, we present a very brief
historical sketch to show some hypotheses on the nonlinearity that have been
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used by several authors in recent years as sufficient conditions to guarantee
the existence of solutions.

We begin by considering the case 2≤ q = p < p∗, which includes both the
Laplacian operator with p= 2 or the p-Laplacian operator with p > 2; we also
mention some papers dealing with bounded domains and others dealing with
the entire space R

N .
Berestycki and Lions [16] considered a positive, constant potential function

to show an existence result. Coti Zelati and Rabinowitz [22], Pankov [33],
Pankov and Pflüger [34], and Kryszewski and Szulkin [29] considered periodic
potential functions with a positive infimum. Zhu and Yang [42], [45] assumed
that the potential is asymptotic to a positive constant. Alves, Carrião and
Miyagaki [3] studied a problem involving an asymptotically periodic potential.
The case of a coercive potential was treated, among others, by Costa [21]
and Miyagaki [32]. For a weakened coercivity condition, we refer the reader
to Bartsch and Wang [10]. The case of radially symmetric potentials were
considered by Alves, de Morais Filho and Souto [2] and Su, Wang and Willem
[39], where these authors established some embedding results of weighted
Sobolev spaces to obtain ground state solutions. Rabinowitz [36] introduced a
hypothesis where the limit inferior of the potential outside a bounded domain
is strictly greater than its infimum on the whole space. Afterwards, del Pino
and Felmer [23] weakened this condition by considering a situation where the
minimum of the potential on the boundary of an open bounded set is strictly
greater than its minimum on the closure of this set. The case of sign-changing
potentials related to singular perturbation problems were considered by Ding
and Szulkin [25] and by Alves, Assunção, Carrião and Miyagaki [4].

As we have seen, most of the papers cited assume that the potential is
positive at infinity. However, the case where the potential can vanish at
infinity was also studied, among others, by Berestycki and Lions [16], Yang
and Zhu [43], Benci, Grisanti and Micheletti [13], Ambrosetti and Wang [6],
Ambrosetti, Felli and Malchiodi [7], Alves and Souto [1] and Bastos, Miyagaki
and Vieira [11]. In particular, we cite the work by Barile and Figueiredo [9],
where it is proved that a problem involving a differential operator more general
than that of problem (1.1), with a different perturbation, and with vanishing
potential functions a(x)≡ b(x), has at least three weak solutions, one of which
with precisely two nodal domains.

In problem (1.1), we consider the exponents 2 ≤ q ≤ p < N and we allow
the particular conditions lim inf |x|→+∞ a(x) = 0 and lim inf |x|→+∞ b(x) = 0,
called the zero mass cases. These constitute the main features of our work.

Our result reads as follows.

Theorem 1.1. Consider 2≤ q ≤ p <N and suppose that the potential func-
tions a and b verify the hypotheses (P1), (P2) and (P3) and that the nonlin-
earity f verifies the hypotheses (f1), (f2), (f3), and (f4). Then there exists a
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constant Λ∗ =Λ∗(a∞, b∞, θ, τ, c0) such that problem (1.1) has a positive solu-
tion for every Λ≥ Λ∗.

Usually, a solution to problem (1.1) is obtained as a critical point of the
corresponding energy functional defined in some appropriate Sobolev space.
To do this, one uses critical point theory, mainly of minimax type; see Mawhin
and Willem [30], Struwe [38], and Willem [40]. A well-known result concern-
ing the existence of a nontrivial weak solution is that if the energy functional
verifies the geometry of the mountain-pass lemma near the origin and also
verifies the Palais–Smale condition, then problem (1.1) has at least one solu-
tion. The main difficulty in proving the existence of solution to problem (1.1)
resides in the fact that the embedding of the Sobolev space D1,m(RN ) in the
Lebesgue space LNm/(N−m)(RN ) is not compact due to the action of a group
of homoteties and translations. Besides, the Palais–Smale condition for the
corresponding energy functional cannot be obtained directly. Adding to these
difficulties, we have to consider the presence of both operators Δpu and Δqu.
When q < p the study of problem (1.1) does not allow the use of the Lagrange’s
multipliers method due to the lack of homogeneity; moreover, the first eigen-
value of the −Δpu operator brings no valuable information on the eigenvalue
of the −Δqu operator; finally, the method of sub- and super-solutions can-
not be applied. Therefore, to study problem (1.1) we are required to make
a careful analysis of the energy level of the Palais–Smale sequences in order
to obtain their boundedness and also to overcome the lack of compactness.
Furthermore, we have to adapt the Moser iteration scheme to our setting,
since this is a crucial step to obtain an estimate for the solution.

Inspired mainly by Wu and Yang [41] regarding the (p-q)-Laplacian type
operator, and by Alves and Souto [1], with respect to the set of hypotheses, we
adapt the penalization method developed by del Pino and Felmer [23] to show
our existence result. The basic idea can be described in the following way. In
Section 2, we modify the original problem and study its corresponding energy
functional, showing that it verifies the geometry of the mountain-pass lemma
and that every Palais–Smale sequence is bounded in an appropriate Sobolev
space. Using the standard theory this implies that the modified problem has
a solution. In Section 3 we show, using the Moser iteration scheme, that the
solution of the auxiliary problem verifies an estimate involving the L∞(RN )
norm. Finally, in Section 4 we use this estimate to show that the solution of
the modified problem is also a solution of the original problem (1.1).

2. An auxiliary problem

In order to prove the existence of a positive solution to problem (1.1), we
establish a variational setting and apply the mountain-pass lemma. Using



550 M. J. ALVES, R. B. ASSUNÇÃO AND O. H. MIYAGAKI

hypothesis (P1), we define the space

E ≡
{
u ∈D1,p

a

(
R

N
)
∩D1,q

b

(
R

N
)
:∫

RN

a(x)|u|p dx <+∞ and

∫
RN

b(x)|u|q dx <+∞
}
,

which can be endowed with the norm ‖u‖= ‖u‖1,p + ‖u‖1,q , where we denote

‖u‖1,p ≡
(∫

RN

|∇u|p dx+

∫
RN

a(x)|u|p dx
)1/p

and

‖u‖1,q ≡
(∫

RN

|∇u|q dx+

∫
RN

b(x)|u|q dx
)1/q

.

Now we define the Euler–Lagrange energy functional I : E →R associated
to problem (1.1) by

I(u)≡ 1

p

∫
RN

|∇u|p dx+
1

p

∫
RN

a(x)|u|p dx

+
1

q

∫
RN

|∇u|q dx+
1

q

∫
RN

b(x)|u|q dx−
∫
RN

F (u)dx.

Using the hypotheses on the nonlinearity f , we can deduce that I ∈C1(E;R);
moreover, for every u, v ∈E its Gâteaux derivative can be computed by

I ′(u)v =

∫
RN

|∇u|p−2∇u · ∇v dx+

∫
RN

a(x)|u|p−2uv dx

+

∫
RN

|∇u|q−2∇u · ∇v dx+

∫
RN

b(x)|u|q−2uv dx−
∫
RN

f(u)v dx.

