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2-LOCAL TRIPLE DERIVATIONS ON VON NEUMANN
ALGEBRAS

KARIMBERGEN KUDAYBERGENOV, TIMUR OIKHBERG,
ANTONIO M. PERALTA AND BERNARD RUSSO

ABSTRACT. We prove that every (not necessarily linear nor con-
tinuous) 2-local triple derivation on a von Neumann algebra
M is a triple derivation, equivalently, the set Der;(M), of all

triple derivations on M, is algebraically 2-reflexive in the set
M(M) = MM of all mappings from M into M.

1. Introduction

Let X and Y be Banach spaces. According to the terminology employed in
the literature (see, for example, [4]), a subset D of the Banach space B(X,Y),
of all bounded linear operators from X into Y, is called algebraically reflexive
in B(X,Y) when it satisfies the property:

(1.1) T e B(X,Y) with T(z) € D(z),Vz € X =T € D.

Algebraic reflexivity of D in the space L(X,Y), of all linear mappings from
X into Y, a stronger version of the above property not requiring continuity
of T, is defined by:

(1.2) TeL(X,Y) withT(x)eD(z),VeeX=TeD.

In 1990, Kadison proved that (1.1) holds if D is the set Der(M,X) of
all (associative) derivations on a von Neumann algebra M into a dual M-
bimodule X [18]. Johnson extended Kadison’s result by establishing that the
set D = Der(A, X), of all (associative) derivations from a C*-algebra A into a
Banach A-bimodule X satisfies (1.2) [17].
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Algebraic reflexivity of the set of local triple derivations on a C*-algebra
and on a JB*-triple have been studied in [24], [9], [12] and [14]. More precisely,
Mackey proves in [24] that the set D = Dery(M), of all triple derivations on
a JBW*-triple M satisfies (1.1). The result has been supplemented in [12],
where Burgos, Ferndndez-Polo and the third author of this note prove that for
each JB*-triple E, the set D = Der;(F) of all triple derivations on E satisfies
(1.2).

Hereafter, algebraic reflexivity will refer to the stronger version (1.2) which
does not assume the continuity of T'.

In [6], Bresar and Semrl proved that the set of all (algebra) automor-
phisms of B(H) is algebraically reflexive whenever H is a separable, infinite-
dimensional Hilbert space. Given a Banach space X, a linear mapping
T: X — X satisfying the hypothesis at (1.2) for D = Aut(X), the set of auto-
morphisms on X, is called a local automorphism. Larson and Sourour showed
in [22] that for every infinite dimensional Banach space X, every surjective
local automorphism 7" on the Banach algebra B(X), of all bounded linear
operators on X, is an automorphism.

Motivated by the results of Semrl in [31], references witness a growing
interest in a subtle version of algebraic reflexivity called algebraic 2-reflexivity
(cf. [1], [2], [10], [11], [21], [23], [25], [26] and [29]). A subset D of the set
M(X,Y) =YX, of all mappings from X into Y, is called algebraically 2-
reflexive when the following property holds: for each mapping T in M(X,Y)
such that for each a,b € X, there exists S =5, € D (depending on @ and b),
with T'(a) = Sy (a) and T'(b) = Sq5(b), then T lies in D. A mapping T : X —
Y satisfying the property that for each a,b € X, there exists § =S5, € D
(depending on @ and b), with T'(a) = S, ,(a) and T'(b) = S, 5(b) will be called a
2-local D-mapping. If we assume that every mapping S € D is r-homogeneous
(that is, S(ta) =t"S(a) for every t € R or C) with 0 <, then every 2-local
D-mapping T : X — Y is r-homogeneous. Indeed, for each a € X, t € C take
Sa.ta € D satistying T'(ta) = Sg 1q(ta) =1t"Sqta(a) =t"T(a).

