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FLIPPABLE TILINGS OF CONSTANT CURVATURE
SURFACES

FRANÇOIS FILLASTRE AND JEAN-MARC SCHLENKER

Abstract. We call “flippable tilings” of a constant curvature
surface a tiling by “black” and “white” faces, so that each edge

is adjacent to two black and two white faces (one of each on each

side), the black face is forward on the right side and backward

on the left side, and it is possible to “flip” the tiling by push-
ing all black faces forward on the left-hand side and backward

on the right-hand side. Among those tilings, we distinguish the

“symmetric” ones, for which the metric on the surface does not

change under the flip. We provide some existence statements,

and explain how to parameterize the space of those tilings (with

a fixed number of black faces) in different ways. For instance,

one can glue the white faces only, and obtain a metric with cone

singularities which, in the hyperbolic and spherical case, uniquely

determines a symmetric tiling. The proofs are based on the ge-
ometry of polyhedral surfaces in 3-dimensional spaces modeled
either on the sphere or on the anti-de Sitter space.

1. Introduction

We are interested here in tilings of a surface which have a striking property:
there is a simple specified way to re-arrange the tiles so that a new tiling of
a non-singular surface appears. So the objects under study are actually pairs
of tilings of a surface, where one tiling is obtained from the other by a simple
operation (called a “flip” here) and conversely. The definition is given below.

We have several motivations for studying those flippable tilings. One is
their intrinsic geometric and dynamic properties. It is not completely clear,
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at first sight, that those flippable tilings can be “flipped”, or even that there
should be many examples, beyond a few simple ones that can be constructed
by hand. However, the 3-dimensional arguments developed below show that
there are indeed many examples and that the space of all those tilings can
be quite well understood. Another motivation is that those flippable tilings
provide a way to translate 3-dimensional questions (on polyhedral surfaces)
into 2-dimensional statements.

One of our motivation when developing flippable tilings was to investigate
a polyhedral version of earthquakes. Earthquakes are defined on hyperbolic
surfaces endowed with measured laminations. Those earthquakes are then
intimately related to pleated surfaces in the AdS space (see [Mes07], [ABB+07]
and [BS12], [BS09], [BKS11] for recent developments).

There are also analogs of this picture for some special smooth surfaces in
AdS3, in particular maximal surfaces. Earthquakes are then replaced by min-
imal Lagrangian diffeomorphisms, see [AAW00], [KS07], [BS10]. Similar ar-
guments can be used—leading to slightly different results—for constant mean
curvature or constant Gauss curvature surfaces in AdS3 or in 3-dimensional
AdS manifolds.

It is then tempting to investigate what happens for polyhedral surfaces,
rather than pleated or smooth surfaces. This leads naturally to the notion of
flippable tilings as developed here, although the analogy with earthquakes is
only limited, as can be seen in Theorem 1.5.

1.1. Definitions, basic property.

1.1.1. Definitions and first examples.

Definition 1.1. Let (S, g) be a closed (oriented) surface with a constant
curvature metric. A right flippable tiling of (S, g) is a triple T = (Fb, Fw,E),
where

(1) Fb and Fw are two sets of closed convex polygons homeomorphic to disks
in S, called the “black” and “white” faces of T , with disjoint interiors,
which cover S.

(2) E is a set of segments in (S, g), called the edges of the tiling, such that
each edge of any black or white polygon is contained in some e ∈E.

We demand that for each oriented edge e ∈E:

• e is the union of the edges (in the usual sense) of a black and a white face
on its right side, and similarly on its left side,

• the black polygon is forward on the right-hand side of e, and backward on
the left-hand side,

• the lengths of the intersections with e of the two black faces (resp. the two
white faces) are equal.
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Figure 1. A flippable tiling, sometimes found in
bathrooms—left and right versions.

The vertices of the black and white faces are the vertices of the tiling, while
the black (resp. white) polygons are the black (resp. white) faces of the tiling.

A left flippable tiling is defined in the same way, but, for each edge e,
the black polygon is forward on the left-hand side of e and backward on the
right-hand side. See Figure 1.

Note that the definition does not depend on the orientation of the edges:
changing the orientation exchanges both the left and the right side, and the
forward and the backward direction.

We assume that some faces of a flippable tiling on the sphere can be digons
(see the definitions in Section 2.1.1).

Example 1.2. Let us consider two distinct geodesics on the round sphere
S2. They divide the sphere into 4 faces. Paint in black two non-adjacent
faces, and paint in white the other two. We get a flippable tiling with two
edges, and there are two choices for the edges: one leading to a left flippable
tiling and the other to a right flippable tiling.

More generally, consider on S2 a convex polygon P with n edges as well
as its antipodal −P . Let v1, . . . , vn be the vertices of P , so that −v1, . . . ,−vn
are the vertices of −P . For each i ∈ {1, . . . , n}, let ei be the edge of P joining
vi to vi+1, and let −ei be the edge of −P joining −vi to −vi+1. For each i,
draw the half-geodesic starting from vi along ei, and ending at −vi. Then it
is not hard to see that we get a decomposition of the sphere into P , −P and
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digons. The vertices of each digon are a vertex vi of P and its antipodal −vi.
One edge of the digon contains an edge of P and the other contains an edge
of −P . If we paint in black P and P ′, and in white all the digons, then we
get a flippable tiling with n edges. There is another possibility: drawing for
each i the half-geodesic starting from vi along ei−1. One possibility leads to
a left flippable tiling and the other to a right flippable tiling (depending on
the orientation of P ).

Corollary 2.10 will state that the examples above are the “simplest” on the
sphere. But there exist flippable tilings with only one black and/or white face
on higher genus surfaces, as the following example shows.

Example 1.3. Consider a square. Its diagonals divide it in 4 triangles.
Paint in black two non-adjacent triangles. For a suitable choice of the edges,
we obtain a flippable tiling of the torus with two faces, two edges (which
are made of parts of the diagonals) and two vertices. This construction also
provides examples of flippable tiling for surfaces of higher genus.

1.1.2. Flipping a flippable tiling. The terminology used for those tilings is
explained by the following basic definition and statements.

Definition 1.4. Let (S, gr) be a constant curvature closed surface with a
right flippable tiling Tr. If there is a metric gl on S of the same curvature as
gr with a left flippable tiling Tl, such that:

• there is a one-to-one orientation-preserving map φ between the faces of Tr

and the faces of Tl, sending each black (resp. white) face f of Tr to a black
(resp. white) face of Tl isometric to f ,

• there is a one-to-one map ψ between the edges of Tr and the edges of Tl,
• if an edge e of a face f of Tr is adjacent to an edge E of Tr, then the

corresponding edge in φ(f) is adjacent to ψ(E), and conversely,

we say that Tl is obtained by flipping Tr. Similarly, we define the flipping of
a left flippable tiling.

In other terms, the left flippable tiling Tl on (S, gl) has the same com-
binatorics as the right flippable tiling Tr and its faces are isometric to the
corresponding (black or white) faces of Tl, but each edge has been “flipped”
in the sense that on the right side of each edge, the black face, which was
forward on Tr, is backward on Tl, see Figure 2. Note that the hypothesis that
φ is orientation-preserving is relevant since otherwise simply changing the
orientation on S would yield a left flippable tiling with the desired properties.

Theorem S1. Let S2 be the round sphere with a right flippable tiling Tr.
There is a unique left flippable tiling Tl on S2, such that Tl is obtained by
flipping Tr .

Similarly, there is a right flippable tiling obtained by flipping any left flip-
pable tiling, and flipping a tiling T twice yields T .
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Figure 2. The “flip” of an edge.

Theorem H1. Let (S, gr) be a hyperbolic surface with a right flippable tiling
Tr. There is a unique hyperbolic metric gl on S with a left flippable tiling Tl,
such that Tl is obtained by flipping Tr.

Similarly, there is a right flippable tiling obtained by flipping any left flip-
pable tiling, and flipping a tiling T twice yields T .

Those statements are not completely obvious since one has to check that,
after flipping, the faces “match” at the vertices. The proof is in Section 2 for
the spherical case, in Section 3 for the hyperbolic case. In both cases, it is
based on

• a notion of duality between equivariant polyhedral surfaces in a 3-dimen-
sional space, either the 3-dimensional sphere or the 3-dimensional anti-de
Sitter space,

• some key geometric properties shared by S3 and AdS3, basically coming
from the fact that they are isometric to Lie groups with a bi-invariant
metric.

There is an easy way to get a right (resp. left) flippable tiling from a left
(resp. right) flippable tiling T . It suffices to color in white all black faces of T
and to color in black all white faces of T . The flipping obtained in this way
is denoted by T ∗. Obviously (T ∗)∗ = T .

1.1.3. Flipping from a hyperbolic metric to another. Flippable tilings can be
considered as ways to deform from one hyperbolic metric—the metric under-
lying the left tiling—to another one—the metric underlying the right tiling
obtained after tiling. Recall that T is the Teichmüller space of S.
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Theorem 1.5. Let hl, hr ∈ T be two hyperbolic metrics on S. There is a
left flippable tiling Tl on hl such that flipping Tl yields a right flippable tiling
Tr on hr.

The proof can be found in Section 3.5.5. It should be clear from the proof
that Tl is not unique, on the opposite there are many possible choices, and
finding a “simplest” such tiling remains an open question.

1.2. Moduli spaces of flippable tilings. We now consider more globally
the space of flippable tilings, first on the sphere and then on closed hyperbolic
surfaces of a fixed genus g ≥ 2.

Let n ≥ 3, consider a right flippable tiling T with n black faces on S2.
We can associate to T a graph Γ embedded in S2 (defined up to isotopy) as
follows:

• the vertices of Γ correspond to the black faces of T ,
• the faces of Γ (connected components of the complement of Γ in S2) corre-

spond to the white faces of T ,
• the edges of Γ correspond to the edges of T (which bound a black and a

white face of T on each side), so that a vertex of Γ is adjacent to a face of
Γ if and only if the corresponding black and white faces of T are adjacent
to the same edge of T .

We will call Γ the incidence graph of the flippable tiling T .

Definition 1.6. Let n≥ 3. We call T r,1
n the set of right flippable tilings

of S2 with n black faces, considered up to isotopy. If Γ is an embedded graph
in S2 (considered up to isotopy) with n vertices, we call T r,1

n (Γ) the set of
right flippable tilings of S2 with incidence graph Γ.

For each graph Γ there is a natural topology on T r,1
n (Γ), where two tilings

in T r,1
n (Γ) are close if, after applying an isometry of S2, their corresponding

vertices are close. However, there is also a topology on T r,1
n . We consider

that given a flippable tiling t ∈ T r,1
n (Γ) and a sequence of tilings tn ∈ T r,1

n (Γ′),
then (tn) converges to t if, after applying a sequence of isometries of S2, the
union of white (resp. black) faces of tn converges to the union of white (resp.
black) faces of t in the Hausdorff topology.

For instance Γ could be obtained from Γ′ by erasing an edge e between two
faces f, f ′ of Γ′. Then f and f ′ correspond to white faces of tn, for all n ∈N.
In the limit as n→ 0, those faces merge to one white face of t, while the two
black faces of the tn adjacent to the same edge of the flippable tiling “lose”
an edge. In a dual way, Γ could be obtained from Γ′ by collapsing an edge
e, so that its two vertices v, v′ become one. In this case, the two black faces
corresponding to v and v′ merge in the limit flippable tiling.

Theorem S2. With the notations above:
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(1) When Γ is 3-connected, T r,1
n (Γ) is nonempty and homeomorphic to an

open ball of dimension equal to the number of edges of Γ.
(2) T r,1

n , with the topology described above, is homeomorphic to a manifold of
dimension 3n− 6.

Recall that a graph is 3-connected if it cannot be disconnected by removing
at most 2 vertices—for instance, the 1-skeleton of a triangulation of a surface
is 3-connected.

We now turn to hyperbolic surfaces. We consider a surface S of genus
g ≥ 2, and use the notion of incidence graph introduced above for a flippable
tiling.

Definition 1.7. Let n≥ 1. We call T r,−1
S,n the set of right flippable tilings

of a hyperbolic metric on S with n black faces, considered up to isotopy. If
Γ is an embedded graph in S (considered up to isotopy) with n vertices, we

call T r,−1
S,n (Γ) the set of right flippable tilings of a hyperbolic metric on S with

incidence graph Γ.

As in the spherical case, given a graph Γ embedded in S, there is a natural
topology on T r,−1

S,n (Γ), for which two hyperbolic h,h′ on S and two flippable

tilings T and T ′ respectively in (S,h) and in (S,h′), T and T ′ are close if
there is a diffeomorphism u : (S,h)→ (S,h′) with bilipschitz constant close to
1 and which sends each face of T close to the corresponding face of T ′ (in the
Hausdorff topology).