It is a well-known fact that if u is a critical point of the energy functional I ,
then u is a weak solution to problem (1.1). This means that∫

RN

|∇u|p−2∇u · ∇φdx+

∫
RN

a(x)|u|p−2uφdx

+

∫
RN

|∇u|q−2∇u · ∇φdx+

∫
RN

b(x)|u|q−2uφdx−
∫
RN

f(u)φdx= 0

for every v ∈E.
Now we define the energy functional I∞ : D1,p

0 (B1(0)) ∩D1,q
0 (B1(0))→ R

by

I∞(u)≡ 1

p

∫
B1(0)

|∇u|p dx+
1

p

∫
B1(0)

a∞|u|p dx

+
1

q

∫
B1(0)

|∇u|q dx+
1

q

∫
B1(0)

b∞|u|q dx−
∫
B1(0)

F (u)dx.
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Using the hypotheses (P1) and (P2) it can be shown that it is well defined.
Our first lemma concerns the geometry of this functional.

Lemma 2.1. The functional I∞ verifies the geometry of the mountain-pass
lemma. More precisely, the following claims are valid.

(1) There exist r0, μ0 ∈R
+ such that I∞(u)≥ μ0 for ‖u‖= r0.

(2) There exists e0 ∈ [D1,p(B1(0))∩D1,q(B1(0))]\{0} such that ‖e0‖ ≥ r0 and
I∞(e0)< 0.

Proof. By using the hypotheses (f1), (f2), and (f3) it is standard to verify
item (1).

By hypothesis (f3), it follows that there exist θ > p and C0 ∈R
+ such that

F (s)≥C0|s|θ. Now, if u ∈ [D1,p
0 (B1(0))∩D1,q

0 (B1(0))]\{0}, then

I∞(tu)≤ 1

p
|t|p

∫
B1(0)

|∇u|p dx+
a∞
p

|t|p
∫
B1(0)

|u|p dx

+
1

q
|t|q

∫
B1(0)

|∇u|q dx+
b∞
q
|t|q

∫
B1(0)

|u|q dx

−C0|t|θ
∫
B1(0)

|u|θ dx.

Using this inequality, we deduce that there exist tu ∈ R
+ large enough such

that, taking e0 = tuu, we have ‖e0‖ ≥ r0 and I∞(e0)< 0. This concludes the
proof of item (2). �

We denote by d the mountain-pass level associated to the functional I∞,
that is,

d≡ inf
γ∈Γ

max
t∈[0,1]

I∞
(
γ(t)

)
,

where

Γ≡
{
γ ∈C

(
[0,1];D1,p

(
B1(0)

)
∩D1,q

(
B1(0)

))
: γ(0) = 0 and γ(1) = e0

}
and the function e0 ∈ [D1,p(B1(0))∩D1,q(B1(0))]\{0} is given in Lemma 2.1.
It is standard to verify that the mountain-pass level d depends only on a∞,
on b∞, on θ, and on the function f .

For R> 1 and for θ > p given in hypothesis (f3), we set k ≡ θp/(θ− p)> p
and we define a new nonlinearity g : RN ×R→R by

g(x, t)≡
{
f(t), if |x| ≤R or if |x|>R and f(t)≤ a(x)

k |t|p−2t;
a(x)
k |t|p−2t, if |x|>R and f(t)> a(x)

k |t|p−2t.

Using the notation G(x, t)≡
∫ t

0
g(x, s)ds, by direct computations we get the

set of inequalities

g(x, t)≤ a(x)

k
|t|p−2t, for all |x| ≥R;(2.1)
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G(x, t) = F (t), if |x| ≤R;(2.2)

G(x, t)≤ a(x)

kp
|t|p−1t, if |x|>R> 1.(2.3)

Now we define the auxiliary problem

(2.4)

{
−Δpu−Δqu+ a(x)|u|p−2u+ b(x)|u|q−2u= g(x,u), x ∈R

N ;

u(x)> 0, u ∈D1,p(RN )∩D1,q(RN ), x ∈R
N .

The Euler–Lagrange energy functional J : E → R associated to the auxiliary
problem (2.4) is given by

J(u)≡ 1

p

∫
RN

|∇u|p dx+
1

p

∫
RN

a(x)|u|p dx

+
1

q

∫
RN

|∇u|q dx+
1

q

∫
RN

b(x)|u|q dx−
∫
RN

G(x,u)dx.

Using the hypotheses on the nonlinearity f and on the potential functions a
and b we can show that J ∈C1(E;R); moreover, for every u, v ∈E its Gâteaux
derivative can be computed by

J ′(u)v =

∫
RN

|∇u|p−2∇u · ∇v dx+

∫
RN

a(x)|u|p−2uv dx

+

∫
RN

|∇u|q−2∇u · ∇v dx+

∫
RN

b(x)|u|q−2uv dx

−
∫
RN

g(x,u)v dx.

As before, critical points of the energy functional J are weak solutions to
problem (2.4).

Our next goal is to apply the mountain-pass lemma to show that problem
(2.4) has a positive solution.

Lemma 2.2. The functional J verifies the geometry of the mountain-pass
lemma. More precisely, the following claims are valid.

(1) There exist r1, μ1 ∈R
+ such that J(u)≥ μ1 for ‖u‖= r1.

(2) There exists e1 ∈ [D1,p(B1(0))∩D1,q(B1(0))]\{0} such that ‖e1‖ ≥ r1 and
J(e1)< 0.

Proof. Using the equality (2.2) and the inequality (2.3) together with the
hypotheses (f1) and (f3) and the first inequality in (1.2), we obtain

J(u)≥ 1

p
‖u‖p1,p +

1

q
‖u‖q1,q −

∫
|x|≤R

F (u)dx

−
∫
|x|>R

a(x)|u|p
kp

dx
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≥ 1

p
‖u‖p1,p +

1

q
‖u‖q1,q −

c0
θ

∫
RN

|u|p∗
dx− 1

kp
‖u‖p1,p

=

(
1

p
− 1

kp

)
‖u‖p1,p +

1

q
‖u‖q1,q −

c0
θ
|u|p

∗

Lp∗ .

Now we apply the Sobolev inequality

(2.5) ‖u‖mLm∗ (RN ) ≤ Sm

∫
RN

|∇u|m dx for all u ∈D1,m
(
R

N
) (

m ∈ {p, q}
)

in the computations above and set S ≡max{Sp, Sq} to get

J(u)≥
(
1

p
− 1

kp

)
‖u‖p1,p +

1

q
‖u‖q1,q

− c0
θ
Sp∗/p

(∫
RN

|∇u|p dx
)p∗/p

≥ min

{
1

p
− 1

kp
,
1

q

}(
‖u‖p1,p + ‖u‖q1,q

)
− c0

θ
Sp∗/p

(
‖u‖p1,p + ‖u‖q1,q

)p∗/p
.

If we take ‖u‖1,p and ‖u‖1,q small enough, it follows that ‖u‖p1,p and ‖u‖q1,q
are also small enough. For that reason, we obtain the existence of r1, μ1 ∈R

+

such that J(u)≥ μ1 for ‖u‖= r1. This concludes the proof of item (1).
By definition, for all u ∈ [D1,p(B1(0)) ∩ D1,q(B1(0))]\{0} we have that

G(x,u) = F (u). Arguing as in the proof of Lemma 2.1 we conclude that
there exist r1, tu ∈R

+ such that e1 ≡ tuu verify the inequalities ‖e1‖ ≤ r1 and
J(e1)< 0. This concludes the proof of item (2). The lemma is proved. �

Since the functional J has the geometry of the mountain-pass lemma, using
Willem [40, Theorem 1.15] we obtain a Palais–Smale sequence (un)n∈N ⊂
E such that J(un) → c and J ′(un) → 0 as n → +∞. Here c ∈ R

+ is the
mountain-pass level associated to the energy functional J , that is,

c≡ inf
γ∈Γ

max
t∈[0,1]

J
(
γ(t)

)
,

where

Γ≡
{
γ ∈C([0,1];D1,p

(
B1(0)

)
∩D1,q

(
B1(0)

)
: γ(0) = 0 and γ(1) = e1

}
and e1 ∈ [D1,p(B1(0)) ∩D1,q(B1(0))]\{0} is the same function verifying in-
equality J(e1)< 0 in Lemma 2.2. Using the hypothesis (f4), without loss of
generality we can suppose that the sequence (un)n∈N ⊂E consists of nonneg-
ative functions.