Semrl establishes in [31] that for every infinite-dimensional separable
Hilbert space H, the sets Aut(B(H)) and Der(B(H)), of all (algebra) auto-
morphisms and associative derivations on B(H), respectively, are algebraically
2-reflexive in M(B(H)) = M(B(H),B(H)). Ayupov and the first author of
this note proved in [1] that the same statement remains true for general Hilbert
spaces (see [20] for the finite dimensional case). Actually, the set Hom(A), of
all homomorphisms on a general C*-algebra A, is algebraically 2-reflexive in
the Banach algebra B(A), of all bounded linear operators on A, and the set
*-Hom(A), of all *-homomorphisms on A, is algebraically 2-reflexive in the
space L(A), of all linear operators on A (cf. [27]).

In recent contributions, Burgos, Fernandez-Polo and the third author
of this note prove that the set *~-Hom(M) (respectively, Hom;(M)), of all
*-homomorphisms (respectively, triple homomorphisms) on a von Neumann
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algebra (respectively, on a JBW*-triple) M, is an algebraically 2-reflexive sub-
set of M(M) (cf. [10], [11], respectively), while Ayupov and the first author of
this note establish that the set Der(M) of all derivations on M is algebraically
2-reflexive in M(M) (see [2]).

In this paper, we consider the set Der;(A) of all triple derivations on a
C*-algebra A. We recall that every C*-algebra A can be equipped with a
ternary product of the form

{a,b,c} = % (ab*c+ cb*a).

When A is equipped with this product it becomes a JB*-triple in the sense
of [19]. A linear mapping 6 : A — A is said to be a triple derivation when it
satisfies the (triple) Leibnitz rule:

o{a,b,c} = {5(@),6,0} + {a,5(b),c} + {a,b,é(c)}.

It is known that every triple derivation is automatically continuous (cf. [3]).
We refer to [3], [15] and [28] for the basic references on triple derivations.
According to the standard notation, 2-local Der;(A)-mappings from A into A
are called 2-local triple derivations.

The goal of this note is to explore the algebraic 2-reflexivity of Der;(A) in
M(A). Our main result proves that every (not necessarily linear nor contin-
uous) 2-local triple derivation on an arbitrary von Neumann algebra M is a
triple derivation (hence, linear and continuous) (see Theorem 2.14), equiva-
lently, Der; (M) is algebraically 2-reflexive in M(M).

2. 2-local triple derivations on von Neumann algebras

We start by recalling some generalities on triple derivations. Let A be a
C*-algebra. For each b € A, we shall denote by M, the Jordan multiplication
mapping by the element b, that is My(z) =box = %(bx + zb). Following
standard notation, given elements a, b in A, we denote by L(a,b) the operator
on A defined by L(a,b)(x) = {a,b,z} = 5 (ab*x + xb*a). It is known that the
mapping 6(a,b): A — A, given by

6(a,b)(z) = L(a,b)(x) — L(b,a)(x),

is a triple derivation on A (cf. [3], [15]). A triple derivation which is a finite
linear combination of derivations of the form §(a,b) is called an inner triple
derivation.

Let 6 : A— A be a triple derivation on a unital C*-algebra. By [15, Lem-
mas 1 and 2], §(1)* = —§(1), Ms) =06(36(1),1) is an inner triple derivation
on A, and the difference D =6 — §(15(1),1) is a Jordan *-derivation on A,
more concretely,

D(zoy)=D(z)oy+zoD(y), and D(z*)=D(x)*,
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for every z,y € A. By [3, Corollary 2.2], § (and hence D) is a continuous
operator. A widely known result, due to B. E. Johnson, states that every
bounded Jordan derivation from a C*-algebra A to a Banach A-bimodule
is an associative derivation (cf. [16]). Therefore, D is an associative *-
derivation in the usual sense. When A = M is a von Neumann algebra, we
can guarantee that D is an inner derivation, that is, there exists a € A satis-
fying D(z) = [a,z] = ax — za, for every x € A (cf. [30, Theorem 4.1.6]). Fur-
ther, from the condition D(z*) = D(x ) for every = € A, we deduce that
(@*+a)r =xz(a*+a). Thus, taking a = (a a*), it follows that [a, z] = [a, z],
for every z € M. We have therefore bhOWIl that for every triple derivation &
on a von Neumann algebra M, there exist skew-Hermitian elements a,b € M
satisfying
§(z) =[a,z] +boux,

for every z € M.