However, still as in the spherical case, there is also a natural topology
on T r,−1

S,n , where two flippable tilings T and T ′ respectively on (S,h) and on

(S,h′) are close if there is a diffeomorphism u : (S,h)→ (S,h′) with bilipschitz
constant close to 1 sending the union of the white (resp. black) faces of T close
to the union of the white (resp. black) faces of T ′ in the Hausdorff topology.
The same phenomena of merging of two white (resp. black) faces can happen
as in the spherical case, as described above.

Theorem H2. With the notations above:

(1) T r,−1
S,n (Γ) is nonempty as soon as the universal cover of Γ is 3-connected.

(2) Under this condition, T r,−1
S,n (Γ) is homeomorphic to the interior of a man-

ifold with boundary of dimension 6g − 6 + e, where g is the genus of S
and e the number of edges of Γ.

(3) With the topology described above, T r,−1
S,n is homeomorphic to a manifold

of dimension 12g+ 3n− 12.
(4) The mapping-class group MCG(S) of S has a canonical properly discon-

tinuous action on T r,−1
S,n compatible with the decomposition as the union

of the T r,−1
S,n (Γ).

Note that it appears likely that T r,−1
S,n (Γ) is always homeomorphic to a

ball. This would follow from an extension to surfaces of higher genus and to
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equivariant polyhedra of a theorem of Steinitz on the topology of the space
of convex polyhedra with given combinatorics in Euclidean 3-space.

1.3. Parameterization with fixed areas of the faces. We now describe
more specific results, on the parameterizations of the space of flippable tilings
for which the area of the black faces are fixed.

1.3.1. On the sphere.

Definition 1.8. For n > 1, let k1, . . . , kn ∈ (0, π) have sum less than 4π,
and be such that for all j ∈ {1, . . . , n},

∑
i �=j ki > kj . We denote by T r,1

n (K),

K = (k1, . . . , kn), the space of right flippable tilings on S2 with n black faces
of area k1, . . . , kn.

Theorem S3. Under the conditions of the previous definition, if n �= 2,
there is a natural parameterization of T r,1

n (K) by the space of configurations
of n distinct points on S2.

1.3.2. Hyperbolic surfaces.

Definition 1.9. Let n≥ 1, let k1, . . . , kn ∈R>0 of sum less than 2π|χ(S)|,
let (S,h) be a hyperbolic surface, and let K = (k1, . . . , kn). We denote by

T r,−1
S,h,n(K) the space of right flippable tilings on (S,h) with n black faces of

area k1, . . . , kn.

To give a satisfactory hyperbolic analog of Theorem S3, we need to con-
sider a special class of flippable tilings. This notion is significant only in the
hyperbolic or the Euclidean settings.

Definition 1.10. A right flippable tiling Tr of a surface (S, gr) is symmet-
ric if the metric gl underlying the left tiling obtained by flipping Tr is isotopic

to gr. We call T r,−1

S,h,n the space of symmetric right flippable tilings of a hy-

perbolic surface (S,h) with n black faces, and its intersection with T r,1
S,h,n(K)

is denoted by T r,−1

S,h,n(K).

Clearly a spherical flippable tiling is always symmetric, since there is only
one spherical metric on S2, up to isometry.

Theorem H3. In the setting of the previous definition, there is a natural

parameterization of T r,−1

S,h,n(K) by the space of configurations of n distinct
points on S.

The proof is based on an analog in the AdS space of a classical Alexandrov
Theorem on polyhedra with given curvature at its vertices, see Section 4.
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1.4. The black and white metrics of a flippable tiling.

1.4.1. Definitions. Consider a flippable tiling of a constant curvature surface
(S, g). Let Fb, F

′
b be two adjacent black faces. Then Fb and F ′

b are adjacent to
an edge e which is also adjacent to two white faces Fw and F ′

w. The definition
of a flippable tiling shows that Fw ∩ e and F ′

w ∩ e have the same length. So
there is a well-defined way to glue Fw to F ′

w along their intersections with e,
isometrically, preserving the orientation of e. Idem for Fb and F ′

b.

Definition 1.11. Let (S, gl) be a closed surface with a constant curvature
metric, and let Tl be a left flippable tiling on (S, gl). The black metric hb of
Tl is a constant curvature metric with cone singularities obtained by gluing
isometrically the black faces of Tl along their common edges. The white metric
hw of Tl is the metric with cone singularities obtained by similarly gluing the
white faces of Tl.

Remark 1.12. If (S, g) is a hyperbolic surface, then hb is a hyperbolic
metric with cone singularities of negative singular curvature (angle larger than
2π). Each cone singularity v of hb is associated to a white face f of Tl, and
the angle excess at v is equal to the area of f .

If (S, g) is a flat surface, then hb is a flat surface (with no cone singularity).
If (S, g) is a spherical surface, then hb is a spherical surface with cone

singularities of positive singular curvature (angle less than 2π). The singular
curvature at a cone singularity is equal to the area of the corresponding white
face of Tl.

1.4.2. Spherical surfaces. In the sphere, flippable tilings are in one-to-one cor-
respondence with spherical metrics with cone singularities of positive singular
curvature.

Theorem S4. Let g be a spherical metric on S2 with n > 2 cone singu-
larities of angle less than 2π. There exists a unique left flippable tiling of S2

which has g as its black metric.

1.4.3. Hyperbolic surfaces. We now consider a closed surface S of negative
Euler characteristic. For those hyperbolic surfaces, the analog of Theorem S4
involves symmetric tilings.

Theorem H4. Let h+ be a hyperbolic metric with cone singularities of
negative singular curvature on a closed surface S. There is a unique symmetric
flippable tiling T+ on a hyperbolic surface such that h+ is the black metric of
T+.

The proof of Theorem H4 can be found in Section 3.7.
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1.5. Flippable tilings and polyhedral surfaces. The results on flippable
tilings presented here are consequences, sometimes very direct, of a corre-
spondence between flippable tilings on the sphere (resp. a hyperbolic surface)
and convex, polyhedral surfaces in the 3-dimensional sphere (resp. convex,
space-like polyhedral surfaces in the 3-dimensional anti-de Sitter space).

To each convex polyhedron P in S3, we can associate a left flippable tiling
T on S2. The black faces of T correspond to the faces of P , while the white
faces of T correspond to the vertices of P , so that the incidence graph of T is
the 1-skeleton of P . More geometrically, the black faces of T are isometric to
the faces of P , while the white faces of T are isometric to the spherical duals
of the links of the vertices of P .

The same relation holds between flippable tilings on a hyperbolic surface
on one hand, and equivariant polyhedral surfaces in AdS3 on the other. Sym-
metric flippable tilings then correspond to Fuchsian polyhedral surfaces. The
results on the black metrics on tilings correspond to statements on the in-
duced metrics on polyhedra, going back to Alexandrov [Ale05] in the spher-
ical case and proved more recently by the first author [Fil07], [Fil11] in the
hyperbolic/AdS case. The results on tilings with black faces of fixed area
correspond to statements on polyhedra with vertices having fixed curvature,
which are proved in Section 4.

1.6. Remarks about Euclidean surfaces. The reader has probably no-
ticed that the results described above concern hyperbolic surfaces and the
sphere, but not flat metrics on the torus. After a first version of the present
paper circulated, it was noticed by François Guéritaud that the analog of
Theorems S1 and H1 is true for these metrics. The proof can be done in an
intrinsic way, and moreover the flip can be described as a continuous path in
the Teichmüller space of the torus [Gué].

Maybe the 3-dimensional spherical or AdS arguments used here is still valid
in this case, considering the space of isometries of the Euclidean plane. We
hope this space will be the subject of further investigations.

2. Spherical polyhedra

2.1. Basics about the sphere S3.

2.1.1. Spherical polyhedra. Let Sn be the unit sphere in R
n+1, endowed with

the usual scalar product 〈· , · 〉.
(1) A (spherical) convex polygon is a compact subset of S2 obtained by a finite

intersection of closed hemispheres, and contained in an open hemisphere of
S2. We suppose moreover that a convex polygon has non-empty interior.

(2) A digon is a spherical polygon is the intersection of two closed hemi-
spheres, having two vertices and two edges of lengths π, making an
angle < π.
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(3) A (spherical) convex polyhedron is a compact subset of S3 obtained as a
finite intersection of half-spaces of the sphere, and contained in an open
hemisphere of S3. We suppose moreover that a convex polyhedron has a
non-empty interior. Faces of a convex polyhedron are convex polygons.

(4) A dihedron satisfies the definition of convex polyhedron except that it has
empty interior. It is a convex polygon p in a totally geodesic plane in S3.
We consider its boundary to be made of two copies of p glued isometrically
along their boundary, so that this boundary is homeomorphic to a sphere.

(5) A hosohedron is the non-empty intersection of a finite number of half-
spaces with only two vertices. The vertices have to be antipodal, and faces
of a hosohedron are digons. A hosohedron is contained in the closure of an
open hemisphere, it is not a convex polyhedron in regard of the definition
above. We also call digon the degenerated hosohedron made of two copies
of the same digon.

Up to a global isometry, we can consider that all the objects defined above
are contained in the (closure of) the same open hemisphere S3

+.
The polar link Lk(x) of a vertex x of a convex polyhedron P is the convex

spherical polygon in TxS
3 given by the outward unit normals of the faces of

P meeting at x. The lengths of the edges of Lk(x) are the exterior dihedral
angles of P at the edges having x as endpoint, and the interior angles of Lk(x)
are π minus the interior angles on the faces of P at x. The definition of polar
link extends to dihedra and hosohedra.

2.1.2. Polar duality. Let x ∈ S3
+. We denote by x∗ the hyperplane orthogonal

to the vector x ∈R
4 for 〈· , · 〉. We also denote by x∗ the totally geodesic surface

intersection between this hyperplane and S3. Conversely, if H is a totally
geodesic surface of S3, we denote by H∗ the unique point of S3

+ orthogonal
as a vector to the hyperplane H (up to an isometry, we can avoid considering
H such that its orthogonal unit vectors belong to the boundary of S3

+).
The polar dual P ∗ of a convex polyhedron P is the convex polyhedron

defined as the intersection of the half-spaces {y | 〈x, y〉 > 0} for each vertex
x of P . Each face of P is contained in the dual x∗ of a vertex x of P .
Equivalently, P ∗ is a convex polyhedron whose vertices are the H∗ for H a
totally geodesic surface containing a face of P . It follows that (P ∗)∗ = P and
that the polar link Lk(x) of a vertex x of P is isometric to the face of P ∗ dual
to x and vice-versa.

The definitions of the polar link and polar dual applied to dihedra and
hosohedra indicate that they are in duality with each other (excepted for
digons which are dual of digons).

2.1.3. A projective model. Up to a global isometry, we can consider S3
+ as the

open subset of S3 made of vectors of R4 with positive first coordinate. By
the central projection which sends e := (1,0,0,0) to the origin, S3

+ is identified
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with an affine model of the projective space P 3(R) (the plane at infinity is e∗).
In this affine model, a spherical convex polyhedron is drawn as an Euclidean
convex polytope, a dihedron is drawn as a convex Euclidean polygon in a
plane, a hosohedron is a convex polyhedral infinite cylinder, and a digon is
the strip between two parallel lines.

2.1.4. Multiplicative structure on the sphere. The following isometry gives a
multiplicative structure on R

4:

(
R

4, 〈· , · 〉
)
→ (M,det), (x1, x2, x3, x4) 	→

(
x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

)
,

where M is the space of matrix
(
α
β

−β
α

)
. Note that the neutral element

is e. It follows that S3 is isometric to SU(2), and that multiplication on the
right or on the left by an element of S3 is an isometry. As the kernel of the
classical homomorphism SU(2) → SO(3) is {− Id,+Id}, P 3(R) is isometric
to SO(3), and then SO(3) acts by isometries on P 3(R) by left and right
multiplication.

Lemma 2.1.

(1) The left multiplication by x sends y∗ to (xy)∗.
(2) If x ∈ e∗, then 〈x, y〉 = −〈x, y−1〉. In particular 〈x, y〉 = 0 if and only

if 〈x, y−1〉= 0.

Proof.

(1) If z ∈ y∗ , then 〈z, y〉 = 0, and the left multiplication is an isometry, so
〈xz,xy〉= 0, that is, the image of z by the left multiplication by x belongs
to (xy)∗.

(2) It is easy to check that x= (x1, x2, x3, x4) ∈ e∗ is equivalent to x1 = 0 and
that if y = (y1, y2, y3, y4) then y−1 = (y1,−y2,−y3,−y4). �

2.2. Flippable tilings on the sphere and convex polyhedra.

2.2.1. The left and right projections of an angle. Let a, b be in S3
+, with a, b, e

and their antipodals mutually distinct. Let A be the angle formed by a∗ and
b∗, with edge E:

A = a∗c ∪ b∗c ∪E

=
{
x ∈ S3 | 〈x,a〉= 0, 〈x, b〉> 0

}
∪
{
x ∈ S3 | 〈x, b〉= 0, 〈x,a〉> 0

}
∪
{
x ∈ S3 | 〈x,a〉= 〈x, b〉= 0

}
.

