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CONDENSER ENERGY UNDER HOLOMORPHIC MOTIONS

STAMATIS POULIASIS

Abstract. We prove that the condenser equilibrium energy is
a superharmonic function when one of the plates of a condenser

moves under a holomorphic motion and we characterize the cases

where harmonicity occurs by showing that this happens if and

only if the equilibrium measure on the moved plate is invariant

under the holomorphic motion and the equilibrium measure on

the fixed plate is unaffected. Also, in many cases, we show that

harmonicity of the above function occurs only when the holo-
morphic motion is related with the level sets of the equilibrium

potential of the condenser. In the case where the holomorphic

motion is a dilation, we prove that harmonicity occurs if and

only if the condenser is essentially an annulus with center at the
origin.

1. Introduction

A condenser in Ĉ is a set D \ K, where D is a proper subdomain of the
extended complex plane and K a compact subset of D such that D \ K is con-
nected. The compact sets Ĉ \ D and K are called the plates of the condenser.
We denote by S(D \ K) the family of all signed Borel measures σ = σD − σK ,
where σD, σK are unit Borel measures on the plates Ĉ \ D and K, respectively.
The equilibrium energy of the condenser is the extended positive real number

md(D \ K) = inf
σ∈S(D\K)

∫ ∫
log

1
|z − w| dσ(z)dσ(w)

and its capacity is

Cap(D \ K) =
2π

md(D \ K)
.
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If md(D \ K) < +∞, there exists a unique extremal signed measure τ = τD −
τK ∈ S(D \ K) such that md(D \ K) is equal to the energy of τ , which is
called the equilibrium measure of the condenser. The function

Uτ (z) =
∫

log
1

|z − w| dτ(w)

is the equilibrium potential of the condenser. See [4].
A classical subject in the theory of condensers is the study of the behav-

ior of the characteristics of a condenser (capacity, potential and equilibrium
measure), when its plates are changing via a geometric transformation. We
mention here some recent results. V. N. Dubinin proved monotonicity prop-
erties of several types of condenser capacities when various types of transfor-
mations are applied to its plates such as polarization, Gonchar’s standardiza-
tion, Steiner’s and spherical symmetrization; see [8] and references therein.
R. Kühnau [14] derived an asymptotic formula for the capacity of a condenser
whose plates are arbitrary parallel curves when they approach each other. D.
Betsakos [5], [6] proved monotonicity properties of the equilibrium measure
and the capacity of some special condensers. V. N. Dubinin [9] derived an
asymptotic formula for the capacity of a generalized condenser as some of
its plates contract to points. V. N. Dubinin and D. Karp [10], among other
related results, proved monotonicity properties of capacity of several plane
condensers under translation and rotation of its plates.

The starting point of our work is a result appearing in [16]. In that paper,
R. Laugesen considered the case where one of the plates of the condenser
is the exterior of an open disk with center at the origin having radius r.
Using the explicit formula of the Green function for a disk, he showed that
the equilibrium energy is a concave function of log 1

r and is strongly concave
unless the other plate is essentially contained in a disk with center at the
origin and contains the boundary of that disk. Also, in the same paper, he
mentioned (and indicated a possible proof) that if D \ K is a condenser and
λD = {λz : z ∈ D} is the dilation of D by λ, then the equilibrium energy of
the condenser λD \ K is a C1 superharmonic function of λ.

In the present paper, we examine the behavior of equilibrium energy when
one of the plates of a condenser moves under a holomorphic motion fλ(z)
(that is a function holomorphic in λ and injective in z). Our main result
(Theorem 1) is a superharmonicity property of the equilibrium energy under
that motion and a characterization of the cases where harmonicity occurs.
We prove that the function λ �→ md(fλ(D) \ K) is superharmonic. Also, we
show that λ �→ md(fλ(D) \ K) is harmonic on an open disk B if and only
if the equilibrium measures on the plates Ĉ \ fλ(D) are invariant under the
holomorphic motion and the equilibrium measures on the plate K are the
same for all λ ∈ B.
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In many cases, for example when K has non empty interior, we prove that
if λ �→ md(fλ(D) \ K) is harmonic on an open disk then the holomorphic
motion is naturally related with the level sets of the equilibrium potential of
the condenser on that disk. That follows from the fact that the equilibrium
measures on the plate K of the condensers fλ(D) \ K are the same, for all
λ on that disk. Another superharmonicity property of holomorphic motions
has been proved by T. J. Ransford [18, p. 200].

