Illinois Journal of Mathematics
Volume 57, Number 4, Winter 2013, Pages 1173-1217
S 0019-2082

STRICTLY SINGULAR OPERATORS
IN TSIRELSON LIKE SPACES

SPIROS A. ARGYROS, KEVIN BEANLAND AND PAVLOS MOTAKIS

ABSTRACT. For each n € N a Banach space X/, is constructed
having the property that every normalized weakly null sequence
generates either a ¢y or ¢; spreading models and every subspace
has weakly null sequences generating both ¢y and ¢; spreading
models. The space X'

0,1

dimensional closed subspace Y of X

is also quasiminimal and for every infinite

n
0,17

strictly singular operators on Y, the operator S15%---Sn+1 is
compact. Moreover, for every subspace Y as above, there ex-
ist S1,S5%,...,S, strictly singular operators on Y, such that the
operator S1S2--- Sy, is non-compact.

for every S1,S2,...,5041

Introduction

The strictly singular operators' form a two sided ideal which includes the
one of the compact operators. In many cases, the two ideal coincide. This
happens for the spaces £,,1 < p < 00, ¢y, as well as Tsirelson space T (see [13],
[25]). On the other hand, in the spaces L?[0,1],1 < p < co,p # 2,C0,1] the
two ideals are different. However, a classical result of V. Milman [17], explains
that in all the above spaces, the composition of two strictly singular operators
is a compact one. The aim of the present paper, is to present examples of
spaces where similar properties occur in a hereditary manner. More precisely,
we prove the following.

Received September 18, 2013; received in final form December 16, 2013.
Research supported by APISTEIA program/1082.
2010 Mathematics Subject Classification. 46B03, 46B06, 46B25, 46B45, 47A15.
L A bounded linear operator is called strictly singular, if its restriction on any infinite

dimensional subspace is not an isomorphism.

(©2014 University of Illinois

1173


http://www.ams.org/msc/

1174 S. A. ARGYROS, K. BEANLAND AND P. MOTAKIS

THEOREM 0.1. For every n € N there exists a reflerive space with a 1-

unconditional basis, denoted by X7, such that for every infinite dimensional

subspace Y of X' we have the following.

(i) The ideal S(Y') of the strictly singular operators is non-separable.

(ii) For every family {S;}4}' € S(Y), the composition S1Sa--- S,y is a
compact operator.

(ili) There are S1,...,S, € S(Y), such that the composition Sy ---S, is non-
compact.

The construction of the spaces X', is based on T. Figiel's and W. B.
Johnson’s construction of Tsirelson space [13], which is actually the dual of
Tsirelson’s initial space [25]. Therefore the spaces X[', are Tsirelson like
spaces and their norm is defined through a saturation with constraints, de-
scribed by the following implicit formula, which uses the nth Schreier fam-

ily S,,.
d
[l ZmaX{HfUllo’Sup{Z IIqu‘jq}}»
qg=1

For x € cqg
where the supremum is taken over all {Eq}gz1 which are S,,-admissible suc-
cessive finite subsets of N, {jq}g:1 very fast growing (i.e., 2 <ji <--- < j,
and j, > max E,_, for ¢ > 1) natural numbers and

d
1
lzll; =supg =D [ Eqz] ¢,
i=

where the supremum is taken over all successive finite subsets of the naturals
By < < Ey,d<y.

Saturated norms under constraints were introduced by E. Odell and Th.
Schlumprecht [20], [21]. In particular, the space defined in [21] has the prop-
erty that every bimonotone basis is finitely block represented in every sub-
space. Recently, in [8], the first and third authors have used these techniques
to construct a reflexive hereditarily indecomposable space such that every
operator on an infinite dimensional subspace has a non-trivial invariant sub-
space.

Property (ii) of Theorem 0.1, combined with N. D. Hooker’s and G.
Sirotkin’s real version [14], [23] of V. I. Lomonosov’s theorem [16], yields
that the strictly singular operators on the subspaces of X' ~admit non-trivial
hyperinvariant subspaces.

Unlike the Tsirelson type spaces, the spaces X7’ have non-homogeneous as-
ymptotic structure. In particular, every seminormalized weakly null sequence
admits either ¢; or ¢y as a spreading model and every subspace Y contains
weakly null sequences generating both ¢ and ¢y as spreading models. As a
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result, the spaces X', do not contain any asymptotic £, subspace and, as a
consequence, the spaées X0 do not contain a boundedly distortable subspace
[18]. The sequences in X!' generating ¢; spreading models admit a further
classification in terms of higher order ¢; spreading models. Recall that for
k €N, a bounded sequence {z;};en generates an ¢ spreading model if there
exists C'> 0 such that || > .. p Aiwil| > C) ;g | Ni for every F € Sg. The next
proposition provides a precise description of the possible spreading models of
Xy,

PROPOSITION 0.2. Let {x;};en be a seminormalized weakly null sequence
in X7 . Then one of the following holds.

(i) {zi}ien admits co as a spreading model.
(ii) There exists 1 <k <n such that {x;};en admits an ¢} spreading model
and it does not admit an f’f“ one.

The proof of Theorem 0.1(ii) is based on Proposition 0.2 and the following
characterization of the non-strictly singular operators on subspaces of X7 .

PrROPOSITION 0.3. Let Y be an infinite dimensional subspace of Xy, and
T:Y —Y a bounded linear operator. Then the following are equivalent.

(i) The operator T is not a strictly singular operator.

(ii) There exists 1 <k <n and a bounded weakly null sequence {x;};cn such
that both {x;}ien and {Tx;}ien generate an (¥ spreading model and do
not admit an é’f'H one.

(iii) There exists {x;}ien a bounded weakly null sequence such that both

{zi}ien and {Tx;}ien generate a co spreading model.

A space is called quasi-minimal if any two infinite dimensional subspaces
have further subspaces which are isomorphic. A major obstacle in proving
the above, is to show that certain normalized block sequences, that can be
found in every subspace, are equivalent. This also yields that the space X',
is quasi-minimal. '

The above proposition combined with the properties of the spreading mod-
els of the space X', also allows us to study classes of strictly singular oper-
ators on subspacesy of the spaces X' , which were introduced in [2]. Recall
that a bounded linear operator 1" defined on a Banach space X, is said to
be Sg-strictly singular (the class is denoted SS¢(X)), for & < wy, if for every
Schauder basic sequence {z;}; in X and € > 0, there exists a vector z in the
linear span of {«;}icr, where F' € S¢ such that ||Tz|| <e|lz|. We prove that
for n € N the space X7~ satisfies the following:

K(Y) S 8S1(Y) S 8S2(Y) S - G 8Sn(Y) =S(Y)
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and for every 1 <k <n, SS;(Y) is a two sided ideal. This solves a problem in
[24] by being the first example of a space for which the collection SSx(X7 )
is a ideal not equal to (X', ) or SS(X7', ).

mn
0,1

The spaces X" can be extended to a transfinite hierarchy %g Jfor 1 <6<

wi. Roughly speaking, the space %g , is defined with the use of the Schreier
family Sg¢ in the place of S,,. In Section 5, we investigate the case the space
Xy, and prove results analogous to those in the case of %g .- We also comment,
in passing, that for £ =+ (n — 1) with ¢ a limit ordinal satisfying n+ ¢ =
for n < ¢, the strictly singular operators on the space .’{31 behave in a similar
manner as the spaces X' .

The paper is organized into six sections. The first one is devoted to some
preliminary concepts and results. In the second section, we introduce the
norm of the space X' , by defining the norming set W, a subset of cgp.
The third section includes the study of the spreading models generated by
seminormalized sequences of E S Our approach uses tools similar to those
in [8]. In particular, to each block sequence {;}ien of Xi' ,
family of indices ay({zi}:),k=0,...,n — 1 and their behaviour determines
the spreading models generated by the subsequences of {z;};cn. The fourth
section contains the study of equivalent block sequences in X', The proof
is rather involved and based on the analysis of the elements of the set W.
The equivalence of block sequences is central to our approach and it is critical
in the proofs of Proposition 0.3 which, in turn, proves Theorem 0.1. The
proofs of the latter results are given in Section 5. In Section 6, we provide the
extended hierarchy xgvl ,1 <({ <w; and we prove some of the fundamental

properties of the spaces.

we assign a

1. Preliminaries

The Schreier families. The Schreier families is an increasing sequence of
families of finite subsets of the naturals, which first appeared in [1], and is
inductively defined in the following manner.

Set So={{n}:neN} and $; ={F CN: #F <minF'}.

Suppose that S, has been defined and set S,,11 ={F CN: F = Ule F;,
where F} < --- < F, € S,, and k <min F} }.

If for n,m €N, we set S * Sy = {F CN: F=J{_| F}, where F; <+ <
Fi € Sppand {minFj : j=1,...,k} €S, }, then it is well known [4] and follows
easily by induction that S, * S, = Sppm.

DEFINITION 1.1. Let X be a Banach space, {z;}ien be a sequence in X,
keN and 1 <p<oo. We say that {z;};en generates an E’; spreading model,
if there exists a uniform constant C' > 1, such that for any F' € S, {x;}icr is
C-equivalent to the usual basis of (R#F||-||,). The cf spreading models are
defined similarly.
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REMARK 1.2. Let X,Y be Banach spaces and T : X — Y be a bounded
linear operator. If {x,, } men is a bounded sequence in X such that {7z, }men
generates an ¢§ spreading model for some k € N, then {x,,}men generates an
(¢ spreading model, for some d > k.

DEFINITION 1.3. Let X be a Banach space, {x;};en be a seminormalized
sequence in X and k € N. We say that {x;};cn generates a strong £} spreading
model if there exists a seminormalized sequence {z}};ey in X* which gener-
ates a ck spreading model and e > 0, such that z}(z;) > ¢ for all i € N and
xf(z;) =0 for i #j.

REMARK 1.4. If X is a Banach space, k € N, {x;}; is a seminormalized
weakly null sequence in X generating a strong ¢} spreading model and {y;};
is a sequence in X with Y .7 ||z; — yi]| < oo, then {y;}; has a subsequence
generating a strong ¢¥ spreading model.

The above is easily implied by the following.

LEMMA 1.5. Let X be a Banach space, {x;};en be a seminormalized weakly
null sequence in X, {x}}ien be a seminormalized w*-null sequence in X*
and € >0 such that x}(x;) > ¢ for all i € N and x}(x;) =0 for i #j. If
{yi}i is a sequence in X with >~ ||x; — y;|| < oo, then there exist a strictly
increasing sequence of natural numbers {m;}; and a seminormalized sequence
{yi}i in X* such that y; (ym,) > /2 for all i €N, y; (ym,) =0 for i #j and
Y i = @, |l < oo

Proof. Using the fact that {x;}; is weakly null, {zf}; is w*-null and
ooy @i — yil| < co, we may pass to appropriate subsequences and rela-
bel such that 3, |z} (y;)| < oo. We may moreover assume that {y;}; is
Schauder basic and set Y = [{y;};]. For i € N, define a bounded linear func-
tional g;: Y — R with ¢;(3-72, ¢jy;) = 22,4, ¢jo7 (y;) and take 2} to be a
norm preserving extension of ¢g; to X. Then the y} =] — 27 are the desired
functionals. O

REMARK 1.6. If a sequence generates a strong /¥ spreading model, it gener-
ates an £} spreading model. Moreover, the class of strong ¥ spreading models
is strictly smaller than the class of ¢¥ spreading models.

Special convex combinations. Next, we recall for kK € N and ¢ > 0 the
notion of the (k,e) special convex combinations (see [6], [9]). This is an
important tool used throughout the paper.

DEFINITION 1.7. Let F C N and z = ZieF c;e; be a vector in c¢gg. Then x
is said to be a (k,¢) basic special convex combination (or a (k,e) basic s.c.c.)
if:
(i) FE€Sy,ci>0,foric Fand ) peci=1.
(ii) For any G C F,G € S_1, we have that ), c; <e.
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DEFINITION 1.8. Let z; < --- < x,,, be vectors in ¢op and (k) =
minsuppy, for k=1,...,m. Then x =) ]"  cyz) is said to be a (n,e)
special convex combination (or (n,e) s.c.c.), if Y ;" cxeyr) is a (n,e) basic
s.c.c.

Repeated averages. For every k£ € N and F a maximal S set we induc-
tively define the repeated average zp =), FCZF e; of F', which is a convex
combination of the usual basis of cgyg.

For k=1 and F a maximal S; set, we define xp = # ZieF e;.

Let now k£ > 1 and assume that for any F' maximal S;_1 set the repeated
average xr has been defined. If F' is a maximal Sy set, then there exist F} <
-+» < Fy maximal S,_1 sets such that F = szl F,. Set zp = ézgzl T,

The proof of the next proposition can be found in [9, Chapter 2, Proposi-
tion 2.3].

PRrROPOSITION 1.9. Let k € N and F' be a mazimal Sy, set. Then the repeated
average of F xp =3 ,cpcie; is a (k, =25 basic s.c.c.

The above proposition yields the following.

