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A T(1) THEOREM FOR ENTANGLED MULTILINEAR

DYADIC CALDERÓN–ZYGMUND OPERATORS

VJEKOSLAV KOVAČ AND CHRISTOPH THIELE

Abstract. We prove a boundedness criterion for a class of dyadic
multilinear forms acting on two-dimensional functions. Their

structure is more general than the one of classical multilinear

Calderón–Zygmund operators as several functions can now de-
pend on the same one-dimensional variable. The study of this

class is motivated by examples related to the two-dimensional

bilinear Hilbert transform and to bilinear ergodic averages. This
paper is a sequel to a prior paper by the first author.

1. Introduction

The recent papers [5], [3], [8], [7] initiated the study of multilinear singu-
lar integral operators and forms with certain general modulation symmetries
which force the Schwartz kernels of the operators and forms to be supported
on lower dimensional subspaces. A multilinear variant of the Littlewood–
Paley theory combined with the method of Bellman functions was introduced
in [7] and [8] and applied to proving Lp estimates for such multilinear forms
acting on functions of two variables. The mentioned modulation symmetries
appear when we can write the multilinear form schematically as

Λ(F1, F2, . . .) =

∫
Rn

F1(x1, x2)F2(x1, x3) · · ·(1.1)

×K(x1, . . . , xn)dx1 dx2 dx3 · · · dxn,
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with the exposed feature that F1 and F2 share the variable x1. If, for some
g ∈ L∞(R), we have

F̃1(x, y) := g(x)F1(x, y), F̃2(x, y) := g(x)F2(x, y),

then we have the modulation symmetry

Λ(F̃1, F2, . . .) = Λ(F1, F̃2, . . .).

Note that if two functions share both of their variables, which is tantamount to
a symmetry under arbitrary modulations by two dimensional functions, then
the two functions sharing both variables may be replaced by their pointwise
product in the multilinear form. The multilinear form then trivially reduces
to one of a lower degree. It is precisely the partial one-dimensional modulation
symmetries that cause multilinear forms (1.1) to require techniques outside
the scope of the classical Calderón–Zygmund theory.

Our main result, Theorem 1, establishes a T(1)-type criterion for bound-
edness of a class of multilinear forms of the above type. In this theorem,
we specialize to a bipartite structure elaborated in the next section. This
bipartite structure manifests itself in that the variables fall into two classes,
namely the first entry variables xi and the second entry variables yj . Sharing
of variables can only occur for variables of the same kind, so we rewrite (1.1)
as

Λ(F1, F2, . . .) =

∫
Rm+n

F1(x1, y1)F2(x1, y2) · · ·(1.2)

×K(x1, . . . , xm, y1, . . . , yn)dx1 · · · dxm dy1 · · · dyn.
If m equals n, then the kernel K should be thought of as the usual Coifman-
Meyer or multilinear Calderón–Zygmund kernel in (R2)n, which is singular
along the diagonal (x1, y1) = · · · = (xn, yn). The requirement m = n is not
necessary in our setting and the kernel is then singular along the set

(1.3) x1 = · · ·= xm, y1 = · · ·= yn.

We only discuss the dyadic model of the so-called perfect Calderón–Zygmund
kernels, which are described in the next section. At present, we only have a
partial understanding of the required modifications for extending our results
to the case of continuous Calderón–Zygmund kernels.

The case m = 1 or n = 1 trivializes (see Section 4.2), hence the smallest
non-trivial and motivational example of a form of the type (1.2) writes as
follows:

Λ�(F1, F2, F3) :=

∫
R4

F1(x1, y1)F2(x1, y2)F3(x2, y1)(1.4)

×K(x1, x2, y1, y2)dx1 dx2 dy1 dy2.

The translation invariant case

K(x1, x2, y1, y2) = κ(x1 − x2, y1 − y2)
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has been studied previously. It is a special case of the two-dimensional bi-
linear Hilbert transform introduced in [5]. Estimates in various ranges of Lp

spaces were proven by Bernicot [3] and by the first author [8]. The present
paper particularly generalizes boundedness results for (1.4) beyond transla-
tion invariance, albeit only in the dyadic model of perfect Calderón–Zygmund
kernels.

We view this paper as partial progress towards understanding some very
challenging questions about operators with rather general structure (1.1).
Here we address the bipartite case (1.2) only and it is much simpler than
the general non-bipartite case. A profound example of the latter is the trian-
gular Hilbert transform

(1.5) Λ�(F1, F2, F3) := p.v.

∫
R3

F1(x, y)F2(y, z)F3(z,x)
1

x+ y+ z
dxdy dz.

Compared with (1.4) we have the additional shared variable x2 = y2 in the
notation of (1.4), destroying the bipartite structure. It appears possible that
Λ� satisfies some Lp bounds, for example a bound L3×L3×L3 →C. Proving
such bounds remains out of reach at present. The form Λ� is closely related
to and is stronger than both the one-dimensional bilinear Hilbert transform
and the Carleson operator, which can be realized by choosing the functions
Fi in (1.5) appropriately. The form Λ� is also stronger than instances of
(1.4), as the method of rotation deduces bounds on these instances from the
conjectural bounds on (1.5).

Part of the motivation for (1.5) comes from the desire to understand point-
wise almost everywhere convergence and other questions for ergodic averages
of the form

1

n

n−1∑
k=0

f
(
Skω

)
g
(
T kω

)
, ω ∈Ω,

for two commuting measure preserving transformations S,T : Ω → Ω on a
probability space Ω. A real-analytic approach suggested by Demeter and the
second author in [5] is to first understand estimates for the bilinear operator

T�(F,G)(x, y) := p.v.

∫
R
F (x+ t, y)G(x, y+ t)

dt

t
.

If we dualize with another function H , we obtain∫
R2

(
p.v.

∫
R
F (x+ t, y)G(x, y+ t)

dt

t

)
H(x, y)dxdy.

After the change of variables z =−x− y− t and substitutions

F1(x, y) =H(x, y), F2(y, z) = F (−y− z, y), F3(z,x) =G(x,−x− z),

we are left with the negative of the trilinear form (1.5).
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The connection between Λ� and the paradigmatic objects in time fre-
quency analysis, namely the bilinear Hilbert transform and Carleson’s opera-
tor, suggest to look at time frequency analysis as an approach to Λ�. Time
frequency analysis generally reduces estimation of more difficult operators to
estimation of simpler operators called tree models. In the case of Λ� we ex-
pect these simpler operators to be forms of the type (1.4), albeit with kernels
somewhat more general than those singular along the diagonal (1.3).

This paper, as a sequel to [7], will use the same graph-theoretic setup
as there and occasionally refer to results of [7]. Theorems 1 and 2 below
generalize [7, Theorem 1.1], apart from changes in the exponent range. We
restrict attention to the two-dimensional case, that is to functions Fi of two
real variables, since we do not have phenomena to report in higher dimensions
other than straightforward generalizations. We refer to [8, Section 8] for a brief
outline of some aspects of the higher dimensional theory.

2. Formulation of the results

We write A� B for two non-negative quantities A and B if A≤CB holds
with some constant 0 ≤ C <∞. We will always specify if C is an absolute
constant or if it depends on some parameters. In order to aid reading the text,
functions of one real variable are denoted by lowercase letters, while functions
of several real variables are denoted by uppercase letters. The characteristic
function of a set S ⊆Rn will be denoted by 1S .

A dyadic interval will always mean an interval of the form [2−k�,2−k(�+1))
for k, � ∈ Z. An n-dimensional dyadic cube is any set I1 × I2 × · · ·× In, where
I1, I2, . . . , In are dyadic intervals of the same length. We will write Cn for
the collection of all n-dimensional dyadic cubes. Particularly important are
dyadic squares in R2, obtained by specializing n= 2, and their collection will
be denoted simply by C.