We note that for all u ∈ [D1,p(B1(0)) ∩ D1,q(B1(0))]\{0} the inequality
J(u)≤ I∞(u) is valid, and this implies that

(2.6) c≤ d.
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Now we prove the boundedness of the Palais–Smale sequences for the func-
tional J .

Lemma 2.3. Suppose that the potential functions a, b verify the hypothesis
(P1), and that the nonlinearity f verifies the hypotheses (f1), (f2), (f3), and
(f4). If (un)n∈N ⊂E is a Palais–Smale sequence for the energy functional J ,
then the sequence (un)n∈N ⊂E is bounded in E.

Proof. To prove that the sequence (un)n∈N ⊂E is bounded in E it is suf-
ficient to prove that both sequences (‖un‖q1,q)n∈N ⊂ R and (‖un‖p1,p)n∈N ⊂ R

are bounded, which we do in the two claims below.
Before that, however, we remark that there exist constants c1 > 0 and

n0 ∈ N such that J(un) ≤ c1 and |J ′(unun)| ≤ min{‖un‖1,q,‖un‖1,p} for all
n ∈N such that n≥ n0; and since θ > p > 1, for all n≥ n0 we have

(2.7) J(un)−
1

θ
J ′(un)un ≤ c1 +

1

θ
‖un‖ ≤ c1 +min

{
‖un‖1,q,‖un‖1,p

}
.

Claim 1. The sequence (‖un‖q1,q)n∈N ⊂R is bounded.

Proof. We divide our analysis into cases that mirror the definition of the
nonlinearity g. If |x|>R and f(t)> a(x)|t|p−2t/k, then∫

RN

G(x,un)dx=
1

p

∫
RN

g(x,un)un dx,

and this implies that

J(un)−
1

p
J ′(un)un =

(
1

q
− 1

p

)
‖un‖q1,q.(2.8)

Combining inequalities (2.7) and (2.8), we conclude that(
1

q
− 1

p

)
‖un‖q1,q ≤ c1 + ‖un‖1,q.

So, in this case the sequence (‖un‖q1,q)n∈N ⊂ R is bounded, say ‖un‖q1,q ≤ cq
for every n ∈N.

If |x| ≤ R or if |x| > R and f(t) ≤ a(x)|t|p−2t/k, the boundedness of the
sequence can be proved using the same ideas as that of the previous case with
some minor changes. This concludes the proof of the claim. �

Claim 2. The sequence (‖un‖p1,p)n∈N ⊂R is bounded.

Proof. We also divide our analysis into the same cases. If |x| > R and
f(t)> a(x)|t|p−2t/k, then we have

J(un)−
1

θ
J ′(un)un(2.9)

≥
(
1

p
− 1

θ

)
‖un‖p1,p +

(
1

q
− 1

θ

)
‖un‖q1,q −

1

kp

{∫
RN

a(x)|un|p dx
}
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≥
(
1

p
− 1

θ

)
‖un‖p1,p +

(
1

p
− 1

θ

)
‖un‖q1,p −

1

kp

{
‖un‖p1,p + ‖un‖q1,q

}
=

(p− 1)

kp

{
‖un‖p1,p + ‖un‖q1,q

}
.

Combining inequalities (2.7) and (2.9) and using Claim 1, we obtain

(p− 1)

kp
‖un‖p1,p ≤ c1 + ‖un‖1,p.

This means that in this case the sequence (‖un‖p1,p)n∈N ⊂R is bounded.

If |x| ≤R or if |x|>R and f(t)≤ a(x)|t|p−2t/k, then∫
RN

G(x,un)dx+
1

θ

∫
RN

g(x,un)un dx≥ 0.

Hence,

J(un)−
1

θ
J ′(un)un(2.10)

≥
(
1

p
− 1

θ

)
‖un‖p1,p +

(
1

q
− 1

θ

)
‖un‖q1,q −

∫
RN

G(x,un)dx

+
1

θ

∫
RN

g(x,un)un dx

≥
(
1

p
− 1

θ

){
‖un‖p1,p + ‖un‖q1,q

}
−
∫
RN

G(x,un)dx

+
1

θ

∫
RN

g(x,un)un dx

≥ 1

k

{
‖un‖p1,p + ‖un‖q1,q

}
≥ (p− 1)

kp

{
‖un‖p1,p + ‖un‖q1,q

}
.

Combining inequalities (2.7) and (2.10), we get

1

k
‖un‖p1,p ≤ c1 + ‖un‖1,p.

This means that also in this case the sequence (‖un‖p1,p)n∈N ⊂R is bounded.
This concludes the proof of the claim. �

Using Claims 1 and 2, we deduce the proof of the lemma. �

The following result shows that the functional J verifies the Palais–Smale
condition.

Lemma 2.4. Suppose that the potential functions a, b verify the hypotheses
(P1), (P2), and (P3) and that the nonlinearity f verifies the hypotheses (f1),
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(f2), (f3), and (f4). Then the Palais–Smale condition is valid for the energy
functional J .

Proof. Let (un)n∈N ⊂ E be a Palais–Smale sequence at the level c; this
means that

J(un)→ c and J ′(un)→ 0

as n → ∞. By Lemma 2.3, this sequence is bounded. Then there exist a
subsequence of (un)n∈N ⊂ E, which we still denote in the same way, and
there exists a function u ∈E such that un ⇀u weakly in E as n→+∞.

For each ε > 0, there exist r > R> 1 such that

2
(
2N − 1

)1/N
ω

1
N

N

(
1− 1

k

)−1{(∫
r≤|x|≤2r

|u|p∗
dx

)1/p∗

‖u‖p−1(2.11)

+

(∫
r≤|x|≤2r

|u|q∗ dx
)1/q∗

‖u‖q−1

}
< ε.

Let η = ηr ∈C∞(Bc
r(0)) be a cut off function such that 0≤ η ≤ 1, with η = 1

in Bc
2r(0) and also |∇η| ≤ 2/r for all x ∈ R

N . Since the sequence (un)n∈N ⊂
E is bounded, it follows that the sequence (ηun)n∈N ⊂ E is bounded also.
Therefore, J ′(un)(ηun) = on(1), that is,∫

RN

|∇un|p−2∇un · ∇(ηun)dx+

∫
RN

a(x)|un|p−2un(ηun)dx(2.12)

+

∫
RN

|∇un|q−2∇un · ∇(ηun)dx+

∫
RN

b(x)|u|q−2
n un(ηun)dx

=

∫
RN

g(x,un)(ηun)dx+ o(1).