ProproOSITION 1.10. For any infinite subset M of N, k € N and € > 0, there
exists F' C M,{ci}icr, such that x =3, pcie; is a (k,e) basic s.c.c.

2. The space %ffl

Let us fix a natural number n throughout the rest of the paper. We start
with the definition of the norm of the space X', .

NOTATION. Let G C cgg. If a vector a € G is of the form a = %23:1 fas
for some f1 <--- < fg € G,d</{ and 2 </, then « will be called an a-average
of size s(a) = ¢.

Let k€ N. A finite sequence {ag}d_, of a-averages in G will be called Sy
admissible if oy <--- < g and {minsuppa,: ¢=1,...,d} € S.

A sequence {ay}, of a-averages in G will be called very fast growing if
g <oap <, s(an) < s(az) <--- and s(ay) > maxsuppag—,; for 1 <g.

If a vector g € G is of the form g = 23:1 oy for an S,-admissible and very
fast growing sequence {aq}gzl C G, then g will be called a Schreier functional.

The norming set. Inductively construct a set W C ¢ in the following man-
ner. Set Wy = {+e;};en. Suppose that Wy,..., W, have been constructed.
Define:

o 1
m+1{a£2qul<<fd€Wm7£227€2d}a

q=1

d
W= { g= Zaq : {ozq}z:l C Wy, Sp-admissible and very fast growing}.

q=1
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Define Wy,p1 =W, UWS  , UW,, and W =Joo_ W,.

For x € ¢gp define ||z|| =sup{f(z): f € W} and Zforl = (coo(N), || - |I)- Evi-
dently X7, has a 1-unconditional basis.

One may also describe the norm on EH with an implicit formula. For
JEN,j>2,2€ X}, set [|z]; = sup{% ijl |Eqz||}, where the supremum is
taken over all successive finite subsets of the naturals F < --- < Eq4,d < j.
Then by using standard arguments it is easy to see that

d
] ZmaX{llwllo’Sup{Z IIEquq}}»
g=1

where the supremum is taken over all S,, admissible finite subsets of the
naturals £y <--- < Ej, such that j, >maxF,_;, for ¢ > 1.

3. Spreading models of X

In this section, the possible spreading models of block sequences are deter-
mined. The method used for this, is based on the oy, indices of block sequences,
which are defined below and are similar to the corresponding one in [8]. We
show that every subspace of X', admits the same variety of spreading models.

Spreading models of block sequences in Xy, -

DEFINITION 3.1. Let 0 <k <mn —1, {x;};en be a block sequence in X0,
that satisfies the following. For any subsequence {z;, }jen of {z;}ien, for any
very fast growing sequence of a-averages {ag}qen and any {F}},cn sequence
of increasing subsets of the naturals such that {a,}.cr; is S admissible we
have that lim; quFj |ag(2i,)| = 0. Then we say that the ag-index of {z;}ien
is zero and write ag({z;};) = 0. Otherwise we write ag({x;};) >0

The next proposition follow straight from the definition.

PROPOSITION 3.2. Let 0 <k <n—1 and {x;}ien be a block sequence in

X[, then the following statements are equivalent.

(i) ar({zi}i)=0.

(ii) For any € >0 there exist jo,i9 € N, such that for any {aq}gzl very fast

growing and Sy-admissible sequence of a-average with s(cy) > jo for g =
.,d and for any i > 19, we have that 23:1 lag ()| < e.

LEMMA 3.3. Let o be an a-average in W, {zi}it, be a normalized block
sequence and {c}7, non-negative reals with > ¢ =1. Then if Go =
{k: ranaNranzy # &}, the following holds:
<Z ck:ck> ( Z ¢i +2max{c; : i € Gu}.

1€G o
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Proof. If a =157 f; with d < p. Set
Eq = {k € G, : there exists at most one j with ran f; Nranzy, # @},
Ey={1,...,m}\ Fy,
Jy=A{j: ranf;Nranzy, # @} for k € Es.
Then it is easy to see that

(1) a(Z ckxk>‘_11) > o

keEy keGq

Moreover,

(2)

a( Z ckxkﬂ <2max{cy : k € Gu}.

keE;
Since #FEs < 2p, we have

a(z ckxk>‘ g% > ck<2|fj(a:k)’) <max{cy : keGa}%p.

ke E> keE> JjE€Jk

By summing up (1) and (2), the result follows. O

LEMMA 34. Let 1<k <n, z=>1" ¢;z; be a (k&) s.c.c. with |lz;]] <1
fori=1,....,m. Let also {qu}g:1 be a very fast growing and Sk_1-admissible
sequence of a-averages. Then the following holds.

d m
E Qg E C;T;
g=1 i=1

G1 = {i : there exists at most one ¢ with rana, Nranx; # &},

1
< —— + 6e.
s(aq)

Proof. Set

Go = {i : there exist at least two ¢ with rana, Nranz; # @},
J ={q : there exists i € Gy with rana, Nranx; # &},
G?={i: rana, Nranx; # @} for g€ J.
For g € J, by Lemma 3.3 it follows that

m
Qq E C;T;
=1

Choose iy € G such that ¢;, = max{c;: i € G7}. Since {ag}l_, is Sp_1-
admissible, it follows that {minsuppx;, : ¢ € J} is the union of a Sp_; set
and a singleton. Therefore, we conclude the following.

(4) Zmax{ci 1€ G} < 2e.

qeJ

(3)

<

1
. L q
Slag) iggq c —|—2max{cZ 1e€G }
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Hence, combining (3) and (4), we have that

oo 5 )| < v

1€Gq

d

(5) >

q=1

Moreover, it is easy to see that {minsuppz; : i € Go} is the union of a Si_1
set and a singleton and therefore we have the following.

d
(©) Zaq<zmi>‘< S | < 3 e < 2e
q=1 1€Go i€Go 1€Go
Finally, summing up (5) and (6), the desired result follows. O

PROPOSITION 3.5. Let 0 <k <n—1, {z;}ien C Ba(X]',) be a normalized
block sequence. The following hold:
(1) If ax({x:}:) > 0, then, by passing to a subsequence, {;}ien generates a
strong E?ik spreading model.
(ii) If ar({zi}i) =0 for k' <k and {w;};en is a block sequence of {x;}ien
such that w; = ZieFj ¢ 15 o (n — k,g;) s.c.c. with limje; =0, then
an—1({w;};) =0.

Proof. First, we prove (i). Passing to a subsequence of {z;},cn and rela-
beling we can find € > 0, a very fast growing sequence of a-averages {oy}qen
and a sequence of successive finite sets (F;)52; such that for i € N {ag}qer, is

Sk admissible and
Z ag(z;) > €

qeF;
for each 7 € N. Passing to a further subsequence and relabeling, we can assume
that

max supp ( Z aq> < minsupp ;41
qEF;
for each i €N. Set 7 =3 p og. Then 27 € W, 7 (x;) > ¢ for all i €N and

x}(z;) =0 for i # j. Therefore, e < [|z}| <1 and all that remains to be shown

it that {z]};cn generates a cg_k spreading model.
Let F' € Sp—k. Note that {ag}eey, , i is Sn admissible. It follows that

| > icr il < 1. In other words, {z] }ien generates a ey~ F spreading model.

We now prove (ii). Let w; = ZieFj c;z; be the (n— k,e;) s.c.c.; we claim
that ay,—1({w;};) =0. First, pass to a subsequence of {w;} and relabel for
simplicity. Now, fix a sequence {oy}qen of very fast growing a-averages and
a sequence (Lj);jen of successive finite subsets N such that {cag}eer, is Sno1
admissible for each j € N.

Let € > 0. First, we consider the case k > 0. Since ap_1({z:};) =0 and
{ag}qen is very fast growing, by Proposition 3.2 we can find g, %o € N such



1182 S. A. ARGYROS, K. BEANLAND AND P. MOTAKIS

that for each finite set L > qo, with {oy }4er being Si—1 admissible, and i > g,

we have
Z‘aq(m” <e/3.
qeL

Find jg € N such that for all j > j
(7) min L; > qo, minF; >ip and ¢; <¢/6.
Fix 7 > jo. We claim that

Z |ovg(wy)| <e.

q€L;

This, of course, implies the ¢, —1({w;};) =0. To simplify notation, let L = L;
and F' = F}. Before passing to the proof we note the following:
For i € F and E C L such that {og}qer is Sp—1 admissible, we have

(8) Z|aq(azi)’ <e/3.
qEE

Partition L into the following sets:

G1 = {i € F: there is a unique ¢ € L such that rana, Nranz; # @},
Go = {i € F': there are at least two ¢ € L such that rana, Nranz; # @}.

First, consider the case of G;. For g € L let
H,={ieG1: ranq,Nranz,; # 3}.

If ¢ # ¢’ then HyNHy = @; and quL H, C F. Using (8) (for singleton subsets
of L) and the convexity of (¢;);cr, we have

D HOMRIIES>

q€L 1€G1 q€eL

<%ZZCZ§§

geLicH,

()

i€H,

For i € G, set
Ji={¢€L: rana,Nranz; # I},
Gy ={ie€Gy: {minsuppay: g€ J;} & Si_1}.

This splits the estimates in the following way:

> aq<z c:v) <> ci<z aq>(mi)

qeL 1€Go i€Ga qeJ;
= E ¢ ( E aq) ()| + E ¢ ( E aq> (z4)].
1€GY qeJ; i€G2\G)h qeJ;
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Since for each i € G2 \ G5, {ag}ies, is Sp—1 admissible we can apply (8) to

conclude that
> el (Tan)w

1€G2\GY q€J;

For the final case, we must observe that
9) {minsuppz; : i € Gy} €28, _j_1.
Let G5 = G5 \ minG%. For each i € GY it is clear that
(10) minsupp x; > minsupp tuin g, for i’ <i and i’ € Gj.
Find ¢ € N such that
{minsupp Omin J; * (AS GIQI} S S@-
Since
{minsuppa,: g€ F} D U {minsuppay : ¢ € J;}.
1€GY
The second set is S,_1 admissible. It is clear that for i € GY
min supp tumin 7, = min{minsupp ey : ¢ € J;}
and {minsuppay : ¢ € J;} € Sy, for some d > k.
The convolution property of the Schreier sets yields that £ +d <n — 1.
Therefore £ <n—d—1<n—k—1. From (10), it follows that
{minsuppa;i s G;’} €Sn—k_1-
Since we are excluding a singleton, (9) follows. Therefore Ziegé € <2, <
g/3, by our choice of jo (see (7)). Since {z;}; C Ba(X],)

3 (Z aq)@i) <Y <ol
1€GY q€J; 1€GY
This proves our claim for the case k > 0.
Now we consider the case k=0. Find g9 € N such that
1

—<e/2.

S(O“Zo)
Now fix jo € N such that for all j > jp

minL; >¢qy and ¢; <¢e/8.

Fix j > jo and for simplicity let L = L; and F = F}.
Using Lemma 3.4, we have

Z aq(Zcixi)‘<g+4-§:a

q€L i€k
This finishes the proof. O
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PROPOSITION 3.6. Let {z;}ien C Ba(X[',) be a block sequence such that
an—1({z;}:) =0. Then for € >0 there is a subsequence {x}};en of {x;}ien
such that for every F € &1

<l+e.

/
D

ieF

Moreover if {xz;}ien is normalized there is a subsequence that generates a
spreading model isometric to cg.

Proof. Let {e;}ien be a summable sequence of positive reals, such that
€ >3 Zj>i ¢; for all ¢ € N. Using Proposition 3.2, inductively choose a subse-
quence, again denoted by {z;}ien, such that for any ig > 2 and ¢ > g, for any
{aq}f;:l very fast growing and S, _i-admissible sequence of a-average with
s(ag) > minsupp z;, for ¢=1,...,¢, we have that

I .
11 o (x| < - L0 .
(11) q;‘ al Z)| 10 MaX SUPP Ti—1
We will show that for any ¢ <4y <--- <4y, FFC{l,...,t} we have

(0] (Z l}]) <1+ 2€iminF

jEF

whenever « is an a-average and

g (Z x) <143eir

jeEF

whenever g is a Schreier functional. This implies the conclusion of the propo-
sition.

For functionals in Wy the above is clearly true. Assume, for some m >0
the above holds for any ¢t <+4; < --- <; and any functional in W,,. In the
first case, let t <i; <---<i; and a € W, 41 with a= %2221 fq.d <L

Set

Ey = {q : there exists at most one j <t such that ran f, Nranxz;, # @},
and By = {1,...,0} \ E1. For g € Fy, we have |f,(3_7_, x;;)] < 1. Therefore
quEl |fq<2?:1 zi; )| < #En.

For ¢ in Ey, let j, € {1,...,t} be minimum such that ranz;; Nranfq # <.
If ¢ < ¢ are in E3, j, < jy. By the inductive assumption

(12) Z fq (Zzza>

qEE;

<D (1+3e)

qEE>
< #Ey+3ei, +3) e, <#Fa+4e;,.

j>1
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Therefore,

d+4
<Z$11>| + 611 <1+2511

Let g € Wy,41 with g= Zq:l o be a Schreier functional. Set
Jo=min{j: rangNranxz;, # I},
¢o = min{q : maxsupp o, > minsupp xijoﬂ }.