Fix two positive integers m and n. The diagonal in R
m+n is

D :=
{
(x, . . . , x︸ ︷︷ ︸

m

, y, . . . , y︸ ︷︷ ︸
n

) : x, y ∈R
}
.

The definition of perfect dyadic Calderón–Zygmund kernel will be adapted
from [1, Section 6]. It is a locally integrable function K : Rm+n →C satisfying
the bound∣∣K(x1, . . . , xm, y1, . . . , yn)

∣∣(2.1)

�
( ∑

1≤i1<i2≤m

|xi1 − xi2 |+
∑

1≤j1<j2≤n

|yj1 − yj2 |
)2−m−n

for each (x1, . . . , xm, y1, . . . , yn) ∈ R
m+n \D and such that K is constant on

each (m+n)-dimensional dyadic cube I1×· · ·×Im×J1×· · ·×Jn that does not
intersect the diagonal. Finally, we impose the qualitative technical condition
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that K is bounded and compactly supported, but without any quantitative
information on either its L∞-norm, or the size of its support.

Even though (2.1) is a variant of the usual size estimate from multilinear
Calderón–Zygmund theory, see the paper by Grafakos and Torres [6], we em-
phasize that the operators we study in this paper can have more complicated
structure due to the modulation symmetries.

The rest of the setup is similar to the one in [7]. Choose

E ⊆ {1, . . . ,m} × {1, . . . , n}.

We can view E as the set of edges of some simple bipartite undirected graph
G on the sets of vertices {x1, . . . , xm} and {y1, . . . , yn}. More precisely, xi and
yj are connected by an edge in this graph if and only if (i, j) ∈E. Finally, we
define a multilinear form ΛE by

ΛE

(
(Fi,j)(i,j)∈E

)
:=

∫
Rm+n

K(x1, . . . , xm, y1, . . . , yn)(2.2)

×
∏

(i,j)∈E

Fi,j(xi, yj)dx1 · · · dxm dy1 · · · dyn.

Thus, the graph structure determines which functions occur in the above
expression. To avoid degeneracy, we assume that there are no isolated vertices
in G, that is, each vertex is incident to some edge. This forces each integration
variable to appear in at least one of the functions. In all of the following, we
assume that the functions Fi,j are bounded and compactly supported, so that
(2.2) is a priori well-defined.

The |E|-linear form ΛE uniquely determines |E| mutually adjoint (|E|−1)-
linear operators Tu,v , (u, v) ∈E. These are explicitly defined by

Tu,v

(
(Fi,j)(i,j)∈E\{(u,v)}

)
(xu, yv)(2.3)

:=

∫
Rm+n−2

K(x1, . . . , xm, y1, . . . , yn)

×
∏

(i,j)∈E\{(u,v)}
Fi,j(xi, yj)

∏
i �=u

dxi

∏
j �=v

dyj ,

so that

(2.4) ΛE

(
(Fi,j)(i,j)∈E

)
=

∫
R2

Tu,v

(
(Fi,j)(i,j) �=(u,v)

)
Fu,v.

Let us also recall the definition of the dyadic BMO-seminorm,

(2.5) ‖F‖BMO(R2) := sup
Q∈C

(
1

|Q|

∫
Q

∣∣∣∣F − 1

|Q|

∫
Q

F

∣∣∣∣2)1/2

.

We are now ready to state the main result of this paper.
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Theorem 1 (Entangled T(1) theorem).

(a) Suppose that m,n≥ 2. There exist positive integers (di,j)(i,j)∈E , depend-
ing on m,n,E, satisfying

(2.6)
∑

(i,j)∈E

1

di,j
> 1,

such that the following holds. If one has

(2.7)
∣∣ΛE(1Q, . . . ,1Q)

∣∣ � |Q| for each Q ∈ C
and

(2.8)
∥∥Tu,v(1R2 , . . . ,1R2)

∥∥
BMO(R2)

� 1 for each (u, v) ∈E,

then the form ΛE satisfies the estimate

(2.9)
∣∣ΛE

(
(Fi,j)(i,j)∈E

)∣∣ �
∏

(i,j)∈E

‖Fi,j‖Lpi,j (R2)

whenever exponents pi,j are taken from the region determined by∑
(i,j)∈E

1

pi,j
= 1 and di,j < pi,j ≤∞ for each (i, j) ∈E.

In particular, it is guaranteed by (2.6) that estimate (2.9) holds in a non-
empty open range of exponents. The implicit constant in (2.9) depends on
implicit constants from (2.1), (2.7), (2.8), on the graph structure (which
was given by m,n,E), and on the exponents pi,j .

(b) Conversely, if inequality (2.9) holds for some choice of exponents 1 <
pi,j ≤∞ such that

∑
(i,j)∈E p−1

i,j = 1, then conditions (2.7) and (2.8) must

also be satisfied, with constants depending on the constants from (2.1),
(2.9), on the graph, and on the exponents.

For a first insight into concrete choices of di,j the reader is referred to (3.1),
which applies whenever the di,j such defined satisfy (2.6). This happens in
most instances, the few exceptional cases are discussed in Section 4. Generally,
the exponent region increases as |E| gets larger with fixed m,n. The actual
range of estimates is not known even for very simple instances of entangled
forms, such as Λ�, and it is clear that known techniques are insufficient to
address the question of optimal range. Disheartened by this fact, we did not
attempt to make the region of exponents as large as possible within our set
of available techniques.

Condition (2.7) is a version of a weak boundedness property. Usually weak
boundedness properties involve testing with bump functions (see [4]), but
here it is natural to test characteristic functions of dyadic squares. The T(1)-
type conditions in (2.8) are similar to requirements of the classical T(1) the-
orem from [4], but we need to perform |E| verifications, instead of only two.
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One might compare this situation with the T(1) theorem in [2], dealing with
modulation-invariant trilinear forms and having three conditions of that kind.

The emphasis of Theorem 1 is on the qualitative Lp bound for ΛE and
on constant dependencies, since mere continuity of ΛE is automatic by our
assumptions on K. In applications one would apply the theorem to truncated
and localized kernels K.

We can restate Theorem 1 in terms of local T(1) conditions, compare
with [1, Corollary 6.3]. Their continuous analogues are the well-known re-
stricted boundedness conditions from [9]. In the following formulation, we
will also emphasize the generalized modulation invariance we mentioned in
the Introduction. Suppose that we are given two one-dimensional functions
ai,jQ , bi,jQ ∈ L∞(R) for each dyadic square Q= I ×J ∈ C and for each (i, j) ∈E.
We require that

(2.10)
∏

j:(i,j)∈E

ai,jQ = 1I for every i,
∏

i:(i,j)∈E

bi,jQ = 1J for every j,

each ai,jQ vanishes outside I , and each bi,jQ vanishes outside J . To simplify the
notation, we also write

Bi,j
Q := ai,jQ ⊗ bi,jQ ,

where f⊗g denotes the elementary tensor defined by (f⊗g)(x, y) := f(x)g(y).

Theorem 2 (Entangled T(1) theorem, reformulation). For m,n≥ 2 there
exist positive integers (di,j)(i,j)∈E depending on m,n,E, satisfying (2.6), and
such that the following holds. If one can verify

(2.11)
∥∥Tu,v

((
Bi,j

Q

)
(i,j)∈E\{(u,v)}

)
Bu,v

Q

∥∥
L1(R2)

� |Q|

for each Q = I × J and for each (u, v) ∈ E, then estimate (2.9) holds in the
same range of exponents as in Theorem 1. The implicit constant depends on
implicit constants from (2.1), (2.11), on m,n,E, and on the exponents pi,j .

Note that (2.10) can be equivalently written as∏
(i,j)∈E

ai,jQ (xi)b
i,j
Q (yj) =

m∏
i=1

1I(xi)

n∏
j=1

1J(yj).