Our first lemma is a direct consequence of the above arguments (see [15,
Lemmas 1 and 2]).

LEMMA 2.1. Let T: A — A be a (not necessarily linear nor continuous)
2-local triple derivation on a unital C*-algebra. Then

) T(1)*=—T(1);

(a
(b) MT(l = 6( T(1),1) is an inner triple derivation on A;
(c) T=T- §(3T(1),1) is a 2-local triple derivation on A with f(l) =0.

In what follows, we denote by A,, the Hermitian elements of the C*-
algebra A.

LEMMA 2.2. Let T: A— A be a (not necessarily linear nor continuous) 2-
local triple derivation on a unital C*-algebra satisfying T'(1) =0. Then T'(x) =
T(x)* for all x € Asq.

Proof. Let x € Ag,. By assumptions,
T(x)* ={1,T(x),1} ={1,0,1(2),1} =6, 1{1, 2,1} — 2{6, 1 (1), 2,1}
=0, (2%) = 2{T(1),2,1} =, 1(z) =T(z).
The proof is complete. O

LEMMA 2.3. Let T : M — M be a (not necessarily linear nor continuous)
2-local triple derivation on a von Neumann algebra satisfying T(1) =0. Then
for every x,y € My, there exists a skew-Hermitian element a, , € M such that

T(z)= [ar,yax]a and T(y) = [az,yay]'

Proof. For every x,y € M, we can find skew-Hermitian elements a, , bz €
M such that

T(xz)=[agy, x| +bzyox and T(y)=l|azy,y]+bzyoy.
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Taking into account that T(x) =T (z)* (see Lemma 2.2), we obtain
@2,y 2] + by 0w =T(2) =T(2)" = [ag,y,2]" + (bry 0 2)"
= [0z,

= [ax,y7$] - b%y oz,

J+zoby, =[r,—azy] —z0bsy

that is, by, o2 =0, and similarly b, oy = 0. Therefore, T(z) = [agy, ],
T(y) = [az,y,y], and the proof is complete. O

We state now an observation which plays a useful role in our study.

LEMMA 2.4. Let a and b be skew-Hermitian elements in a C*-algebra A.
Suppose x € A is self-adjoint with [a,z] + 2box =0.Then [a,z] =0 and bo
z=0.

Proof. Since 0 = ax — za + bz 4+ xb, by passing to the adjoint, we obtain
ax — za — (bx + xb) = 0. The conclusion is reached by adding and subtracting
these two equalities. O

Let M be a von Neumann algebra. If z € M,,, we denote by s(z) the
support projection of x, that is, the projection onto (ker(z))* =ran(x). We
say that @ has full support if s(x) =1 (equivalently, ker(x) = {0}).

LEMMA 2.5. Let M be a von Neumann algebra. Suppose uw € M, has full
support, ¢ € M is self-adjoint, and o(c*u) N (0,00) =0. Then ¢=0. Conse-
quently, if u and c are as above, and uc+ cu =0 (or c*u= —cuc <0), then
c=0.

Proof. For the first statement of the lemma, suppose o(c?u) N (0,00) = 0.

Note that
o(c®u) U{0} =o(c- cu) U{0} = o(cuc) U {0}.

However, cuc is positive, hence o (cuc) C [0, ||cuc||], with maxyeq(cue) = [|cuc|.
Thus, cu/?ul/?¢ = cuc = 0, which means that cu!/? = u/2¢ =0 and hence
s(c) <1 —s(u'/?)=1— s(u) =0, which leads to ¢ = 0.