The previous expression and the properties of the cut off function η imply
that ∫

|x|≥r

η|∇un|p dx+

∫
|x|≥r

|∇un|p−2un∇un · ∇η dx

+

∫
|x|≥r

ηa(x)|un|p dx+

∫
|x|≥r

η|∇un|q dx

+

∫
|x|≥r

|∇un|q−2un∇un · ∇η dx+

∫
|x|≥r

ηb(x)|un|q dx

=

∫
|x|≥r

ηg(x,un)un dx+ o(1).

By the inequality (2.1), it follows that∫
|x|≥r

ηg(x,un)un dx≤
∫
|x|≥r

η
a(x)

k
|un|p dx;
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thus, we obtain∫
|x|≥r

η|∇un|p dx+

∫
|x|≥r

ηa(x)|un|p dx

+

∫
|x|≥r

η|∇un|q dx+

∫
|x|≥r

ηb(x)|un|q dx−
∫
|x|≥r

η
a(x)

k
|un|p

≤
∫
|x|≥r

|∇un|p−1|un||∇η|dx+

∫
|x|≥r

|∇un|q−1|un||∇η|dx+ o(1)

≤ 2

r

{∫
r≤|x|≤2r

|∇un|p−1|un|dx+

∫
r≤|x|≤2r

|∇un|q−1|un|dx
}
+ o(1).

Subtracting the terms

1

k

∫
|x|≥r

η|∇un|p dx+
1

k

∫
|x|≥r

η|∇un|q dx+
1

k

∫
|x|≥r

ηb(x)|un|q dx

from the left-hand side of the previous inequality and grouping the several
integrals, we deduce that(

1− 1

k

){∫
|x|≥r

η|∇un|p dx+

∫
|x|≥r

ηa(x)|un|p dx

+

∫
|x|≥r

η|∇un|q dx+

∫
|x|≥r

ηb(x)|un|q dx
}

≤ 2

r

{∫
r≤|x|≤2r

|un||∇un|p−1 dx+

∫
r≤|x|≤2r

|un||∇un|q−1 dx

}
+ o(1).

Now we use Hölder’s inequality to get∫
r≤|x|≤2r

|un||∇un|p−1 dx

≤
(∫

r≤|x|≤2r

|un|p dx
)1/p{(∫

r≤|x|≤2r

|∇un|p dx
)1/p}p−1

≤
(∫

r≤|x|≤2r

|un|p dx
)1/p

‖un‖p−1.

And in a similar way, we obtain∫
r≤|x|≤2r

|un||∇un|q−1 dx≤
(∫

r≤|x|≤2r

|un|q dx
) 1

q

‖un‖q−1.

By the compactness of the embedding W 1,p(B2r\Br) ↪→ Lp(B2r\Br), we infer
that un → u strongly in Lp(B2r\Br) as n→∞. Since (ηun)n∈N ⊂W 1,p(RN )∩
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W 1,q(RN ), it follows that

limsup
n→∞

(
1− 1

k

){∫
|x|≥r

η|∇un|p dx+

∫
|x|≥r

ηa(x)|un|p dx(2.13)

+

∫
|x|≥r

η|∇un|q dx+

∫
|x|≥r

ηb(x)|un|q dx
}

≤ 2

r
limsup
n→∞

{(∫
r≤|x|≤2r

|un|p dx
)1/p

‖un‖p−1

+

(∫
r≤|x|≤2r

|un|q dx
)1/q

‖un‖q−1

}

=
2

r

{(∫
r≤|x|≤2r

|u|p dx
)1/p

‖u‖p−1

+

(∫
r≤|x|≤2r

|u|q dx
)1/q

‖u‖q−1

}
.

Applying Hölder’s inequality once more and denoting the volume of the
unitary ball by |B1(0)|= ωN , we obtain(∫

r≤|x|≤2r

|u|p dx
)1/p

(2.14)

≤
((
2N − 1

)
ωNrN

)1/N(∫
r≤|x|≤2r

|u|p∗
dx

)1/p∗

.

And in a similar way, we obtain(∫
r≤|x|≤2r

|u|q dx
)1/q

(2.15)

≤
((
2N − 1

)
ωNrN

)1/N(∫
r≤|x|≤2r

|u|q∗ dx
)1/q∗

.

Replacing inequalities (2.14) and (2.15) in (2.13), we get

limsup
n→∞

(
1− 1

k

){∫
|x|≥r

η|∇un|p dx+

∫
|x|≥r

ηa(x)|un|p dx(2.16)

+

∫
|x|≥r

η|∇un|q dx+

∫
|x|≥r

ηb(x)|un|q dx
}

≤ 2
((
2N − 1

)
ωN

)1/N{(∫
r≤|x|≤2r

|u|p∗ dx
)1/p∗

‖u‖p−1

+

(∫
r≤|x|≤2r

|u|q∗ dx
)1/q∗

‖u‖q−1

}
.
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In particular, since η = 1 outside the ball of radius 2r, by inequalities (2.13)
and (2.16) we obtain

limsup
n→∞

(
1− 1

k

){∫
|x|≥2r

|∇un|p dx+

∫
|x|≥2r

a(x)|un|p dx(2.17)

+

∫
|x|≥2r

|∇un|q dx+

∫
|x|≥2r

b(x)|un|q dx
}

≤ 2
((
2N − 1

)
ωN

)1/N{(∫
r≤|x|≤2r

|u|p∗
dx

)1/p∗

‖u‖p−1

+

(∫
r≤|x|≤2r

|u|q∗ dx
)1/q∗

‖u‖q−1

}
.

Therefore, by inequalities (2.11) and (2.17) it follows that

limsup
n→∞

{∫
|x|≥2r

|∇un|p dx+

∫
|x|≥2r

a(x)|un|p dx(2.18)

+

∫
|x|≥2r

|∇un|q dx+

∫
|x|≥2r

b(x)|un|q dx
}
< ε.

Combining inequalities (2.12) and (2.18), we deduce that

limsup
n→∞

∫
|x|≥2r

g(x,un)un dx= 0.(2.19)

Now we use the dominated convergence theorem together with the fact that
g has subcritical growth to infer that

limsup
n→∞

∫
|x|≤2r

g(x,un)un dx=

∫
|x|≤2r

g(x,u)udx;(2.20)

and since
∫
RN g(x,un)un dx <∞, by the choice of r > R> 1 and from equali-

ties (2.19) and (2.20), we obtain

lim
n→∞

∫
RN

g(x,un)un dx=

∫
RN

g(x,u)udx.(2.21)

It remains to show that the norm sequence (‖un‖)n∈N ⊂ R is such that
‖un‖→ ‖u‖ ∈R as n→∞. Using Hölder’s inequality and making some com-
putations, it follows that{(∫

RN

|∇un|p dx
)(p−1)/p

−
(∫

RN

|∇u|p dx
)(p−1)/p}

×
{(∫

RN

|∇un|p dx
)1/p

−
(∫

RN

|∇u|p dx
)1/p}

+

{(∫
RN

a(x)|un|p dx
)(p−1)/p

−
(∫

RN

a(x)|u|p dx
)(p−1)/p}
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×
{(∫

RN

a(x)|un|p dx
)1/p

−
(∫

RN

a(x)|u|p dx
)1/p}

+

{(∫
RN

|∇un|q dx
)(q−1)/q

−
(∫

RN

|∇u|q dx
)(q−1)/q}

×
{(∫

RN

|∇un|q dx
)1/q

−
(∫

RN

|∇u|q dx
)1/q}

+

{(∫
RN

b(x)|un|q dx
)(q−1)/q

−
(∫

RN

b(x)|u|q dx
)(q−1)/q}

×
{(∫

RN

b(x)|un|q dx
)1/q

−
(∫

RN

b(x)|u|q dx
)1/q}

−
∫
RN

(
g(x,un)− g(x,u)

)
(un − u)dx

≤
(
J ′(un)− J ′(u)

)
(un − u) = o(1).