The left projection of the angle A is the following map:

LA : A \E −→ e∗, x 	−→
{
a−1x if x ∈ a∗c ,
b−1x if x ∈ b∗c .



FLIPPABLE TILINGS OF CONSTANT CURVATURE SURFACES 1225

The right projection of the angle A is defined similarly:

RA : A \E −→ e∗, x 	−→
{
xa−1 if x ∈ a∗c ,
xb−1 if x ∈ b∗c .

In the following, we will identify e∗ with S2: LA and RA have now values in
the sphere S2.

Lemma 2.2.

(1) The half-planes a∗c and b∗c are isometrically mapped by LA to two non-
intersecting open hemispheres of S2 delimited by the great circle El :=
a−1E = b−1E. If x ∈ E then the distance between a−1x and b−1x is the
exterior dihedral angle of A. Moreover, if LA(a

∗
c) is on the left of El and

LA(b
∗
c) is on the right of El, then a−1x is forward and b−1x is backward.

(2) The half-planes a∗c and b∗c are isometrically mapped by RA to two non-
intersecting open hemispheres of S2 delimited by the great circle Er :=
Ea−1 = Eb−1. If x ∈ E then the distance between xa−1 and xb−1 is the
exterior dihedral angle of A. Moreover, if RA(a

∗
c) is on the left of Er and

RA(b
∗
c) is on the right of Er, then b−1x is forward and a−1x is backward.

Proof. We prove the first part of the lemma, the second is proved using
similar arguments. We first check that LA is an injective map. It suffices
to show that LA(a

∗
c) ∩ LA(b

∗
c) = ∅. Suppose that the intersection is non-

empty. Hence, there exists x1 ∈ a∗c and x2 ∈ b∗c such that a−1x1 = b−1x2.
From 〈x1, b〉> 0 it comes 〈b−1x2, a

−1b〉> 0, but b−1x2 ∈ e∗, so by Lemma 2.1
we obtain 〈x2, a〉< 0, that is a contradiction.

Let x ∈E. Lemma 2.1 implies that a−1x ∈ (a−1b)∗ ∩ e∗, b−1x ∈ (b−1a)∗ ∩
e∗, and that these two spaces are equal. By definition, the cosine of the exte-
rior dihedral angle α < π of A is cosα = 〈a, b〉= 〈a−1, b−1〉= 〈a−1x, b−1x〉=
cosdS2(a−1x, b−1x).

It is not hard to see that a−1b is a vector orthogonal to El on the same side
as LA(a

∗
c). It remains to prove that, for x ∈ E, det(b−1x,a−1x,a−1b, e)> 0.

This determinant never vanishes. This comes from the facts that a−1b and e
are orthogonal to El ⊂ e∗, a−1x and b−1x span El, and a−1b is not collinear
to e. Hence, the sign of the determinant is constant, and it can be checked
on examples. �

2.2.2. Convex polyhedra as flippable tilings. Let P be a convex polyhedron
and E an edge of P . The planes containing the faces of P adjacent to E
make an angle A(E). The left projection of P is, for each edge E of P , the
left projection of the angle A(E) restricted to the faces of P adjacent to E.
The right projection of P is defined in a similar way.

The following two propositions are the keystone of your study of flippable
tilings in the spherical case, since they relate flippable tilings to convex poly-
hedra.
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Proposition 2.3. The left (resp. right) projection of a convex polyhedron
P is the set of the white faces of a right (resp. left) flippable tiling of the
sphere. The black faces are isometric to the polar links of the vertices of P .
The 1-skeleton of P is isotopic to the incident graph of the tiling.

Proof. Let us consider the case of the left projection. The case of the right
projection is proved in a similar way. The left projection of the faces of P
adjacent to an edge E gives two convex polygons w1 and w2 of S2, that we
paint in white. From Lemma 2.2, w1 and w2 have an edge on a common
geodesic. Let us consider the part e of this geodesic which contains the edge
of each polygon and which is such that one of them is forward on the left.

Let s be a vertex of P and E1, . . . ,En be (oriented) edges of P having s
as an endpoint. As an element of the edge Ei, the left projection sends s to
two points exti and inti of the segment ei of S

2 (ei is defined as above). exti
is an endpoint of ei and inti belongs to the interior of ei. Similarly, if Ej is
another edge from s adjacent to a face having Ei has an edge, s is sent to
two points extj and intj of ej , and extj = inti or intj = exti. Finally s is sent
by the left projection to n distinct points of S2. The segments between exti
and inti for any i define a polygon p. Lemma 2.2 says that the lengths of the
edges of p are equal to the dihedral angles of P . Moreover, by construction,
any interior angle of p is supplementary to the interior angle of a white face,
which is the angle of a face of P at s. By definition of the polar link, p is
isometric to the polar link of P at s. In particular, it is a convex polygon.
We paint it in black.

If we do the same for all the vertices of P , we get a set of white faces and a
set of black faces on S2. By construction all faces have disjoint interior. The
Gauss–Bonnet formula says exactly that the area of P plus the area of the
polar duals of the vertices of P is 4π, the area of S2. Hence, our white and
black faces cover the whole sphere. The definition of right flippable tiling is
satisfied, and it clearly satisfies the properties stated in the proposition. �

We denote by Tl(P ) (resp. Tr(P )) the left (resp. right) flippable tiling
obtained from P . Notice that if Q is a convex polyhedron isometric to P , then
Tl(Q) is isometric to Tl(P ). In the following, we may write such equivalence
as: if P =Q then Tl(P ) = Tl(Q). It comes from the definitions that

Tl

(
P ∗)= Tr(P )∗; Tr

(
P ∗)= Tl(P )∗.

Remark 2.4. Proposition 2.3 remains true for hosohedra which are not
digons. It is actually also true for dihedra and digons—up to adapting
Lemma 2.2 in the case where a=−b. The flippable tilings obtained are the
ones described in Example 1.2.

2.2.3. Flippable tilings as convex polyhedra. Let Tl be a left flippable tiling
of S2. It is always possible to isometrically embed in S3 the white faces of Tl

adjacent to a black face b, such that the resulting gluing is a convex cone with
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Figure 3. White faces around a black face define a convex cone.

boundary, with polar link at the apex isometric to b, see Figure 3. Moreover,
up to congruence, the resulting cone is unique.

We repeat this procedure for the black faces connected to b, and so on. By
the principle of global continuation of functions on simply connected manifolds
(see, for example, [Jos06, Lemma 1.4.1]), this provides a well defined map from
Tl to S3. This map is clearly continuous, and, as it is clear from the definition
that the incidence graph of a flippable tiling is connected, we obtain a closed
(i.e., compact without boundary) polyhedral surface of S3, called the white
polyhedron of Tl and denoted by Pw(Tl).

Proposition 2.5. The white polyhedron Pw(Tl) of a left flippable tiling
Tl of the sphere S2 is a convex polyhedron (or a dihedron or a hosohedron)
of S3, unique up to a global isometry. The 1-skeleton of Pw(Tl) is isotopic
to the incident graph of Tl. Moreover, a white face of Tl is isometric to its
corresponding face of Pw(Tl) and a black face of Tl is isometric to the polar
link of the corresponding vertex of Pw(Tl).

It will be clear from the proof that if Tl has exactly two black (resp. white)
faces then Pw(Tl) is a hosohedron (resp. a dihedron).

Proof of Proposition 2.5. By construction, P := Pw(Tl) satisfies the prop-
erties stated in the proposition. It remains to check that this polyhedral
surface is convex.

Let us denote by M the white metric of Tl (see Section 1.4.1). Then P
is an isometric polyhedral immersion of M into S3. Let us denote by i this
immersion. Let p be a cone singularity of M and let V be the set of white
faces on M having p as vertex. By definition, i(V ) is a convex cone in S3.
Note that as the metric on Tl is the round metric on S2, the distance between
two conical singularities of M is ≤ π.

Let H be an open hemisphere which contains i(V ) and such that i(p)
belongs to the boundary ∂H (i.e., ∂H is a support plane of i(V )). Suppose
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that the distance between p and another conical singularity p′ belonging to
the closure V of V is π. As the faces of the tiling are supposed to be convex
spherical polygons or digons, this means that p and p′ are two vertices of a
digon. Each edge of the digon is the edge of a white face, and by definition of
the tiling the white faces next to this one have to be digons. Finally the cone
with apex i(p) is a hosohedron and this is actually the whole P .

Now we suppose that i(V ) is contained in H . We will prove that in this
case P \ {i(p)} is contained in H . Suppose it is true. Then there exists an
affine chart of S3 in which P is a locally convex compact polyhedral surface,
and it follows that P is convex [VH52]. Hence, P is a dihedron or a convex
polyhedron, depending if it has empty interior or not. Let us prove that
P \ {i(p)} is contained in H . This is a straightforward adaptation to the
polyhedral case of the argument of [dCW70], which concerns differentiable
surfaces. For convenience, we repeat it.

We denote by π the map from H to the affine chart of S3 defined by H and
by N the connected component of i−1(H) containing V \ {p}. π(i(N)) is a
locally convex subset of the Euclidean space, and as M is compact, π(i(N)) is
complete for the metric induced by the Euclidean metric [dCW70, 2.5]. More-
over, π(i(N)) contains the image of a neighborhood of a conical singularity q
of M different from p (take a conical singularity contained in the boundary of
V ). In the Euclidean space, the image of q is the apex of a truncated convex
cone contained in the image of N . Finally π(i(N)) is unbounded (π sends
i(p) to infinity). By [VH52], π(i(N)) is homeomorphic to a plane, then N
is homeomorphic to a plane. It follows that, as ∂V is homeomorphic to a
circle, its image for π ◦ i separates π(i(N)) into two connected components.
Let us denote by W the bounded one. It is easy to see that if m ∈N \V , then
π(i(m)) ∈W (suppose the converse and look at the image of a segment be-
tween m and p). This implies that no point of ∂H , except i(p), is a limit point
of i(N). As M is connected it follows that P \ {i(p)} is contained in H . �

The two constructions above (from a polyhedron to a flippable tiling and
from a flippable tiling to a polyhedron) are of course inverse one from the
other, for example, for left flippable tilings:

(1) Tl

(
Pw(Tl)

)
= Tl, Pw

(
Tl(P )

)
= P.

The black polyhedron Pb(Tl) of a left flippable tiling Tl is constructed sim-
ilarly, but the faces of Pb(Tl) are isometric to the black faces of Tl, and the
polar links at the vertices of Pb(Tl) are isometric to the white faces of Tl.
The definitions of white and black polyhedron for a right flippable tiling are
straightforward. We have for example:

Pb(Tl) = Pw(Tl)
∗ = Pw

(
T ∗
l

)
.
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2.3. Proof of Theorem S1. Let Tr be a right flippable tiling on the sphere.
The left flippable tiling

T ′
r := Tl

(
Pw(Tr)

)
is obtained by flipping Tr. Similarly, if Tl is a left flippable tiling on the
sphere, the right flippable tiling

T ′
l := Tr

(
Pw(Tl)

)
is obtained by flipping Tl. Moreover, (T ′

r)
′ = Tr due to (1).

2.4. Proof of Theorem S2.

2.4.1. Flippable tilings vs convex polyhedra. Proposition 2.3 and Proposi-
tion 2.5 determine a one-to-one map between flippable tilings on the sphere
S2 and convex polyhedra in S3. Moreover the incidence graph of a flippable
tiling is equal to the 1-skeleton of the corresponding convex polyhedron.

There is a strong relation between on the one hand the topology on the
space of flippable tilings on the sphere (as defined right before Theorem S2)
and on the other hand the natural topology on the space of convex polyhedra
in S3 (the Hausdorff topology on the interior of the polyhedra, considered up
to global isometry).

Lemma 2.6. Let (Tl,n)n∈N be a sequence of left flippable tilings on S2, with
the same number of black faces. This sequence converges to a left flippable
tiling Tl if and only if the sequence of the white polyhedra Pw(Tl,n) converges
to a convex polyhedron P . P is then the white polyhedron of the limit Tl.

In the statement above and in the proof below, P is a spherical convex
polyhedron in a wide sense: it can also be a dihedron or a hosohedron.

Proof of Lemma 2.6. Clearly we can suppose that all the polyhedra
Pw(Tl,n) have the same combinatorics. However the combinatorics of the
limit P might be different.

Suppose that (Pw(Tl,n)) converges to a limit P . For all n, the white faces
of Tl,n correspond to the faces of Pw(Tl,n), and the set of faces of Pw(Tl,n)
converges to the set of faces of P . The black faces of Tl,n correspond to
the polar links of the vertices of Pw(Tl,n), which are the faces of the dual
polyhedron Pw(Tl,n)

∗. However the polar map is continuous [RH93, 2.8] and
thus Pw(Tl,n)

∗ → P ∗, so that the faces of the polyhedra Pw(Tl,n)
∗ converge

to the faces of P ∗. It follows that the flippable tilings Tl,n converge, in the
topology defined before Theorem S2, to a left flippable tiling Tl, with P =
Pw(Tl).