When fλ(z) is holomorphic on both variables, we prove that condenser
energy is a real analytic function of λ. This is the content of Theorem 2.
C. J. Earle and S. Mitra [7] proved a similar analyticity property of arbitrary
holomorphic motions but only when D \ K is doubly connected. Since dila-
tion is a holomorphic motion, Laugesen’s claim becomes a special case of the
above results. Also, in Theorem 3, we specify for which condensers we get
harmonicity: the function λ �→ md(λD \ K) is harmonic if and only if D \ K
is essentially an annulus with center at the origin, where “essentially” means
except a set of zero logarithmic capacity.

In the following section, we introduce the concepts of the theory of con-
densers and holomorphic motions that are needed for our results. Theorem 1
is proved in Section 3, Theorem 2 is proved in Section 4 and Theorem 3 is
proved in Section 5.

2. Background material

2.1. Condenser capacity. We denote by Cl(·) the logarithmic capacity
(see e.g. [1, p. 151] or [18, p. 127]). If two planar sets A,B differ only on a set
of zero logarithmic capacity (namely, Cl(A \ B) = Cl(B \ A) = 0), then we say
that A,B are nearly everywhere equal and write A

n.e.= B. Nearly everywhere
equal sets have the same potential theoretic behavior.

The energy of σ ∈ S(D \ K) is defined by

I(σ) =
∫ ∫

log
1

|z − w| dσ(z)dσ(w),

whenever

(1)
∫ ∫ ∣∣∣∣log

1
|z − w|

∣∣∣∣d|σ|(z)d|σ|(w) < +∞,

and its potential by

Uσ(z) =
∫

log
1

|z − w| dσ(w).

Then I(σ) > 0, for all σ ∈ S(D \ K) such that (1) holds (see [15, p. 80]).
Let D \ K be a condenser with finite equilibrium energy and equilibrium

measure τ = τD − τK . By the condenser theorem (see [4, p. 321]), there exist
finite constants VD ≥ 0 and VK ≤ 0 such that
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(i) VK ≤ Uτ (z) ≤ VD, for all z ∈ Ĉ,
(ii) Uτ = VD in Ĉ \ D, except on a subset of zero logarithmic capacity,
(iii) Uτ = VK in K, except on a subset of zero logarithmic capacity,
(iv) supp(τD) ⊂ ∂D and supp(τK) ⊂ ∂K,
(v) md(D \ K) = VD − VK .

Also the equilibrium energy is invariant under Möbius transformations (see
[4, p. 318]).

The capacity of a condenser D \ K can be expressed by a Dirichlet integral:
Let

V (z) =
VD − Uτ (z)
md(D \ K)

, z ∈ D \ K.

Then V is the solution of the Generalized Dirichlet Problem on D \ K with
boundary values 0 on ∂D and 1 on ∂K. Moreover,∫

D\K

| ∇V |2 =
1

md(D \ K)2

∫
D\K

| ∇Uτ |2 =
2π

md(D \ K)
= Cap(D \ K),

where we used the formula ([15, p. 97])

md(D \ K) = I(τ) =
1
2π

∫
D\K

| ∇Uτ |2.

In the following theorem, taken from [17], we describe the relation of two
domains D1,D2 relative to which the equilibrium measures on the plate K of
the condensers D1 \ K and D2 \ K are the same. We shall need this result when
we examine harmonicity of condenser energy under a holomorphic motion.