Decompose {q : ¢ > qo} into successive intervals {.J,,}° | such that the follow-
ing hold:

(i) {g: 9>} =U,L, J, and
(ii) {minsuppay : ¢ € J,} are maximal S,,_; sets (except perhaps the last
one).

Since {aq}gzl is S, admissible, vy < maxsuppa;; . By definition, for ¢ > go
s(aq) > maxsupp ag, > minsuppz;; -

Therefore, we can apply (11) to conclude that

o EhE)Esk ()

a>qo v=1qgeJ,
Eis
jo+1
<= 0 -t
ijo+1 MAXSUPP T
< i, -

For the other part of the functional, we consider two cases.

Case 1. Assume that for g < qo, aq(Z;:1 z;;) = 0. In this case we simply
apply the inductive assumption to conclude that aqo(zzzl Ti;) <142 .
Combining this with (13) finishes the proof.

Case 2. If the first case does not hold, we have that s(ag,) > minsuppz;, .

Using (11), we have
¢ ¢
(14) Z Qq <Zx%> Qqo (Z xij) Qqo <Z sz> ‘
Jj=1 J=jo

= Z ‘qu(xijo)‘ +

9<qo 9<4qo0
<1+ iz -
Combining this with (13) gives the desired result. O

PROPOSITION 3.7. Let {x;}ien be a seminormalized block sequence in X'
and 0 <k <n—1. The following assertions are equivalent.

(i) ar({zi}:) =0 for k' <k.

(ii) {z;}ien has no subsequence generating an E’f*kﬂ spreading model.
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Proof. First, assume that (i) holds. Towards a contradiction, assume that
passing, if necessary, to a subsequence, {x; };cn generates an £7 "' spreading
model, with a lower constant 6 > 0.

We may choose {F}}jen increasing S,_j sets with F; > j for all j € N,
{ej}jen positive reals with limje; =0 and {c;}cr, positive reals, such that
Wi =3 ep, Giti is a (n— k,g;) s.c.c. for all j€N.

If M =sup{||w,| : j € N}, it follows that 6 < |Jw;|| < M for all j € N.

For any ¢t <j; <+ <J¢, Uf;:l Fj, is a 8p_g41 set, therefore

t
(15) > wj, || >0-t.
q=1

Propositions 3.5(ii) and 3.6, yield that passing, if necessary, to subsequence,
for any t < j; < --- < j; the following holds.

t
(16) ijq < 2M.
q=1

For ¢ appropriately large, (15) and (16) together yield a contradiction.

Now assume that (ii) holds. Let 0 <k’ <n — 1 such that ay ({z;};) > 0.
Proposition 3.5(i) yields that passing, if necessary, to a subsequence, {z; }ien
generates an E’f‘k/ spreading model. Since (ii) holds, we have that n — k' <
n — k + 1, therefore k¥ <k’ and this completes the proof. O

PROPOSITION 3.8. Let {z;}ien be a seminormalized block sequence in X7,
and 0 <k <n—1. The following assertions are equivalent.

(i) {z;}ien has a subsequence generating a strong /7% spreading model.

Proof. 1f (i) holds, then by Proposition 3.5 so does (ii).

Assume now that (ii) is holds. Pass to a subsequence of {x;};cn generating
an E?ik spreading model and relabel for simplicity. Towards a contradiction
assume that oy ({z;};) =0.

Consider first the case k =n — 1. Then by Proposition 3.6, {z;};en has a
subsequence generating a ¢y spreading model, which is absurd.

Otherwise, if k¥ <n — 1, then evidently we have that ay ({z;};) =0 for
k' <k + 1. Proposition 3.7 yields a contradiction. O

Combining Propositions 3.6, 3.7 and 3.8, we conclude the following.

COROLLARY 3.9. Let {z;}ien be a normalized block sequence in X' . Then
the following assertions are equivalent.

(i) Any subsequence of {x;}ien has a further subsequence generating an iso-
metric ¢y spreading model.

(ii) Qp—1 ({l‘z}z) =0.
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REMARK 3.10. Every normalized weakly null sequence generating a cg
spreading model satisfies a;,,—1 ({z;};) = 0. The above yields that ¢ spreading
models generated by normalized weakly null sequences are always isometric
to the usual basis of cg.

COROLLARY 3.11. Let {x;}ien be a normalized block sequence in Xy, and
0<k<n-—1. Then the following assertions are equivalent.
(1) ar({xi}i) >0 and ap ({x;}i) =0 for k' <k.
(i) {z;}ien has a subsequence generating a strong (7% spreading model and
no subsequence of {x;};cn generates a strong f?ikﬂ spreading model.
(iii) {z;}ien has a subsequence generating an 8?7]“ spreading model and no
subsequence of {x;}ien generates an E{‘_’Hl spreading model.

Proof. Assume first that (i) holds. Propositions 3.7 and 3.8 yield that (ii)
also holds.

Assume now that (ii) is true. To prove that (iii) is true as well, all that
needs to be shown is that no subsequence of {x;};cn generates an é?ikﬂ
spreading model. Towards a contradiction, assume that this is not the case.
Proposition 3.7 yields that there exists k" < k such that oy ({z;};) > 0. In
turn, Proposition 3.8 yields that {z;};en has a subsequence that generates
a strong é?ik' spreading model. The fact that &’ < k and no subsequence
{z;}ien generates a strong E’f*kﬂ spreading model yields a contradiction.

For the last part, assume that (iii) holds. We will show that so does (i).
Proposition 3.7 yields that ays ({z;};) =0 for ¥’ < k. Towards a contradiction,
assume that o ({x;};) =0.

If k=n—1, Corollary 3.9 yields that any subsequence of {z;};en has a
further subsequence generating a ¢y spreading model, which is absurd.

Otherwise, if k <n — 1, then ap ({z;};) =0 for ¥’ <k + 1. Once more,
Proposition 3.7 yields that no subsequence of {z;};cn generates an Wf"k
spreading model, a contradiction which completes the proof. O

Corollaries 3.9 and 3.11 easily yield the following.

COROLLARY 3.12. Let {z;}ien be a normalized weakly null sequence in
X\',. Then passing, if necessary, to a subsequence, exactly one of the following
holds.

(i) {x;}ien generates an isometric co spreading model.
(ii) There exists 0 <k <n — 1 such that {x;};en generates a strong Wf_k
spreading model and no subsequence of it generates an é?_kﬂ spreading

model.

REMARK 3.13. Corollaries 3.11 and 3.12 yield that whenever a normalized
weakly null sequence generates an 6711_’“ spreading model, for some 0 < k <
n, then passing, if necessary, to a subsequence, it generates a strong Wf—k
spreading model.
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n
0,1’
n

subspace of X7, contains a normalized weakly null sequence generating a cg
spreading model and for any 0 < k <n — 1, it contains a normalized weakly

null sequence generating an E’f_k spreading model having no subsequence
£?7k+1

As we will show in Proposition 3.18, any block subspace of X" , hence any

generating an spreading model.

Although in the usual sense of spreading models, any subspace of X7’
admits exactly two types of them, in the sense of higher order spreading
models, any subspace of X' admits exactly n+1 types.

It is an interesting question, whether for given n € N there exists a Banach
space X, such that any subspace of it admits exactly n+ 1 types of spreading
models, in the usual sense.

Spreading models of subspaces of X' .

PROPOSITION 3.14. Let {z;}ien be a normalized block sequence in X'
that generates a spreading model isometric to co, {F;}jen be a sequence of
successive subsets of the naturals, such that #F; <minFj, for all j € N and
lim; #F; = oco. Then if y; = ZieFj x;, there exists a subsequence of {y;}jen

generating an {7 spreading model.

Proof. Since {x;};cn generates a spreading model isometric to ¢, it follows
that |ly;|| — 1. By Proposition 3.5, it suffices to choose {y;,, }men a subse-
quence of {y;}jen, such that ao({y;,, }m) > 0. Set j; =1 and assume that
J1s--+»Jm—1 have been chosen. Set d = max{maxsuppy;,, ,,#F}, ,} and
choose j, > jm—1 such that #F}; > d.

To see that {y;,, }men generates an ¢} spreading model, notice that for
m > 1, there exists an a-average c, with ranc,, C rany;, and s(a.,) =
#F;, > max{maxsupp &m,_1,5(qm_1)} such that a,,(y;,,) — 1. Therefore

0 ({Yj,, }m) > 0. O

COROLLARY 3.15. The space X', does not contain seminormalized weakly
null sequences generating c3 or 5?“ spreading models.

Proof. Assume that there exists a seminormalized weakly null sequence
{x;}ien generating a 3 spreading model. We may therefore assume that it
is a block sequence. By Proposition 3.14, it follows that there exist {F}} en
increasing, Schreier admissible subsets of the naturals and € > 0, such that
[y Zz‘equ x| >0 -m for any m < j; < - - < jp. Since for any such
F;, <--- < F;, we have that U;nzl F;, € 82, it follows that {z;};cn does not
generate a ¢ spreading model.

The fact that X7, does not contain seminormalized weakly null sequences

generating 671”1 spreading models follows from Corollary 3.12. O

PROPOSITION 3.16. Let 0 <k <n—1 and {z;};en be a normalized block
sequence in X7 that generates an E?ik spreading model and no subsequence
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of it generates an E?_I’H'l spreading model. Then there exists {Fj}jen an
increasing sequence of subsets of the naturals and {c;}icr, non-negative reals
with ZiGFJ_ ¢ =1, satisfying the following. If we set w; = ZieFj c; i, then
{w;}jen is seminormalized and generates a ¢y spreading model.

Proof. By Corollary 3.11, it follows that ay({z;};) >0 and ap ({z;}:) =
0 for k' < k. Choose {F;}jen and increasing sequence of S,_j subsets of
the naturals and {c;}icr; non-negative reals such that w; =3, F, CiTi is a
(n—k,e;) s.c.c. with limje; =0.

Since {z;}ien generates an 7% spreading model, it follows that {w;};en
is seminormalized. Moreover, Proposition 3.5(ii) yields that a,,—1({w;};) =0.
Applying Proposition 3.6 we conclude the desired result. O

PROPOSITION 3.17. Let {z;}ien be a normalized block sequence in X'
generating an £} spreading model and 1 <k <n—1. Then there exists { F; }jéN
an increasing sequence of subsets of the naturals and {c;}icr; non-negative
reals with ZiGFJ_ ¢ =1, satisfying the following. If we set w; = ZZ—GFJ, CiT;,
then {w;}jen is seminormalized, generates an Wf_k spreading model and no
subsequence of it generates an éT_k‘H spreading model.

Proof. By Corollary 3.11 and passing, if necessary to a subsequence, there
exists {a; }ien a very fast growing sequence of a-averages, such that ran«; C
ranz; and 6 > 0 such that «o;(z;) > 60 for all i € N. Choose {F}};en and
increasing sequence of Sy subsets of the naturals and {c¢;};e F; non-negative
reals such that w; =3, p ;@i is a (k,&;) s.c.c. with lim;e; =0.

Since {z;};en generates an ¢7 spreading model and k < n, we have that
{w;};en is seminormalized.

To see that {w, } ;en has a subsequence generating an E?_k spreading model,
by Corollary 3.11 it is enough to show that as({w;};) > 0. It is straightfor-
ward to check that the sequences {a;}ien and {Fj;}jen previously chosen,
witness this fact.

It remains to be shown that no subsequence of {w;}jen generates an £7~*+1
spreading model. Once more, by Corollary 3.11 it is enough to check that
ap—1({xi}i) =0.

Pass to a subsequence of {w,} en, relabel for simplicity, let {a]}ien be
a very fast growing sequence of a-averages and {G,};en be an increasing
sequence of subsets of the naturals such that {a;}ieq; is Sk—1 admissible for
all 7 € N. Lemma 3.4 yields the following.

1

i f(w)| < lm | ——— j | =0.

Jim 3 el < i (S sy ) <0
'LEGJ' min G ;

By definition, this means that ax—1({z;};) =0 and this completes the proof.
O
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PROPOSITION 3.18. Let Y be an infinite dimensional closed subspace of
Xi',. Then there exists a normalized weakly null sequence in Y generating
an isometric co spreading model. Moreover, for 0 < k <mn —1 there exists a
sequence in Y that generates an Erf_k spreading model and no subsequence of
£?7k+1

it generates an one.

Proof. Assume first that Y is a block subspace. We first show that Y
admits an isometric ¢ spreading model. Let {z;};en be a normalized block
sequence in Y. If {z;};cn has a subsequence generating a ¢y spreading model,
then by Remark 3.10 there is nothing to prove.

If this is not the case, by Corollary 3.9 we conclude that a,_1({z;}:) >
0. Set ko = min{k": ap ({x;};) > 0}. Corollary 3.11 yields that passing, if
necessary, to a subsequence, {z; };cn generates an Z?_ko spreading model and
no further subsequence of it generates an E{L_k”l one. Proposition 3.16 yields
that {«;}ien has a further seminormalized block sequence {wj;};en generating
a co spreading model. If we set y; = H:ﬁﬁ, then by Remark 3.10 {y;} en is
the desired sequence.