We remark that all the terms between curly brackets in the previous expression
have the same signals; therefore, by the limit (2.21) we get

lim
n→∞

∫
RN

|∇un|p dx=

∫
RN

|∇u|p dx,

lim
n→∞

∫
RN

a(x)|un|p dx=

∫
RN

a(x)|u|p dx,

and also

lim
n→∞

∫
RN

|∇un|q dx=

∫
RN

|∇u|q dx,

lim
n→∞

∫
RN

b(x)|un|q dx=

∫
RN

b(x)|u|q dx.

This implies that

lim
n→∞

‖un‖p1,p = ‖u‖p1,p and lim
n→∞

‖un‖q1,q = ‖u‖q1,q.

Moreover, un ⇀u weakly in E as n→∞; and finally, un → u strongly in E
as n→∞. For the details, see DiBenedetto [24, Proposition V.11.1]. �

Lemma 2.5. Suppose that there exists a sequence (un)n∈N ⊂E and a func-
tion u ∈ E such that un → u in E and J ′(un) → 0 as n → ∞. Then there
exists a subsequence, still denoted in the same way, such that ∇un →∇u a.e.
in R

N

Proof. See Assunção, Carrião and Miyagaki [8] or Benmouloud, Echar-
ghaoui and Sbäı [14]. �
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Using Lemmas 2.1, 2.2, 2.3, 2.4, and 2.5 we conclude that there exists
u ∈ E which is a critical point for the functional J . Moreover, this critical
point is a positive ground state solution to the auxiliary problem (2.4), that
is, J(u) = c > 0 and J ′(u) = 0.

3. Estimate for the solution to the auxiliary problem

In this section, we show that the solution to the auxiliary problem (2.4)
obtained in the previous section verifies an important estimate. To do this,
we use several lemmas.

Lemma 3.1. For R > 1, every positive ground state solution u to problem
(2.4) verifies the estimate

‖u‖p1,p + ‖u‖q1,q ≤
dkp

p− 1
.

Proof. Combining inequalities (2.6), (2.9) and (2.10), it follows that

(p− 1)

kp

{
‖u‖p1,p + ‖u‖q1,q

}
≤ J(u)− 1

θ
J ′(u)u= J(u) = c≤ d.

The conclusion of the lemma follows immediately. �

We remark that the boundedness of the norm of the ground state solution
to problem (2.4) shown in Lemma 3.1 depends only on the potential functions
a∞ and b∞, on the nonlinearity f and on the constant θ; it is independent on
the constant R> 1.

The next lemma is a crucial step to establish an important estimate in-
volving the norm of the solution to the auxiliary problem (2.4) in the space
L∞(RN ). To prove it, we adapt the arguments by Alves and Souto [1]; see
also Gilbarg and Trudinger [28, Section 8.6], Brézis and Kato [17], Pucci and
Servadei [35], and Bastos, Miyagaki and Vieira [11].

Lemma 3.2. Suppose that p, r ∈ R verify the inequality pr > N . Let
H : RN ×R→R be a continuous function such that |H(x, s)| ≤ h(x)|s|p−2s for
all s > 0 with the function h : RN →R so that h ∈ Lr(RN ) and let A,B : RN →
R be nonnegative functions. Suppose also that v ∈E ⊂D1,p(RN )∩D1,q(RN )
is a weak solution to the problem

−Δpv−Δqv+A(x)|v|p−2v+B(x)|v|q−2v =H(x, v), x ∈R
N .(3.1)

Then there exists a constant M1 = M1(N,p, q, r,‖h‖Lr(RN )) > 0, which does
not depend on the functions A and B, such that

‖v‖L∞(RN ) ≤M1max
{
‖v‖Lp∗ (RN ),K,KLv,1

}
,

where K and Lv are defined by (3.5) and by (3.6), respectively.
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Proof. Let β > 1; for every m ∈N we define the subsets

Am ≡
{
x ∈R

N : 1<
∣∣v(x)∣∣β−1 ≤m

}
;

Bm ≡
{
x ∈R

N :
∣∣v(x)∣∣β−1

>m
}
;

Cm ≡
{
x ∈R

N :
∣∣v(x)∣∣β−1 ≤ 1

}
.

We also define the sequence of functions (vm)m∈N ⊂D1,p(RN )∩D1,q(RN ) by

vm(x)≡

⎧⎪⎨⎪⎩
|v(x)|p(β−1)v(x), if x ∈Am;

mpv(x), if x ∈Bm;

|v(x)|q(β−1)v(x), if x ∈Cm.

It is easy to verify that for every x ∈R
N we have

vm(x)≤max
{∣∣v(x)∣∣p(β−1)+1

,
∣∣v(x)∣∣q(β−1)+1}

.

Additionally, simple computations show that

∇vm(x) =

⎧⎪⎨⎪⎩
(p(β − 1) + 1)|v(x)|p(β−1)∇v(x), if x ∈Am;

mp∇v(x), if x ∈Bm;

(q(β − 1) + 1)|v(x)|q(β−1)∇v(x), if x ∈Cm.

Furthermore, (vm)m∈N ⊂E. Indeed,∫
RN

a(x)|vm|p dx

≤
∫
Am

a(x)
(
|v|p−1v

)
mp(p−1)+p dx+

∫
Bm

a(x)|v|p−1vmp(p−1)+p dx

+

∫
Cm

a(x)
(
|v|p−1v

)
dx

≤mp2

∫
RN

a(x)|v|p−1v dx <+∞.

And in a similar way, we have∫
RN

b(x)|vm|q dx=mpq

∫
RN

b(x)|v|q−1v dx <+∞.

Multiplying both sides of the differential equation (3.1) by the test function
vm and integrating the left-hand side with the help of the divergence theorem,
we deduce that∫

RN

|∇v|p−2∇v · ∇vm dx+

∫
RN

|∇v|q−2∇v · ∇vm dx

+

∫
RN

A(x)|v|p−2vvm dx+

∫
RN

B(x)|v|q−2vvm dx

=

∫
RN

H(x, v)vm dx.
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Using the definition of the function vm, we obtain(
p(β − 1) + 1

){∫
Am

|∇v|p|v|p(β−1) dx+

∫
Am

|∇v|q|v|p(β−1) dx

}
(3.2)

+
(
q(β − 1) + 1

){∫
Cm

|∇v|p|v|q(β−1) dx+

∫
Cm

|∇v|q|v|q(β−1) dx

}
=

∫
RN

|∇v|p−2∇v · ∇vm dx+

∫
RN

|∇v|q−2∇v · ∇vm dx

−mp

{∫
Bm

|∇v|p dx+

∫
Bm

|∇v|q dx
}

≤
∫
RN

|∇v|p−2∇v · ∇vm dx+

∫
RN

A(x)|v|p−2vvm dx

+

∫
RN

|∇v|q−2∇v · ∇vm dx+

∫
RN

B(x)|v|q−2vvm dx.

Now we define another sequence of functions (wm)m∈N ⊂E by

wm(x) =

{
|v(x)|β−1v(x), if x ∈Am ∪Cm;

mv(x), if x ∈Bm.