Theorem 2.1 ([17, Theorem 1 and Remark 2.3]). Let K be a compact
subset of Ĉ that has a connected component that is neither a singleton nor
a piecewise analytic arc. Let D1 \ K and D2 \ K be two condensers with
finite equilibrium energy and denote by τ1 = τ1

K − τD1 and τ2 = τ2
K − τD2 their

equilibrium measures, respectively. Also, denote by VD2 the constant value of
the equilibrium potential Uτ2 on the plate Ĉ \ D2. Then:

(i) τ1
K = τ2

K and md(D1 \ K) = md(D2 \ K) if and only if D1
n.e.= D2;

(ii) If md(D1 \ K) < md(D2 \ K) and the set

D̃2 =
{
z ∈ D2 : Uτ2(z) < VD2 −

(
md(D2 \ K) − md(D1 \ K)

)}
contains K, we have

τ1
K = τ2

K if and only if D1
n.e.= D̃2.

2.2. Holomorphic motions. Let A be a subset of Ĉ and let N be a domain
in C.

Definition 2.2. A holomorphic motion of A, parameterized by N with
basepoint λb ∈ N is a map

f : N × A �→ Ĉ
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such that
(i) for any fixed z ∈ A, the map λ �→ f(λ, z) is holomorphic in N ,
(ii) for any fixed λ ∈ N , the map z �→ f(λ, z) = fλ(z) is an injection,
(iii) the mapping f(λb, ·) is the identity on A.

There is no assumption regarding the continuity of f as a function of z
in A or as a function of (λ, z) in N × A. That such continuity occurs is
a consequence of the following fundamental theorem on the extendability of
holomorphic motions (see [2], [19]). We denote by D the unit disk.

Theorem 2.3 ([2, p. 34]). If f : D × A �→ Ĉ is a holomorphic motion with
basepoint 0, then f has an extension to F : D × Ĉ �→ Ĉ such that

(i) F is a holomorphic motion of Ĉ,
(ii) each Fλ(·) : Ĉ �→ Ĉ is a quasiconformal self homeomorphism,
(iii) F is jointly continuous in (λ, z).

It is clear that the conclusions of the above theorem are valid if we re-
place D by an arbitrary disk. This can be done using an auxiliary Möbius
transformation.

3. Condenser energy under holomorphic motions

We consider a condenser D \ K with finite equilibrium energy. Also we
consider a holomorphic motion

f : N × Ĉ �→ Ĉ.

We assume that for all λ ∈ N , we have K ⊂ fλ(D).
Let V be a subset of N and σλ0 = σλ0

D − σK ∈ S(fλ0(D) \ K), λ0 ∈ V . For
every λ ∈ V we consider the measure

σλ
D(E) = σλ0

D

(
fλ0

(
f −1

λ (E)
))

for every E ⊂ Ĉ \ fλ(D) Borel measurable,

and the signed measure σλ = σλ
D − σK ∈ S(fλ(D) \ K). That is, we transfer

the measure σλ0 to the condensers fλ(D) \ K via fλ without changing it on
the plate K. The family of signed measures{

σλ = σλ
D − σK ∈ S

(
fλ(D) \ K

)
: λ ∈ V

}
will be called the transmission of σλ0 to the condensers fλ(D) \ K under the
holomorphic motion fλ. The next lemma states that a holomorphic motion
fλ transfers a signed measure in such a way that the energy is a harmonic
function of λ.

Lemma 3.1. Let D, K, fλ and N be as above. Consider an open subset V
of N , a point λ0 ∈ V , a signed measure σλ0 = σλ0

D − σK ∈ S(fλ0(D) \ K) with
compact support and finite energy and the transmission {σλ : λ ∈ V } of σλ0 .
Then the function

V 
 λ �→ I(σλ) ∈ R
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is harmonic on V .

Proof. The functions

(2) λ �→ log
1

|fλ(f −1
λ0

(x)) − fλ(f −1
λ0

(y))|
, x, y ∈ supp

(
σλ0

D

)

and

(3) λ �→ log
1

|fλ(f −1
λ0

(x)) − y|
, x ∈ supp

(
σλ0

D

)
, y ∈ supp(σK)

are harmonic in V for x �= y as real parts of holomorphic functions.
Since σλ0 has finite energy, the integral∫ ∫

log
1

|x − y| dσλ0
D (x)dσλ0

D (y)

is finite. Therefore, since log 1
|x−y| is ∞ on the diagonal

diag =
{
(x,x) : x ∈ supp

(
σλ0

D

)}
,

σλ0
D × σλ0

D (diag) = 0.
Let λ ∈ V . Then, because of the harmonicity of the functions in (2), (3)

and Fubini’s theorem, for all r > 0 such that B(λ, r) ⊂ V ,

1
πr2

∫
B(λ,r)