We now prove that Y admits an ¢} spreading model. Take {z;}ien a
normalized block sequence in Y generating an isometric ¢y spreading model.
By Proposition 3.14 there exists {w;};en a further block sequence of {z;}ien
generating an ¢} spreading model. By Corollary 3.15 {w,}en is the desired
sequence.

Let 1 <k <n—1. We show that there exists a sequence in Y that generates
an (77" spreading model and no subsequence of it generates an £} *1 one.
Let {z;}ien be a sequence in Y generating an ¢} spreading model. Simply
apply Proposition 3.17 to find the desired sequence.

Therefore the statement is true for block subspaces. The fact that any
subspace of X' contains a sequence arbitrarily close to a block sequence
completes the proof. O

From this, it follows that X', cannot contain cg or /1, therefore from James’
theorem for spaces with an unconditional basis [15], the next result follows.

COROLLARY 3.19. The space X7, is reflerive.

COROLLARY 3.20. LetY be an infinite dimensional, closed subspace of X7 | .
Then Y* admits a spreading model isometric to £1. Moreover, for0 <k <n-—1
there exists a sequence in Y* generating a cg_k spreading model, such that no

subsequence of it generates a cg_k"’l one.

Proof. Since Y contains a sequence {z;};cn generating a spreading model
isometric to ¢p, which we may assume is unconditional Schauder basic, such
that {x;};,>; has an unconditional basic constant ¢; — 1, as j — 0o, then for
any normalized {x}}ieny C Y™, such that z}(z;) = 1, we have that {z}};en
generates a spreading model isometric to /5.
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Let now 0 < k <n—1. Use Proposition 3.18 to choose {z; };en a normalized
weakly null sequence in Y, generating an K’f*k spreading model, such that no
subsequence of it generates an 7 **1 one.

By Remark 3.13 and passing if necessary to a subsequence, there exist € > 0
and {2} }ien a seminormalized sequence in X* generating a cj~* spreading
model satisfying the following. z7(z;) >¢e foralli € Nand ., |z} (2;)| < co.
Since {z;}ien has no subsequence generating an ﬁ?_kﬂ spreading model, it
follows that {z}};en has no subsequence generating a cg_k"’l one.

Let I* : X]'" — Y™ be the dual operator of [ : Y — X' . Then, since ||I*|| =

1, to see that this generates a cg_k spreading model, all that needs to be shown
is that {I*z}};en is bounded from below. Indeed, |[I*zf| > (I*z})(x;) =
xf(x;) > €.

It remains to be shown {I*z} };en has no subsequence generating a cjj~*+1
spreading model. Since it is seminormalized, (I*z})(z;) = x}(x;) > € for all
i€N, and >, [(I"27) ()] = 32,4, |27 (z7)] < oo and {z;}ien has no subse-

n—k+1
6

quence generating an spreading model, the result easily follows. [

4. Equivalent block sequences in X[

In this section, we prove that the space X', is quasi minimal by showing
that every two block subspaces have further block sequences which are equiv-
alent. Our method is based on the analysis of the functionals of the norming
set W and we use some techniques first appeared in [3].

In Tsirelson space, whenever two seminormalized block sequences {Z, }men,
{Ym }men satisty Tm < Ymy1 and Ym < 41 for all m € N; then they are
equivalent (see [11]). In the space X|'| this is false, since seminormalized
sequences satisfying this condition may be constructed generating different
spreading models, therefore they cannot be equivalent.

Even in the case for sequences satisfying the above condition, which more-
over generate the same spreading model, we are unable to prove that they
have equivalent subsequences, not even if they only consist of elements of the
basis. The reason for this is the fact that when constructing Schreier func-
tionals in the norming set W, unlike the norming set of Tsirelson space, very
fast growing sequences of a-averages need to be taken.

In order to compensate for this fact, the following is done. Let {z,; }men,
{Ym }men be normalized block sequences, both generating ¢ spreading mod-
els, such that z,, < ym+1 and Y, < Ty41 for all m € N. we show that by ap-
propriately blocking both sequences in the same manner, we obtain sequences
which are equivalent. More precisely, we prove the following.

PROPOSITION 4.1. Let {Zm bmeN, {Um }men be normalized block sequences

in X', both generating 01 spreading models, such that Tm, < Yms1 and

Ym < Tmg1 for all m € N.  Then there exist {F,,}men Successive subsets
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of the naturals and {c;}icr, non-negative reals, for all m € N, such that if
2 = ZieFm i and w,, = ZieFm ¢iYi, then {zmtmen and {Wpytmen are
seminormalized and equivalent.

Our method for showing the equivalence of {z,}men and {wp, tmen is
based on the following. For every f in W there exist g', g2, ¢ in W such that
0f (zm) < gH(wm) + ¢*(wm) + ¢ (W) + €m, for some fixed constant § and
{em }men a summable sequence of positive reals. The choice of the g¢ uses the
tree analysis of f given below. Clearly the roles of {z tmen and {wm }men
can be reversed and this yields the equivalence of the two sequences.

The tree analysis of a functional f € W. Let f € W. We construct a
finite, single rooted tree A and choose {f)}rxea € W, which will be called a
tree analysis of f.

Set fo = f, where @ denotes the root of the tree to be constructed. Choose
m € N, such that f € W,,. If m =0, then the tree analysis of f is {fz}.

Otherwise, if f is a Schreier functional, f = 2?21 fj, where {f; (le:l C W1
is a very fast growing and S,-admissible sequence of a-averages, set {f; }?:1
to be the immediate successors of fg. If f is an a-average, f = %Z?Zl fi
where {f1 <+ < fa} C W1, set {fj};-lzl to be the immediate successors of

fe.

Suppose that the nodes of the tree and the corresponding functionals have
been chosen up to a height £ <m such that f\ € W,,_p\). Let A be such
that h(A\) =£. If f\ € Wy, then don’t extend any further and A is a terminal
node of the tree. If fy is a Schreier functional, f) = ijl fj, where {f; }?:1 -
Win—e—1 is a very fast growing and S,,-admissible sequence of a-averages, set
{f;}}=, to be the immediate successors of fy.

If f\ is an a-average, f\ = %Z?ﬂ fj, where {f1 <--- < fa} C W1,
set {f; ?:1 to be the immediate successors of f.

REMARK. If f)- is a Schreier functional, fy- = Z?Zl f; and there exists
j > 1 such that fy = f;, then fy is of the form f) = L Z§:19j7 where m >

T m

maxsupp f;j—1. In this case, set {g; }5:1 to be the immediate successors of fy.
It is clear that the procedure ends in at most m + 1 steps.

DEFINITION 4.2. Let z € X', f € W such that suppf Nsuppz # &,
{fa}rea be a tree analysis of f.
(i) We say that f, covers =, with respect to {fx}aea, for some p € A, if

supp f, Nsuppx = supp f Nsupp .
(ii) We say that f,, covers x for the first time, with respect to {fa}aea, for

some p € A, if p=max{\ € A: fy covers x}.

DEFINITION 4.3. Let x € X7 ,f € W,{fx}xea be a tree analysis of f,
A € A be the node of A such that f\ covers z for the first time, with
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respect to {fataea. If {p;}9_; are the immediate successors of A in A,
J1=min{j : ran f,, Nranz # I}, jo = max{j : ran f,, Nranxz # T}, set ! =
x|[17m,maxsuppf”1], 3= x|[minsuppfu,-2 +00)> 2?2 =2 —2! — 23 Then 2!, 22, 23
are called the initial, the middle and the final part of = respectively, with

respect to {fx}rea-

REMARK 4.4. If supp f Nsuppx is not a singleton, then x; and x3 are not
zero and x1 < x3. However x5 might be zero.

LEMMA 4.5. Let {Zm tmen be a block sequence in Xy, few, {fr}ren be
a tree analysis of f and G={m €N : supp f Nsuppx,, #F}. For me G set
Am; AL to be the nodes of A that cover T,,,xL, for the first time, respectively
and assume that #{supp fx,, Nsuppzm,} > 1, for all m € G. Then:

(i) AL >\, and maxsupp [y <maxsuppz,, for allm e G.
(ii) For any m € G and X > AL, such that ran fy Nranzl # @ and ran fy N
ranz; # @, for some £ #m, we have that £ <m and \} > \.

(iii) The map m — AL, is one to one.

m

Proof. Let m € G. Evidently A\l > \,,. Suppose that A}, = \,,. This
means that x} and z,, are covered for the first time simultaneously, which
can only be the case if #{supp f\, Nsupp z,, } = 1. Moreover, maxsupp Iy <
maxsuppz., and by Remark 4.4, we have that maxsupp z}, < maxsuppz?, =
max supp T, -

For the second statement, notice that since A > Al . it follows that
maxsupp fy < maxsupp fy1 < maxsupp T, therefore £ <m. Moreover, since
supp fx Nsuppzy # @, A is comparable to A}. If A} <\, then maxsupp f) <
max supp f)\% < maxsuppze, which contradicts the fact that ranfy N
ran x}n + 0.

The third statement follows from the second one. O

The next lemma is proved in exactly the same way.

LEMMA 4.6. Let {Zm tmen be a block sequence in Xy, few, {fa}ren be

a tree analysis of f and G={m €N : supp f Nsuppx,, # &}. For m € G set
Am; A3, to be the nodes of A that cover x,,,z3, for the first time respectively
and assume that #{supp f,, Nsuppzm,} > 1, for all m € G. Then:

(i) A3, > A\ and minsupp frs >minsuppxp,, for allmeG.

(ii) For any m € G and X > A2, such that ran f\ Nranx?, # & and ran f\ N

ranzj # @, for some { #m, we have that £ >m and X3 > \.

(iii) The map m — A3, is one to one.

The proof of the next lemma is even simpler and therefore it is omitted.

LEMMA 4.7. Let {Zm tmen be a block sequence in Xy, few, {fr}ren be
a tree analysis of f and G={m €N : supp f Nsuppx,, #F}. For me G set
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Am; A2, to be the nodes of A that cover x,,,z2, for the first time respectively
and assume that #{supp fx,, Nsuppz,,} > 1, for all m € G. Then, for any
m € G with x2, # 0, for any A < 2, such that supp f» Nsupp a3 # &, for some
0#£m, it follows that X < \2.

LEMMA 4.8. Let z1,...,Zm, Y1,---,Ym be ﬁm’te normalized block sequences
such that ; < y;41 and y; < x;41 fori=1,. — 1. Assume moreover that
{;}, and {y;}1™, are both equivalent to the usual basis of (R™, |- ||1), with
a lower constant 0 > 0. Let {¢;}I™, be non-negative reals with >, ¢; =1 and
set z = Zz:l cr; and w= Zz:l c;yi. Then:

(i) If f € W is an a-average of size s(f) =p, then there exists g € W such
that rang C ran f Nranw and %g(w) >0f(z) —3max{c;:i=1,...,m}.

(ii) Let f € W. Then there exists g € W with rang C ran f Nranw, such that
glw) >0f(z) —2max{c; : i=1,...,m}.

Proof. For the proof of the first statement, set i1 = min{i : ran f Nranxz; #
@},ia =max{i: ran f Nranz; # @}. By Lemma 3.3, we conclude that

(17) Zcz—l—Zmax{cl. =1,...,m}.

’LZl

Since || 222:;114-1 ciyill > 921 i, ¢i—2max{c; : i=1,...,m}, we may choose

g € W such that

ig—1 io
(18) g( Z Ciyi>>926i—2max{ci:i:l,...,m}.

i=11+1 =11

We may clearly assume that rang C mn{UZ “H rany;} C ran f Nranw.
Finally, combining (17) and (18), and doing some easy calculations we con-
clude that g is the desired functional.

To prove the second statement, define iq,io as before. Then, one evi-
dently has that || 32! “1+1 ciyill > 02?2“ c; —2max{c; : i =1,...,m}, there-
fore there exists g € W such that

ix—1 in
(19) g( Z ciyi>>HZci—2max{ci:z’zl,...,m}.

1=i1+1 =11
It is also clear that
i2
(20) f@) < e
i=iq

As previously, we may assume that rang C ran f Nranw. Combining (19)
and (20), we conclude the desired result. O
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For {@: }men, {ym tmen normalized block sequences in %:f , both generating
£} spreading models, we appropriately block both sequences in the same man-
ner to obtain further seminormalized block sequences {zm, }men and {w, }men.
For f a given functional in W, we decompose z,, into zl 2223 its initial,
middle and final part, as previously described. Next, we proceed to construct
g', g% ¢* functionals in W, such that each ¢* acting on w,,, pointwise domi-
nates f acting on z! | for i = 1,2,3. The choice of the functionals ¢*, i = 1,2, 3

is presented in the following three lemmas.

n

LEMMA 4.9. Let {Zm }men; {Um }men be normalized block sequences in X7,
both generating ¢} spreading models, with a lower constant 6 > 0, such that
T < Ymt1 0nd Y < g1 for all m € N Let {F,, }men be successive sub-
sets of the naturals, {c;};en be non-negative reals and {€,, }men, {0m }men be
positive reals satisfying the following:

(i) Firn €S, and 2y, = ZieFm Cii, Wy = ZieFm ciy; are both (n,en,) s.c.c.
for all m € N.