By the one-dimensional modulation invariance of (2.3), we instantly observe

Tu,v

(
ai,jQ ⊗ bi,jQ

)
(i,j)∈E\{(u,v)}

(
au,vQ ⊗ bu,vQ

)
= Tu,v(1I ⊗ 1J)(i,j)∈E\{(u,v)}(1I ⊗ 1J),

so that condition (2.11) equivalently reads

(2.12)
∥∥Tu,v(1Q, . . . ,1Q)

∥∥
L1(Q)

� |Q|.

In the following sections, we can assume that this reduction is already per-
formed. An interesting consequence of Theorem 2, as it is formulated, is that
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x1 ◦ ◦ y1

x2 ◦ ◦ y2

x1 ◦ ◦ y1

x2 ◦ ◦ y2

Figure 1. Bipartite graphs associated with Λ� and Λ�, respectively.

in verification of the bound (2.9), it is enough to assume that all functions Fi,j

but one are indeed elementary tensors, in which case the entangled structure
disappears. On the other hand, Theorem 2 is not really a T(b)-type theorem,

as the functions Bi,j
Q have to be chosen under quite special constraints.

Let us turn to particular instances of our general result, assuming that
conditions (2.7) and (2.8) are satisfied. If we take m = n = 2 and E =
{(1,1), (1,2), (2,1)}, we obtain (1.4), written as

Λ�(F1,1, F1,2, F2,1)

=

∫
R4

F1,1(x1, y1)F1,2(x1, y2)F2,1(x2, y1)K(x1, x2, y1, y2)dx1 dx2 dy1 dy2.

The corresponding graph is depicted in the left half of Figure 1. By taking a
look at the numbers di,j defined by (3.1), we see that estimate (2.9) holds in

the range p−1
1,1 + p−1

1,2 + p−1
2,1 = 1, p1,1, p1,2, p2,1 > 2. On the other hand, there

is no good dyadic model for (1.5) that would be covered by Theorem 1. The
closest in spirit is the “four-cyclic” quadrilinear form

Λ�(F1,1, F1,2, F2,1, F2,2) =

∫
R4

F1,1(x1, y1)F1,2(x1, y2)F2,1(x2, y1)F2,2(x2, y2)

×K(x1, x2, y1, y2)dx1 dx2 dy1 dy2.

It is determined by m = n = 2 and E = {1,2} × {1,2}; see the right half
of Figure 1. This time we establish the bound (2.9) for p−1

1,1 + p−1
1,2 + p−1

2,1 +

p−1
2,2 = 1, p1,1, p1,2, p2,1, p2,2 > 2.
We also comment that if m = n and each component of G contains only

one edge, then (after relabeling) we can write

ΛE(F1,1, . . . , Fn,n)

=

∫
(R2)n

K(x1, . . . , xn, y1, . . . , yn)

n∏
j=1

Fj,j(xj , yj)dx1 dy1 · · · dxn dyn.

In this case, Theorems 1 and 2 recover dyadic variants of classical results
from multilinear Calderón–Zygmund theory, as it was developed by Grafakos
and Torres [6]. As is seen from (3.1), we reprove estimate (2.9) in this case
whenever

∑n
j=1 p

−1
j,j = 1 and pj,j > 1 for each j.
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As for the organization of the paper, Sections 3 and 4 establish part (a)
of Theorem 1 in all possible cases, while Section 5 proves Theorem 2 and
then reduces part (b) of Theorem 1 to it. In Section 4, we also explain
why we require m,n≥ 2 by giving an appropriate counterexample in the case
min{m,n}= 1.

3. Sufficiency of the testing conditions

The most substantial argument is the proof of part (a) of Theorem 1 and
we present it in this section. By multilinearity of ΛE , we can assume that
functions Fi,j are non-negative.

We begin by introducing quantities that will determine the range of ex-
ponents in which Lp estimates for ΛE will be proven. They are obtained
by splitting G into connected components G1,G2, . . . ,Gk. Vertices of each
component G� of G are conveniently indexed by the sets

X� :=
{
i ∈ {1, . . . ,m} : xi is a vertex in G�

}
and

Y� :=
{
j ∈ {1, . . . , n} : yj is a vertex in G�

}
,

while its edges are determined by E� := E ∩ (X� × Y�). Take a connected
component G� and for each (i, j) ∈E� set

(3.1) di,j :=

{
max{|X�|, |Y�|} if E� =X� ×Y� or max{|X�|, |Y�|} ≤ 2,
max{|X�|, |Y�|}+ 1 otherwise.

Observe that E� =X�×Y� simply means that the component G� is a complete
bipartite graph. We keep this choice throughout this section and it will be
sufficient for “most” graphs G, that is, for all but a single series of exceptional
cases. In Section 4, we will discuss non-triviality of that exponent range and
treat those exceptional instances differently.

3.1. Decomposition into paraproducts. We write hI for the L∞-
normalized Haar wavelet on a dyadic interval I , that is, hI = 1Ileft − 1Iright ,
where Ileft and Iright denote the two halves of I . Consider an orthonormal
basis of L2(Rm+n) consisting of the functions

a
(1)
I1

|I1|1/2
⊗ · · · ⊗

a
(m)
Im

|Im|1/2 ⊗
b
(1)
J1

|J1|1/2
⊗ · · · ⊗

b
(n)
Jn

|Jn|1/2
,

where I1×· · ·× Im×J1×· · ·×Jn ranges over all (m+n)-dimensional dyadic
cubes and each of the letters a(i) and b(j) stands for either the characteristic
function 1 or the Haar function h, excluding the possibility that all of them are
simultaneously 1. Since K is a square integrable function by our qualitative
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assumptions, it can be decomposed in the above basis as

K(x1, . . . , xm, y1, . . . , yn) =
∑

I1×···×Im×J1×···×Jn∈Cm+n

a(1),...,a(m),b(1),...,b(n)∈{1,h}
a(i),b(j) are not all equal 1

νa
(1),...,a(m),b(1),...,b(n)

I1×···×Im×J1×···×Jn

× a
(1)
I1

(x1) · · ·a(m)
Im

(xm)b
(1)
J1

(y1) · · ·b(n)
Jn

(yn),

where

νa
(1),...,a(m),b(1),...,b(n)

I1×···×Im×J1×···×Jn
(3.2)

:=

〈
K,

a
(1)
I1

|I1|
⊗ · · · ⊗

a
(m)
Im

|Im| ⊗
b
(1)
J1

|J1|
⊗ · · · ⊗

b
(n)
Jn

|Jn|

〉
L2(Rm+n)

and 〈·, ·〉L2 denotes the standard inner product. Now we use the perfect can-
cellation condition. Since K is constant on cubes that do not intersect the
diagonal, the corresponding coefficients (3.2) are zero, so only the terms with
I1 = · · ·= Im and J1 = · · ·= Jn remain. This leads to a representation of ΛE

as a finite sum of entangled dyadic paraproducts,

(3.3) ΛE =
∑

a(1),...,a(m),b(1),...,b(n)∈{1,h}
a(i),b(j) are not all equal 1

Θa(1),...,a(m),b(1),...,b(n)

E .

These are defined explicitly by

Θ
(
(Fi,j)(i,j)∈E

)
(3.4)

= Θa(1),...,a(m),b(1),...,b(n)

E

(
(Fi,j)(i,j)∈E

)
:=

∑
I×J∈C

λI×J |I|2−m−n

∫
Rm+n

∏
(i,j)∈E

Fi,j(xi, yj)

× a
(1)
I (x1) · · ·a(m)

I (xm)b
(1)
J (y1) · · ·b(n)

J (yn)dx1 · · · dxm dy1 · · · dyn,
with coefficients

λI×J = λa(1),...,a(m),b(1),...,b(n)

I×J := |I|m+n−2νa
(1),...,a(m),b(1),...,b(n)

I×···×I×J×···×J(3.5)

= |I × J |−1
〈
K,a

(1)
I ⊗ · · · ⊗ a

(m)
I ⊗ b

(1)
J ⊗ · · · ⊗ b

(n)
J

〉
L2(Rm+n)

.