I(σζ)dζ

=
1

πr2

∫
B(λ,r)

[
I(σK)

+
∫ ∫

(Ĉ\fλ0 (D))2\diag

log
1

|fζ(f −1
λ0

(x)) − fζ(f −1
λ0

(y))|
dσλ0

D (x)dσλ0
D (y)

− 2
∫ ∫

(Ĉ\fλ0 (D))×K

log
1

|fζ(f −1
λ0

(x)) − y|
dσλ0

D (x)dσK(y)
]

dζ

= I(σK) +
∫ ∫

log
1

|fλ(f −1
λ0

(x)) − fλ(f −1
λ0

(y))|
dσλ0

D (x)dσλ0
D (y)

− 2
∫ ∫

log
1

|fλ(f −1
λ0

(x)) − y|
dσλ0

D (x)dσK(y)

= I(σλ).

Therefore, the function λ �→ I(σλ) is locally integrable on V and satisfies the
averaging property (with respect to area measure) on all disks B(λ, r) such
that B(λ, r) ⊂ V . By [3, Theorem 1.25, p. 18], the function λ �→ I(σλ) is
continuous and therefore harmonic on V . �

We proceed to prove our main result.
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Theorem 1. Let D \ K be a condenser with finite equilibrium energy and
fλ be a holomorphic motion of D such that K ⊂ fλ(D) for all λ ∈ N . Then
the function

λ �→ md
(
fλ(D) \ K

)
is superharmonic on N . The above function is harmonic on a disk B(λ0, r0) ⊂
N if and only if the equilibrium measure of the condenser fλ(D) \ K is the
transmitted measure of the equilibrium measure of the condenser fλ0(D) \ K
under the holomorphic motion fλ, for every λ ∈ B(λ0, r0).

Proof. We denote by τλ = τλ
D − τλ

K the equilibrium measure of the condenser
fλ(D) \ K.

Let λm → λ and choose a subsequence λmk
such that

lim
k→∞

I(τλmk
) = lim inf

m→∞
I(τλm).

We can assume that ∞ /∈ ∂fλ(D) because of the invariance of equilibrium
energy under Möbius transformations. So we can assume that the supports of
the measures τλmk

lie in a compact subset of C. By the Riesz Representation
theorem ([11, pp. 212, 223]) and Alaoglu’s Compactness theorem ([11, p. 169]),
there exist a subsequence τλmkl

and a Borel measure ν such that

τλmkl

w∗
→ ν.

By the lower-semicontinuity of energy in measure (see [15, pp. 78–79])

I(ν) ≤ lim inf
l→∞

I(τλmkl
) = lim inf

m→∞
I(τλm).

Also by the fact that τλmkl
∈ S(fλmkl

(D) \ K) and the definition of the equi-
librium measure, we have ν ∈ S(fλ(D) \ K) and I(τλ) ≤ I(ν). So

md
(
fλ(D) \ K

)
= I(τλ)
≤ I(ν)
≤ lim inf

m→∞
I(τλm)

= lim inf
m→∞

md
(
fλm(D) \ K

)
,

and thus the function λ �→ md(fλ(D) \ K) is lower semicontinuous on N .
Let λ0 ∈ N and B(λ0, r0) ⊂ N . We denote by s the arc length on ∂B(λ0, r0).

We denote by {σλ = σλ
D − σK } the transmission of τλ0 to the condensers

fλ(D) \ K under the holomorphic motion fλ. Then, by the definition of the
equilibrium measure and by Lemma 3.1, for all 0 < r < r0,

1
2πr

∫
∂B(λ0,r)

md
(
fζ(D) \ K

)
ds(ζ) =

1
2πr

∫
∂B(λ0,r)

I(τζ)ds(ζ)

≤ 1
2πr

∫
∂B(λ0,r)

I(σζ)ds(ζ)
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= I(σλ0)
= I(τλ0)
= md

(
fλ0(D) \ K

)
.