(ii) maxsupp zu, ( 1

min supp Zm 41

+6em11) < 5"11“ , for all m € N.

Let also f € W, with a tree analysis {fx}rea and 2}, be the initial part of z,
with respect to {fa}aen, for all m € N. Then there exists gt € W, such that

9" (wm) >20f(2),) — 50, for allmeN.

Proof. Let f € W. We may assume that f(e;) >0, for all j € N, that
supp f C U, e SUPP 2 and that €} (2,,) > 0, (wm) >0 for all j,k € N. Set
G={meN: supp f Nsuppz, # }.

We may assume that for any m € G, supp f Nsupp z,, is not a singleton.
Otherwise there exists f’ € W that satisfies this condition for G’ = {m e N:
supp f' Nsupp z,m,, # @} and f'(zm) > f(2m) — Em, for all m € N.

Let {fy}rea be a tree analysis of f. Denote by 2zl the initial part of 2,
and AL, the node of A that cover z}, for the first time, for all m € G, all with

respect to {fx}rea-
We proceed to the construction of g'. Set
C,ln = {)\ eEA:A> )\}n,min{suppf,\ ﬂsuppz#} = min{suppf)\}n N supp z,ln}}
U{)\EA: )\S)\}n}.

Notice that C}, is a maximal chain in A. Set

1 _
Vy, =

max{/\ €Cl : ran fyNranz; # @, for some £ # m},
fim =min{A €Cp, : A> AL, fx is an a-average and there exists 3 € succ(\)
such that ran fg Nran 2} # @ andran fan ranz; = @ for £ # m},
where succ(\) are the immediate successors of A in A.

CLAIM. If for some m € G we have that AL, < vl < i, then vt = .,

m*
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Proof. First, notice that in this case f,1 must be a Schreier functional. If
Ju1, were an a-average, then if we denote its immediate successor in CL by B,
then ran fzNranz}, # @ and ran fsNranz} = @ for £ # m, therefore u,, would
not be the minimal element satisfying this condition, since we assumed that
vt < pim, a contradiction. Since fu1, is a Schreier functional, it follows that if
we denote its immediate successor in C}, by 3, then fg is an a-average, such
that ran fg Nranz}, # @ and ran fg Nranz} = & for £ # m. Since v}, < fim, it
follows that 8 = fiy,. O

Set
A= {)\ € A : there exists m € G such that A < /\#}
U {)\ € A : there exists m € G such that A < p,,, and u,ln > A,ln}
For A € Ay, set
G,\:{mEG: Ag/\}n}u{meG: A <ty and 1/71,12)\71”}.

For every A € Ay, we will inductively construct gi € W satisfying the follow-
ing.
(1) g} (wm) > 0fr(2},) — 46, for all m € G.
(ii) rang) Cran fy Nran{U{ranw,, : m € G\}}.
(iii) If fy is an a-average, then so is g3 and s(g}) = s(fa).

Before proceeding to the construction, we would like to stress out that
Lemma 4.5 assures us that whenever a functional fy, A € A; acts on more
than one vectors zé, then all vectors except for the rightmost one, have been
covered for the first time in a previous step. Therefore in this case, we are free
to focus the inductive step on one vector. In particular, if A € A,\ > Al for
some m € G, such that ran f) Nranz}, # @ and ran fy Nranz} # @ for £ #m,
then besides the fact that £ <m and A} > ), it also follows that A € C}, (as
well as A € C}).

Let A € A;. We distinguish six cases. The first inductive step falls under
the first two.

Case 1. There exists m € G such that A =\., = p1,,, and v, < AL,.

In this case fy is an a-average, f) = %E?Zl fs,, where {Bj};l:l are the
immediate successors of \. By Lemma 4.8, there exists g € G, such that
rang C ran f Nranw,, and %g(wm) > 0f\(2),) —3max{c; : i € F, }. Set g3 =
%g. Since max{c;: i € Fi,} < &n, < dp, we conclude that g}\ satisfies the
inductive assumption.

Case 2. There exists m € G such that A=\, < 1, and v,,, < AL,.

Then f) is a Schreier functional, f) = Z;l:l fg;- Then again by Lemma 4.8,
there exists g € W such that rang C ran fy Nranw,, and g(w.,) > 0f(zL) —
3max{c; : i € F,}. Set g}\ =g. As in the previous case, we conclude that g}\
satisfies the inductive assumption.
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Case 3. For any m € G such that ran fy Nran 2}, # @, we have that A < AL, .
. d d ) .

Then if f) = Zj:1 fp;, (or fa= %ijl fp,;), for j=1,...,d there exist
géj, already satisfying the inductive assumption. Then it is easy to see that
gy = Zj 1 gﬁ eEW (orgi=1 Zj 19[3 € W) and is the desired functional.

Case 4. There exists m € G such that A > piy,.

Since A € Ay, there exists at least one ¢ <m in G, such that A < \}. If
= Z?Zl fs; (or fa= %Z?Zl fs,), set jo = max{j : there exists £ < k such
that ran fz, Nranz; # @}. Then it is easy to see that g3 = ;t’:l g5, €W (or
gx = 1 jo 1 gﬁ € W) and satisfies the inductive assumption.

Case 5. There exists m € G such that A = y,, and A}, <v}

This both covers the case when p,, = AL, and when p,, > AL. The claim
yields that in either case v}, > u. .

If v} = -, simply repeat what was done in case 1. Otherwise, v} >
pm and there exist at least one ¢ < m in G, such that ran f) Nranz; # @.
If /)= %Z?Zl fs;, set jo = max{j : there exists £ < m such that ran fg, N
ranz; # @}. Since A = p,, we have that jo < d. Apply Lemma 4.8 and find
g € W,rang C ran f) Nranw,, such that l g(wg) > 0fr(21) — 3max{c;: i €

F.}. Set g3 = 1 j" 195 + g Then gA € W and satisfies the inductive
assumption. In partlcular, note that g3 (wm) > 0fr(2L,) — 30m.

Case 6. There exists m € G, such that AL, <\ <y, and v}, > AL .

We will prove by induction on g = |A| — || that there exists g3 € W
satisfying conditions (i), (ii) and (iii) from our initial inductive assumption
and moreover a stronger version of condition (i). In partlcular

If f is an a-average, then g} (w.,) > 0f\(2),) — 36, —

If fy is a Schreier functional, then g} (wy,) > 0f\(z},) — 38, — %

For convenience start the induction for ¢ =0, i.e. A= u,,. As we have
noted in this case g3 (wm,) > 0 (2},) — 36m

Assume that it is true for some ¢ < |)\ | = |ttm|. Then for A such that
IA| = |ttm| = g + 1, the claim yields that v}, > A.

If f\ is an a- average H= %Z? 1 fa;, since A < vh A< ptm, we have
that ran fz, Nranz; # &, for some ¢ < m. Therefore ran fs; N ranzl =@
for j < d and there exists gﬂd satisfying the stronger inductive assumption.
Set g} = 1—1)2?:1 g}aj. As always g1 € W and it satisfies the initial inductive
assumption. It also satisfies the stronger one. Indeed g}\(wm) = % géd (W) >

Om | — Om _ Om
L(0f5u(20) = 36m — %) = 2(PO.fr(23,) — 30w — %) = Ofn(2),) — 2 — G2 >
Ofr(zL) — 36, — 2=

If f\ is a Schreier functional, f\ = Z?zl fs;, since A < v} we have that

ran fg, Nranz;} # @, for some ¢ < m and some j < d. Set jo = min{j : ran fs;N
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ran z;, # @}. Therefore ran fz, Nranz}, = @ for j < jo and there exists an o-
average géjo satisfying the stronger inductive assumption.
Choose {J;},2; successive subsets of the naturals satisfying the following.
(0) Urly Jo={j: jo <j <d}.
(ii) {minsupp f;: j € J,} is a maximal S,,_1 set for r < ry and {minsupp f; :
JE T} €ESn1.
We conclude that rg < maxsupp z,,—1. Moreover, Lemma 3.4 yields that for

r<rg
1

S G <t e
= min supp 2y,
Assumption (i) of the proposition yields that 3., fs,(zp,) < fon

Set gy =272, 95,- Then g} (wy) = g}% (wm) > 0fa, (25,) — 30m — 2 =

070 fo,(2h) =80 — 2 > 0fx(2L,) — 2 — 30, — S = 0fx(2),) — 36, — 2.
This ends the inductive step in case 6 and also the initial induction.
Set g' = gL. Then:

9" (wp) > 0f(2),) — 46,,, for all m e G.

Lifting the restriction that for any m € G, supp f N supp z,, is not a sin-
gleton, in the general case we conclude that g'(w,,) > 0f(z}) — 56,,, for all
meG. O

LEMMA 4.10. Let {Zmtmen, {Um }men be normalized block sequences in
X{,, both generating £} spreading models, with a lower constant 8 > 0, such
that T < Ymt1 and Ym < Tmy1 for all m € N. Let {Fpn bmen be successive
subsets of the naturals, {c;}ien be non-negative reals and {em tmen, {0m tmen
be positive reals satisfying the following:

(i) Fin €S, and 2z, = ZieFm CiTi, Wy = ZiEFm ciy; are both (n,en,) s.c.c.
for all m e N.
(ii) maxsupp 2y, (————a— + 6g,41) < 5'7%, for all m € N.

minsupp Zm 41
Let also f € W, with a tree analysis {f}rea and z3, be the final part of z,
with respect to {fa}aen, for all m € N. Then there exists g> € W, such that

> (W) > gf(zfn) —30m, forallmeN.

Proof. Let f € W. As in the previous proof, assume that f(e;) > 0, for all
j €N, that supp f C U,,enSupp zm and that e} (zm) > 0,€}(wp,) >0 for all
j,keN. Set G={meN: supp f Nsuppz,, # J}.

Assume again that for any m € G, supp f N supp z,, is not a singleton.
Otherwise there exists f’ € W that satisfies this condition for G’ = {m e N:
supp f' Nsupp z,, # @} and f'(2m) > f(2m) — €m, for all m € N.
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Let {fa}xea be a tree analysis of f. Denote by z3, the final part of 2,
and A3, the node of A that cover 23, for the first time, for all m € G, all with

respect to {fa}rea-
Set

C?n = {/\ ceAN: N> )\fn,max{suppfA N suppzf’n} = max{supp s, ﬂsuppzf’n}}
U{/\GA: )\S)\f’n},
v, =max{\ €C}, : ran f\ Nranz] # @, for some £ #m}.

Set
Az = {)\ € A : there exists m € G such that A < /\:;’n}

For every A € Az, we will inductively construct g3 € W satisfying the follow-
ing.
(i) g3 (wm) > & F(23,) — 20, for all m € G such that A3, > A.
(ii) rang$ Cran fy Nran{U{ranw,, : A3, > A\}}.
(iii) If fy is an a-average, then so is g5 and s(g3) = s(fr)-

Just as in the construction of ¢g', Lemma 4.6 assures us that whenever
a functional fy, A € Ay acts on more than one vectors z3,, then all vectors
except for the leftmost one, have been covered for the first time in a previous
step.

Let A € A3. We distinguish 4 cases, the first inductive step falls under the
first case.

Case 1. There exists m € G, such that A= A3, and 13, < A3 .

If fy is an a-average, f) = 1—1)2?:1 fp;> by Lemma 4.8 there exists g € W
such that ran g C ran f) Nranw,, and %g(wm) > 0fa(23) —3max{c;:i € F,,}.
Set g5 = %g.

If fy is a Schreier functional, then by Lemma 4.8 there exists g € W such
that rang C ran fy Nranw,, and g(w,,) > fA(z3,) — 2max{c; : i € F,,}. Set
g =9

Case 2. For any m € G such that ran fy Nranz3, # @, we have that

: d d d
A< )‘fn' If o= Zj:l fﬁj (01" fir= %Zj:l fﬁj)v set gi = Zj=1ggj (Or
d
95 = ,l, Zj:l g?aj)-

Case 3. There exists m € G, such that A > A3,

Since A € A3, there exists at least one ¢ >m such that A} > \. If f\ =

d d ) .
> i1 fa; (or fa= %Z].ZI f3,), set jo =min{j : ran fz, Nranz} # @, for some

d 1 d
>k} Set g:;\ = Ej:jo 9?3]. (or gi ~p Zj:jo gg_i)'
Case 4. There exists m € G, such that A= X3, and 13, > A3 .
If fy is an a-average, f) = %Z?:l [3,, set jo =min{j : ran fg, Nranz} # &

for some ¢ >m}. Then jo > 1, otherwise 23, would have been covered for

the first time in a previous step. By Lemma 4.8, there exists g € W such
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that ran g C ran f) Nranw,, and %g(wm) > 0f\(23,) —3max{c; : i € F},,}. Set
3_1 1\~d 3
95 =59+ 5 Ljmjo 95,

If fy is a Schreier functional, f) = Z?Zl fs,, set again jo = min{j : ran fz, N
ranzj # @ for some ¢ > m} and as before jo > 1. By Lemma 4.8, there
exists ¢ € W such that rang C ran(}_;_; fs;) N ranw, and g(w.) >
03 ;0 fo;(2,) —2max{c; : i € F}. Since jo > 1, it follows that s(fs, ) >
minsupp z,,. By Lemma 3.3 and assumption (ii) of the lemma we are proving,
we conclude the following.