Direct computations show that

∇wm(x) =

{
β|v(x)|β−1∇v(x), if x ∈Am ∪Cm;

m∇v(x), if x ∈Bm.

Using the hypothesis 2≤ q ≤ p <N , we obtain∫
RN

|∇wm|p dx+

∫
RN

A(x)|wm|p dx−
∫
RN

|∇v|p−2∇v · ∇vm dx

−
∫
RN

A(x)|v|p−2vvm dx+

∫
RN

|∇wm|q dx+

∫
RN

B(x)|wm|q dx

−
∫
RN

|∇v|q−2∇v · ∇vm dx−
∫
RN

B(x)|v|q−2vvm dx

≤ βp

∫
Am∪Cm

|∇v|p|v|p(β−1) dx+ βp

∫
Am∪Cm

|∇v|q|v|q(β−1) dx

−
(
p(β − 1) + 1

)
×
{∫

Am

|∇v|p|v|p(β−1) dx+

∫
Am

|∇v|q|v|p(β−1) dx

}
+

∫
Am

B(x)
(
|v|qβ − |v|p(β−1)+q

)
dx

+

∫
Cm

A(x)
(
|v|pβ − |v|p+q(β−1)

)
dx
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+
(
mq −mp

)∫
Bm

B(x)|v|q dx−
(
q(β − 1) + 1

)
×
{∫

Cm

|∇v|p|v|q(β−1) dx+

∫
Cm

|∇v|q|v|q(β−1) dx

}
+
(
mq −mp

)∫
Bm

|∇v|q dx.

And after we get rid of the nonpositive terms, we can regroup the expressions
to obtain∫

RN

|∇wm|p dx+

∫
RN

A(x)|wm|p dx+

∫
RN

|∇wm|q dx+

∫
RN

B(x)|wm|q dx

=
(
βp −

(
p(β − 1) + 1

))∫
Am

|∇v|p|v|p(β−1) dx

+ βp

∫
Cm

|∇v|p|v|p(β−1) dx

+
(
βq −

(
q(β − 1) + 1

))∫
Cm

|∇v|q|v|q(β−1) dx

+ βq

∫
Am

|∇v|q|v|q(β−1) dx

+

∫
RN

|∇v|p−2∇v · ∇vm dx+

∫
RN

A(x)|v|p−2vvm dx

+

∫
RN

|∇v|q−2∇v · ∇vm dx+

∫
RN

B(x)|v|q−2vvm dx.

So, using inequality (3.2) we deduce that∫
RN

|∇wm|p dx+

∫
RN

A(x)|wm|p dx+

∫
RN

|∇wm|q dx+

∫
RN

B(x)|wm|q dx

≤
(

βp

q(β − 1) + 1

){∫
RN

|∇v|p−2∇v · ∇vm dx+

∫
RN

A(x)|v|p−2vvm dx

+

∫
RN

|∇v|q−2∇v · ∇vm dx+

∫
RN

B(x)|v|q−2vvm dx

}
+ βp

∫
Cm

|∇v|p|v|p(β−1) dx+ βq

∫
Am

|∇v|q|v|q(β−1) dx.

Now we estimate some integrals that appear in the previous inequality.
First, by definition of Am we have∫

Am

|∇v|q|v|q(β−1) dx

=

∫
Am

|∇v|q−2

[p(β − 1) + 1]|v|(p−q)(β−1)
∇v · ∇vm dx
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≤
∫
RN

|∇v|p−2∇v · ∇vm dx+

∫
RN

A(x)|v|p−2vvm dx

+

∫
RN

|∇v|q−2∇v · ∇vm dx+

∫
RN

B(x)|v|q−2vvm dx.

In a similar way, by definition of Cm we have∫
Cm

|∇v|p|v|p(β−1) dx

≤
∫
RN

|∇v|p−2∇v · ∇vm dx+

∫
RN

A(x)|v|p−2vvm dx

+

∫
RN

|∇v|q−2∇v · ∇vm dx+

∫
RN

B(x)|v|q−2vvm dx.

Using these inequalities, we deduce that∫
RN

|∇wm|p dx+

∫
RN

A(x)|wm|p dx+

∫
RN

|∇wm|q dx+

∫
RN

B(x)|wm|q dx

≤
(
βp +

βp

q(β − 1) + 1

)
×
{∫

RN

|∇v|p−2∇v · ∇vm dx+

∫
RN

A(x)|v|p−2vvm dx

+

∫
RN

|∇v|q−2∇v · ∇vm dx+

∫
RN

B(x)|v|q−2vvm dx

}
≤ 2βp

{∫
RN

|∇v|p−2∇v · ∇vm dx+

∫
RN

A(x)|v|p−2vvm dx

+

∫
RN

|∇v|q−2∇v · ∇vm dx+

∫
RN

B(x)|v|q−2vvm dx

}
= 2βp

∫
RN

H(x, v)vm dx.

Using the Sobolev inequality (2.5) and the hypothesis H(x, s)≤ h(x)|s|p−1,
we obtain(∫

Am∪Cm

|wm|p∗
dx

)p/p∗

≤
(∫

RN

|wm|p∗
dx

)p/p∗

≤ S

∫
RN

|∇wm|p dx

≤ S

{∫
RN

|∇wm|p dx+

∫
RN

a(x)|wm|p dx
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+

∫
RN

|∇wm|q dx+

∫
RN

b(x)|wm|q dx
}

≤ 2Sβp

∫
RN

H(x, v)vm dx

≤ 2Sβp

∫
RN

h(x)|v|p−1vm dx

= 2Sβp

{∫
Am

h(x)|v|p−2v|v|p(β−1)v dx+

∫
Bm

h(x)|v|p−2vmpv dx

+

∫
Cm

h(x)|v|p−2v|v|q(β−1)v dx

}
≤ 2Sβp

{∫
RN

h(x)|v|pβ dx+

∫
RN

h(x)|v|p dx
}
,

where in the last passage we used the definitions of the functions vm and wm,
together with the facts that in Bm we have |wm|p ≤ |v|pβ and in Cm we have
|v|p+q(β−1) ≤ |v|p.

Passing to the limit as m → ∞ and using Lebesgue’s dominated conver-
gence theorem, it follows that(∫

RN

|v|p∗β dx

)p/p∗

≤ 2Sβp

{∫
RN

h(x)|v|pβ dx+

∫
RN

h(x)|v|p dx
}
.

Applying Hölder’s inequality to both terms on the right-hand side of the
previous inequality, we obtain∫

RN

h(x)|v|pβ dx≤ ‖h‖Lr(RN )‖v‖pβLpβr′ (RN )

and ∫
RN

h(x)|v|p dx≤ ‖h‖Lr(RN )‖v‖pLpr′ (RN )
;

hence

‖v‖pβ
Lp∗β(RN )

≤ 2S‖h‖Lr(RN )β
p
{
‖v‖pβ

Lpβr′ (RN )
+ ‖v‖p

Lpr′ (RN )

}
≤ 2S‖h‖Lr(RN )β

p
{
max

{
‖v‖pβ

Lpβr′ (RN )
,1
}
+max

{
‖v‖p

Lpr′ (RN )
,1
}}

=Cp
1β

pmax
{
‖v‖pβ

Lpβr′ (RN )
,max

{
‖v‖p

Lpr′ (RN )
,1
}}

,

where Cp
1 =Cp

1 (N,p, q, r,‖h‖Lr(RN ))≡ 4S‖h‖Lr(RN ) > 0.