The same argument can be used conversely, for a sequence of flippable
tilings (Tl,n) converging to a limit T . Then both the faces and the dual
faces of the corresponding polyhedra converge, so that the sequence of those
polyhedra has to converge. �
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The same lemma, along with its proof, holds also for flippable tilings on
hyperbolic surfaces, in relation to equivariant polyhedral surfaces in AdS3.

2.4.2. The proof. To prove that T r,1
n (Γ) is non-empty, it is sufficient to show

the existence of a convex polyhedron P ⊂ S3 with 1-skeleton equal to Γ.
However, according to a well-known theorem of Steinitz, any 3-connected
planar graph is the 1-skeleton of a convex polyhedron Q⊂R

3. One can then
consider the image of Q in a projective model of a hemisphere H ⊂ S3, which
is a convex polyhedron in H with the same combinatorics as Q. This proves
that T r,1

n (Γ) is non-empty as soon as Γ is 3-connected.
Under this assumption, and according to Lemma 2.6, the topology of

T r,1
n (Γ) is the same as the topology of the space of convex polyhedra in S3

with 1-skeleton equal to Γ, considered up to global isometries. But the same
argument based on projective models of the hemisphere shows that it is the
same as the topology of the space of convex polyhedra in R

3 with 1-skeleton
equal to Γ, because any convex polyhedron in S3 is contained in a hemisphere
and is therefore the image in the projective model of this hemisphere of a
convex Euclidean polyhedron. Finally it is known that the space of convex
Euclidean polyhedra of given combinatorics is contractible, this is a refine-
ment of the Steinitz theorem, see [RG96, Section 13.3, p. 144]. So T r,1

n (Γ) is
homeomorphic to a ball.

Still by Lemma 2.6, T r,1
n is homeomorphic to the space of convex polyhedra

with n vertices in S3, considered up to global isometry. This space is itself
homeomorphic to a manifold of dimension 3n− 6—the space of n-tuples of
points in convex position in the sphere—and point (2) follows.

2.5. Proof of Theorem S4. Theorem S4 is a direct consequence of the
following famous theorem.

Theorem 2.7 (Alexandov Existence and Uniqueness Theorem, [Ale05]).
Let g be a spherical metric with n > 2 conical singularities of positive curvature
on the sphere S2. Then there exists a convex polyhedron Pg such that the
induced metric on the boundary of Pg is isometric to g. Moreover Pg is
unique up to global isometries.

Let us be more precise. If P is a convex polyhedron, then it is clear that
the black metric of Tr(P ) is the induced metric on the boundary of P ∗, or
equivalently that the black metric of Tr(P )∗ is the induced metric on the
boundary of P .

Now let g and Pg be as in the statement above. Then Tr(Pg)
∗ =: Tl is a

left flippable tiling of the sphere, and its black metric is the induced metric
on Pg , that is g. This proves the existence part of Theorem S4. Moreover
the uniqueness part of Theorem 2.7 implies that Pg = Pb(Tl), that implies the
uniqueness part of Theorem S4.
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Remark 2.8. Theorem 2.7 is false for metrics with two conical singular-
ities. Actually for such metrics the cone points have to be antipodal (see
Theorem 2.9 below), and then they are realized in S3 by hosohedra, but it
is easy to construct two non-congruent hosohedra having the same induced
metric. It follows that for n= 2 the existence part of Theorem S4 is true, but
the uniqueness part is false. The case n= 1 is meaningless as there doest no
exist spherical metric on the sphere with only one conical singularity (Theo-
rem 2.9).

Theorem 2.9 ([Tro89], [Tro93]). Let g be a spherical metric on the sphere
with two conical singularities of positive curvature. Then the two singularities
are antipodal and the curvature of both singularities are equal. Furthermore,
any two such surfaces are isometric if and only if they have the same curva-
ture.

A spherical metric on the sphere cannot have only one conical singularity.

Corollary 2.10. The only examples of flippable tiling on the sphere with
two black faces are the ones described in Example 1.2. Moreover, there does
not exist any flippable tiling on the sphere with only one black face or only
one white face.

Proof. Consider the white metric of a flippable tiling on the sphere with
two black faces. We obtain a spherical metric on the sphere with two conical
singularities of positive curvature. Theorem 2.9 says that the singularities
have to be antipodal, hence the black faces of the tiling have to be antipodal.

�

2.6. Proof of Theorem S3. Let M1
n(K) be the space of spherical metrics

on the sphere with n conical singularities of positive curvature ki (K is as in
Definition 1.8).

There is a map from T r,1
n (K) to M1

n(K) which consists of taking the white
metric. This map is bijective as its inverse is given by (a suitable version)
of Theorem S4. The proof of Theorem S3 follows because by the following
theorem M1

n(K) is parameterized by the space of configurations of n distinct
points on S2.

Theorem 2.11 ([LT92]). Let k = (k1, . . . , kn) ∈ (R+)
n, n > 2, such that∑n

i=1 ki < 4π and
∑

i �=j ki > kj . For each conformal structure on the n-
punctured sphere there exists a unique conformal spherical metric with cone
points of curvature ki.

(The existence part was obtained in [Tro91].) Note that Theorem S3 is
meaningless for n= 1 and false for n= 2 due to Theorem 2.9.
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3. Some AdS geometry

In this section, we recall the definition and some basic properties of the anti-
de Sitter space AdSn, and in particular of AdS3. We point out in particular
those properties reminiscent of those of the 3-dimensional sphere, which are
most relevant for flippable tilings.

3.1. The n-dimensional anti-de Sitter space and its projective mod-
el. The anti-de Sitter (AdS) space can be considered as the Lorentzian analog
of the hyperbolic space. It can be defined as a quadric in R

n−1,2, which is
simply R

n+1 with a symmetric bilinear form of signature (n− 1,2):

〈x, y〉2 = x1y1 + · · ·+ xn−1yn−1 − xnyn − xn+1yn+1,

then

AdSn :=
{
x ∈R

n−1,2 | 〈x,x〉2 =−1
}
,

with the induced metric. Here are some of its key properties.

• AdSn is a Lorentzian space of constant curvature −1,
• it is geodesically complete,
• it is not simply connected, its fundamental group is Z and its universal

cover is denoted by ˜AdSn,
• its totally geodesic space-like hyperplanes are all isometric to the hyperbolic

space Hn−1,
• its time-like geodesics are closed curves of length 2π,
• there is a well-defined notion of “distance” between two points, defined

implicitly by the relation:

coshd(x, y) =−〈x, y〉2.
This distance is real and positive when x and y are connected by a space-like
geodesic, imaginary when x and y are connected by a time-like geodesic.
It is in both cases equal to the length of the geodesic segment connecting
them.

It is sometimes also convenient to consider the quotient of AdSn by the
antipodal map (sending x to −x in the quadric model above), we will simply
denote it by AdSn/Z2 here. In this space, time-like geodesics are closed curves
of length π.

As for Hn, there is a useful projective model of AdSn, obtained by project-
ing in R

n−1,2 from the quadric to any tangent plane in the direction of the
origin. However, this yields a projective model of only “half” of AdSn (as for
the n-dimensional sphere). For instance, the projection on the hyperplane H
of equation xn+1 = 1 is a homeomorphism from the subset of AdSn of points
where xn+1 > 0 to its image, which is the interior of the intersection with
H of the cone of equation 〈x,x〉2 = 0 in R

n−1,2. This intersection is again a
quadric, but now in R

n.
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This model can be considered in the projective n-space RPn, it provides a
projective model of the whole quotient AdSn/Z2 as the interior of a quadric
of signature (n−1,1). Lifting to the double cover of RPn we find a projective
model of the whole space AdSn as the interior of a quadric in Sn.

This projective model naturally endows AdSn with a “boundary at infin-
ity”, topologically Sn−2×S1. This boundary at infinity comes with a confor-
mal Lorentz structure, namely the conformal class of the second fundamental
form of the quadric in R

n (or equivalently RPn, resp. Sn).

3.2. The 3-dimensional space AdS3. As a special case of the n-dimen-
sional case we find the 3-dimensional AdS space which will be of interest to
us in the sequel:

AdS3 :=
{
x ∈R

2,2 | 〈x,x〉2 =−1
}
.

It has some specific features which are not present in the higher-dimensional
case. In some respects AdS3 can be considered as a Lorentz analog of the
3-dimensional sphere.

• AdS3 is isometric to SL(2,R) with its bi-invariant Killing metric. (Simi-
larly, S3 is identified with SU(2).)

• Therefore, it has an isometric action of SL(2,R) × SL(2,R), where the
left factor acts by left multiplication and the right factor acts by right
multiplication. The kernel of this action is reduced to {(I, I), (−I,−I)} and
this identifies the identity component of the isometry group of AdS3 with
SL(2,R)×SL(2R)/Z2. (There is a similar isometric action of O(3)×O(3)
on S3.)

• There is a notion of duality in AdS3 reminiscent of the polar duality in S3.
It associates to each oriented totally geodesic plane in AdS3 a point, and
conversely. The dual of a convex polyhedron is a convex polyhedron, with
the edge lengths of one equal to the exterior dihedral angles of the other.

The decomposition of the isometry group of AdS3 as SL(2,R)×SL(2,R)/
Z2 can also be understood as follows. In the projective model above, AdS3/Z2

is identified with the interior of a quadric Q⊂RP 3. Q is foliated by two fami-
lies of projective lines, which we call Ll and Lr and call the “left” and “right”
families of lines. Each line of each family intersects each line of the other
family at exactly one point, and this provides both Ll and Lr with a projec-
tive structure. The isometries in the identity component of Isom(AdS3/Z2)
permute the lines of Ll and of Lr, and the corresponding action on Ll and Lr

are projective, so they define two elements of PSL(2,R).

3.3. Globally hyperbolic AdS manifolds. We recall in this section some
known facts on globally hyperbolic AdS 3-manifolds, mostly from [Mes07],
which are useful below.

Let S be a closed surface of genus at least 2. We denote by Isom0(AdS3)
the identity component of the isometry group of AdS3.
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An AdS 3-manifold is a Lorentz manifold with a metric locally modelled
on the 3-dimensional AdS space, AdS3. It is globally hyperbolic (GH) if it
contains a closed space-like surface S, and any inextendible time-like curve
interects S at exactly one point. It is globally hyperbolic maximal (GHM) if
it is maximal—for the inclusion—under those conditions.

Globally hyperbolic AdS manifolds are never geodesically complete. How-
ever, a GHM AdS manifold is always the quotient by π1(S) of a convex sub-
set Ω of AdS3. This defines a representation ρ of π1(S) in Isom0(AdS3), the
identity component of the isometry group of AdS3. This identity component
decomposes as PSL(2,R)× PSL(2,R), so ρ decomposes as a pair of repre-
sentations (ρl, ρr) of π1(S) in PSL(2,R). Mess [Mes07], [ABB+07] proved
that those two representations have maximal Euler number, so that they are
holonomy representations of hyperbolic metrics on S.

He also proved the following theorem, which can be construed as an AdS
analog of the Bers Double Uniformization Theorem for quasifuchsian hyper-
bolic manifolds.

Theorem 3.1 (Mess [Mes07]). Given two hyperbolic metrics hl, hr ∈ T on
S, there is a unique globally hyperbolic AdS structure on S × (0,1) such that
ρl (resp. ρr) is the holonomy representation of hl (resp. hr).

We will say that M is Fuchsian if it contains a totally geodesic, closed,
space-like, embedded surface. This happens if and only if the representations
ρl and ρr are conjugate.

Let M is a GHM AdS 3-manifold. Then M contains a smallest non-empty
convex subset C(M), called its convex core. If M is Fuchsian, then C(M)
is the (unique) totally geodesic space-like surface in M . Otherwise, C(M) is
topologically the product of S by an interval. Its boundary is the disjoint
union of two space-like surfaces each homeomorphic to S. Those two surfaces
are pleated surfaces, their induced metric is hyperbolic and they are bent
along a measured lamination.

There are many future convex surfaces (surfaces for which the future is
convex) in the past of C(M), and many past convex surfaces in the future of
C(M). Given a strictly future convex surface Sc ⊂M , we can define the dual
surface (using the duality in AdS3) as the set of points dual to the tangent
planes of Sc, it is a past convex surface, and conversely.

3.4. Equivariant polyhedral surfaces. Consider a globally hyperbolic
AdS 3-manifold M , and a closed, space-like surface Σ in M . Then Σ lifts to
an equivariant surface in the universal cover of M , considered as a subset of
AdS3. We recall here the basic definitions and key facts on those equivariant
surfaces, focussing on the polyhedral surfaces which are relevant below.