185, (z;ﬁ;) < +2max{c¢; : i € Fp,}

min supp 2z,

1 )
— 42, <=
min supp 2zm, 4

Set g3 = %g + Z?Ijo 9?3_7» Then gx(wp,) > %f,\(zf’n) — 20,
This ends induction. Set g® = g2,. Then:

*(wpm) > gf(zf;l) —20,,, forallked.

Lifting the restriction that for any m € G, supp f N supp z,, is not a sin-
gleton, in the general case we conclude that g*(w,,) > & f(23,) — 36,,, for all
meGd. O

LEMMA 4.11. Let {2 }mens {Umtmen be normalized block sequences in
X[, both generating {7 spreading models, with a lower constant 0 >0, such
that Tm < Ym1 ond Ym < Tmy1 for all m € N Let {F,,}men be successive
subsets of the naturals, {c;};cn be non-negative reals and {m, }men, {0m tmen
be positive reals satisfying the following:

(i) Frn €8, and zy, = ZieFm CiTi, Wy = ZiGFm ciy; are both (n,e,,) s.c.c.
for all m e N.

(ii) maxsupp 2, ( L

min supp Zm 41

+6em11) < 5”4“ , for all m € N.

Let also f € W, with a tree analysis { fx}rea and z2, be the middle part of zp,
with respect to {fx}rea, for all m € N. Then there exists g € W, such that

G (wp) > gf(zfn) — 50, forallmeN.

Proof. Let f € W. As usually, assume that f(e;) >0, for all j € N, that
supp f C U, e SUPP 2 and that €} (2,,) > 0,€j(wm) >0 for all j,k € N. Set
G={meN: supp f Nsuppx,, # J}.

Assume again that for any m € G, supp f N supp 2z, is not a singleton.
Otherwise there exists f’ € W that satisfies this condition for G’ = {m e N:
supp f' Nsupp zm # 2} and f'(zm) > f(2m) — €m, for all m e N.
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Let {fx}aea be a tree analysis of f. Denote by 22, the middle part of z,,
and A2, the node of A that cover z2, for the first time, for all m € G, all with
respect to {fa}rea-

Set

Ay ={X € A: there exists m € G such that 22 #0and \ < )\?n}

For every A\ € Ay, we will inductively construct gi € W such that:
(i) g3 (wm) > EF1(22,) — 46, for all m € G.
(ii) rang3 Cran f.
(iii) If f) is an a-average, then so is g5 and s(g3) = s(fx).

By Lemma 4.7, it follows that whenever A € Ay such that fy Nranz2,, for
some m, then A < A2 . Therefore, although it might be the case that f covers
many 22, for the first time simultaneously, it cannot act on any 22, without
covering it.

The first inductive step it similar to the general one, therefore let A\ € Ay
and assume that the inductive assumption holds for any pu > A.

Case 1. fy is an a-average.

Set

D—{meG: A=A}, E={meG:A<A\l}.

Iff,\——Z] 1 fs;, se
H:{]: ran fg, Nranz., # @ for some m € E}.

As we have noted, ran fz, N ranz2, = &, for any j € H,m € D.

For m € D, since A = A2, there exists at least one j,,, such that ran Is;..
ran Ze @ for any £ # m, in fact there exist j,, < jm, such that ran fﬁjm
ranz2,, for i = 1,2. Therefore, #H < p — #D.

Forme D apply Lemma 4.8 and find g,,, € W, such that rang,, C ran f\ N
ranwy, and lg(wm) > 0fr(25") — 3max{c¢; : i € F},}. We may assume that
rang C ran 22, (to see this restrlct f,\ to the range of 22,).

Set g3 = Il)ZmED Im + 5 Z]EH gﬁj. By the above it follows that g3 € W
and that it satisfies the inductive assumption.

Case 2. fy is a Schreier functional.

D={meG: A=)}, E={meG:A<\}.

If fr =325 /5, set
H-= {j: ran fg, Nran 22, # @ for some mEE}.

Again, ran fg, Nranz2, = &, for any j € H,m € D.

Set m; = min{m : ranf,\ﬁranz # o}, Let meD,m>m1. Set 7, =
min{j : ran fg, Nranz}, # @}. Then ran fz, Cranz?.

By applying Lemma 4.8 find g¢,, € W an a-functional of size s(gn) =
s(fs,,) such that rang, C ranfs, N ranw, and gm > 0fs, (22,) —
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3max{c;: i€ F}. By the fact that {fs, ;l:l is admissible and very fast
growing, just as in case 6 of the proof of Lemma 4.9, it follows that
Om
2 s 8 (2m) <5
: 2 _ 2
If min D > my, set g3 = ZjeHgﬁj + Zmeng
If min D = my, set jo = max{j : ran fg, Nranz? # @}. Just as in case 4 of
the proof of Lemma 4.10, find g,,, € W, such that rangml.C ran(d ;. ].”ﬁ].)
ran W, and g, (Wm,) > 03, fs; (22,,) — 2max{c; : i € Fj,,}. Again we
6’7’% p—
have that fs, (27,,) < % Set g3 = 59m: + 2 jem 95, T Xome D\ fm1} I
The inductive construction is complete. Set g? = g2. Then:

% (wm) > gf(zﬁl) —40,,, for allmeaG.

Lifting the restriction that for any m € G, supp f N supp z,, is not a sin-
gleton, in the general case we conclude that g2(wy,) > & f(22,) — 58,,, for all
meQ@G. O

We are now ready to prove the main result of this section.

Proof of Proposition 4.1. Fix 6 > 0 such that both {z, }men and {ym tmen
generate (7 spreading models with a lower constant . Fix {0m}men a

sequence of positive reals, such that Zﬁzl Om < %. Inductively choose
{Fn}men successive subsets of the naturals and {c¢;};cr, non-negative re-
als, satisfying the following:
(i) Fn €Sn and 2p =) icp Cilti, W = Y ;e Ciyi are both (n,e,,) s.c.c.
for all m € N.
(ii) If we set
M,,, = max{max supp 2, , max supp w, },
N,;, = min{min supp z,, min supp w;, },
then M,, (N — +65m+1) < 5m+1 fOI‘ all m e N.

We will show that for any {r,,}¢_; C R, we have that || Zi:l T Wiy || >
2 ~d

E s ol

Let f € W. As always may assume that 1>, >0,e}(zm) >0, €} (wy,) >
0, f(ej) >0, for all m, j € N. We may also assume that 1> || Y _| rrz,| > 6,
therefore we may assume that 1 > f(zm 1 CmZm) > 0. By Lemmas 4.9, 4.10
and 4.11, there exist g%, g%, g% € W, such that (¢' +¢?+g¢ )(an 1rmwm) >
20 f (3% Ponzm) — 13320 6, > 20% — 0% = 02, Hence | S0, ropwp|| > &
and this means that || anzl T Wy || > ?H Zm:1 TonZm||-

By symmetricity of the arguments it follows that {2, }men also dominates
{wm }men, therefore {z;, }men and {wy, tmen are equivalent. O

COROLLARY 4.12. The space X7} is quasi-minimal.
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Proof. It X,Y are block subspaces of X' , choose {Tr}reny in X and
{yx }ren in Y normalized block sequences both generating ¢} spreading mod-
els. Then obviously one may pass to subsequences satisfying the assumption
of Proposition 4.1, therefore X,Y contain further subspaces that are isomor-
phic. Since any subspace contains an isomorph of a block subspace, the result

follows. g

5. Strictly singular operators

In this section, we provide necessary and sufficient conditions for a bounded
operator defined on a subspace of X' , to be non-strictly singular. The proof
of this is based on results from the previous section and yields the following.
For any Y subspace of X7, and S1,52,...,S,41 strictly singular operators on
Y, the composition 5152 ---S,+1 is a compact operator. We show that the
strictly singular operators on the subspaces of X{', admit non-trivial hyperin-
variant subspaces. Next, we provide a method for constructing strictly singu-
lar operators on subspaces of X{', , which is used to prove the non-separability
of S(Y) and also to build Si,...,S, in S(Y), such that the composition
S1---Sy, is non-compact. We close this section by combining the above re-
sults with the properties of the a-indices to show that {SSy(Y)}}_, is a

strictly increasing family of two sided ideals.

THEOREM 5.1. Let Y be an infinite dimensional closed subspace of X'
and T : Y — X' be a bounded linear operator. Then the following assertions
are equivalent.

(i) T is not strictly singular.
(ii) There exists a sequence {Ty,}men 0 Y generating a ¢y spreading model,
such that {Txm,}men generates a ¢y spreading model.
iii) There exists 1 < k <n and a sequence {T., tmen Y, such that both
€
{2 men and {Txy,}men generate an €5 spreading model but no subse-
quences of {Tm tmen and {Txm }men generate an f’f“ one.

Proof. Assume that there exists 1 <k <n and a sequence {Z,, }men in Y,
such that both {2, }men and {T,, }men generate an ¢4 spreading model but
no subsequences of {Z, }men and {Tx,, }men generate an Z’f“ one.

If {@ tmen converges weakly to a non-zero element z, then {z,, — 2} men,
as well as {Tw,, — T2} men generate £§ spreading models and no subsequences
of them generate an K’f“ one. Therefore, we may assume that they are both
normalized block sequences. Set I,,, =ran(ranz,, UranT'z,,) and passing, if
necessary, to a subsequence of {;, }men, {Im}men are increasing subsets of
the naturals.

Corollary 3.11 yields that ay,—k({Zm }m) > 0, @n—rp({T2m }m) > 0 as well as
ar ({Zm}m) =0, 00 {Txm}m) =0, for &' <n —k.
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Choose {F,, } men increasing subsets of the naturals {c; };cr,, non-negative
reals for all m € N such that the following are satisfied.

(i) ZiGFm c;z; as well as ZieFm ciTx; are (k,ep,) s.c.c. with lim,, &, =0.
(i) F,, € Sk.

Since Fy, € S, and {%y }mens {TTm}men generate 5 spreading models,
we conclude that, if 2, = ZieFm ciz; for all m € N, then {zy,}men, as
well as {Tzp}men are seminormalized. Moreover, since g ({@m}m) =
0, ax ({Txm}tm) =0, for ¥ <n —k, by Proposition 3.5(ii) we conclude that
an—1({zm}m) =0 as well as ap—1({T2m}m) =0. By Proposition 3.6, we
conclude that passing, if necessary to a subsequence, both {z,,}men and
{Tzm }men generate ¢y spreading models.

Assume now that there exists a sequence {x,, }men in Y generating a cg
spreading model, such that {T(x,,) }men generates a ¢ spreading model. This
means that {x,, }men, as well as {Tx,, }men are weakly null, we may there-
fore assume that they are both normalized block sequences. Apply Proposi-
tion 3.14 and find {F,, },nen increasing subsets of the naturals, such that if
Ym = ZiEFm yi, then both {ym}tmen and {Tym tmen generate £} spreading
models. Set I, = ran(rany,, UranTy,,) and passing, if necessary, to a sub-
sequence of {ym tmen, {Im}men are increasing subsets of the naturals. This
means that the assumption of Proposition 4.1 is satisfied. Hence, there ex-
ists a further block sequence {wy, }men Of {Um }men, such that {w.;,}men is
equivalent to {T'w,, }men. We conclude that T is not strictly singular.

Assume now, that T is not strictly singular and let 1 <k <n. Then there
exists Z a subspace of Y, such that T'|z is an isomorphism. Proposition 3.18
yields that any subspace of X' contains a sequence generating an /% spreading

model, such that no subsequence of it generates an E’f“ one, thus so does Z.
Since T|z is an isomorphism, the third assertion must be true. O

The following definition is from [2].

DEFINITION 5.2. Let X be a Banach space and k be a natural number.
We denote by SSi(X) the set of all bounded linear operators T : X — X
satisfying the following: for every Schauder basic sequence {z;}; in X and
€ > 0, there exists F' € S and a vector x in the linear span of {x;};cr such
that [|[Tz| < el|z]|.

PROPOSITION 5.3. Let Y be an infinite dimensional closed subspace offgl,
T:Y —Y be a bounded linear operator and 1 <k <n. The following asser-
tions are equivalent.