To prove the second part, we have c?u = —cuc < 0, hence in particular,
o(c?u) C (—00,0]. The proof is complete. O

In [2, Lemma 2.2], Ayupov and the first author of this note prove that
for every (not necessarily linear nor continuous) 2-local derivation on a von
Neumann algebra A : M — M, and every self-adjoint element z € M, there
exists a € M satisfying

A(z) = [a, z],

for every x € W*(z), where W*(z) = {z}" denotes the Abelian von Neumann
subalgebra of M generated by the element z, and the unit element and {z}”
denotes the bicommutant of the set {z}. We prove next a ternary version of
this result.
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LEMMA 2.6. Let T: M — M be a (not necessarily linear nor continuous) 2-
local triple derivation on a von Neumann algebra. Let z € M be a self-adjoint
element and let W*(z) = {z}" be the Abelian von Neumann subalgebra of
M generated by the element z and the unit element. Then there exist skew-
Hermitian elements a,,b, € M, depending on z, such that

1
T(z)=la,,z]+b,or=a.xz —za, + §(bzx +b,)
for all x e W*(2). In particular, T is linear on W*(z).

Proof. We can assume that z # 0. Note that the Abelian von Neumann
subalgebras generated by 1 and z and by 1 and 1+ 2H T coincide. So, replacing
z with 1+ 2” [ We can assume that z is an invertible positive element.

By definition, there exist skew-Hermitian elements a.,b, € M (depending
on z) such that

T(z) =[az,2]+b, o0z

Define a mapping Ty : M — M given by Ty(z) =T(z) — ([as,x] + b, o z),
x € M. Clearly, Ty is a 2-local triple derivation on M. We shall show that
To =0 on W*(z). Let x € W*(z) be an arbitrary element. By assumptions,
there exist skew-Hermitian elements c; ,d. , € M such that

To(z) =[c22,2) +denoz, and To(x)=][cCyg, 2] +dsqe0

Since 0 ="Ty(2) = [C2,3,2] + dz0 0 2, We gt [Czp,2] +ds 0 02=0.

Taking into account that z is a Hermitian element and Lemma 2.4 we get
Cogz=2C,, and d, z2 = —2d, 5.

Since z has full support, and d?,xz = —d, y2d, 5, Lemma 2.5 implies that
d, . =0. Further

za € {2} ={2}"" =W"(2),

that is, ¢,, commutes with any element in W*(z). Therefore Ty(x) =
[C2.2,%] +dy 02 =0, for all x € W*(2). The proof is complete. O

2.1. Complete additivity of 2-local derivations and 2-local triple
derivations on von Neumann algebras. Let P(M) denote the lattice of
projections in a von Neumann algebra M. Let X be a Banach space. A map-
ping 1 : P(M) — X is said to be finitely additive when

(2.1) M(ZPi) ZZH(P%

for every family pq,...,p, of mutually orthogonal projections in M.
A mapping p: P(M) — X is said to be bounded when the set

{{ln)|| :peP(M)}

is bounded. The celebrated Bunce-Wright-Mackey—Gleason theorem ([7],
[8]) states that if M has no summand of type I3, then every bounded finitely
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additive mapping p: P(M) — X extends to a bounded linear operator from
M to X.

According to the terminology employed in [32] and [13], a completely ad-
ditive mapping p: P(M) — C—that is, (2.1) holds for an arbitrary set I;
see (2.2) below—is called a charge. The Dorofeev—Sherstnev theorem ([32,
Theorem 29.5] or [13, Theorem 2]) states that any charge on a von Neumann
algebra with no summands of type I,, (n < o0) is bounded.

We shall use the Dorofeev—Shertsnev theorem in Corollary 2.8 in order to be
able to apply the Bunce-Wright-Mackey-Gleason theorem in Proposition 2.9.
To this end, we need Proposition 2.7, which is implicitly applied in [2, proof
of Lemma 2.3] for 2-local associative derivations. A proof is included here for
completeness reasons.

First, we recall some facts about the strong® topology. For each normal
positive functional ¢ in the predual of a von Neumann algebra M, the mapping

¥ + ¥z 3
erslalo=(¢(57)) " @)

defines a prehilbertian seminorm on M. The strong® topology of M is the
locally convex topology on M defined by all the seminorms || - ||,, where ¢
runs over the set of all positive functionals in M, (cf. [30, Definition 1.8.7]).
It is known that the strong* topology of M is compatible with the duality
(M, M,), that is a functional ¢ : M — C is strong™ continuous if and only if
it is weak® continuous (see [30, Corollary 1.8.10]). if and only if it is weak*
continuous. We also recall that multiplication in every von Neumann algebra
is jointly strong* continuous on bounded sets (see [30, Proposition 1.8.12]).