Since we will be working with a fixed choice of a(1), . . . ,a(m),b(1), . . . ,b(n)

most of the time, we omit denoting that dependence in the following text and
simply write Θ and λI×J . From Decomposition (3.3), we see that it is enough
to prove bound (2.9) for each entangled dyadic paraproduct Θ.

Let us introduce some convenient notation. The average value of a function
f on an interval I will be denoted by [f(x)]x∈I , while the same average of the
function fhI will be denoted by 〈f(x)〉x∈I . In other words,[

f(x)
]
x∈I

:=
1

|I|

∫
R
f(x)1I(x)dx,

〈
f(x)

〉
x∈I

:=
1

|I|

∫
R
f(x)hI(x)dx.
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We will be dealing with multi-variable expressions, so it will be important to
clarify in which variable the average is taken. To save space, we allow joining
several averaging procedures into a single bracket notation, with all averaging
variables listed in its subscript. If we set

S :=
{
i ∈ {1, . . . ,m} : a(i) = h

}
, T :=

{
j ∈ {1, . . . , n} : b(j) = h

}
,

Sc :=
{
i ∈ {1, . . . ,m} : a(i) = 1

}
, T c :=

{
j ∈ {1, . . . , n} : b(j) = 1

}
,

then the paraproduct given in (3.4) can be written as

Θ
(
(Fi,j)(i,j)∈E

)
=

∑
I×J∈C

λI×J |I × J |AI×J

(
(Fi,j)(i,j)∈E

)
,

where

AI×J

(
(Fi,j)(i,j)∈E

)
(3.6)

:=

[〈 ∏
(i,j)∈E

Fi,j(xi, yj)

〉
xi∈I for each i∈S
yj∈J for each j∈T

]
xi∈I for each i∈Sc

yj∈J for each j∈T c

.

We continue with some quite standard terminology. Child and parent re-
lations on dyadic squares are defined as usually, so that each square has four
children and exactly one parent. A finite convex tree is any finite collection
T of dyadic squares that is convex with respect to the set inclusion and that
contains the largest square (i.e., a square that covers all others). It is denoted
QT and called the tree-top of T . Leaves of T are then defined to be dyadic
squares that are not members of T but their parents are. The family of leaves
is denoted L(T ). One can define a localized absolute version of each Θ for a
finite convex tree T simply as

ΘT :=
∑
Q∈T

|λQ||Q||AQ|.

By a classical stopping time argument one can reduce the desired Lp esti-
mate for Θ to a “single tree estimate”,

(3.7) ΘT
(
(Fi,j)(i,j)∈E

)
� |QT |

∏
(i,j)∈E

max
Q∈T ∪L(T )

[
F

di,j

i,j

]1/di,j

Q

for each finite convex tree T with tree-top QT . Here [F ]Q denotes the average
value of a function F on a square Q. This reduction can be found in [7,
Section 4], which is tailored exactly to this situation, as all arguments given
there are fairly general. We only remark that [7] does not explicitly mention
any estimates involving L∞(R2), but these are also easily derived. If pi,j =∞
for some (i, j) ∈E, then for those pairs (i, j) we simply control [F

di,j

i,j ]
1/di,j

Q in

(3.7) by ‖Fi,j‖L∞(R2) and apply the stopping time procedure to the remaining
functions.

In order to establish (3.7) we need to distinguish two essentially different
cases of entangled dyadic paraproducts. We call Θ non-cancellative if there
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exists an edge in G that is incident to all vertices from {xi : i ∈ S} ∪ {yj : j ∈
T}. Otherwise we say that Θ is cancellative. In order to clarify this concept,
let us observe that cancellative paraproducts Θ correspond to the cases

(C1) max{|S|, |T |} ≥ 2,
(C2) S = {i}, T = {j}, and (i, j) /∈E,

while non-cancellative paraproducts appear in the cases

(NC1) |S|+ |T |= 1,
(NC2) S = {i}, T = {j}, and (i, j) ∈E.

Recall that S = T = ∅ is not possible because then all a(i) and b(j) would
be 1.

3.2. Cancellative paraproducts. Types (C1) and (C2) will be resolved
by the following proposition.

Proposition 3. Suppose that Θ is a cancellative entangled dyadic para-
product defined by (3.4) with coefficients (3.5).

(a) If condition (2.7) holds, then the coefficients λ= (λQ)Q∈C satisfy

‖λ‖�∞ := sup
Q∈C

|λQ| � 1.

(b) Each localized form ΘT for a finite convex tree T satisfies

ΘT
(
(Fi,j)(i,j)∈E

)
� ‖λ‖�∞ |QT |

∏
(i,j)∈E

max
Q∈T ∪L(T )

[
F

di,j

i,j

]1/di,j

Q
.

Proof. (a) Take an arbitrary dyadic square I × J ∈ C. Let us begin by
substituting Fi,j = 1I ⊗ 1J for each (i, j) ∈ E into (2.2). Since there are no
isolated vertices in G, the characteristic function 1I(xi) is attached to each
variable xi (possibly several times) and the same holds for the variables yj .
Thus, Equation (2.2) becomes

ΛE(1I ⊗ 1J , . . . ,1I ⊗ 1J︸ ︷︷ ︸
|E|

) = 〈K,1I ⊗ · · · ⊗ 1I︸ ︷︷ ︸
m

⊗1J ⊗ · · · ⊗ 1J︸ ︷︷ ︸
n

〉L2(Rm+n),

so inequality (2.7) gives

(3.8)
∣∣〈K,1I ⊗ · · · ⊗ 1I ⊗ 1J ⊗ · · · ⊗ 1J 〉L2(Rm+n)

∣∣ � |I × J |.

We can split each of a
(1)
I , . . . ,a

(m)
I as 1Ileft ±1Iright and each of b

(1)
J , . . . ,b

(n)
J

as 1Jleft
± 1Jright

. That way we can estimate |λI×J | by

|I × J |−1
∑

I(1),...,I(m)∈{Ileft,Iright}
J(1),...,J(n)∈{Jleft,Jright}

∣∣〈K,1I(1) ⊗ · · ·(3.9)

⊗ 1I(m) ⊗ 1J(1) ⊗ · · · ⊗ 1J(n)〉L2(Rm+n)

∣∣.
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The terms with I(1) = · · · = I(m), J (1) = · · · = J (n) can be controlled using
(3.8) applied to each of the four subsquares

Ileft × Jleft, Ileft × Jright, Iright × Jleft, Iright × Jright

to yield

|I × J |−1
∑

I′∈{Ileft,Iright}
J ′∈{Jleft,Jright}

∣∣〈K,1I′ ⊗ · · · ⊗ 1I′ ⊗ 1J ′ ⊗ · · · ⊗ 1J ′〉L2(Rm+n)

∣∣ � 1.

Each of the 2m+n − 4 remaining terms in (3.9) will be estimated individually.
Without loss of generality suppose m≥ 2, I(1) = Ileft, I

(2) = Iright and denote
the left endpoint of Iright by x0. If x1 ∈ Ileft, x2 ∈ Iright, x3, . . . , xm ∈ I ,
y1, . . . , yn ∈ J , then

|x1 − x2|= |x1 − x0|+ |x2 − x0|
|xi − x1|+ |xi − x2| ≥ |xi − x0|, i= 3, . . . ,m

and consequently also∑
1≤i1<i2≤m

|xi1 − xi2 |+
∑

1≤j1<j2≤n

|yj1 − yj2 |

≥
m∑
i=1

|xi − x0|+
n−1∑
j=1

|yj − yn| ≥
(

m∑
i=1

(xi − x0)
2 +

n−1∑
j=1

(yj − yn)
2

)1/2

.