So, λ �→ md(fλ(D) \ K) is superharmonic on N .
Suppose now that λ �→ md(fλ(D) \ K) is harmonic on B(λ0, r0). Then, as

above,

md
(
fλ0(D) \ K

)
=

1
2πr

∫
∂B(λ0,r)

md
(
fζ(D) \ K

)
ds(ζ)

=
1

2πr

∫
∂B(λ0,r)

I(τζ)ds(ζ)

≤ 1
2πr

∫
∂B(λ0,r)

I(σζ)ds(ζ)

= I(σλ0)
= I(τλ0)
= md

(
fλ0(D) \ K

)
.

Therefore,

1
2πr

∫
∂B(λ0,r)

I(τζ)ds(ζ) =
1

2πr

∫
∂B(λ0,r)

I(σζ)ds(ζ)

for all 0 < r < r0 and integrating with respect to r from 0 to r0 we obtain

1
πr2

∫
B(λ0,r0)

[
I(τλ) − I(σλ)

]
dλ = 0.

The functions λ �→ I(τλ) = md(fλ(D) \ K) and λ �→ I(σλ) are harmonic on
B(λ0, r0), therefore the difference I(τλ) − I(σλ) is a continuous and non-
positive function of λ. So we must have I(τλ) = I(σλ) for all λ ∈ B(λ0, r0)
and by the uniqueness of the condenser equilibrium measure, we must have
τλ = σλ; that is, the equilibrium measure of the condenser fλ(D) \ K is the
transmitted measure of the equilibrium measure of the condenser fλ0(D) \ K
under the holomorphic motion fλ.

The converse follows from Lemma 3.1. �

As a consequence, we obtain subharmonicity of condenser capacity under
holomorphic motions.

Corollary 3.2. Let D, K, fλ and N be as above. Then the function

λ �→ Cap
(
fλ(D) \ K

)
is subharmonic on N .
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Proof. From Theorem 1, we have that λ �→ md(fλ(D) \ K) is superharmonic
on N . So λ �→ − md(fλ(D) \ K) is subharmonic on N . Since φ(x) = −2π

x is
convex and increasing on (−∞,0) and

φ
(

− md
(
fλ(D) \ K

))
=

2π

md(fλ(D) \ K)
= Cap

(
fλ(D) \ K

)
,

the function λ �→ Cap(fλ(D) \ K) is subharmonic on N (see [18, Theorem 2.6.3,
p. 43] or [1, Theorem 3.4.3, p. 73]). �

In the following corollary, we describe a property that must be satisfied by
a holomorphic motion, if the condenser energy is a harmonic function under
that motion, for a large class of condensers. In particular, we show that
the holomorphic motion must be related to the level sets of the equilibrium
potential of the condenser.

For any α ∈ (VK , VD), we denote by Dα the sets

Dα =
{
ξ ∈ D : Uτ (ξ) < VD − α

}
,

where τ is the equilibrium measure of the condenser D \ K. Then each Dα is
open because the equilibrium potential Uτ is upper semicontinuous on D and
the boundaries of the sets Dα are the level sets of the condenser equilibrium
potential on D \ K.

Corollary 3.3. Let D, K, fλ and N be as above and let λb be the base-
point of fλ. Also suppose that Ĉ \ K is regular for the Dirichlet problem and
K has a connected component that is neither a singleton neither a piecewise
analytic arc. If λ �→ md(fλ(D) \ K) is harmonic on a disk B(λb, r) ⊂ N, then
every connected component of ∂D that is a nondegenerate continuum is a
union of piecewise analytic arcs and the holomorphic motion fλ is essentially
a parametrization of the sets Dα, α ∈ (VK , VD). That is, for each λ ∈ B(λb, r)
with

md
(
fλ(D) \ K

)
< md(D \ K),

there exists α ∈ (VK , VD) such that fλ(D) n.e.= Dα.