(i) The operator T is in SSi(Y).
(ii) For every seminormalized weakly null sequence {x;}; in Y, {Tx;}; does
not admit an (% spreading model.
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Proof. The implication (i) = (ii) follows easily using Remark 1.2 and there-
fore we omit it. Let us assume that (ii) holds, and towards a contradiction
suppose that T is not in SS§;(Y"), that is, there exist a normalized weakly null
sequence {z;}; in Y and e > 0 satisfying the following: for every F € Sy, and
real numbers {¢; };cr we have that

()

1€ F

(21)

E CiTy

i€F

Let us first notice that T is strictly singular. Indeed, if not then there exists
a closed infinite dimensional subspace Z of Y such that T'|z is an isomorphism.
Proposition 3.18 yields that there exists a normalized weakly null sequence
{2;}; in Z generating an (¥ spreading model. Since Tz is an isomorphism,
{Tz;}; generates an (¥ spreading model as well, which contradicts (ii).

We shall now show that {T'z;}; does not admit a ¢ spreading model. As-
sume that this is not the case, pass to a subsequence of {x;}; and relabel so
that {T'z;}; generates a ¢y spreading model. Applying Theorem 5.1 and Corol-
lary 3.12, we may assume that {z; }; generates an ¢; spreading model. This im-
plies that there exists F' € S§; such that ||T(# Yier )|l < €||# Yicr Tills
which contradicts (21).

Corollary 3.12 and Remark 1.2 imply that there exist natural numbers
1<d<m<n and a subsequence of {z;};, again denoted by {z;};, such
that {Tx;}; generates an ¢¢ spreading model and does not admit an ﬂi”l
one, while {x;}; generates an ¢]* spreading model and does not admit an
ETH one. Theorem 5.1 implies that d + 1 < m. Combining the above it
is easy to see that there exists F' € Sy41 and real numbers {¢; }ier such that
I1T(> e ciza)ll <ell D2;cpcizil|. However, (ii) yields that d+1 < k and hence
F € S;; which contradicts (21). O

PROPOSITION 5.4. Let Y be an infinite dimensional closed subspace of
Xy, and {Zmtmen be a seminormalized weakly null sequence in Y. Then
for every 1 <k <mn and S1,52,...,5k: Y =Y strictly singular operators,
{8152+ SpTmtmen has no subsequence generating an ETH*’“ spreading
model. In particular, S1.52--- Sk is in SSpi1-1(Y).

Proof. The second assertion of this proposition evidently follows from the
first one and Proposition 5.3. We prove the first assertion by induction on k.
For k=1and S:Y —Y a strictly singular operator, assume that {Sx,,}m
generates an ¢7 spreading model. The boundedness of S yields that {z,,}m
must also generate an (7 spreading model, while by Corollary 3.15 neither
{@p Y nor {S20n}m admit an £]7! spreading model. Theorem 5.1 yields
that S cannot be strictly singular which is absurd.

Assume now that the statement holds for some 1 < k < n and let
S1y...ySky1: Y = Y be strictly singular operators. If {5152 Skt1Zm}m
generates an K?ik spreading model, then the boundedness of the opera-
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tors yields that {Sg---Ski1%m}m generates an K?_k spreading model as
well. By the inductive assumption it follows that neither of the sequences
{8152 Skt1Zm tms {S2+ - Skt1Zm }m admits an f?“fk spreading model.
Once more, Theorem 5.1 yields that S7 cannot be strictly singular, a contra-
diction which completes the proof. O

PROPOSITION 5.5. Let Y be an infinite dimensional closed subspace
of X', and S1,52,...,Su41: Y =Y be strictly singular operators. Then
51859+ Sp41 s compact.

Proof. Since X7 is reflexive, it is enough to show that for any weakly null
sequence {Z, }men, we have that {5152+ Sp112Zm fmen nOrm converges to
zero. By Proposition 5.4, the sequence {S3 -+« S;+1%m }m does not admit an
{1 spreading model and hence, by Corollary 3.12 it is either norm null or it
has some subsequence generating a cy spreading model.

If it is norm null, then there is nothing to prove. If, on the other hand,
{S2+++Sn41Zm}m generates a ¢y spreading model, then Theorem 5.1 and the
fact that S; is strictly singular yield that {5152 Sp4+1%m }men nOrm con-
verges to zero. O

COROLLARY 5.6. Let Y be an infinite dimensional closed subspace of X7,
and S:Y =Y be a non-zero strictly singular operator. Then S has a non-
trivial closed hyperinvariant subspace.

Proof. Assume first that S”*! = 0. Then it is straightforward to check that
ker S is a non-trivial closed hyperinvariant subspace of S.

Otherwise, if S"*! =0, then Corollary 5.5 yields that S™*! is compact and
non-zero. Since S commutes with S™*!, by Theorem 2.1 from [23], it is enough
to check that for any «, 8 € R such that 8 # 0, we have that (ol —S)?+ 321 #0
(see also [14, Theorem 2]). Since S is strictly singular, it is easy to see that
this condition is satisfied. O

REMARK 5.7. The space X7 is also defined over the complex field, satisfy-
ing all the above and following properties. For the complex X, Corollary 5.6

is an immediate consequence of the classical Lomonosov theorem [16].

REMARK 5.8. A well-known result due to M. Aronszajn and K. T. Smith
[10], asserts that compact operators always admit non-trivial invariant sub-
spaces. As it is shown by C. J. Read in [22], there do exist strictly singular op-
erators on Banach spaces, not admitting any non-trivial invariant subspaces.
Therefore, one may not hope to extend M. Aronszajn’s and K. T. Smith’s
result to strictly singular operators. In [7] a hereditarily indecomposable Ba-
nach space Xk is presented satisfying the scalar plus compact property. It
follows that any operator acting on this space, admits a non-trivial closed
invariant subspace. Moreover, in [8] a reflexive hereditarily indecomposable
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Banach space Xgp is constructed such that any operator acting on a subspace
of Xisp, admits a non-trivial closed invariant subspace.

The next corollary is an immediate consequence of the previous one.

COROLLARY 5.9. Let Y be an infinite dimensional closed subspace of X7’
and T :Y =Y be a linear operator that commutes with a non-zero strictly
singular operator. Then T admits a non-trivial closed invariant subspace.

Before stating the next theorem, we need the following lemma concerning
sequences that do not have a subsequence generating an E’fH spreading model.

LEMMA 5.10. Let 0 <k <n-—1 and {z; }ien C Ba(X[ ) be a block sequence

such that no subsequence of it, generates an (’f“ spreading model. Then
for every m € N there exists L € [N]*® such that for any m < Fy; <--- < F,,
mazimal Sy subsets of L the following holds.

m
Fj
PIDIAES

j=1i€F;

< 2.

Proof. Fix m € N and let G to be the collection of finite sets F' satis-
fying F = U;nzl F;, where m < Fy < --- < Fp,, are maximal Sy sets for all
ie{l,...,m} and

PP
i=1icF,

Assume the conclusion of the lemma is false. Then, by definition, the
collection G is large in the N. A theorem of Nash-Williams [19] gives us an
L € [N] such that G for all M € [L] and initial segment of M isin G (i.e., G is
very large in L).

Therefore for any Fy < -+ < Fy, (assume min L > m) maximal Sy subsets
of L, we have

> 2.

m
F;
PIPIEAEY

i=1icF;

(22) >92.

We show this yields a contradiction. Let (F}); be an increasing sequence
of maximal S, subset of L and define y; =3, P cfj x;. By Proposition 3.7,
an—k—1({xi}i) =0. Since each {y;}; C Ba(X], ) and each y; is a (k, 3/ min F})
s.c.c. Proposition 3.5(2), implies that an,l({yj}j) = 0. By Proposition 3.6,
there is a subsequence of {y}}jen of {y;} en such that for m <k; <--- <k,

we have
m
ij
YD am

J=1i€Fy,
This contradicts (22). O

m

D vk,

J=1

< 2.
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The next proposition is an intermediate step towards showing that for any
Y infinite dimensional closed subspace of X', there exist Sy,...,5,: Y =Y
strictly singular operators, such that S; ---.5,, is non-compact.

PROPOSITION 5.11. Let 0<k<mn—1 and Y be an infinite dimensional
closed subspace of Xi' . Let also {z]}ien be a sequence in X7 generat-

mng a C]S-H

sequence in Y, such that no subsequence of it generates an E’f“ spreading
model. Then passing, if necessary, to subsequences of {x}}ien and {z;}ien,
the map T :Y =Y with Tx =3 {2, x}(x)z; is bounded, strictly singular and
non-compact.

spreading model and {x;};en be a seminormalized weakly null

Proof. Passing, if necessary, to a subsequence, we may assume that {x; };cn
is a normalized block sequence.

It follows from Lemma 5.10 and a standard diagonal argument that there
is an L € [N] such for all me N and m < F; <--- < F};, maximal Sy sets in L

m
F;
PIPIRAE

j=14i€F;

(23) <2

Choose a subsequence (i;);eny of N such that i; > 2773 + 1 for all j € N.
We claim that the map

Tx = Z z} (7)x;
jeL
is the desired one.
Let z €Y, ||z|| =1 and z* € Y*,||z*|| = 1. We may assume that z*(z;) >0
for all j € L. We partition L in the following way: For ¢ =0,1,... set

. 1, 1
Co={jeBy:j>q+1},
Dy={j€By:j<q}

Evidently we have

(24)

> @t (x))] (2)

J€D,

<L
= 5

Decompose C, into successive subsets {Cs 5;0 of L such that the following

are satisfied:

(i) Cq=UiZ, Cy-

(i) CY=Cyn{g+1,...,277'} and for £>0 C} is a maximal Sy set (except
perhaps the last one).
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We claim that p, < 2973, Let I, C {1,...,p,} be an S; set such that #I, >
Pq/2. From (23) and the definition of B, we have

14
DD B ED DD DA A2

telq jeCt tely jeCt

Therefore, p, < 2973,
Now set

Gi={ij:jeCl} fort=0,...,p,
Then it is easy to check the following.
(i) GJ€S; and min GY > 293,
(ii) G4 e Sy for £>0.
E+1

Since p, < 2973, the set G, = 2, Gg € Si41. Since {z} };en generates a ¢
spreading model, we conclude the following:

Z z*(z;)z;, (x)
J€C,

Summing up (24) and (25), we conclude that ||T]| <2372, 2q .
To see that T is non-compact, consider the biorthogonal functionals
{fr}rer of {xfj }ier. Since {fi}rer is a seminormalized sequence we have

IT(fr — f)|| = N2k — 2|

for m # k in L. Therefore {T'(fi)}ren has no norm convergent subsequence.
To prove that S is strictly singular, first notice that for x € Y, ||z|| = 1,
z* e Y™, ||z*|| =1, jo € N, we have that

PIEACERCH

(25)

< 2max{|z*(z;)| : j € Cq}.

Z

=0'j€B, a=q0
1 = (g+1)
Z( S af (@) (a5)| + Zx;(m*(asj))wz s
=0 JjE€Dy j€Cyq q=qo
-1
< (g+2) sup{‘x )|
q=0 q=qo0

Thercfore, ||Tz|| < %529 sup{|z} ()| : j €N} +23°0° (1),

Let Z be an infinite dimensional closed subspace of Y and € > 0. Since Z
does not contain ¢y, it follows that for any § > 0 there exists « € Z, ||z| =1,
such that sup{|z] (z)|: j € N} <4. For appropriate choices of ¢o and 4, it
follows that there exists x € X, ||| =1 such that | Tz|| < e, thus T is strictly

singular.
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The proof of the boundedness is based on the proof of Proposition 3.1 from
[5] and the proof of the strict singularity of T originated from an unpublished
result due to A. Pelczar-Barwacz. O

REMARK 5.12. The proof of the above proposition actually yields, that
for L, M infinite subsets of the naturals, the map Tp, p = Y 0y 7 (T)T (i)
remains bounded, strictly singular and non-compact.

COROLLARY 5.13. For any infinite dimensional closed subspace Y of X7},
the ideal S(Y) of strictly singular operators is non-separable.

Proof. Choose {z]}ien a seminormalized sequence in X7} generating a cf}
spreading model and {z;};ey a seminormalized weakly null sequence in Y’
not having a subsequence generating an (7 spreading model, such that the
map T:Y — Y with Te = >, z¥(z)z; is bounded, strictly singular and
non-compact. By Remark 5.12, for any L infinite subset of the naturals, the
operator 17, : Y — Y with Tra = >, x1(i)*(2)z; is bounded, strictly sin-
gular and non-compact. Therefore S(Y) contains an uncountable e-separated
subset, hence it is non-separable. O

PRrROPOSITION 5.14. Let Y be an infinite dimensional closed subspace of
X7, Then there exist Si1,...,S,:Y =Y strictly singular operators, such
that for 0 < k <n—2 the composition Sp_j -+ Sy, is in SS,_r(Y) and not in
S8Sn—k-1(Y) and Sy --- S, is in SS1(Y) and it is not compact.

Proof. Using Proposition 3.18, Remark 3.13, Proposition 5.11 and Re-
mark 5.12, for k=1,...,n choose {z; };en normalized weakly null sequences
in Y and {xz,i}ieN normalized weakly null sequences in X[} satisfying the
following.