Passing to the spherical coordinates in Rm+n−1 and using the kernel size
estimate (2.1) we obtain

|I × J |−1
∣∣〈K,1Ileft ⊗ 1Iright ⊗ 1I(3) ⊗ · · · ⊗ 1I(m) ⊗ 1J(1) ⊗ · · · ⊗ 1J(n)〉L2(Rm+n)

∣∣
≤ |I|−2

∫
J

(∫
Ball((x0,yn),(m+n)|I|)

∣∣K(x1, . . . , xm,

y1, . . . , yn−1, yn)
∣∣dx1 · · · dxm dy1 · · · dyn−1

)
dyn

≤ |I|−2

∫
J

(∫ (m+n)|I|

0

r2−m−nrm+n−2 dr

)
dyn � 1.

Thus, |λI×J | � 1. The implicit constant certainly depends on m,n and the
constants from (2.1), (2.7), but these dependencies are understood.

(b) We begin by estimating |λQ| ≤ ‖λ‖�∞ , so we can indeed normalize
‖λ‖�∞ = 1 and then abandon the coefficients by estimating them from above
by 1. Since the expression AQ is scale-invariant, one can even re-scale the
tree T to achieve |QT |= 1 and then (using homogeneity) also normalize the
functions by

(3.10) max
Q∈T ∪L(T )

[
F

di,j

i,j

]1/di,j

Q
= 1
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for each (i, j) ∈ E. Let us realize the structural splitting with respect to the
graph components. We denote

A(�)
I×J :=

[〈 ∏
(i,j)∈E�

Fi,j(xi, yj)

〉
xi∈I for each i∈S∩X�
yj∈J for each j∈T∩Y�

]
xi∈I for each i∈Sc∩X�
yj∈J for each j∈T c∩Y�

,

so that AQ =
∏k

�=1A
(�)
Q for each dyadic square Q= I × J .

The paper [7] was devoted exactly to entangled dyadic paraproducts that
fall into class (C1), although this terminology was not used there. In case
(C1) estimate (3.7) is covered precisely by Proposition 3.1 in [7]. However, it
is important to notice that there is even an improvement over our claim: it
establishes (3.7) when di,j is simply replaced with max{|X�|, |Y�|} for every
(i, j) ∈E�, that is, there is no need to add 1 to it. It is worth observing that

quantities [F d
i,j ]

1/d
Q are increasing in d by Jensen’s inequality.

In what follows we show how to handle entangled paraproducts from class
(C2), that is, those that have S = {i0}, T = {j0}, (i0, j0) /∈E. Such i0 and j0
will be fixed for the whole succeeding discussion. We further split into two
subcases.

Case 1. The vertices xi0 and yj0 of G belong to the same component.
Without loss of generality we can assume i0 ∈ X1, j0 ∈ Y1. After Normal-

ization (3.10) and multiple applications of Hölder’s inequality or Lemma 3.2

from [7], we can bound |A(�)
Q | ≤ 1 for each Q ∈ T and � �= 1. This in turn gives

|AQ| ≤ |A(1)
Q |, so we can work with the component G1 only. Compare this

reduction with [7, Section 3.2].

Exploiting the fact (i0, j0) /∈E we can rewrite A(1)
Q as

A(1)
Q =

[〈 ∏
j:(i0,j)∈E1

Fi0,j(xi0 , yj)

〉
xi0∈I

×
〈 ∏

i:(i,j0)∈E1

Fi,j0(xi, yj0)

〉
yj0∈J

∏
(i,j)∈E1

i �=i0,j �=j0

Fi,j(xi, yj)

]
xi∈I for i∈X1\{i0}
yj∈J for j∈Y1\{j0}

and then estimate |A(1)
Q | ≤ 1

2 ÃQ + 1
2 ĀQ, where

ÃQ :=

[〈 ∏
j:(i0,j)∈E1

Fi0,j(xi0 , yj)

〉2

xi0∈I

∏
(i,j)∈E1

i �=i0,j �=j0

Fi,j(xi, yj)

]
xi∈I for i∈X1\{i0}
yj∈J for j∈Y1\{j0}

,

ĀQ :=

[〈 ∏
i:(i,j0)∈E1

Fi,j0(xi, yj0)

〉2

yj0∈J

∏
(i,j)∈E1

i �=i0,j �=j0

Fi,j(xi, yj)

]
xi∈I for i∈X1\{i0}
yj∈J for j∈Y1\{j0}

.



T(1) THEOREM FOR ENTANGLED MULTILINEAR DYADIC C–Z OPERATORS 789

Consider the new entangled paraproducts Θ̃ and Θ̄ with local versions defined
by

Θ̃T :=
∑
Q∈T

|Q|ÃQ and Θ̄T :=
∑
Q∈T

|Q|ĀQ.

Observe that Θ̃ corresponds to the graph obtained from G1 by “doubling”
the vertex xi0 and deleting the vertex yj0 . This way we obtain a (connected
or disconnected) graph with at most max{|X1|+ 1, |Y1| − 1} vertices in each
bipartition. It belongs to the class (C1), so we can invoke [7, Proposition 3.1]
again. Analogously, we proceed with Θ̄T , which leads us to

ΘT
(
(Fi,j)(i,j)∈E

)
≤ 1

2
Θ̃T

(
(Fi,j)(i,j)∈E

)
+

1

2
Θ̄T

(
(Fi,j)(i,j)∈E

)
� 1.

Note that in [7, Proposition 3.1] the thresholds di,j are defined to be
max{|X1|, |Y1|}, but since we apply this proposition to a modified connected
component with component size changed by 1, we only obtain the desired
estimate with the threshold max{|X1|, |Y1|}+ 1 with respect to the original
graph. However, this is all we claimed when max{|X1|, |Y1|} ≥ 3 and the com-
ponent in question is not a complete graph, and thus proves the desired bound
for ΘT in this case.

Under the assumption of case 1 the graph G1 is never complete. It re-
mains to consider the case when G1 satisfies max{|X1|, |Y1|} ≤ 2. After
relabeling if necessary, this implies under the assumption of case 1 that
E1 = {(1,1), (1,2), (2,1)}, S = {2}, T = {2}. This graph was already de-
picted in the left half of Figure 1. Using the Cauchy–Schwarz inequality,

Q= I × J ∈ T , and [F 2
1,1]

1/2
Q ≤ 1,∣∣A(1)

Q

∣∣ = ∣∣[〈F2,1(x2, y1)
〉
x2∈I

〈
F1,2(x1, y2)

〉
y2∈J

F1,1(x1, y1)
]
x1∈I,y1∈J

∣∣
≤

[〈
F2,1(x2, y1)

〉2
x2∈I

〈
F1,2(x1, y2)

〉2
y2∈J

]1/2
x1∈I,y1∈J

×
[
F1,1(x1, y1)

2
]1/2
x1∈I,y1∈J

=
[〈
F2,1(x2, y1)

〉2
x2∈I

]1/2
y1∈J

[〈
F1,2(x1, y2)

〉2
y2∈J

]1/2
x1∈I

×
[
F1,1(x1, y1)

2
]1/2
x1∈I,y1∈J

≤ 1

2

[〈
F2,1(x2, y1)

〉2
x2∈I

]
y1∈J

+
1

2

[〈
F1,2(x1, y2)

〉2
y2∈J

]
x1∈I

.