Proof. Let τ = τD − τK be the equilibrium measure of the condenser D \ K
and τλ = τλ

D − τλ
K be the equilibrium measure of the condenser fλ(D) \ K, for

all λ ∈ B(λb, r). Suppose that λ �→ md(fλ(D) \ K) is harmonic on B(λb, r).
From Theorem 1, τλ

K = τK , for all λ ∈ B(λb, r). Choose λ0 ∈ B(λb, r) such
that md(fλ0(D) \ K) > md(D \ K). Since Ĉ \ K is regular for the Dirichlet
problem, the open set

Ω =
{
z ∈ fλ0(D) : Uτλ0

(z) < VDλ0
−

(
md

(
fλ0(D) \ K

)
− md(D \ K)

)}
contains K. Then, from Theorem 2.1, D

n.e.= Ω. Since ∂Ω ⊂ fλ0(D) \ supp(τK)
and Uτλ0

is harmonic therein, ∂Ω is a union of piecewise analytic arcs. There-
fore every connected component of ∂D that is a nondegenerate continuum is a
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union of piecewise analytic arcs. Also, for each λ ∈ B(λb, r) with md(fλ(D) \
K) < md(D \ K) from Theorem 2.1,

fλ(D) n.e.= Dα,

where α = md(D \ K) − md(fλ(D) \ K). �

Remark 3.4. Suppose that K is the union of two disjoint continua. Then,
for sufficiently small α, the open sets Dα will not be connected; in particu-
lar they will constitute of two connected components each one containing a
connected component of K. Also, since D is a domain and fλ is a homeo-
morphism, it is not possible to have fλ(D) = Dα for sufficiently small α. So,
in order to have harmonicity of condenser energy on N , the plate K must be
nearly everywhere equal to a nondegenerate continuum.

4. Analyticity of condenser energy

Again we assume that fλ is a holomorphic motion parameterized by the
domain N .

We proceed to prove that the functions λ �→ md(fλ(D) \ K) and λ �→
Cap(fλ(D) \ K) are real analytic when fλ(z) is holomorphic on both vari-
ables.

Theorem 2. Let D \ K be a condenser with finite equilibrium energy and fλ

be a holomorphic motion of an open neighborhood of D such that K ⊂ fλ(D)
for every λ ∈ N . We assume that the function z �→ fλ(z) is holomorphic, for
every λ ∈ N . Then the functions

λ �→ Cap
(
fλ(D) \ K

)
and

λ �→ md
(
fλ(D) \ K

)
are real analytic on N .

Proof. Since z �→ fλ(z) is an injection, it is a conformal mapping.
Let V be the solution of the Generalized Dirichlet Problem on D \ K with

boundary values 0 on ∂D and 1 on ∂K. Then the function

z �→ φλ(z) = V ◦ f −1
λ (z)

is the solution of the Generalized Dirichlet Problem on fλ(D) \ K with bound-
ary values 0 on ∂fλ(D) and 1 on ∂K, for all λ ∈ N . Then

Cap
(
fλ(D) \ K

)
=

∫
fλ(D)\K

∣∣∇φλ(z)
∣∣2 dz

for all λ ∈ N . Since V is harmonic on D \ K and since fλ(z) = f(λ, z) is
holomorphic on both variables λ and z from the hypothesis, we obtain that
φλ(z) = φ(λ, z) is harmonic on both variables λ and z. By [3, Theorem 1.28,
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p. 21], φλ(z) = φ(λ, z) is real analytic on both variables λ and z. Therefore
the functions

λ �→
∣∣∇φλ(z)

∣∣2 =
(

∂φλ

∂x
(z)

)2

+
(

∂φλ

∂y
(z)

)2

, z = x + iy

and

λ �→
∫

fλ(D)\K

∣∣∇φλ(z)
∣∣2 dz

are real analytic on N (see e.g. [13, Propositions 2.2.2, 2.2.3 and 2.2.8, pp.
29–33]). So

λ �→ Cap
(
fλ(D) \ K

)
is real analytic on N . Also, since

md
(
fλ(D) \ K

)
=

2π

Cap(fλ(D) \ K)

and Cap(fλ(D) \ K) > 0, the function

λ �→ md
(
fλ(D) \ K

)
is real analytic on N (see e.g. [13, Proposition 2.2.2, p. 29]). �

5. Harmonicity of condenser energy under dilation

We consider the holomorphic motion f : (C \ {0}) × Ĉ �→ Ĉ,

fλ(z) = λz,

with basepoint 1, which will be called dilation. The dilation

{λz : z ∈ E}
of a set E will be denoted by λE.