Suppose X =W is another von Neumann algebra, and let 7 denote the
norm, the weak™ or the strong™ topology of W. The mapping p is said to
be T-completely additive (respectively, countably or sequentially T-additive)
when

(2.2) N(Zpi) =7y ulps)
il iel

for every family (respectively, sequence) {p;}ic; of mutually orthogonal pro-
jections in M.

It is known that every family (p;);er of mutually orthogonal projections in
a von Neumann algebra M is summable with respect to the weak*™ topology
of M and p = weak"-)",_;p; is a projection in M (cf. [30, Definition 1.13.4]).
Further, for each normal positive functional ¢ in M, and every finite set F' C I,

we have )
lp=Sn] =o(v-n).
icr o i€F
which implies that the family (p;);er is summable with respect to the strong*
topology of M with the same limit, that is, p = strong®- >, ; ps.
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PROPOSITION 2.7. Let T : M — M be a (not necessarily linear nor contin-
uous) 2-local triple derivation on a von Neumann algebra. Then the following
statements hold:

(a) The restriction T'|pny is sequentially strong™ additive, and consequently
sequentially weak™ additive;
(b) T|p(ary is weak™ completely additive, that is,

(2.3) T (weak* - Zm) = weak*-y _T(p:)

iel iel
for every family (p;)icr of mutually orthogonal projections in M.
Proof. (a) Let (pn)nen be a sequence of mutually orthogonal projections
in M. Let us consider the element z =3 %pn. By Lemma 2.6, there exist
skew-Hermitian elements a.,b, € M such that T(x) = [a,,x] + b, o z for all

r € W*(2). Since Y07 Pn, Pm € W*(2), for all m € N, and the multiplication
in M is jointly strong® continuous, we obtain that

T(an) = |flm an + bz o (an)
n=1 n=1 n=1
= Z[ampn] + sz ©Pn = ZT(pn)’
n=1 n=1

n=1

that is, T'|p(ar) is a countably or sequentially strong* additive mapping.

(b) Let ¢ be a positive normal functional in M, and let || - ||, denote the
prehilbertian seminorm given by [|z]|2 = Lo(z2* +2%2) (€ M). Let {p;}ics
be an arbitrary family of mutually orthogonal projections in M. For every
n € N, define

I,={iel: HT(pi)H@ >1/n}.

We claim, that I,, is a finite set for every natural n. Otherwise, passing
to a subset if necessary, we can assume that there exists a natural k& such
that Ij is infinite and countable. In this case, the series >, T'(p;) does not
converge with respect to the semi-norm || - ||,. On the other hand, since I}, is
a countable set, by (a), we have

T (Z pl-) =strong™- > T(p;),

i€l i€l

which is impossible. This proves the claim.
We have shown that the set

L={iel:||T()|,#0}=J I
neN

is a countable set, and ||T'(p;)|l, =0, for every ¢ € I'\Ip.



2-LOCAL TRIPLE DERIVATIONS 1063

Set p=> ;cp,Pi € M. We shall show that o(T'(p)) =0. Let g denote
the support projection of ¢ in M (see [30, 1.14.2]). Having in mind that
|T(pi)||2 =0, for every i € I\Iy, we deduce that T'(p;) L g for every i € I\Ij.

Replacing T with 7 =T — §(37(1),1) we can assume that T(1) =0
(cf. Lemma 2.1) and T'(x) = T'(x)*, for every = € My, (cf. Lemma 2.2).
By Lemma 2.3, for every ¢ € I\ I there exists a skew-Hermitian element
a; = app, € M such that

T(p)=a;p—pa; and T(p;)=ap; —pia;.
Since T'(p;) L g we get (a;p; — piai)q = q(a;p; — pia;) =0, for all 4 € I'\ Io.
Thus, since pa;p;q = pia;q,

(T(p)p:i)q = (a:p — pai)piq = aipiq — pa:piq

= a;piq — piaiq = (a;p; — piai)q =0,
and similarly
q(piT(p)) =0,
for every i € I\ Iy. Consequently,
(24)  (T(p)p)a=T(p) ( > pl') q=0= q( > pi> T(p) =q(pT(p)).
i€I\Io ieI\Io