This time we ended up with paraproducts

Θ̃T :=
∑

I×J∈T
|I × J |

[〈
F2,1(x, y)

〉2
x∈I

]
y∈J

,

Θ̄T :=
∑

I×J∈T
|I × J |

[〈
F1,2(x, y)

〉2
y∈J

]
x∈I

,
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corresponding to two graphs on only three vertices. They are both in the class
(C1), which completes the discussion of case 1.

Case 2. The vertices xi0 and yj0 of G belong to different components.
Without loss of generality, we can assume that i0 ∈ X1 and j0 ∈ Y2. By [7,

Lemma 3.2] again we can estimate

|AQ|=
k∏

�=1

∣∣A(�)
Q

∣∣ ≤ ∣∣A(1)
Q

∣∣∣∣A(2)
Q

∣∣≤ 1

2

(
A(1)

Q

)2
+

1

2

(
A(2)

Q

)2
for each Q ∈ T . This in turn immediately reduces bound (3.7) for ΘT to the
same bound for

Θ̃T :=
∑
Q∈T

|Q|
(
A(1)

Q

)2
and Θ̄T :=

∑
Q∈T

|Q|
(
A(2)

Q

)2
.

Both of these are indeed localized versions of entangled paraproducts falling

into the class (C1). More precisely, Θ̃ corresponds to a graph with two compo-
nents, each being a copy of G1, so Proposition 3.1 from [7] can be applied once
again and it yields (3.7) with all exponents equal to max{|X1|, |Y1|}. Similarly
we deal with Θ̄. Note that we have proved a sharper variant of (3.7) again,
that is, the one when di,j is replaced with max{|X�|, |Y�|} for (i, j) ∈E�. �

3.3. Non-cancellative paraproducts. Now we handle paraproduct types
(NC1) and (NC2).

Proposition 4. Suppose that Θ is a non-cancellative entangled dyadic
paraproduct defined by (3.4) with coefficients (3.5).

(a) If conditions (2.8) hold, then the coefficients λ= (λQ)Q∈C satisfy

‖λ‖bmo := sup
Q0∈C

(
1

|Q0|
∑

Q∈C:Q⊆Q0

|Q||λQ|2
)1/2

� 1.

(b) Each localized form ΘT for a finite convex tree T satisfies

ΘT
(
(Fi,j)(i,j)∈E

)
� ‖λ‖bmo|QT |

∏
(i,j)∈E

max
Q∈T ∪L(T )

[
F

di,j

i,j

]1/di,j

Q
.

Proof. (a) Let us begin by fixing (u, v) ∈ E and computing Tu,v(1R2 , . . . ,
1R2). We achieve this by substituting Fi,j = 1R2 for (i, j) �= (u, v) in
ΛE((Fi,j)(i,j)∈E) and using representation (3.3). In this case,

Θa(1),...,a(m),b(1),...,b(n)

E

(
(Fi,j)(i,j)∈E

)
=

∑
I×J∈C

λa(1),...,a(m),b(1),...,b(n)

I×J |I|2−m−n

×
(∏

i �=u

∫
R
a
(i)
I

)(∏
j �=v

∫
R
b
(j)
J

)∫
R2

Fu,v(x, y)a
(u)
I (x)b

(v)
J (y)dxdy,



T(1) THEOREM FOR ENTANGLED MULTILINEAR DYADIC C–Z OPERATORS 791

which can only be non-zero when S ⊆ {u} and T ⊆ {v}. Let us rather denote
the coefficients by λS,T

I×J , so that

ΛE

(
(Fi,j)(i,j)∈E

)
=

∑
I×J∈C

∫
R2

Fu,v(x, y)
(
λ
∅,{v}
I×J 1I(x)hJ (y)

+ λ
{u},∅
I×J hI(x)1J (y) + λ

{u},{v}
I×J hI(x)hJ (y)

)
dxdy.

Since Fu,v can be chosen arbitrarily, using (2.4) we have obtained

Tu,v(1R2 , . . . ,1R2) =
∑

I×J∈C

(
λ
∅,{v}
I×J 1I ⊗hJ + λ

{u},∅
I×J hI ⊗ 1J + λ

{u},{v}
I×J hI ⊗hJ

)
.

From (2.5), one easily concludes∥∥Tu,v(1R2 , . . . ,1R2)
∥∥
BMO(R2)

(3.11)

= sup
Q0∈C

(
1

|Q0|
∑

Q∈C:Q⊆Q0

|Q|
(∣∣λ∅,{v}

Q

∣∣2
+

∣∣λ{u},∅
Q

∣∣2 + ∣∣λ{u},{v}
Q

∣∣2))1/2

.

Combining condition (2.8) and equality (3.11), we obtain∥∥λ∅,{v}∥∥
bmo

,
∥∥λ{u},∅∥∥

bmo
,
∥∥λ{u},{v}∥∥

bmo
� 1.

It remains to observe that for each non-cancellative paraproduct Θ there exists
(u, v) ∈ E such that S ⊆ {u} and T ⊆ {v}, simply by definition. Therefore,
its coefficients satisfy the desired bound.

(b) Again we normalize to achieve |QT |= 1 and (3.10). Proceed by apply-
ing the Cauchy–Schwarz inequality to get

ΘT ≤
( ∑

Q∈T
|Q||λQ|2

)1/2( ∑
Q∈T

|Q|(AQ)
2

)1/2

.

On the one hand,∑
Q∈T

|Q||λQ|2 ≤
∑

Q∈C:Q⊆QT

|Q||λQ|2 ≤ ‖λ‖2bmo|QT |= ‖λ‖2bmo.

On the other hand,

Θ̃T :=
∑
Q∈T

|Q|(AQ)
2

is an example of a local version of an entangled paraproduct falling into the
class (C1). Its graph is obtained by simply doubling all connected components

of G. From Proposition 3.1 of [7], we get Θ̃T � 1, so ΘT � ‖λ‖bmo, which
completes the proof. �
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Let us comment once again that Propositions 3 and 4 together prove esti-
mate (3.7) for each entangled paraproduct Θ, which in turn has to be com-
bined with a stopping time argument and decomposition (3.3) to establish
estimate (2.9).

4. Discussion of the exponent range and the exceptional cases

The purpose of this section is to ensure that the results of Theorems 1 and
2 are not void for any non-trivial graph G, that is, whenever m,n ≥ 2. We
have already established part (a) of Theorem 1 for “most” of the graphs and
now we have to identify and resolve the several exceptional cases. Begin by
observing that exponents pi,j such that

∑
(i,j)∈E p−1

i,j = 1 and di,j < pi,j <∞
will certainly exist as soon as (2.6) is satisfied.

4.1. Non-emptiness of the range. Each component G� has at least
|X�| + |Y�| − 1 edges, as otherwise it would not be a connected graph. If
max{|X�|, |Y�|} ≤ 2, then the component contributes to the sum in (2.6) with
at least

|X�|+ |Y�| − 1

max{|X�|, |Y�|}
≥ 1,

while if max{|X�|, |Y�|} ≥ 3, then it adds at least

|X�|+ |Y�| − 1

max{|X�|, |Y�|}+ 1
≥ 3

4
.

We conclude that (2.6) surely holds when G has two or more components.
If G is connected, then by m,n≥ 2 we have

m+ n− 1

max{m,n} > 1 and
m+ n− 1

max{m,n}+ 1
= 1+

min{m,n} − 2

max{m,n}+ 1
,

so (2.6) can fail only when min{m,n}= 2 and max{m,n} ≥ 3. Moreover, if
(2.6) is false, then

1≤ |E|
m+ n− 1

=
|E|

max{m,n}+ 1
=

∑
(i,j)∈E

1

di,j
≤ 1,

which gives |E|=m+ n− 1. We see that the number of edges in G is by 1
smaller than the number of vertices, which implies that G is a tree (i.e., it
has no cycles), by a well-known result from graph theory.