Let D \ K be a condenser. We consider the set

N = {λ ∈ C : K ⊂ λD}.

Theorem 5.1. Let D \ K be a condenser with finite equilibrium energy.
Then λ �→ md(λD \ K) is a real analytic superharmonic function on N and
λ �→ Cap(λD \ K) is a real analytic subharmonic function on N .

Proof. Dilation is a holomorphic motion which is conformal on both vari-
ables. Therefore, by Theorem 2, the functions

λ �→ md(λD \ K) and λ �→ Cap(λD \ K)

are real analytic functions on N . Also, by Theorem 1 and Corollary 3.2, we
obtain superharmonicity and subharmonicity of the functions λ �→ md(λD \
K) and λ �→ Cap(λD \ K), respectively. �
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It is clear from Corollary 3.3 that, if we fix a holomorphic motion fλ of
the plane, it is not always possible to find a condenser D \ K such that λ �→
md(fλ(D) \ K) is harmonic. We shall examine this problem in the case where
the holomorphic motion is dilation.

Lemma 5.2. Let D be a Greenian subdomain of Ĉ such that ∞ /∈ ∂D or
0 /∈ ∂D. Suppose that

λD
n.e.= κD

for all κ,λ which lie on a nondegenerate continuum γ. Then there exist posi-
tive numbers r1 < r such that either

D
n.e.=

{
z ∈ Ĉ : r1 < |z| < r

}
or

D
n.e.=

{
z ∈ Ĉ : |z| < r

}
or

D
n.e.=

{
z ∈ Ĉ : |z| > r

}
.

Proof. Let G(x, y) be the Green function of D. Then, if Gλ is the Green
function of λD, λ ∈ γ,

Gλ(x, y) = G

(
x

λ
,
y

λ

)

([18, Theorem 4.4.4, p. 107]). Since λD
n.e.= κD, we must have Gλ(x, y) =

Gκ(x, y) for all x, y ∈ λD ∩ κD and λ,κ ∈ γ ([1, Corollary 5.2.5, p. 128]). Let

R =
{

ζ ∈ ∂D : lim
D�y→ζ

G(x, y) = 0, x ∈ D
}

.

Then Cl(∂D \ R) = 0 (see [12, Theorem 8.30, p. 176] or [1, Theorem 5.7.4, p.
148]). Also, for each λ ∈ γ, let

Rλ =
{

ζ ∈ ∂λD : lim
λD�y→ζ

Gλ(x, y) = 0, x ∈ λD
}

.

Then, since Gλ(x, y) = G(x
λ , y

λ ), we have Rλ = λR for all λ ∈ γ and since
Gλ = Gκ we have λR = κR for all λ,κ ∈ γ.

Suppose that ∞ /∈ ∂D. Set M := sup{ |ζ| : ζ ∈ R} < +∞. Then

|λ|M = sup
{

|ζ| : ζ ∈ λR
}

= sup
{

|ζ| : ζ ∈ κR
}

= |κ|M,

and hence |λ| = |κ|, for all λ,κ ∈ γ.
Suppose that 0 /∈ ∂D. Set m := inf{ |ζ| : ζ ∈ R} > 0. Then

|λ|m = inf
{

|ζ| : ζ ∈ λR
}

= inf
{

|ζ| : ζ ∈ κR
}

= |κ|m,

and hence |λ| = |κ|, for all λ,κ ∈ γ. So, in any case, |λ| = |κ| for all λ,κ ∈ γ.
If ζ0 ∈ R \ {0, ∞}, then {κζ0 : κ ∈ γ} ⊂ λR, for all λ ∈ γ and {κζ0 : κ ∈ γ}

is an arc of a circle with center at the origin. So, for all λ ∈ γ,{
κ

λ
ζ0 : κ ∈ γ

}
⊂ R
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and R contains an arc of a circle with center at the origin which has length
greater than

ε :=
∣∣∣∣
{

κ

λ
ζ0 : κ,λ ∈ γ

}∣∣∣∣ > 0

and contains ζ0 in its interior. Since the same is true for all the points of the
above arc, the connected component of R that contains ζ0 must be a circle
with center at the origin. Since D is connected, R can have at most two
connected components. If Z = ∂D \ R, then we have that ∂D \ Z is one or
two circles and Cl(∂D \ R) = 0. The conclusion follows immediately. �

We proceed to describe the case where λ �→ md(λD \ K) is a harmonic
function.