3.4.1. Equivariant embeddings. Given a closed polyhedral surface S in an AdS
3-manifold M , one can consider a connected component of the lift of S to the
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universal cover of M . It is a polyhedral surface invariant under the action of
a surface group. This leads to the definition of an equivariant embedding of
a surface in AdS3, as follows.

Definition 3.2. An equivariant polyhedral embedding of S in AdS3 is a
couple (φ,ρ), where:

• φ is a locally convex, space-like polyhedral immersion of S̃ in AdS3,
• ρ : π1(S)→ Isom0(AdS3) is a homomorphism,

satisfying the following natural compatibility condition:

∀x ∈ S̃,∀γ ∈ π1(S), φ(γ · x) = ρ(γ)φ(x).

An equivariant polyhedral surface is a surface of the form φ(S̃), where (φ,ρ)
is an equivariant polyhedral embedding of S in AdS3.

The assumption that φ(S̃) is space-like means that it is made of pieces of
space-like planes, but also that each support plane is space-like. With this
assumption we get the following classical results, see [Mes07], [ABB+07],
[BBZ07] and references therein. The boundary at infinity ∂F of a surface F
of AdS3 is the intersection, in an affine chart, of the closure of the surface
with the boundary at infinity of AdS3.

Lemma 3.3. Let (φ,ρ) be an equivariant polyhedral embedding of S in AdS3.
Then

(1) φ is an embedding,

(2) each time-like geodesic of AdS3 meets φ(S̃) exactly once,

(3) each light-like geodesic of AdS3 meets φ(S̃) at most once,

(4) there exists an affine chart which contains φ(S̃),

(5) and if a light-like geodesic has one of its endpoints on ∂φ(S̃) then the

geodesic does not meet φ(S̃).

A key remark, basically obtained by G. Mess [Mes07], is that the holo-
nomy representation is the “product” of the holonomy representations of two
hyperbolic surfaces.

Proposition 3.4. Let (φ,ρ) be an equivariant polyhedral embedding of S in
AdS3, let ρ= (ρl, ρr) ∈ PSL(2,R)×PSL(2,R). Then ρl and ρr have maximal
Euler number, so that they are the holonomy representations of hyperbolic
metrics on S.

Proof. Consider the polyhedral surface φ(S̃). It has a free and prop-
erly discontinuous cocompact action of ρ(π1(S)). Therefore it follows from

Lemma 3.3 that there is a neighborhood U of φ(S̃) in AdS3 on which ρ(π1(S))
also acts freely and properly discontinuously [BBZ07, 5.22]. The quotient
M = U/ρ(π1(S)) is an AdS 3-manifold which contains a closed space-like sur-

face (namely, φ(S̃)/ρ(π1(S))).
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It follows (see [Mes07], [ABB+07]) that M has an isometric embedding in
a (unique) globally hyperbolic AdS 3-manifold N . Moreover N =Ω/ρ(π1(S)),
where Ω is a maximal convex subset of AdS3 on which ρ(π1(S)) acts properly
discontinuously. Finally, it is shown in [Mes07] that ρ= (ρl, ρr), where ρl and
ρr have maximal Euler number. �

3.4.2. Fuchsian equivariant surfaces. Among the equivariant surfaces, some
are simpler to analyze.

Definition 3.5. An equivariant polyhedral embedding (φ,ρ) of S in AdS3

is Fuchsian if its representation ρ globally fixes a totally geodesic space-like
plane in AdS3. A Fuchsian polyhedral surface is a polyhedral surface of the
form φ(S̃), where (φ,ρ) is a Fuchsian equivariant polyhedral embedding.

Equivalently, (φ,ρ) is Fuchsian if, in the identification of Isom0(AdS3/Z2)
with PSL(2,R)×PSL(2,R), ρ corresponds to a couple (ρl, ρr) ∈ PSL(2,R)×
PSL(2,R) such that ρl is conjugate to ρr.

3.4.3. Equivariant polyhedral surfaces as convex hulls. Let (φ,ρ) be a convex

polyhedral embedding of S. If V is the set of the vertices of φ(S̃), we denote
by ∂CH(V ) the boundary of the convex hull of V (there exists an affine chart

which contains φ(S̃), see Lemma 3.3, hence it is meaningful to speak about
convex hull). Let v1, . . . , vn be a set of representatives of the equivalence
classes for the action of ρ(π1(S)) on V . The embedding is said to have n
fundamental vertices.

Lemma 3.6. An equivariant polyhedral embedding (φ,ρ) of S is determined
by ρ and v1, . . . , vn. Moreover, any sufficiently small perturbation of the vi
gives another equivariant polyhedral embedding of S with n fundamental ver-
tices.

Proof. It is clear that the data of ρ and v1, . . . , vn gives V .
Recall that the convex core C(ρ) for ρ is the minimal (for the inclusion)

non-empty convex set in AdS3 globally invariant under the action of ρ. If
(φ,ρ) is Fuchsian, the convex core is reduced to a totally geodesic surface,
otherwise it has non-empty interior and two boundary components, which are
pleated space-like surfaces, isometric to the hyperbolic plane for the induced
metric. The convex core is the convex hull of its boundary at infinity, which is
a (topological) circle c(ρ) drawn on the boundary at infinity of AdS3. Actually

this boundary at infinity is exactly ∂φ(S̃). Note that φ(S̃) does not meet the
interior of C(ρ), otherwise the intersection between C(ρ) and the half-spaces

delimited by the planes containing the faces of φ(S̃) would define a convex
set invariant under ρ and contained in C(ρ), this is impossible. It follows

that φ(S̃) is contained in one side of C(ρ). Let us denote by ∂C(ρ)− the

component of the boundary of C(ρ) opposite to φ(S̃).
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In an affine chart, φ(S̃) and ∂C(ρ)− are both locally convex surfaces. The
intersection of the closure of both with ∂∞AdS3 is the curve c(ρ). Since c(ρ)
is the boundary at infinity of a space-like surface in AdS3, it is a weakly
space-like curve in ∂∞AdS3, for its conformal Lorentz structure. (Weakly
space-like means that no point of c(ρ) is in the future of another.) Given a
point x ∈ c(ρ), there is a unique light-like plane px in AdS3 through x. The
intersection of px with ∂∞AdS3 is the union of the two light-like geodesics of
∂∞AdS3 through x (again for the conformal Lorentz structure on ∂∞AdS3).
Therefore c(ρ), since it is weakly space-like, is contained in the half-space

bounded by px, and so are φ(S̃) and ∂C(ρ)−. So px is a support plane of the

closure of φ(S̃) ∪ ∂C(ρ)−. So this closure is locally convex at each point of
c(ρ), and it is therefore locally convex, and it is therefore a convex surface.

It follows that the elements of V are extreme points for the convex hull
of V . As the elements of V accumulates on c(ρ), the boundary of the convex

hull of V is made of the union of φ(S̃) and ∂C(ρ)− plus a circle at infinity.
Now perturb slightly the v1, . . . , vn, this gives new points v′1, . . . , v

′
n. Denote

by V ′ the orbits of the v′i under ρ and by φ′(S̃) the boundary of the convex
hull of V ′ minus ∂C(ρ)−. If the v′i are sufficiently near the vi, all the v′i
are extreme points of φ′(S̃). Moreover φ′(S̃) is also disjoint from C(ρ). We

saw that φ(S̃) is disjoint from the interior of C(ρ), but it is also disjoint
from its boundary. Otherwise, if it touched it at a point x, by convexity
φ(S̃) should contain the geodesic line of the boundary of C(ρ) containing x,

this is impossible as φ(S̃) is a polyhedral surface (in particular with compact

faces). As the action of ρ(π1(S)) is cocompact on φ(S̃) and C(ρ), the distance
between both is bounded from below. Hence if v′1, . . . , v

′
n are sufficiently close

to v1, . . . , vn, φ
′(S̃) is made of totally geodesic faces. It is also space-like (with

space-like support planes) as the fact that two points are on a same space-like
geodesic is also an open condition.

Note finally that if F is a face of the convex hull of V , it has a finite
number of vertices in V by definition of a polyhedral embedding. Moreover,
in a projective model, the boundary at infinity of the space-like plane P
containing F is disjoint from the intersection with ∂∞AdS3 of the closure of
φ(S̃). It follows that all points in V which are not a vertex of F are outside
a small neighborhood of P in the projective model of AdS3.

Now consider a deformation with the v′i close enough to the vi. Given
three vertices x, y, z of F , let x′, y′, z′ be the corresponding points of V ′, and
let p′ be the totally geodesic plane containing x′, y′, z′. For a small enough
deformation, any point of V which is not a vertex of F remains in the past of p′,
and so does ∂∞φ(S̃). It follows that the face F corresponds, in the deformed
polyhedral surface, to a union of faces having as vertices the vertices of F .
In other terms all faces of the deformed polyhedral surface remain compact,
with a finite number of vertices. �
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3.5. The left and right multiplications. This part is very similar to
Sections 2.1 and 2.2, so we skip some details.

3.5.1. Polar duality and multiplication. The polar link Lk(x) of a vertex x
of a convex space-like polyhedral surface P in AdS3 is the convex hyperbolic
polygon in TxAdS3 given by the outward unit time-like normals of the faces of
P meeting at x. The exterior dihedral angle of an edge of P with endpoint x
is the length of the corresponding edge of Lk(x). The interior angles of Lk(x)
are π minus the interior angles on the faces of P at x.

Let x ∈ AdS3. We denote by x∗ the hyperplane orthogonal to the vector
x ∈ R

2,2 for 〈· , · 〉2. The intersection between x∗ and AdS3 is space-like and
has two connected components, which are antipodal. We also denote by x∗

the intersection between the hyperplane and AdS3. Conversely, if H is a
totally geodesic plane in AdS3, we denote by H∗ the unique point of AdS3/Z2

orthogonal as a vector to the hyperplane containing H .
The polar dual P ∗ of a convex space-like polyhedral surface P is a convex

polyhedral surface defined as the intersection of the half-spaces {y ∈ AdS3 |
〈x, y〉2 < 0} for each vertex x of P . Faces of P are contained in x∗. Actually
this defines two convex polyhedral surfaces, which are identified in AdS3/Z2.
Equivalently P ∗ can be defined as the convex hull (in an affine chart) of the
H∗ for H a plane containing a face of P . It follows that (P ∗)∗ = P and that
the polar link Lk(x) of a vertex x of P is isometric to the face of P ∗ dual to
x, and vice-versa. It is easy to see that the dual of a space-like polyhedral
surface is space-like. Moreover if P is a convex polyhedral surface equivariant
under the action of ρ, as ρ acts by isometries, P ∗ is also equivariant under
the action of ρ.

We will identify the two models of AdS3 through the following isometry:

AdS3 ⊂
(
R

4, 〈· , · 〉2
)
→

(
SL(2,R),−det

)
,

(x1, x2, x3, x4) 	→
(
x2 + x4 x1 + x3

x1 − x3 x4 − x2

)
.

The neutral element as a vector of R4 is then e = (0,0,0,1), and if y =
(y1, y2, y3, y4) then y−1 = (−y1,−y2,−y3, y4).

Let a, b be in AdS3/Z2, with a, b, e mutually different, and such that a∗

and b∗ meet along a 2-plane E in R
2,2. Let A be the following angle in AdS3:

A = a∗c ∪ b∗c ∪E

=
{
x ∈AdS3/Z2 | 〈x,a〉2 = 0, 〈x, b〉2 < 0

}
∪
{
x ∈AdS3/Z2 | 〈x, b〉2 = 0, 〈x,a〉2 < 0

}
∪
{
x ∈AdS3/Z2 | 〈x,a〉2 = 〈x, b〉2 = 0

}
.
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The left projection of the angle A is the following map:

LA : A \E −→ e∗, x 	−→
{
a−1x if x ∈ a∗c ,
b−1x if x ∈ b∗c .

The right projection of the angle A is defined similarly:

RA : A \E −→ e∗, x 	−→
{
xa−1 if x ∈ a∗c ,
xb−1 if x ∈ b∗c .

We assume that RA and LA have values in AdS3/Z2, so that (the quotient
of) e∗ is isometric to the hyperbolic plane H2: we consider that LA and RA

have values in H2. By arguments very similar to the proof of Lemma 2.2 for
the spherical case, it is easy to see that the left (resp. right) projection sends
isometrically the faces of the angle to two half-parts of the hyperbolic plane,
in such a way that the part on the left (resp. right) is forward and the part
on the right (resp. left) is backward.