Therefore, the choice (3.1) guarantees non-trivial Lp estimates in Theorems
1 and 2 in all but the following exceptional case: min{m,n}= 2, max{m,n} ≥
3, and G is a tree. By symmetry, we suppose m= 2< n and then vertices x1

and x2 must have precisely one common neighbor among the yj ’s, in order for
the graph to stay connected and to avoid cycles. By relabeling the vertices,
we can suppose that there is r ∈ {1, . . . , n}, r ≥ �n+1

2 � ≥ 2 such that

E =
{
(1,1), (1,2), . . . , (1, r), (2, r), . . . , (2, n)

}
.
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For r �= n, we can modify the proof of Proposition 3 to obtain the single tree
estimate with di,j := n for each (i, j) ∈E. The only cancellative paraproducts
that are not covered by [7, Proposition 3.1] are the ones from class (C2).
Without loss of generality, S = {1} and T = {n}. Then we can control the
paraproduct term as

|AQ|=
∣∣∣∣∣
[〈

r∏
j=1

F1,j(x1, yj)

〉
x1∈I

×
〈
F2,n(x2, yn)

〉
yn∈J

n−1∏
j=r

F2,j(x2, yj)

]
x2∈I,y1,...,yn−1∈J

∣∣∣∣∣
≤ 1

2

[〈
r∏

j=1

F1,j(x1, yj)

〉2

x1∈I

n−1∏
j=r

F2,j(x2, yj)

]
x2∈I,y1,...,yn−1∈J

(4.1)

+
1

2

[〈
F2,n(x2, yn)

〉2
yn∈J

n−1∏
j=r

F2,j(x2, yj)

]
x2∈I,yr,...,yn−1∈J

.(4.2)

Note that (4.1) and (4.2) lead to (possibly disconnected) graphs having at
most

max{3, n− 1, n− r+ 2, r+ 1} ≤ n

vertices in each of their bipartition vertex-sets, so [7, Proposition 3.1] can be
applied once again. On the other hand, the proof of Proposition 4, which
handles non-cancellative paraproducts, can be left unchanged. This in turn
establishes (2.9) whenever conditions (2.7) and (2.8) are satisfied.

Finally, the only case we left out is when r = n. An example of such graph
is shown in Figure 2. This time we rather take

(4.3) d1,j := n for j = 1, . . . , n− 1, d1,n := 2n− 2, d2,n := n.

Cancellative paraproducts of type (C1) are again resolved by [7, Proposi-
tion 3.1], even in a slightly larger range. All paraproducts in class (C2) are

◦ y1
x1 ◦

◦ y2
x2 ◦

◦ y3

Figure 2. Example of an exceptional bipartite graph.



794 V. KOVAČ AND C. THIELE

essentially the same, so choose S = {2}, T = {1} and begin by estimating

|AQ|=
∣∣∣∣∣
[〈

F1,1(x1, y1)
〉
y1∈J

〈
F2,n(x2, yn)

〉
x2∈I

n∏
j=2

F1,j(x1, yj)

]
x1∈I,y2,...,yn∈J

∣∣∣∣∣
≤

[〈
F1,1(x1, y1)

〉2
y1∈J

]1/2
x1∈I

[〈
F2,n(x2, yn)

〉2
x2∈I

]1/2
yn∈J

×
[

n∏
j=2

F1,j(x1, yj)
2

]1/2

x1∈I,y2,...,yn∈J

.

From (3.10) and[
n∏

j=2

F1,j(x1, yj)
2

]1/2

x1∈I,y2,...,yn∈J

≤
n∏

j=2

[
F1,j(x1, yj)

2n−2
]1/(2n−2)

x1∈I,yj∈J

we obtain

|AQ| ≤
1

2

[〈
F1,1(x1, y1)

〉2
y1∈J

]
x1∈I

+
1

2

[〈
F2,n(x2, yn)

〉2
x2∈I

]
yn∈J

,

which this time yields the single tree estimate (3.7) with an unusual choice

d̃1,j = 2n − 2 for each 1 ≤ j ≤ n and d̃2,n = 2. Consequently, bound (2.9)

holds for pi,j > d̃i,j . We are going to apply the fiberwise Calderón–Zygmund
decomposition of Bernicot [3] to expand the exponent region so that it con-
tains the one determined by (4.3). This is important because all entangled
paraproducts corresponding to the same multilinear form should satisfy the
same Lp estimate in order for this estimate to hold for the form ΛE itself.

We only give a short comment on Bernicot’s argument, as we apply it in
almost exactly the same way as in [8, Section 5]. By choosing (u, v) = (1, n)
and by duality, the problem becomes to extend estimates∥∥T1,n(F2,n, F1,1, . . . , F1,n−1)

∥∥
Lp(R2)

� ‖F2,n‖Lp2,n (R2)

n−1∏
j=1

‖F1,j‖Lp1,j (R2)

for the operator

T1,n(F2,n, F1,1, . . . , F1,n−1)(x, y)

=
∑

I×J∈C
λI×J |I|−n

(∫
R
F2,n

(
x′, y

)
a
(2)
I

(
x′)dx′

)

×
n−1∏
j=1

(∫
R
F1,j

(
x, y′

)
b
(j)
J

(
y′

)
dy′

)
a
(1)
I (x)b

(n)
J (y)

from the range

1

p2,n
<

1

2
,

1

p1,1
, . . . ,

1

p1,n−1
<

1

2n− 2
,

1

p
=

1

p2,n
+

n−1∑
j=1

1

p1,j
> 1− 1

2n− 2
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to a range that includes

(4.4)
1

p2,n
,

1

p1,1
, . . . ,

1

p1,n−1
<

1

n
,

1

p
=

1

p2,n
+

n−1∑
j=1

1

p1,j
> 1− 1

2n− 2
.

We do that by performing the Calderón–Zygmund decomposition in each fiber
F1,j(x, ·) for j = 1, . . . , n− 1 respectively. In jth step that extends the range

of weak Lp estimates by raising p−1
1,j all the way to 1. The intersection of

the new range with (4.4) lies inside the Banach simplex, so real multilinear
interpolation actually provides strong estimates there. In n − 1 steps we
recover the whole region (4.4).

4.2. A counterexample. Finally, let us show that the degenerate case
m = 1 gives objects that need not be bounded just by assuming all other
conditions of Theorem 1. Since G can have no isolated vertices, there must
be an edge between x1 and each of the vertices yj , so E = {(1,1), . . . , (1, n)}.

If m = n = 1, there can be no open range of estimates, so suppose m =
1< n. The form can be written as

ΛE(F1,1, . . . , F1,n)

=

∫
R

(∫
Rn

K(x1, y1, . . . , yn)

n∏
j=1

F1,j(x1, yj)dy1 · · · dyn

)
dx1.

One can notice that the inner integral has the symmetry of a dyadic one-
dimensional multilinear Calderón–Zygmund form for each fixed x1. Still, we
claim that the two-dimensional conditions (2.7) and (2.8) are not enough
to have any Lp bounds for ΛE . Instead one should impose one-dimensional
testing conditions in each fiber of K.