Therefore,

T(p) = 6p1(p) = 6p1{p, 0,0} = 2{0p1(p), 2,0} + {P,6p.1(p), P}
=2{T(p),p,p} + {p,T(p),p} = pT(p) + T(p)p+ pT(p)*p
=pT'(p) + T(p)p + T (p)p,
which implies that

o(T(p)) = ¢ (pT'(p) + T(p)p + pT(p)p)
= o(qpT(p)q) + ¢ (qT(p)pq) + ¢(apT (p)pg) = (by (2.4)) =0.

Finally, by (a) we have

g

Two more applications of (a) give:

@<T<Zp)> —o(1(r+ ) =e (01 +7(T )

i€l =

— o(T) + ga(T(zpi)) =3 o).

i€y i€lp

S ) = e X700

i€lp i€lp
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By the Cauchy-Schwarz inequality, 0 < [T (p;)|* < || T(ps)||2 =0, for every
i € I\Io, and hence 3, o(T(pi)) = > ;c; (T (pi)). The arbitrariness of ¢
shows that T'(weak*-)_,_; p;) = weak*-> . . T'(p;). O

Let ¢ be a normal functional in the predual of a von Neumann alge-
bra M. Our previous Proposition 2.7 assures that for every (not necessar-
ily linear nor continuous) 2-local triple derivation T : M — M the mapping
¢ oT|pry : P(M) — C is a completely additive mapping or a charge on M.
Under the additional hypothesis of M being a continuous von Neumann alge-
bra or, more generally, a von Neumann algebra with no Type I,, (1 <n < c0)
direct summands, the Dorofeev—Sherstnev theorem ([32, Theorem 29.5] or
[13, Theorem 2]) imply that ¢ o T'|p(ar) is a bounded charge, that is, the set
{|poT(p)|:p € P(M)} is bounded. The uniform boundedness principle gives:

COROLLARY 2.8. Let M be a von Neumann algebra with no Type I, direct
summands (1 <n <oo) and let T : M — M be a (not necessarily linear nor
continuous) 2-local triple derivation. Then the restriction T|p(ary is a bounded
weak® completely additive mapping.

2.2. Additivity of 2-local triple derivations on Hermitian parts of
von Neumann algebras. Suppose now that M is a von Neumann algebra
with no Type I,, direct summands (1 <n < o0), and T: M — M is a (not
necessarily linear nor continuous) 2-local triple derivation. By Corollary 2.8
combined with the Bunce-Wright-Mackey-Gleason theorem [7], [8], there ex-
ists a bounded linear operator G : M — M satisfying G(p) =T (p), for every
projection p € M.

Let z be a self-adjoint element in M. By Lemma 2.6, there exist skew-
Hermitian elements a,,b, € M such that T'(x) = [a,,z] + b, o x, for every z €
W*(z). Since Glw-(z), Tw=(z) : W*(2) = M are bounded linear operators,
which coincide on the set of projections of W*(z), and since every self-adjoint
element in W*(z) can be approximated in norm by finite linear combinations
of mutually orthogonal projections in W*(z), it follows that T'(z) = G(z) for
every © € W*(z), and hence

T(a) = G(a), for every a € My,

in particular, T is additive on M,.
The above arguments prove the following result.

PROPOSITION 2.9. Let T : M — M be a (not necessarily linear nor continu-
ous) 2-local triple derivation on a von Neumann algebra with no Type I, -factor
direct summands (1 <n < o0). Then the restriction T|nr,, is additive.

COROLLARY 2.10. Let T: M — M be a (not necessarily linear nor con-
tinuous) 2-local triple derivation on a properly infinite von Neumann algebra.
Then the restriction T|as,, is additive.
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Next, we shall show that the conclusion of the above corollary is also true
for a finite von Neumann algebra.

First, we show that every 2-local triple derivation on a von Neumann alge-
bra “intertwines” central projections.