(1) {2k,}ien generates an (’ffl spreading model and no subsequence of it
generates an £} one for k =2,...,n, while {z; ;};cn generates a cg spread-
ing model.

(i) {z};}ien generates a ck spreading model for k=1,...,n.

(iii) There exists e > 0 such that z},, (ki) > e for all i € N and
x;i_i_l’i(xk’j) =0fori#j,k=1,....,n—1.

(iv) The map Sy : Y =Y with Sg(z) =372, 2} ;(x)wk; is bounded strictly
singular and non-compact.

We shall inductively prove the following. For k=0,...,n — 1 there exists
a sequence of seminormalized positive real numbers {cy ; }ien such that

oo
Sk Sn1Snw =Y cpith (T)Tn k.



STRICTLY SINGULAR OPERATORS IN TSIRELSON LIKE SPACES 1211

For k=0, the assumption holds, for ¢p; =1 for all ¢ € N. Assume that it
holds for some k <n — 1. Then, by the inductive assumption

oo oo
* *
Sn—k—r"SnQC:E Th 1 E Chj T (L) Tn—kj | Thi
i=1 j=1

oo
=) kit (@) T ()2
i=1
Set cry1,i = ck’ixfl_k_17i(mn,k,i) for all ¢ € N. Then cgy1, > ¢k i€n—k, for
all 4 € N, therefore {cg+1,;}ien is seminormalized. The induction is complete.
Let now 0 <k <n — 2. Proposition 5.4 yields that S, _---5, is in
S88,,—,(Y). Moreover, if we consider {y;}; to be a seminormalized sequence
in Y, biorthogonal to {xz,i}ieN» then Sy, _ -+ - Sp¥i = Cki%n—k,; and therefore
by (i) {Sn¥:}: generates an £7~"~! spreading model. Proposition 5.3 yields
that Sy, -+ Sy is not in 88, ——1(Y)
The fact that S7---S, is in SS§1(Y) and it is not compact is proved simi-
larly. O

PROPOSITION 5.15. Let Y be an infinite dimensional closed subspace of
X0, Then K(Y) S SS1(Y) S SS2(Y) S+ € 88,(Y) =S8(Y) and for every
1<k<n, 8S;(Y) is a two sided ideal.

Proof. The fact that §S,(Y) = S(Y) follows from Proposition 5.4 while
the fact that (Y) C SS1(Y) S S8S2(Y) € --- €SS, (Y) follows from Propo-
sition 5.14. Fix 1 <k <n. We will show that SS;(Y") is a two sided ideal and
for that it is enough to show that whenever S,T" are in SS;(Y), then so is
S+ T. The other properties of an ideal were verified in [2] and hold for any
space.

We shall show that for every seminormalized weakly null sequence {z;}; in
Y, {(S+T)x;}; does not admit an ¢¥ spreading model and by Proposition 5.3
we will be done.

We may assume that {Sz;};, {Tx;}; and {(S+T)x;}; are all seminormal-
ized block sequences. Since S and T are both in §§;(Y), by Proposition 5.3
neither {Sx;}; nor {Tz;}; admits an ¢} spreading model. Proposition 3.7
yields that oy ({Sz;}:) =0 as well as ayr ({T'z;}4) =0 for ¥’ <n—k+1. It im-
mediately follows from the definition of the a-index that ag/ ({(S+T)xz;};) =0
for k' <n —k+ 1. Once more, Proposition 3.7 yields that {(S + T)x;}; does
not admit an ¢¥ spreading model. O

6. The space X§,
Recall that
So={FCN:n<F and F €S8, for some n € N}.
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The space X, is defined in the natural way allowing S -admissible successive
subsets of N. In this section let W denote the norming set of X . For this

space, we have the following proposition.

PROPOSITION 6.1. The following hold for X .

(i) Every normalized weakly null sequence has a subsequence generating a cg
or t$ spreading model.
(ii) Ewvery non-trivial spreading model of Xy, 1is either isomorphic to ¢y or
4.
(iii) Fvery subspace of Xy, admits a spreading model isometric to co and a
spreading model isometric to 1.
(iv) Let Y be an infinite dimensional subspace of Xy . The following are
equivalent.
(a) T:Y =Y is not a strictly singular.
(b) There is a weakly null sequence {x;}ien such that both {x;}ien and
{Tx;}ien generate a £Y spreading model.
(¢) There is a weakly null sequence {y;}ien such that both {y;}ien and
{Ty;}ien generate a cy spreading model.

Since the proof of (ii) and (iv) are almost identical to the finite order case,
we omit them. Below we include the sketches of the proofs of (i) and (iii).
These are also similar to the corresponding proofs for X', however, there are
some technical differences that are worth pointing out.

Clearly for each 1 < ¢ < w; the space Xﬁ , can be defined using the Schreier
family S¢ where appropriate. See [1] for the definition of S¢. Whenever ¢ is
a countable limit ordinal satisfying n + & = ¢ for all n < &, we claim that the
above proposition holds replacing w with &. If £ is of the form £ =+ (n — 1),
where ( is a limit ordinal satisfying the above condition and n € N, we have
observed that the spreading models in this space behave analogously to those
in X7 . The technical difficulty in including the proofs of these results is
that they require us to introduce the higher order repeated averages and
modify the proofs to accommodate more complicated nature of the Schreier
sets of transfinite order. However, there does not seem to be any non-technical
obstruction to proceeding in this direction.

It is worth pointing out that for countable ordinal numbers ¢ failing the
condition n+ & = £ for all n < &, the space f{g | fails to satisfy (i). For example,
in the space xg{f every seminormalized weakly null sequence admits either cg

as a spreading model, or fg, forw<({<w-2.
The following definition is found in [8, Definition 3.1].

DEFINITION 6.2. Let {xj}ren be a block sequence in Xy
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We write ac,({2;}ien) =0 if for any n € N, any fast growing sequence
{ag}qen of a-averages in W and for any {Fj}ren increasing sequence of sub-
sets of N, such that {ay}qer, is Sp, the following holds: For any subsequence
{Zn Jren of {xk }ren we have limy 3 o (2, )| = 0. If this is not the case,
we write a<,, ({2;}ien) > 0.

Notice that for any limit ordinal £ < w; it is easy to define the correspond-
ing index a<¢ using the sequence or ordinals increasing up to {. The next
proposition is proved in [8, Proposition 3.3]. We note that in contrast with
the finite order case, the argument is not completely trivial; however, for the
sake of brevity we omit it.

PROPOSITION 6.3. Let {xy}ren be a block sequence in Xy, . The following
are equivalent.

(i) acw({or}) =0.

(ii) For any e > 0 there exists jo € N such that for any j > jo there is ank; € N
such that for any k > k;, and for any {aq}gzl Sj-admissible and very fast
growing sequence of a-averages such that s(cag) > jo for q=1,...,d, we

d
have that 3, _, log(zr)| <e.

As in the finite case, we need to use the index to establish existence of the
spreading models.

PROPOSITION 6.4. Let {x;}ien be a normalized block sequence in }ﬁ(“;l.
Then the following hold:
(i) If acw({x;i}) >0, then, by passing to a subsequence, {x;};cn generates a
strong 5 spreading model.
(ii) If acw({x;}) =0 then there is a sequence of {x;} that generates a coy
spreading model.

Proof. First we prove (i). By Definition 6.2, there is an d € N, a very
fast growing sequence of a-averages {a,}qen in W, and sequence {F;}ien of
successive finite subsets such that {ag}eer, is Sq for each ¢ € N and

Z |ovg ()| > e
qEF;

Relabeling so that Fy > d we have that (F});en that for G € S,,, we have
Uicq Fi € S, Pass to a further subsequence such that of {z;};cn such that

max supp < Z aq) < minsupp ;1.
qeF;

Let z7 =3 cp aq. Note that e <|[lzf[| <1. If G € S¢ the above argument
yields that ;. 27 is a Schreier functional. Therefore, ||} .., 27| < 1. This
implies {z}};en generates a cg spreading model, as desired.
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The proof has the same structure as the proof of Proposition 3.6 and so we
will sketch some of the details. Let {¢; };en be a summable sequence of positive
reals such that ; > 3 Epi ¢; for all 7 € N. Using Proposition 6.3, inductively
choose a subsequence, again denoted by {z;};en, such that for igp > 2 and
Jo =maxsupp x;,—1 if {aq}f;zl is Sj,-admissible s(ag) > minsupp ;, then for

all ¢ 2 io
V4
> Jag(a:)] <
q=1

ip MaxX SuUpp Ti,—1
As before, we will show that for any t <iy <--- <, F C{1,...,t} we have
@ (Z xij) <142, x
jEF
whenever « is an a-average and

g (Z xij> <1+3ei . »

jEF

whenever g is Schreier functional. This implies the proposition.

For functionals in W; the above is clearly true. Assume for m > 0 that
above holds for t <1i; < --- < iy and any functional in W,,. In the first case,
let t <iy<---<i and o € Wy,41. In this case, we refer the reader to the
analogous step in the proof of Proposition 3.6.

Let g € W41 such that g = 2321 o be a Schreier functional. We assume
without loss of generality that

(26) rang Nranz;, # < forall j=1,... ¢
Set
¢o = min{g : maxsupp oy > minsupp z;, }.
By definition of S, {aq}g:1 is Smin supp o, -admissible. Also, by definition, for

q>dqo
s(cyg) > maxsupp o, > minsupp &, .
Using (26)
minsupp a; < maxsupp ;, .

These facts together allow us to use or initial assumption on the sequence
{z;}ien (for ig =i2) and conclude that for j > 2

(27) 3 Joglar,)] < 2

= i Mmax supp &;,
Using the fact that i5 > ¢, it follows that

()

< Ej;-

q>q0
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As before, we consider two more cases.

Case 1. Assume that for g < qq, aq(2§.:1 x;;) = 0. In this case apply the
induction for ayg,.

Case 2. Alternatively, assume s(ag,) > minsuppz;,. In this case, since the
singleton ay, is Sp admissible, we can apply our initial assume to conclude
that |ag, (23:1 x;;)| <ej,. Combining previous estimates gives the desired
result. O

The next proposition implies item (iii) of Proposition 6.1.

PROPOSITION 6.5. Let {xy }ren be a normalized block sequence in Xy, and

{Fx} be an sequence of successive subsets of naturals such that limy_, o, #Fy =
0.

(i) If {zk}ren generates a spreading model equivalent to co, Fy, € Sy for k €
N and yp =) ;cp, @i, then a subsequence of {yr}ren generates an £
spreading model.

(ii) Suppose {xp}tren generates an £y spreading model, Fy € S, and Fy
is mazimal S, for each k € N (i.e., mazimal in Sminr,). Let wp =
> jer, CjTi where wy ds (minFk,3/minFy) s.c.c. Then a subsequence
of {wg }ken generates a ¢y spreading model.

Proof. The proof of (i) is identical to that of Proposition 3.14.

To prove (ii) it suffices to show a,,({wy}) = 0. We use Proposition 6.3. Let
£>0. Find jo >2/e. Let j > jo and let k; € N such that 36/ min Fy, <e. Let
k>kE;, {qu}g:1 be Sj-admissible and very fast growing sequence of a-averages
such that s(ay) > jo for ¢=1,...,d. Clearly, j < Fy,. Using Lemma 3.4

1 3
Fi
a E c;ifej || < —+6—/— <e.
q<jeij j)‘ s(1)  minFy 0

d

>

q=1

Problems and questions

There are some questions and problems concerning the structure of X7
and its dual which are open for us.

PrOBLEM 1. (i) Is X', minimal?

(ii) Does any sequence generating a cg spreading model have a subsequence
equivalent to some subsequence of the basis?

If this is true, then Proposition 3.18 yields that X' is sequentially minimal.

In particular, it is open to us whether two subsequences {e; }men,
{ej,, }men of the basis, such that i,, < jmt+1 and jm, < imyq for all m e N,
are equivalent.

Moreover, we do not know which class of Banach spaces in the classification
appearing in [12] the subspaces of X', belong to.
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The next problem concerns the structure of X7'7 and its strictly singular
operators.

PROBLEM 2. (i) Does any block sequence in X]'* contain a subsequence
generating a ¢k, k=1,...,n or {1 spreading model?

(ii) Does any subspace of X]"* admit ck k=1,...,n and /; spreading mod-
els?

The latter is equivalent to the corresponding problem for quotients of X"

0,17
namely if every quotient of X' admits ¢y and % k=1,...,n spreading
models. Note that Corollary 3.20 yields that the same question for quotients
of X' has an affirmative answer.

(iii) Does X7} satisfy that whenever Sy,...,Sp11 : Xy — X771 are strictly
singular, then the composition Sy -+ Sy, 41 is compact, as in X[ 7

A way of answering this affirmatively is to show that any subspace Y of

X7, , contains a further subspace which is complemented in X7, , which seems

0,17

possible.

As it was pointed out to us by Anna Pelczar-Barwacz, since ¢y and ¢; are
both block finitely representable in every subspace of X7 , it follows that X[,
is arbitrarily distortable.
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