To present the counterexample, we take the kernel

K(x1, y1, . . . , yn) :=
∑

I×J∈C
λI×J |I|1−nhI(x1)1J (y1) · · ·1J (yn),

where the coefficients λ= (λQ)Q∈C are given by

λI×J :=

{
1 if I = [0,2−k) and J ⊆ [0,1) for some k ∈ {0,1, . . . , r− 1},
0 otherwise

and r is a positive integer. Using only |λI×J | ≤ 1, we get∣∣K(x1, y1, . . . , yn)
∣∣ ≤ ∑

I×J∈C
x1∈I,y1,...,yn∈J

|J |1−n �
(

min
J∈D

y1,...,yn∈J

|J |
)1−n

≤
(

max
1≤j1<j2≤n

|yj1 − yj2 |
)1−n

,



796 V. KOVAČ AND C. THIELE

under conventions min∅ = ∞ and 1
∞ = 0, which confirms the size estimate

(2.1) with m= 1. It is also immediate to verify∣∣ΛE(1Q, . . . ,1Q)
∣∣ = ∣∣∣∣ ∑

Q′∈C:Q′�Q

λQ′
∣∣Q′∣∣(1−n)/2|Q|(n+1)/2

∣∣∣∣ ≤ |Q|( 12 )n−1

1− ( 12 )
n−1 ≤ |Q|

for each Q ∈ C and∥∥T1,j(1R2 , . . . ,1R2)
∥∥
BMO(R2)

=

∥∥∥∥ ∑
I×J∈C

λI×JhI ⊗ 1J

∥∥∥∥
BMO(R2)

= ‖λ‖bmo =

(
r−1∑
k=0

2k
(
2−k

)2)1/2

≤
√
2

for 1≤ j ≤ n. Thus, the conditions of Theorem 1 are fulfilled.
On the other hand, for each j we define

F1,j(x, y) :=

{
( 2�

�(�+1) )
1/n for x ∈ [2−�,2−�+1), y ∈ [0,1), � ∈ {1, . . . , r},

0 otherwise,

and substitute into (2.2) to obtain

ΛE(F1,1, . . . , F1,n)

=

r−1∑
k=0

2k
(
2−k

)1−n(
2−k

)n(
r∑

�=k+2

1

�(�+ 1)
− 1

(k+ 1)(k+ 2)

)

=
r−1∑
k=0

1

k+ 2
− r− 1

r+ 1
− 1 +

1

r+ 2
−→∞ as r→∞.

Since

‖F1,j‖Ln =

(
r∑

�=1

2−� 2�

�(�+ 1)

)1/n

=

(
1− 1

r+ 1

)1/n

≤ 1,

we see that bound (2.9) does not hold when p1,1 = · · ·= p1,n = n. Indeed, the
estimate cannot hold for any choice of the exponents, because symmetry and
interpolation would then recover the above “central point” bound.

5. Necessity of the testing conditions

We begin this section by reducing Theorem 2 to part (a) of Theorem 1.

Proof of Theorem 2. Assume that conditions (2.12) are satisfied. Let r > 0
be large enough so that K is supported in [−r, r]m+n.

Fix (u, v) ∈E and take a square Q= I × J ∈ C. Let us temporarily denote

C(Q) :=
{
Q′ ∈ C :

∣∣Q′∣∣ = |Q|,Q′ intersects [−r, r]× [−r, r]
}
,
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which is obviously a finite collection. We start by decomposing

Tu,v

(
(1R2)(i,j)∈E\{(u,v)}

)
(xu, yv)1Q(xu, yv)

=
∑

Qi,j∈C(Q) for each (i,j)∈E\{(u,v)}
Tu,v

(
(1Qi,j )(i,j)∈E\{(u,v)}

)
(xu, yv)

× 1Q(xu, yv)

=
∑

Qi,j∈C(Q) for each (i,j)∈E\{(u,v)}

∫
Rm+n−2

K(x1, . . . , xm, y1, . . . , yn)

×
∏

(i,j)∈E

1Qi,j (xi, yj)
∏
i �=u

dxi

∏
j �=v

dyj ,

where for convenience we write Qu,v :=Q. Due to the term
∏

(i,j) 1Qi,j (xi, yj)

the above summand can be non-zero only when it is of the form∫
Rm+n−2

K(x1, . . . , xm, y1, . . . , yn)(5.1)

×
m∏
i=1

1I(i)(xi)

n∏
j=1

1J(j)(yj)
∏
i �=u

dxi

∏
j �=v

dyj

for some dyadic intervals I(1), . . . , I(m), J (1), . . . , J (n) of the same length and
such that I(u) × J (v) =Q. Recall that K is constant on all dyadic cubes in
R

m+n that are disjoint from the diagonal D. Thus, the expression in (5.1)
is constant for all (xu, yv) ∈Q, except possibly when I(i) = I for each i and
J (j) = J for each j, in which case (5.1) becomes simply∫

Rm+n−2

K(x1, . . . , xm, y1, . . . , yn)
∏

(i,j)∈E

1Q(xi, yj)
∏
i �=u

dxi

∏
j �=v

dyj

= Tu,v

(
(1Q)(i,j)∈E\{(u,v)}

)
(xu, yv)1Q(xu, yv).

This discussion leads us to

Tu,v(1R2 , . . . ,1R2)(x, y)− 1

|Q|

∫
Q

Tu,v(1R2 , . . . ,1R2)(5.2)

= Tu,v(1Q, . . . ,1Q)(x, y)−
1

|Q|

∫
Q

Tu,v(1Q, . . . ,1Q)

for every (x, y) ∈Q. Combining this equality with conditions (2.12) we obtain

1

|Q|

∫
Q

∣∣∣∣Tu,v(1R2 , . . . ,1R2)− 1

|Q|

∫
Q

Tu,v(1R2 , . . . ,1R2)

∣∣∣∣
≤ 2

|Q|

∫
Q

∣∣Tu,v(1Q, . . . ,1Q)
∣∣ � 1.
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It is well known (as an easy consequence of the John–Nirenberg inequality)
that the quantity

sup
Q∈C

1

|Q|

∫
Q

∣∣∣∣F − 1

|Q|

∫
Q

F

∣∣∣∣
is comparable with ‖F‖BMO(R2), see [1, Section 3]. That way we have estab-
lished condition (2.8).

Verification of condition (2.7) using (2.12) is easy, as for some (u, v) ∈ E
and an arbitrary Q ∈ C,∣∣ΛE(1Q, . . . ,1Q)

∣∣ = ∣∣∣∣∫
R2

Tu,v(1Q, . . . ,1Q)1Q

∣∣∣∣
≤

∥∥Tu,v(1Q, . . . ,1Q)
∥∥
L1(Q)

� |Q|.

Therefore, Theorem 1(a) can be applied and this completes the proof. �

In order to prove part (b) of Theorem 1, it is now enough to reduce its
hypotheses to conditions (2.12), which imply (2.7) and (2.8), as we have just
shown.

Proof of Theorem 1(b). Suppose that estimate (2.9) holds with some
choice of exponents pi,j . Fix (u, v) ∈ E, take Q ∈ C, choose Fi,j = 1Q for
(i, j) ∈E \ {(u, v)}, and leave Fu,v arbitrary. Let p′u,v denote the conjugated
exponent of pu,v . By (2.4) and (2.9),∣∣∣∣∫

R2

Tu,v(1Q, . . . ,1Q)Fu,v

∣∣∣∣
� ‖Fu,v‖Lpu,v

∏
(i,j) �=(u,v)

‖1Q‖Lpi,j = ‖Fu,v‖Lpu,v |Q|1/p′
u,v ,

so duality implies ∥∥Tu,v(1Q, . . . ,1Q)
∥∥
L
p′u,v (Q)

� |Q|1/p′
u,v .

Furthermore, Jensen’s inequality gives

1

|Q|

∫
Q

∣∣Tu,v(1Q, . . . ,1Q)
∣∣ ≤(

1

|Q|

∫
Q

∣∣Tu,v(1Q, . . . ,1Q)
∣∣p′

u,v

)1/p′
u,v

� 1,

which is exactly (2.12). �

Let us conclude with a comment that the short proofs given in this section
are adaptations of classical arguments from [9]. If the perfect cancellation of
K was replaced with the standard Hölder continuity condition, the difference
of the two sides in (5.2) would only be a bounded function, which would still
be enough to follow the reasoning of the corresponding part of the proof.
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