LEMMA 2.11. If T is a (not necessarily linear nor continuous) 2-local triple
derivation on a von Neumann algebra M, and p is a central projection in M,
then T(Mp) C Mp. In particular, T(pz) = pT(x) for every x € M.

Proof. If x € Mp, then = =pxp = {x,p,p}. Since T coincides with a triple
derivation 0, , on the set {z,p},

T(x) = 6$,P(x) = 6m,p{x7p)p} = {(5957;7(1‘),]?,]?} + {-T, 6$,p(p)’p} + {_{[)7])7 6$,p(p)}
lies in Mp.

For the final statement, fix x € M, and consider skew-Hermitian elements
a$,$p7 bac77;p € M Satisfying

T(x)=[agzp, 2] + by apox, and T(zp)=[azzp,TP] + byap© (TD).
The assumption p being central implies that pT'(z) =T (px). O

PROPOSITION 2.12. Let T : M — M be a (not necessarily linear nor con-
tinuous) 2-local triple derivation on a finite von Neumann algebra. Then the
restriction T|pr,, s additive.

Proof. Since M is finite there exists a faithful normal semi-finite trace 7
on M. We shall consider the following two cases.

Case 1. Suppose T is a finite trace. Replacing T with T =T — §(37(1),1)
we can assume that T(1) =0 (cf. Lemma 2.1) and T'(z) = T'(z)*, for every
x € My, (cf. Lemma 2.2). By Lemma 2.3, for every z,y € M, there exists
a skew-Hermitian element a,, € M such that T(z) = [as,2] and T(y) =
[az,y,y]. Then

T(x)y +2T(y) = acy, 2]y + zlac,y, y] = [0z, 2Y],
that is,
(2. 2] = T(@)y +2T(y).
Further
0="7(las,y, zy]) = 7(T(x)y + 2T (y)),
that is, 7(T(x)y) = —7(xT(y)), for every x,y € My,. For arbitrary u,v,w €
My, set £ =u+ v, and y =w. The above identity implies

(T (u+wv) )— 7((u+v)T(w)) =
—7(uT(w )—T(’UT( ) =7(T(u)w) + 7 (T (v)w)
=7((T(u) + T(v))w),
and so

T((T(quv) —T(u) fT(v))w) =0



1066 K. KUDAYBERGENOV ET AL.

for all u, v, w € My,. Take w =T (u+v)—T (u) —T(v). Then 7(ww*) = 0. Since
the trace 7 is faithful it follows that ww* =0, and hence w = 0. Therefore,
T(u+v)=T(u)+T(v).

Case 2. Suppose now that 7 is a semi-finite trace. As in Case 1, we may
assume T'(1) = 0. Since M is finite there exists a family of mutually orthogonal
central projections {z;} in M such that z; has finite trace for all i and \/ z; = 1
(cf. [30, §2.2 or Corollary 2.4.7]). By Lemma 2.11, for each i, T" maps z; M
into itself. From Case 1, T'|,, s : ;M — z; M is additive. Furthermore,

2T (x+y) =T m(zix + zy) = T|oym (zix) + Tz (ziy) = 2T (x) + 2T (y),

for every z,y € M and every i. Therefore,

T(@+y) = (Z zi)m by =Y AT ) = (5 (@) + 5 T()

i i

_ (Z Zi) T(x) + (Z z) T(y) = T(z) + T(y),

for every z,y € M. The proof is complete. O

Let T': M — M be a (not necessarily linear nor continuous) 2-local triple
derivation on an arbitrary von Neumann algebra. In this case, there exist
orthogonal central projections z1, 2o € M with z; + 2o = 1 such that:

e 21 M is a finite von Neumann algebra;
e 2> M is a properly infinite von Neumann algebra,
(cf. [30, §2.2]).

By Lemma 2.11, for each k=1,2, 2T maps 2z M into itself. By Corol-
lary 2.10 and Proposition 2.12 both z;7T and 29T are additive on Mg,. So
T =2T + 2T also is additive on Mg,.

We have thus proved the following result.

PROPOSITION 2.13. Let T : M — M be a (not necessarily linear nor con-
tinuous) 2-local triple derivation on an arbitrary von Neumann algebra. Then
the restriction Ty, is additive.