Writing β = σj for j ∈N we deduce that

‖v‖Lp∗σj
(RN )(3.3)

≤C
1/σj

1 σj/σj

max
{
‖v‖Lpσjr′ (RN ),max

{
‖v‖1/σ

j

Lpr′ (RN )
,1
}}

.
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Choosing σ = p∗/pr′ > 1, from inequality (3.3) with j = 1 we obtain

‖v‖Lp∗σ(RN ) ≤C
1/σ
1 σ1/σ max

{
‖v‖Lp∗ (RN ),max

{
‖v‖1/σ

Lpr′ (RN )
,1
}}

;

and from inequality (3.3) with j = 2 together with the previous inequality we
obtain

‖v‖Lp∗σ2 (RN )

≤C
1/σ2

1 σ2/σ2

max
{
‖v‖Lp∗σ(RN ),max

{
‖v‖1/σ

2

Lpr′ (RN )
,1
}}

≤C
1/σ2

1 σ2/σ2

×max
{
C

1/σ
1 σ1/σ max

{
‖v‖Lp∗ (RN ),max

{
‖v‖1/σ

Lpr′ (RN )
,1
}}

,

max
{
‖v‖1/σ

2

Lpr′ (RN )
,1
}}

≤C
1/σ+1/σ2

1 σ1/σ+2/σ2

×max

{
‖v‖Lp∗ (RN ),max

{
(C

1/σ
1 σ1/σ)−1,1

}
,max

{
(C

1/σ
1 σ1/σ)−1,1

}
×max

{
‖v‖1/σ

Lpr′ (RN )
,‖v‖1/σ

2

Lpr′ (RN )
,1
}}

.

Proceeding in this way, for j ∈N we obtain

‖v‖Lp∗σj
(RN ) ≤C

sj
1 σtj max

{
‖v‖Lp∗ (RN ),Kj ,KjLj

}
,(3.4)

where sj ≡ 1/σ+ 1/σ2 + · · ·+ 1/σj ; tj ≡ 1/σ+ 2/σ2 + · · ·+ j/σj ;

Kj ≡
{
1, if j = 1;

max1≤i≤j−1{C−si
1 σ−ti ,1}, if j ≥ 2;

and

Lj ≡ max
1≤i≤j

{
‖v‖1/σ

i

Lpr′ (RN )
,1
}
.

Since σ > 1, we have limj→∞ sj = 1/(σ − 1) and limj→∞ tj = σ/(σ − 1)2;
hence,

lim
j→∞

Kj ≡K =

{
(C

1/(σ−1)
1 σσ/(σ−1)2)−1 if C1 ≤ 1;

(C
1/σ
1 σ1/σ)−1 if C1 > 1;

(3.5)

and

lim
j→∞

Lj ≡ Lv =

{
1, if ‖v‖Lpr′ (RN ) ≤ 1;

‖v‖1/(σ−1)

Lpr′ (RN )
, if ‖v‖Lpr′ (RN ) > 1.

(3.6)

Using the fact that v ∈E ⊂D1,p(RN )∩D1,q(RN ), applying Hölder’s inequal-
ity we deduce that Lv <+∞.



568 M. J. ALVES, R. B. ASSUNÇÃO AND O. H. MIYAGAKI

Finally, passing to the limit as j →∞ and using inequality (3.4) we obtain

‖v‖L∞(RN ) = lim
j→∞

‖v‖Lp∗σj
(RN )(3.7)

≤C
1/(σ−1)
1 σσ/(σ−1)2 max

{
‖v‖Lp∗ (RN ),K,KLv,1

}
≡M1max

{
‖v‖Lp∗ (RN ),K,KLv,1

}
,

where M1 =M1(N,p, q, r,‖h‖Lr(RN )). This concludes the proof of the lemma.
�

Lemma 3.3. Let the number R > 1 be given; then there exist a constant
M2 =M2(N,p, q, r, a∞, b∞, θ, c0) such that any positive ground state solution
u ∈D1,p(RN )∩D1,q(RN ) to the auxiliary problem (2.4) verifies the inequality

‖u‖L∞(RN ) ≤M2.

Proof. Consider R > 1 and let u ∈ D1,p(RN ) ∩ D1,q(RN ) be a positive
ground state solution to the auxiliary problem (2.4). Now we define the
function H : RN ×R→R by

H(x, t)≡
{
f(t), if |x| ≤R or if |x|>R and f(t)≤ a(x)

k |t|p−2t;

0, if |x|>R and f(t)> a(x)
k |t|p−2t.

We also define the functions A,B : RN →R by

A(x) =

{
a(x), if |x| ≤R or if |x|>R and f(u(x))≤ a(x)

k u(x);

(1− 1
k )a(x), if |x|>R and f(u(x))> a(x)

k u(x),

and B(x) = b(x).
Considering these functions and using v ∈E as a test function, we have

0 =

∫
RN

|∇u|p−2∇u · ∇v dx+

∫
RN

A(x)|u|p−2uv dx

+

∫
RN

|∇u|q−2∇u · ∇v dx+

∫
RN

B(x)|u|q−2uv dx−
∫
RN

H(x,u)v dx

=

∫
RN

|∇u|p−2∇u · ∇v dx+

∫
RN

a(x)|u|p−2uv dx

+

∫
RN

|∇u|q−2∇u · ∇v dx+

∫
RN

b(x)|u|q−2uv dx−
∫
RN

g(x,u)v dx.

From hypothesis (f1), we have |H(x, t)| ≤ |f(t)| ≤ c1|t|p
∗−1 for |t| small

enough; from hypothesis (f2) we have |H(x, t)| ≤ |f(t)| ≤ c2|t|τ−1 for |t| big
enough with τ ∈ (p, p∗). Combining both cases, for every t ∈ R

+ and for
every τ ∈ (p, p∗) we obtain |H(x, t)| ≤ |f(t)| ≤ c0|t|p

∗−1. Then, it follows that
|H(x,u)| ≤ c0|u(x)|τ−p|u(x)|p−1 = h(x)|u(x)|p−1, where h(x)≡ c0|u(x)|τ−p.
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Direct computations show that h ∈ Lr(RN ) for r = p∗/(τ − p). Indeed,∫
RN

∣∣h(x)∣∣r dx
≤ c

p∗/(τ−p)
0

∫
RN

|u|p∗
dx

≤ c
p∗/(τ−p)
0 Sp∗/p

(∫
RN

|∇u|p dx
)p∗/p

≤ c
p∗/(τ−p)
0 Sp∗/p

{∫
RN

|∇u|p dx+

∫
RN

a(x)|u|p dx

+

∫
RN

|∇u|q dx+

∫
RN

b(x)|u|q dx
}p∗/p

≤ c
p∗/(τ−p)
0 Sp∗/p

{
‖u‖p1,p + ‖u‖q1,q

}p∗/p
<+∞.

In this way, any positive ground state solution u ∈D1,p(RN )∩D1,q(RN ) to
the auxiliary problem (2.4) verifies the hypothesis of Lemma 3.2. Concluding
the argument, from inequality (2.5) and from Lemma 3.1 we have

‖u‖Lp∗ (RN ) ≤ S1/p
{
‖u‖p1,p + ‖u‖q1,q

}1/p ≤
(
Sdkp

p− 1

)1/p

.