3.5.2. Equivariant polyhedral surfaces as flippable tilings. The left and right
projections of a space-like convex polyhedral surface P of AdS3/Z2 are de-
fined similarly to the spherical case. Let (φ,ρ) be an equivariant polyhedral

embedding of S with ρ= (ρr, ρl) and φ(S̃) = P . The action of ρ(π1(S)) sends
a point x ∈ P to a point ρ(γ)(x) = ρl(γ)xρr(γ) of P . If x belongs to a face
of P contained in a plane a∗, the left projection of P sends x to a−1x and
sends ρ(γ)(x) to ρr(γ)

−1a−1xρr(γ). If we identify e∗ with H2, we obtain an
action of ρr(π1S) on H2. By Proposition 3.4, H2/ρr(π1S) endows S with a
hyperbolic metric gl. We denote by Tl(P ) this hyperbolic surface together
with the tiling given by the images of the faces of P . We paint these images
in white and the remainder of the surface in black, and by arguments similar
to the proof of Proposition 2.3, we get that Tl(P ) is a left flippable tiling of
the surface.

Similarly, the right projection of P endows S with a hyperbolic metric
gr together with a right flippable tiling denoted by Tr(P ). Note that P is
Fuchsian if and only if there is an isometry isotopic to the identity between
gr and gl.

3.5.3. Flippable tilings as equivariant polyhedral surfaces. Let Tl be a left

flippable tiling of a compact hyperbolic surface S. We denote by T̃l the
universal cover of Tl. As in the spherical case, there exists a locally convex

polyhedral immersion of the white faces of T̃l in AdS3, such that the polar links
of the vertices are isometric to the black faces. This polyhedral immersion
is defined only up to global isometries. We denote by φ the choice of one

immersion. Let φ(x) belong to a face of φ(T̃l). There is a unique isometry
in the connected component of the identity of Isom(AdS3) sending the plane
containing this face to the plane containing the face containing φ(γx), and
sending the vertices of the face containing φ(x) to the corresponding vertices
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of the face containing φ(γx). This provides a representation ρ of π1(S) into
Isom0(AdS3). Because the polar link at each vertex is isometric to a compact
hyperbolic polygon, all the support planes at each vertex are space-like. It
follows that (φ,ρ) is an equivariant polyhedral embedding of S in AdS3 in the
sense of Definition 3.2. We call it the white polyhedron of Tl and denote it by
Pw(Tl).

3.5.4. Proof of Theorem H1. By construction, the proof is word by word
the same as the one of Theorem H1, considering a closed hyperbolic surface
instead of the sphere.

3.5.5. Proof of Theorem 1.5. Given hl, hr ∈ T , there is by Theorem 3.1 a
unique globally hyperbolic AdS manifoldM with left and right representations
ρl and ρr equal to the holonomy representations of hl and of hr, respectively.

A convex polyhedral surface Σ in M determines an equivariant polyhedral
surface Σ̃ with associated representation ρ= (ρl, ρr). According to the content

of Section 3.5.2, Σ̃ determines in turn a left flippable tiling Tl on (S,hl) such
that flipping Tl yields a right flippable tiling Tr on (S,hr). So the proof of
Theorem 1.5 reduces to showing that M contains a convex polyhedral surface.

However the existence of such a polyhedral surface is quite easy to check.
Given a globally hyperbolic AdS manifold M , consider a point x1 in the future
of the convex core C(M). Since C(M) is convex, there is a totally geodesic
plane P1 passing through x1 and in the future of C(M), and let H1 be the
future of P1. Then repeat this procedure with a point x2 which is not in H1,
then with a point x2 not in H1 ∪H2, etc. After a finite number of steps, the
boundary of the intersection of the complements of the Hi is a closed, convex
polyhedral surface in M .

3.5.6. Fuchsian polyhedral surfaces and symmetric tilings. We have already
noticed at the end of Section 3.5.2 that P is Fuchsian if and only if there is an
isometry isotopic to the identity sending Tr(P ) to Tl(P ). As Tl(P ) is obtained
by flipping Tr(P ), it follows that if P is Fuchsian then Tr(P ) is symmetric in
the sense of Definition 1.10. Conversely, let Tr be a symmetric right flippable
tiling of a surface (S, gr). This means that T ′

r = Tl(Pw(Tr)) is isometric to
Tr = Tr(Pw(Tr)), that is, that Pw(Tr) is Fuchsian.

3.6. Proof of Theorem H2. Let Γ be a graph embedded in a closed surface
S of hyperbolic type, such that the universal cover of Γ is 3-connected. We
will prove that T r,−1

S,n (Γ) is non-empty. Let us denote by Γ∗ the dual graph
of Γ. Recall Thurston’s extension to hyperbolic surfaces of Koebe’s circle
packing theorem (see e.g. [Sch], [Sch03]): there exists a unique hyperbolic
metric h on S and a unique circle packing in (S,h) such that:

• there is a circle for each vertex of Γ∗, and the circles bound non-intersecting
open discs,
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• the circles are tangent if the corresponding vertices are joined by an edge
of Γ∗,

• faces of Γ∗ are associated to interstices (connected components of S minus
the open discs),

• and to each interstice is associated a circle orthogonal to all the circles
corresponding to the vertices of this face.

Let H be a totally geodesic space-like plane in AdS3. It is isometric to the
hyperbolic plane H2, and can be identified isometrically with the universal
cover of (S,h). This yields a circle packing C with incidence graph Γ∗ on the
quotient of H by an isometric action ρ of π1(S) in the isometry group of H .
We extend ρ to an isometric action on AdS3.

Let r ∈ (0, π/2), and let Hr be the set of points at distance r in the future
of H . For each circle C of C corresponding to a vertex of Γ∗, consider the
set C ′ of points of Hr which project orthogonally on H to a point of C. C ′

is the intersection with Hr of a totally geodesic space-like plane Hc, let PC

be the past of Hc. The intersection of the half-spaces PC for all C ∈ C is a
convex polyhedron in AdS3, invariant under ρ(π1(S)), and its boundary SC
is a space-like polyhedral surface in AdS3, invariant under ρ.

This equivariant polyhedral surface SC has the same combinatorics as Γ.
To see this, it suffices to note that for all circles of Hr corresponding to
faces around a same vertex of Γ, the corresponding planes meet at a same
point, namely the apex of the cone tangent to Hr along the image of the
circle orthogonal to the previous ones. (This is a projective property. It is
easy to see if one considers H in the hyperbolic space, where Hr is a part
of the boundary at infinity. Then the projection from H to Hr preserves
orthogonality, and the result follows using the polar duality.)

Through the content of Section 3.5.2, we obtain a flippable tiling on (S,h)

with incidence graph Γ, this proves that T r,−1
S,n (Γ) is non-empty. This proves

point (1).
For point (3) note that the space of flippable tilings with n black faces is

homeomorphic, by Lemma 2.6, to the space of equivariant polyhedral surfaces
with n vertices. By Lemma 3.6, this space is parameterized by the holonomy
representation of the fundamental group of the surface in the isometry group
of AdS3 and by the positions of the vertices, so that it is homeomorphic to a
manifold of dimension 12g− 12 + 3v.

We now turn to the proof of part (2), and consider a fixed graph Γ. By
Lemma 2.6, it is sufficient to prove that the space of equivariant polyhedral
surfaces in AdS3, with combinatorics given by Γ, is homeomorphic to a man-
ifold of dimension 6g− 6 + e.

Denote by nf the sum, over all faces of Γ, of the number of edges minus 3.
We get

nf = 2e− 3f.
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As the combinatorics is given, the vertices belonging to a same face have to
stay in the same totally geodesic plane during the deformation. For each face,
given three vertices of the face, the other vertices of the face have to belong
to the affine plane (in the projective model of AdS3) spanned by the three

vertices. This gives nf equations, so T r,−1
S,n (Γ) is homeomorphic to a manifold

of dimension 12g− 12 + 3n− nf . Using the Euler relation n− e+ f = 2− 2g
we obtain that the dimension is also equal to 6g− 6 + e.

Finally point (4) is a direct consequence of the constructions, since the
mapping-class group of S clearly acts on the space of flippable tilings.

3.7. Proof of Theorem H4. The proof is an immediate adaptation of
the proof of Theorem S4 in Section 2.5, using the following result instead of
Alexandrov Theorem (Theorem 2.7).

Theorem 3.7 ([Fil11]). Let (S, g) be a hyperbolic metric with conical sin-
gularities of negative curvature on a closed surface g of genus > 1. Then there
exists a Fuchsian equivariant polyhedral embedding (φ,ρ) of S such that the

induced metric on ∂φ(S̃)/π1(S) is isometric to (S, g). Moreover, up to global
isometries, (φ,ρ) is unique among Fuchsian equivariant polyhedral embedding.

4. Alexandrov and Minkowski type results in AdS

In this section, we will prove a AdS analogue of a standard result of Eu-
clidean geometry, known as Alexandrov curvature theorem, see, for example,
[Ale05, 9.1] or [Pak]. Roughly speaking, the problem is to prescribe geodesics
containing vertices of a convex polyhedron together with the singular curva-
ture at the vertices. It will appear that it is equivalent to an analogue of the
Minkowski theorem for Euclidean convex polytopes.

4.1. Two equivalent statements. Let (φ,ρ) be a Fuchsian equivariant
polyhedral embedding of a surface S in AdS3, and let G = ρ(π1(S)). By
definition G fixes a totally geodesic space-like plane H in AdS3, and it follows
from the proof of Lemma 3.6 that φ(S̃) does not meet H . Without loss of

generality, suppose that φ(S̃) is in the future of H . G also fixes the dual H∗

of H (H∗ is chosen to be in the future of H). The boundary at infinity ∂H of

H is also the boundary at infinity of φ(S̃), and all light-like geodesics passing
through a point of ∂H also pass through H∗. By Lemma 3.3, it follows that
φ(S̃) is contained in the past cone of H∗, and that each geodesic orthogonal

to H (i.e., with endpoint H∗) meets φ(S̃) exactly once.
Let GR be a set of future-directed times-like segments of length π/2 or-

thogonal to H , invariant under the action of G. The elements of GR are
called half-rays. We denote by R = (r1, . . . , rn), n ≥ 1 a subset of GR in a
fundamental domain for the action of G. Let P(G,R) be the set, up to global
isometries, of Fuchsian polyhedral surfaces invariant under the action of G
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and such that the vertices are on GR. Recall that the (singular) curvature of
a vertex is 2π minus the sum of the face angles around this vertex.

Theorem 4.1. If k1, . . . , kn are negative numbers such that

(2)
n∑

i=1

ki > 2πχ(g)

then there exists a unique Fuchsian polyhedral surface in P(G,R) such that
the vertex on ri has curvature ki.

Theorem 4.2. Under the assumptions of Theorem 4.1, there exists a u-
nique Fuchsian polyhedral surface with faces contained in planes orthogonal to
GR, such that the face in the plane orthogonal to ri has area −ki.

By duality the two statements are equivalent:

Lemma 4.3. If P is a Fuchsian polyhedral surface given by one of the two
theorems above, then the dual P ∗ of P satisfies the other statement.

Proof. Let P be the unique Fuchsian polyhedral surface satisfying Theo-
rem 4.1 for the data (r1, . . . , rn) and (k1, . . . , kn). Let x be a vertex of P on
the half-ray ri. By definition of the polar dual, the plane x∗ is orthogonal
to each time-like geodesic passing through x. In particular, the geodesic con-
taining ri is orthogonal to x∗. More precisely, x∗ is orthogonal to a half-ray r̃i
obtained from ri by a symmetry with respect to H . By definition, P ∗ is the
intersection of all the x∗

i for each vertex xi of P , and by the Gauss–Bonnet
formula and by definition of the polar link, the area of the corresponding face
of P ∗ is −ki. Hence, P ∗ satisfies the existence part of Theorem 4.2 for the
data (r̃1, . . . , r̃n) and (k1, . . . , kn).

The reversed direction for the existence part is done in the same way, and
this implies the equivalence of the uniqueness parts. �

Note also that condition (2) is necessary in Theorem 4.1 because of Gauss–
Bonnet formula, and by the preceding lemma it is also necessary in Theo-
rem 4.2. Conversely to the Euclidean Alexandrov curvature theorem, there is
no other condition on the curvatures. Actually Theorem 4.1 can be though
as the AdS analog of the Alexandrov curvature theorem for convex caps, in
which Gauss–Bonnet is the only condition on the curvatures [Pak].

The analog of Theorem 4.1 for Fuchsian polyhedral surfaces in Minkowski
space was proved in [Isk00]. It was extended to general Fuchsian surfaces in
this space, and to higher dimensions, in [Ber10].

4.2. Proof of Theorem H3 from Theorem 4.1. Let Tr be a symmetric

flippable tiling of T r,−1

S,h,n(K). From Section 3.5.6 we can choose a Fuchsian
polyhedral surface P constructed from Tr, such that the singular curvatures
of P (i.e., minus the area of the polar links of its vertices) are equal to the
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area of the black faces of Tr . This gives us a group G ⊂ Isom(AdS3) fixing

a totally geodesic space-like plane H . Hence T r,−1

S,h,n(K) is in bijection with
P(G,R). Theorem 4.1 says that P(G,R) is parameterized by the orthogonal
projection of the vertices onto H , which is the same as the configuration of n
points on H/G� S. This is exactly the content of Theorem 4.1.