2.3. Main result. We can state now the main result of this paper.

THEOREM 2.14. Let M be an arbitrary von Neumann algebra and let T :
M — M be a (not necessarily linear nor continuous) 2-local triple derivation.
Then T is a triple derivation (hence linear and continuous). Equivalently, the
set Dery (M), of all triple derivations on M, is algebraically 2-reflexive in the
set M(M) = MM of all mappings from M into M.

We need the following two lemmata.

LEMMA 2.15. Let T: M — M be a (not necessarily linear nor continuous)
2-local triple derivation on a von Neumann algebra with T(1) =0. Then there
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exists a skew-Hermitian element a € M such that T(x) = [a,z], for all x €
Myg,.

Proof. Let © € My,. By Lemma 2.3, there exists a skew-Hermitian element
az z2 € M such that T(z) = [a, 42, 7], T(2?) = [ag .2, 2.
Thus,

T(aj2) = [a$7$27m2] = [a%w%x}x + x[aw,aﬂvx] =T(z)x + 2T (x),
that is,
(2.5) T(2*) =T(z)z + 2T (z),

for every = € Mg,.
By Proposition 2.13 and Lemma 2.2, T, : Msq — M, is a real linear
mapping. Now, we consider the linear extension T of T'|as,, to M defined by

f(a:l +i$2)=T($1)+iT(1‘2), T1,x0 € Mg,.

Taking into account the homogeneity of 7', Proposition 2.13 and the iden-
tity (2.5) we obtain that T is a Jordan derivation on M. By [5, Theorem 1]
any Jordan derivation on a semi-prime algebra is a derivation. Since M is
von Neumann algebra, T is a derivation on M (see also [33] and [16]). There-
fore, there exists an element a € M such that T(z) = [a, ] for all z € M. In
particular, T'(z) = [a,z] for all x € M,. Since T(M;,) C Ms,, we can assume
that a* = —a, which completes the proof. O

LEMMA 2.16. Let T: M — M be a (not necessarily linear nor continuous)
2-local triple derivation on a von Neumann algebra. If T|pr., =0, then T =0.

Proof. Let x € M be an arbitrary element and let © = z1 + iz2, where
x1,22 € My,. Since T is homogeneous, by passing to the element (1+||z2|) 1z
if necessary, we can suppose that ||z2|| < 1. In this case, the element y = 14
is positive and invertible. Take skew-Hermitian elements a4, by, € M such
that

T(z)= [a’m,y7$] +bzyox, and T(y) = [am,yay] +bzyo0y.
Since T'(y) =0, we get [ag,y,y] + bz y oy =0. By Lemma 2.4 we obtain that
[@z.y,y] =0 and b, , oy = 0. Taking into account that ib, , is Hermitian, y is
positive and invertible, Lemma 2.5 implies that b, , = 0.

We further note that 0 = [az,,y] = [az,y, 1+ 2] = [y, 2], that is,
[@g,y,22) = 0. Now, T(x) = [ag,y, &] + bz y 0 T = [ag 4,1 + 1T2] = [as,y, 1],
i.e. T(z) =[ag,y,x1]. Therefore,

T(z)" =[ag,y, 1] = [wl,a;y] = [x1, —agy] = lag,y, x1] =T (2).

So T'(z)* =T(x). Now, replacing x by iz we obtain, from the homogeneity
of T, that T'(z)* = —T'(z). Combining the last two identities, we obtain that
T'(x) =0, which finishes the proof. O
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Proof of Theorem 2.14. Let us define T'=T — §(37(1),1). Then Tis a2-
local triple derivation on M with T(1) = 0 (cf. Lemma 2.1) and T(z) = T(z)*,
for every x € M, (cf. Lemma 2.2). By Lemma 2.15, there exists an element
a € M such that T(z) = [a,] for all 2 € M,,. Consider the 2-local triple
derivation T — [a,-]. Since (T — [a,-])|ar., =0, Lemma 2.16 implies that T =
[a,"], and hence T = [a,-] 4+ 6(3T(1),1), witnessing the desired statement. [
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