Finally, combining estimate (3.7) with the previous inequality we obtain

‖u‖L∞(RN ) ≤M1max
{
‖u‖Lp∗ (RN ),K,KLu,1

}
≤M1max

{(
Sdkp

p− 1

)1/p

,K,KLu,1

}
≡M2,

where M2 =M2(N,p, q, r, a∞, b∞, θ, c0). The lemma is proved. �

Lemma 3.4. Suppose that R0 ≥R> 1 and let u ∈D1,p(RN )∩D1,q(RN ) be
a positive ground state solution to the auxiliary problem (2.4). Then u verifies
the inequality

u(x)≤M2
R(N−p)/(p−1)

|x|(N−p)/(p−1)

for every |x| ≥R> 1.

Proof. Given R0 ≥R> 1, we define the function v : RN\{0}→R by

v(x)≡M2
R

(N−p)/(p−1)
0

|x|(N−p)/(p−1)
.

By hypothesis, u ∈D1,p(RN ) ∩D1,q(RN ) is a positive ground state solution
to the auxiliary problem (2.4); therefore, we can apply Lemma 3.3 to deduce
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that ‖u‖L∞(RN ) ≤M2. This implies that if |x|=R0, then ‖u‖L∞(RN ) ≤ v(x).

Now we define the function w : RN\{0}→R by

w(x) =

{
0, if |x| ≤R0;

(u− v)+, if |x| ≥R0.

In this way, w ∈D1,p(RN )∩D1,q(RN ); moreover, w ∈E because u, v ∈E.
To complete the proof of the lemma, we will show that (u− v)+ = 0 for

|x| ≥ R0. To accomplish this goal, we use the hypotheses on the potential
functions a and b; we will also use the function w ∈ E as a test function to
obtain ∫

RN

|∇u|p−2∇u · ∇w dx+

∫
RN

|∇u|q−2∇u · ∇w dx(3.8)

=

∫
RN

g(x,u)w dx−
∫
RN

a(x)|u|p−2uw dx−
∫
RN

b(x)|u|q−2uw dx

=

∫
RN\BR0

(0)∧f(t)≤a(x)|t|p−2t/k

f(u)w dx

+

∫
RN\BR0

(0)∧f(t)>a(x)|t|p−2t/k

a(x)

k
|u|p−2uw dx

−
∫
RN\BR0

(0)

a(x)|u|p−2uw dx−
∫
RN\BR0

(0)

b(x)|u|q−2uw dx

≤
∫
RN\BR0

(0)∧f(t)≤a(x)|t|p−2t/k

a(x)

k
|u|p−2uw dx

+

∫
RN\BR0

(0)∧f(t)>a(x)|t|p−2t/k

a(x)

k
|u|p−2uw dx

−
∫
RN\BR0

(0)

a(x)|u|p−2uw dx−
∫
RN\BR0

(0)

b(x)|u|q−2uw dx

=

(
1

k
− 1

)∫
RN\BR0

(0)

a(x)|u|p−2uw dx

−
∫
RN\BR0

(0)

b(x)|u|q−2uw dx

≤ 0

because u is a positive function and w is a nonnegative function, while k > 1.
Using the radially symmetric form of the operator Δmu, we have∫

RN\BR0
(0)

|∇v|m−2∇v · ∇φdx= 0
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for m ∈ {p, q} and for every function φ ∈E. Therefore,∫
RN

|∇v|p−2∇v · ∇w dx+

∫
RN

|∇v|q−2∇v · ∇w dx(3.9)

=

∫
RN\BR0

(0)

|∇v|p−2∇v · ∇w dx+

∫
RN\BR0

(0)

|∇v|q−2∇v · ∇w dx

= 0.

Defining the subsets

Ã≡
{
x ∈R

N : |x| ≥R0 and u(x)> v(x)
}

and

B̃ ≡
{
x ∈R

N : |x|<R0 or u(x)≤ v(x)
}
,

we have w(x) = u(x)−v(x) for x ∈ Ã and w(x) = 0 for x ∈ B̃. Using inequality
(3.8) and equation (3.9) we get

0≥
∫
RN

|∇u|p−2∇u · ∇w dx+

∫
RN

|∇u|q−2∇u · ∇w dx(3.10)

−
∫
RN

|∇v|p−2∇v · ∇w dx−
∫
RN

|∇v|q−2∇v · ∇w dx

=

∫
Ã

[
|∇u|p−2∇u− |∇v|p−2∇v

]
· (∇u−∇v)dx

+

∫
Ã

[
|∇u|q−2∇u− |∇v|q−2∇v

]
· (∇u−∇v)dx.

Denoting by 〈·, ·〉 : RN ×R
N →R the standard scalar product, given p≥ 2

there exists a positive constant cp ∈ R
+ such that for every x, y ∈ R

N it is
valid the inequality〈

|x|p−2x− |y|p−2y,x− y
〉
≥ cp‖x− y‖p.(3.11)

For the proof, we refer the reader to Simon [37]. From inequalities (3.10) and
(3.11), it follows that∫

RN

|∇w|p dx+

∫
RN

|∇w|q dx

=

∫
Ã

|∇u−∇v|p dx
∫
Ã

|∇u−∇v|q dx

≤ c−1
p

∫
Ã

[
|∇u|p−2∇u− |∇v|p−2∇v

]
· (∇u−∇v)dx

+ c−1
q

∫
Ã

[
|∇u|q−2∇u− |∇v|q−2∇v

]
· (∇u−∇v)dx

≤ 0.
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From this inequality, we deduce that each term on the left-hand side of
the previous inequality must be zero, that is, w is constant in R

N . But we
already know that w(x) = 0 in the ball BR0(0); therefore, w(x) = 0 for every
x ∈R

N . This implies that (u− v)+ = 0 for |x| ≥R0 and u(x)≤ v(x) for every
x ∈R

N . The proof of the lemma is complete. �

4. Obtaining the solution of the original problem

In this section, we finally show that the solution to the auxiliary problem
(2.4) obtained in Section 2 is in fact a solution to problem (1.1).

Proof of Theorem 1.1. From Lemmas 2.3 and 2.4, the auxiliary problem
(2.4) has a positive ground state solution u ∈D1,p(RN ) ∩D1,q(RN ). To ac-
complish our goal we need to show that for every x ∈ Bc

R(0) the function u
verifies the inequality

f(u)≤ a(x)

k
|u|p−2u.

From Lemma 3.4 and by the first inequality in (1.2), if |x| ≥R, then

f(u)

|u|p−2u
≤ c0

|u|p∗−2

|u|p−2
≤ c0

{
M2

(Rp/(p−1))(N−p)/p

(|x|p/(p−1))(N−p)/p

}p∗−p

= c0M
p∗−p
2

Rp2/(p−1)

|x|p2/(p−1)
.

Now we define the constant

Λ∗ ≡ c0kM
p∗−p
2 .

Considering Λ≥ Λ∗, it follows from the hypothesis (P3) that

f(u)

|u|p−2u
≤ Λ∗

k

Rp2/(p−1)

|x|p2/(p−1)
≤ Λ

k

Rp2/(p−1)

|x|p2/(p−1)
≤ a(x)

k
.

The proof of the theorem is complete. �
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UFMG, Av. Antônio Carlos, 6627, CEP 30161-970, Belo Horizonte, MG, Brasil

E-mail address: ronaldo@mat.ufmg.br

O. H. Miyagaki, Departamento de Matemática, Univ. Fed. de Juiz de Fora,
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