4.3. Proof of Theorem 4.1. The proof uses a classical continuity method.
We recall here a basic topology theorem at the heart of this continuity method.

Lemma 4.4. Let A,B be two manifolds of the same finite dimension with
a continuous map I : A→B. If

(1) A is connected,
(2) B is connected and simply connected,
(3) I is locally injective,
(4) I is proper,

then I is a homeomorphism.

Proof. As I is continuous and locally injective, it is a local homeomorphism
by the invariance of domain theorem. The conclusion follows because a local
homeomorphism between a pathwise connected Hausdorff space and a simply
connected Hausdorff space is a global homeomorphism if and only if the map
is proper (see, for example, [Ho75]). �

Let P ∈ P(G,R). The height hi of P is the distance from its vertex on ri to
the hyperbolic plane H . We know from Lemma 3.6 that an element of P(G,R)
is determined by its heights (h1, . . . , hn), and that P(G,R) is a manifold of
dimension n. We need a slightly more here. The matter is simplified because
in the Fuchsian case the convex core has empty interior.

Lemma 4.5. Let (h1, . . . , hn), 0 < h1 < π/2. If the orbits for G of the
points on the segments ri at distance hi from H are in convex position, then
the convex hull of these orbits has two connected components, one is H and
the other belongs to P(G,R).

Moreover, P(G,R) is contractible.

Proof. Let P be the convex hull of the orbits less H . By construction P
in invariant under the action of G and has its vertices on GR. To prove that
it belongs to P(G,R), it remains to check that it is a space-like polyhedral
surface.

Let us consider the case when P is made only of the orbit of one vertex. All
the vertices of P belongs to a space-like surface at constant distance from H .
By Lemma 3.3, this surface meets at most once every time-like and light-like
geodesic hence P is space-like. The fact that the support planes are space-like
comes from the cocompactness of the action of G on H , the argument is the
same as for Fuchsian surfaces in the Minkowski space [Fil13]. Now consider
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the surface Q which is the boundary of the intersection of half-spaces bounded
by planes orthogonal to the half-rays at the vertices of P . It is not hard to
see that the orthogonal projection of the 1-skeleton of Q onto H is a Dirichlet
tessellation of H for the group G, hence Q is a polyhedral surface as G acts
cocompactly on H . The dual of Q is a polyhedral surface, equal to P up to
a homothety.

The case with more one orbit follows as in this case the surface can be seen
as the boundary of the intersection of the convex hull of each orbit.

Hence P(G,R) can be identified with the set of heights such that the ver-
tices are in convex position, and it is not hard to see that it is homeomorphic to
a convex subset of Rn (see [Fil11] where a very similar argument is used). �

Let us define K(n) = {(k1, . . . , kn) ∈ (R−)
n |

∑
ki > 2πχ(S)}. It is obvi-

ously a non-empty contractible (convex) open subset of Rn.
We have a natural map which to each Fuchsian polyhedral surface asso-

ciates its singular curvatures:

C : P(G,R) −→K(n),
(h1, . . . , hn) 	−→ (k1, . . . , kn).

Theorem 4.1 says exactly that C is a bijective map. We will prove that C is
proper (Lemma 4.6) and locally injective (Lemma 4.7). Then by Lemma 4.4,
C is a homeomorphism, in particular a bijective map.

Lemma 4.6. The map C is proper: Let (Ki)i be a converging sequence of
K(n) such that for all i, there exists Pi ∈ P(G,n) with Ki = C(Pi). Then a
subsequence of (Pi)i converges in P(G,n).

Proof. We will first prove that the sequence of heights defining the poly-
hedra Pi has a converging subsequence in ]0, π/2[n. Actually, the sequence
of heights belongs to [0, π/2]n which is compact, so (Pi)i has a converging
subsequence in this set (that we again denote by (Pi)i), hence it suffices to
check that no height goes to 0 or to π/2.

First, suppose that all the heights converge to 0. In this case (Pi)i converges
to a degenerated polyhedron (the hyperbolic plane H). This means that all
the curvatures go to zero, that is impossible, as the sequence of curvatures
is supposed to converge in K(n). So there exists at least one half-ray x such
that the sequence of heights on this half-ray doesn’t go to 0. If the heights
on another ray y (y /∈Gx) go to zero, then, if i is sufficiently large, the vertex
of Pi on y has to be inside the convex hull of the points Gxi, where xi is the
vertex of Pi lying on x, this contradicts the fact that Pi is convex.

Now suppose that all the heights converge to π/2. This means that all
the vertices converge to the point H∗ dual of the hyperbolic plane H . In
particular, the face areas in a fundamental domain for G go to zero, and by
the Gauss–Bonnet formula, the sum of the curvatures go to 2πχ(g). But this
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is impossible as by assumption the sequence of curvatures converges inside
K(n).

Therefore, there exists at least one half-ray x such that the sequence of
heights on this ray doesn’t go to π/2. For each i, let xi be the vertex of Pi

on x. As Pi is convex, it is contained between the plane H and the cone of
vertex xi formed by the planes containing the faces of Pi meeting at x. Each
half-ray containing a vertex meets those planes, and this prevents the other
heights from going to π/2. Indeed, if L is a plane containing a face of Pi, as
it is space-like, then it meets every time-like geodesic. Moreover, the orbit of
x accumulates on the boundary at infinity of H , so L does not meet H , as Pi

is on one side of L. It is then clear that every time-like geodesic from H to
H∗ has to meet L.

We proved that the heights of (Pi)i converge in ]0, π/2[. Now as each Pi is
a convex polyhedron and as the sequence of induced curvatures converges, it
is clear that (Pi)i converges inside P(G,n). �

Lemma 4.7. The map C is locally injective.

Proof. The idea is to study the Jacobian of C and to invoke the local
inverse theorem. Unfortunately, it is not clear whether C is C1, as the com-
binatorics of the polyhedra may change under deformation. Let P ∈ P(G,n).
Triangulate the faces of P such that no new vertex arises and such that the tri-
angulation is invariant under the action of G. The new edges added are called
false edges and the older ones true edges. We denote by Γ the combinatorics
of the resulting triangulation and by PΓ(G,R) the set of polyhedral surfaces
invariant under the action of G with vertices on GR with a triangulation of
combinatorics Γ (the elements of PΓ(G,R) are not asked to be convex). We
denote by CΓ the map from PΓ(G,n) to R

n which associates to each polyhe-
dral surface the curvature at the vertices. In Section 4.5, we will prove that, at
a point P ∈ P(G,R), CΓ is C1 and its Jacobian is non-degenerate. (Actually,
we will study the map which associates to the heights the cone-angles, instead
of curvatures, this does not change the result.) Hence, CΓ is locally injective
around P .

Now suppose that C is not locally injective. This means that there exists
P ′ ∈ P(G,R), arbitrarily close to P , with the same curvature at the corre-
sponding vertices. As P ′ is sufficiently close to P , they can be endowed with a
triangulation of same combinatorics Γ, such that, if new vertices appear, they
appear on a true edge. We don’t consider the heights of the false new vertices
as variables, and we don’t compute the possible variation of the cone-angles
(which are equal to 2π) at them. Only the angles on the faces around the
false vertices enter the computations. So the corresponding map CΓ is not
locally injective, that is a contradiction. �
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4.4. Interlude: The case of the sphere. In this section, we switch from
the geometry of AdS to that of the sphere. Although the results presented
here are of independent interest, our main motivation is to present the (rather
technical) arguments of the next section in a context in which most readers are
more confortable. Following the same arguments in the AdS setting should
then be relatively easy.

We wonder whether there exists an analogue of Theorem 4.1 for the sphere.
As in the AdS case, the question can be reduced to proving that the map
sending the heights hx determining a convex polyhedron to the curvatures
kx (actually the cone-angle ωx) at its vertices is a bijection (between suitable
spaces)—here the half-rays should be from a point o contained in the interior
of the polyhedron. We will compute the Jacobian of this map—in a simplified
case where we assume that the polyhedron has only triangular faces.

We need the following lemma of spherical trigonometry.

Lemma 4.8. Let a, b, c be the side lengths of a spherical triangle with angles
α,β, γ. Considering b as a function of a, c, β, we get

(3)
∂b

∂a
= cosγ.

Considering α as a function of a, c, β, we get

∂α

∂a
=

sinγ

sin b
,(4)

∂α

∂c
= − sinα cos b

sin b
.(5)

Proof. The derivative of the cosine law

(6) cos b= cos c cosa+ sin c sina cosβ

gives

∂b

∂a
=

sina cos c− cosa sin c cosβ

sin b
(6)
=

cos c− cos b cosa

sina sin b

(∗)
=

sina sin b cosγ

sina sin b
= cosγ,

and (3) is proved (we used another cosine law at (∗)).
Now we consider α as a function of the side-lengths a, b, c, and we denote

it by α̃ to avoid confusion with α appearing in (4) and (5). The derivative of
the suitable cosine law gives that

(7)
∂α̃

∂a
=

1

sin b sinγ

and that

(8)
∂α̃

∂b
=−cos c− cosa cos b

sin2 b sin c sinα

(∗∗)
= − sin c cosγ

sin b sin c sinγ
=−cotanγ

sin b



1248 F. FILLASTRE AND J.-M. SCHLENKER

Figure 4. Notations in a pyramid.

(we used another cosine law and a sine law at (∗∗)). Now if α is a function of
a, c, β, we have

(9)
∂α

∂a
=

∂α̃

∂a
+

∂α̃

∂b

∂b

∂a

and (4) follows by using (7), (8) and (3) in the equation above. Equation (5)
is proved similarly. �

Let ωx be the cone-angle at the vertex on the ray rx. For each face tri-
angle xyz of P , we get a pyramid oxyz. The cone-angle ωx is decomposed
as a sum of angles of the form ωxyz (see notations on Figure 4). The link
of the pyramid at x is a triangle in which ωxyz is a function of ρxy, ρxz
and dxyz when a height varies. Note that dxyz remains fixed by hypothe-
sis.

We denote axy := ∂ωx

∂hy
. There is at most one edge between two different

vertices. If there is no edge, then axy = 0 (y �= x). If there is one edge xy,
shared by the triangles xyz and xyz′, then

axy =
∂ωx

∂hy
=

∂ωx

∂ρxy

∂ρxy
∂hy

=

(
∂ωxyz

∂ρxy
+

∂ωxyz′

∂ρxy

)
∂ρxy
∂hy

(3),(4)
= (cosαxyz + cosαxyz′)

sinρyx
sin �xy

.

By convexity αxyz and αxyz′ are both positive and αxyz + αxyz′ < π, so
axy > 0.

Remark 4.9. The fact that axy > 0 has a clear geometric meaning: con-
sider the convex spherical polygon spanned by the edges at x. If the height of
y increase, we get another convex spherical polygon which is strictly greater
than the former one. As they are convex, the perimeter of the new polygon
is greater than the former one, and the perimeter is exactly the cone-angle
at x.
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This also means that if the support number h∗
y of the dual of P increases,

then the area of the face dual to x increases (recall that h∗
y = π/2− hy).

We can also compute the diagonal terms. E is the set of edges of the
triangulation, and we imply that �xy = 0 if there is no edge between x and y

axx :=
∂ωx

∂hx
=

∑
xy∈E

∂ωx

∂ρxy

∂ρxy
∂hx

(4),(5)
= −

∑
xy∈E

cos �xy
sinρxy
sinρyx

∂ωx

∂ρxy

∂ρxy
∂hy

= −
∑
xy∈E

cos �xy
sinρxy
sinρyx

∂ωx

∂hy
=−

∑
x �=y

cos �xy
sinρxy
sinρyx

axy =−
∑
x �=y

cos �xyayx.

Remark 4.10. This formula has also a clear geometric meaning. If a
face x∗ of the dual of P has all its dihedral angles < π/2 (resp. >), then if
h∗
x increases, the area of x∗ decreases (resp. increases). The case when the

dihedral angles are π/2 is a kind of critical point.

It is not clear if the matrix (axy)xy is non-degenerate. Further study would
lead us too far from the scope of this paper. So we address the following
question:

Question 1. Is there an analog of the Alexandrov prescribed curvature
theorem in the sphere? More precisely, let r1, . . . , rn be half-rays in the sphere
S3 starting from a same point and (k1, . . . , kn) real positive numbers. Does
there exist conditions on the ri and ki such that the following holds: there
exists a unique convex polyhedron having its vertices on the rays r1, . . . , rn,
with curvature ki at the vertex on ri?

An obvious condition on the ki is that they have to satisfy the Gauss–
Bonnet formula. Note that an answer to the question would give information
about the existence of an analog of the Minkowski theorem in the sphere (from
an argument very similar to the proof of Lemma 4.3). The corresponding
statement in the hyperbolic case is stated without proof in [Ale05, 9.3.1].

4.5. End of the proof of Lemma 4.7.

4.5.1. Hyperbolic-de Sitter trigonometry. We denote by R
n,1 the Minkowski

space of dimension n, that is, the space R
n+1 endowed with the bilinear form

〈x, y〉1 = x1y1 + · · ·+ xn−1yn−1 − xn+1yn+1.

We denote by ‖ · ‖1 the associated pseudo-norm: ‖x‖1 :=
√
〈x,x〉1. The

pseudo-norm of time-like vectors is chosen as a positive multiple of i. A model
of the hyperbolic space is the upper-sheet of the two-sheeted hyperboloid:

Hn =
{
x ∈R

n,1 | ‖x‖21 =−1, xn+1 > 0
}
;

and a model of the de Sitter space is the one-sheeted hyperboloid:

dSn =
{
x ∈R

n,1 | ‖x‖21 = 1
}
.
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We define the “de Sitter-Hyperbolic space” HSn as the union of the two
spaces, and we denote by d its pseudo-distance. It is well-known that

〈x, y〉1 = − cosh
(
d(x, y)

)
, (x, y) ∈Hn ×Hn,

〈x, y〉1 = cos
(
d(x, y)

)
, (x, y) ∈ dSn × dSn,

〈x, y〉1 = sinh
(
d(x, y)

)
, (x, y) ∈Hn × dSn,

where in the last equation the distance between x ∈Hn and y ∈ dSn is defined
as follows. Let y∗ be the hyperplane orthogonal to y for 〈·, ·〉1. We also denote
by y∗ its intersection with the hyperbolic space, that is a totally geodesic
hypersurface. The distance d(x, y) is the oriented hyperbolic distance between
x and y∗: it is positive if x is lying in the same half-space delimited by y∗

than y, and negative otherwise. See [Thu97], [Sch98] for more details.
Similarly to the Euclidean case, we define the angle θ between two vectors

of the Minkowski space as the corresponding distance on the hyperboloids:

cosh(θ) =
〈x, y〉1

‖x‖1‖y‖1
,

(
‖x‖1,‖y‖1

)
∈ iR+ × iR+, xn+1 > 0, yn+1 > 0,

cos(θ) =
〈x, y〉1

‖x‖1‖y‖1
,

(
‖x‖1,‖y‖1

)
∈R+ ×R+,

sinh(θ) = i
〈x, y〉1

‖x‖1‖y‖1
,

(
‖x‖1,‖y‖1

)
∈ iR+ ×R+.

In the first and third cases, the angle θ is a real number. For the second case,
we need to describe the different possibilities:

• if x and y span a space-like plane, θ ∈ (0, π);
• if x and y span a time-like plane and intersect the same connected compo-

nent of the resulting geodesic on the de Sitter space, then θ ∈ iR+;
• if x and y span a time-like plane and intersect different connected com-

ponents of the resulting geodesic on the de Sitter space, then θ ∈ π − iR+

(this follows from the preceding case as by definition the cosine of the angle
between x and y is minus the cosine of the angle between −x and y).

It is also possible to define this angle if x and y belong to different sheets of
the hyperboloid with two sheets, but we won’t use it, and we won’t consider
the case where x and y span a light-like plane. There exists other natural
ways to define these angles but all the definitions are equivalent, up to an
affine transformation (maybe complex), see for example [Sch07], [Cho09].

Lemma 4.11. Let 〈·, ·〉′ be the bilinear form—〈·, ·〉1.
(1) If ‖x‖1 ∈R+, then ‖x‖′ ∈ iR+ and ‖x‖1 = i‖x‖′.
(2) If ‖x‖1 ∈ iR+, then ‖x‖′ ∈R+ and ‖x‖1 =−i‖x‖′.

Proof. If ‖x‖1 ∈R+ (resp. iR+), then 〈x,x〉1 > 0 (resp. < 0), so 〈x,x〉′ < 0

(resp. > 0) and ‖x‖′ ∈ iR+ (resp. R+). It is immediate to check that in both
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cases ‖x‖1 =
√
−1‖x‖′. The choice of the square root of −1 follows because

we know the spaces the terms belong to. �

Lemma 4.12. In a Lorentzian space-form M , consider an angle formed
by two different space-like half-hyperplanes S1, S2 meeting at a codimension
2 plane E, such that there exists a time-like half-hyperplane T containing E.
Let αi be the dihedral angle between Si and T .

(1) The half-planes S1 and S2 belong to the same hyperplane if and only if
sinhα1 + sinhα2 = 0.

(2) If S1 and S2 are not in the same hyperplane, then T is inside the convex
side of the angle if and only if sinhα1 + sinhα2 < 0.

In the lemma above and in all the remainder of the section, a dihedral
angle is the interior dihedral angle: for any x ∈ E, αi is the angle in TxM
between a vector of TxSi orthogonal to TxE and a vector of TxT orthogonal
to TxE.

Proof. By considering the problem in the Minkowski plane spanned by y1
and y2 in TxM , it is easy to see that the half-plane are in the same plane if
and only if y1 =−y2 and that the convexity is equivalent to 〈x,−y2〉> 〈x, y1〉,
that gives the condition of the lemma by definition of sinhαi. �

Lemma 4.13. Consider a contractible triangle in dS2, with two space-like
edges of length a and c and a time-like edge of length ib and angles α, iβ, γ
(a, b, c,α,β, γ are real numbers). Then⎧⎨

⎩
cosa= cosh b cos c+ sinh b sin c sinhα,
cosh b= cos c cosa+ sin c sina coshβ,
cos c= cosa cosh b+ sina sinh b sinhγ,

sina

sinhα
=

sinh b

sinhβ
=

sin c

coshγ
,

coshβ = sinhα sinhγ + coshα coshγ cosh b.

Proof. The formulas are proved for example, in [Cho09]. �

Lemma 4.14. Consider a triangle in AdS3 contained in a time-like geo-
desic hypersurface, with a space-like edge of length b and two time-like edges
of length ia, ic. Let α,β, γ be the corresponding angles (a, b, c,α,β, γ are real
numbers). If we consider α as a function of a, c, β, then

∂α

∂a
=

coshγ

sinh b
,(10)

∂α

∂c
= −cosh b coshα

sinh b
.(11)
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If we suppose moreover that the triangle is such that a= c, and if we deform
it among isosceles triangles we obtain:

(12)
∂α

∂a
=

coshα(1− cosh b)

sinh b
.

Proof. In the ambient vector space, the triangle is contained in the in-
tersection of the quadric with an hyperplane of signature (+,−,−), that is,
orthogonal to a space-like vector. Without loss of generality, we consider that
this space-like vector is given by the first coordinate in R

2,2. So the triangle
is contained in {

(x2, x3, x4) ∈R
3 | x2

2 − x2
3 − x2

4 =−1
}

which is anti-isometric to dS2. It is clear that the corresponding triangle in
dS2 is contractible and from the definitions of the pseudo-distances it has edge
lengths a, ib, c. The angle between the two space-like edges of length a and
c is the angle between two space-like vectors spanning a time-like plane and
meeting the same component of the resulting geodesic on the corresponding de
Sitter space (this is because the triangle is contractible and the edge opposite
to the angle is time-like). Hence from Lemma 4.11, the angle is iβ, and it also
follows that the two other angles are −α and −γ.

Using formulas of Lemma 4.13, we compute (10) and (11) similarly to the
corresponding formulas of Lemma 4.8.

Equation (12) follows by adding (10) and (11) and equalize a and c (that
implies α= γ). �

Lemma 4.15. Consider a triangle in HS2, with two vertices in dS2 joined
by a space-like edge of length a, and a vertex in H2, with edges of length b, c.
Denote the corresponding angles by α,β, γ (all the data are real numbers).
Then ⎧⎨

⎩
cosa=− sinh b sinh c+ cosh b cosh c cosα,
sinh b= cosa sinh c+ sina cosh c sinhβ,
sinh c= cosa sinh b+ sina cosh b sinhγ.

If a is considered as a function of b, c,α, then

(13)
∂a

∂b
= sinhγ.

Proof. The cosine laws come from [Cho09]. The derivative is computed in
the same way as (3). �

4.5.2. Jacobian matrix. The faces of the Fuchsian polyhedral surface P are
decomposed in triangles. If we extend each half-ray to the point o, the dual
of H antipodal to H∗, each triangle gives a pyramid with forth vertex o. The
height hx from H to the vertex on rx should become an height hx+π/2 from
o to this vertex, but this will change nothing in the arguments below. We
consider the same notations as in the case of the sphere: these are the one of
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Figure 4—up to change hx and hy by ihx and ihy . The cone-angle ωx at the
vertex x lying on the half-ray rx is decomposed as a sum of angles of the form
ωxyz (note that ωxyz = ωxzy). The link of the pyramid at x is a triangle of
the nature of the one of the statement of Lemma 4.15, and in which ωxyz is
a function of ρxy, ρxz and dxyz when a height varies. Note that dxyz remains
fixed by hypothesis.

We denote axy :=
∂ωx

∂hy
.

(1) If x is not joined to a vertex belonging to Gy, then axy = 0.
(2) Consider a vertex y /∈ Gx, such that there is an edge between x and y.

We denote by s1, . . . , sm the vertices joined by an edge to x, numbered in
the direct order around x, and such that y = s0 = sm+1. Then

axy =
∂ωx

∂hy
=

m∑
j=0

∂ωxsjsj+1

∂hy
=

m∑
j=0

∂ωxsjsj+1

∂ρxsj

∂ρxsj
∂hy

+
∂ωxsjsj+1

∂ρxsj+1

∂ρxsj+1

∂hy

=

m∑
j=0

(
∂ωxsj−1sj

∂ρxsj
+

∂ωxsjsj+1

∂ρxsj

)
∂ρxsj
∂hy

=

m∑
j=0

ajxy.

(a) If sj /∈Gy then ajxy = 0,
(b) otherwise

ajxy
(13),(10)

= (sinhαxsj−1sj + sinhαxsjsj+1)
coshρsjx

sinh �xsj

and it follows from Lemma 4.12 that
(i) if the edge between x and sj is a false edge then ajxy = 0,

(ii) otherwise, as P is convex, ajxy < 0.

Remark 4.16. In general, ρsjx �= ρxsj , then ajxy �= ajyx, and so at a first
sight axy �= ayx. This should say that there is no functional f from the set
of heights to R such that the gradient of f is equal to CΓ. In the Euclidean
case there is a famous variational proof of the Minkowski theorem, due to
Minkowski himself. It is not clear if a variational proof could be worked out
in the AdS case.

Now we compute the diagonal terms axx

axx =
∂ωx

∂hx
=

m∑
j=0

∂ωxsjsj+1

∂hx
=

m∑
j=0

∂ωxsjsj+1

∂ρxsj

∂ρxsj
∂hx

+
∂ωxsjsj+1

∂ρxsj+1

∂ρxsj+1

∂hx

=

m∑
j=0

(
∂ωxsj−1sj

∂ρxsj
+

∂ωxsjsj+1

∂ρxsj

)
∂ρxsj
∂hx

=

m∑
j=0

ajxx,

and
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(1) if sj ∈Gy with y /∈Gx then

ajxx =

(
∂ωxsj−1sj

∂ρxsj
+

∂ωxsjsj+1

∂ρxsj

)
∂ρxsj
∂hx

(10),(11)
=

(
∂ωxsj−1sj

∂ρxsj
+

∂ωxsjsj+1

∂ρxsj

)(
− cosh �xy

coshρxy
coshρyx

)
∂ρxsj
∂hy

= − cosh �xya
j
yx,

which is a nonnegative number,
(2) otherwise sj ∈Gx and

ajxx =

(
∂ωxsj−1sj

∂ρxsj
+

∂ωxsjsj+1

∂ρxsj

)
∂ρxsj
∂hx

(12),(13)
= (sinhαxsj−1sj + sinhαxsjsj+1)

coshρxsj (1− cosh �xsj )

sinh �xsj

which is a nonnegative number.

Let us note that axx > 0. There are two cases.

• P is made of the orbit of only one vertex. In this case there must exists
a true edge between x and another vertex in the orbit of x, and then the
formula above says that axx > 0.

• P is made of the orbit of at least two vertices. So there must be a true edge
between two vertices x and y lying in different orbits. In this case we have
seen that ajxy < 0, hence ajxx =− cosh �xya

j
yx > 0 and the result follows as

all the other ajxy are nonpositive.

It follows that

|axx|>
∑
y �=x

|ayx|,

that means that the matrix (axy)xy is strictly diagonally dominant, and then
invertible by an elementary result of linear algebra. Moreover, CΓ is clearly
C1. This completes the proof of Lemma 4.7.

Acknowledgments. The authors would like to thank François Guéritaud
for useful conversations related to the results presented here.
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