Theorem 3. Let D \ K be a condenser such that at least one connected
component of K is a nondegenerate continuum and at least one connected
component of ∂D is a nondegenerate continuum. Then the following are equiv-
alent:

(i) The function λ �→ md(λD \ K) is harmonic on an open subset of N .
(ii) There exist positive numbers r < s such that either

D
n.e.=

{
z ∈ Ĉ : |z| < s

}
and K

n.e.=
{
z ∈ Ĉ : |z| ≤ r

}
or

D
n.e.=

{
z ∈ Ĉ : |z| > r

}
and K

n.e.=
{
z ∈ Ĉ : |z| ≥ s

}
.

(iii) The function λ �→ md(λD \ K) is harmonic on N .

Proof. (i) ⇒ (ii). Suppose that λ �→ md(λD \ K) is harmonic on the disk
B(λ0, r) ⊂ N .

Let l be a connected component of K that is a nondegenerate continuum
and let φ be a conformal mapping of Ĉ \ l onto Ĉ \ B(0,1). We consider the
condenser φ(D \ K), with plates φ(Ĉ \ D) and B(0,1) ∪ φ(K \ l). If V is
the solution of the Generalized Dirichlet Problem on D \ K with boundary
values 0 on ∂D and 1 on ∂K, then V ◦ φ−1 is the solution of the Generalized
Dirichlet Problem on φ(D \ K) with boundary values 0 on φ(∂D) and 1 on
∂(B(0,1) ∪ φ(K \ l)). By the conformal invariance of the Dirichlet integral,

Cap(D \ K) =
∫

D\K

∣∣∇V (x)
∣∣2 dx =

∫
φ(D\K)

∣∣∇V
(
φ−1(x)

)∣∣2 dx

= Cap
(
φ(D \ K)

)
.

So
md(D \ K) = md

(
φ(D \ K)

)
.

In a similar way we can show that for all λ ∈ N ,

md(λD \ K) = md
(
φ(λD \ K)

)
.
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So λ �→ md(φ(λD \ K)) is harmonic on the disk B(λ0, r) ⊂ N . The mapping

B(λ0, r) × φ(D \ K) 
 (λ,x) �→ φ
(
λφ−1(x)

)
is a holomorphic motion which, by Theorem 2.3, can be extended to B(λ0, r) ×
Ĉ. The energy of the condenser φ(D \ K) is a harmonic function under the
above holomorphic motion. So, by Theorem 1, the equilibrium measure of the
condenser φ(λD \ K) is the transmitted measure of the equilibrium measure
of the condenser φ(λ0D \ K) under the above holomorphic motion, for every
λ ∈ B(λ0, r). Since the interior of the set B(0,1) ∪ φ(K \ l) is non empty, by
Theorem 2.1,

φ(λD \ l) n.e.= φ(κD \ l)
for all λ,κ that lie in the level set{

ζ ∈ B(λ0, r) : md
(
φ(ζD \ K)

)
= md

(
φ(λ0D \ K)

)}
,

of the harmonic function ζ �→ md(φ(ζD \ K)). So λD
n.e.= κD, for all λ,κ that

lie in the level set{
λ ∈ B(λ0, r) : md(λD \ K) = md(λ0D \ K)

}
,

of the harmonic function λ �→ md(λD \ K).
Suppose that 0 /∈ ∂D or ∞ /∈ ∂D. By Lemma 5.2, there exist positive

numbers r1 < r such that

D
n.e.=

{
z ∈ Ĉ : r1 < |z| < r

}
or

D
n.e.=

{
z ∈ Ĉ : |z| < r

}
or

D
n.e.=

{
z ∈ Ĉ : |z| > r

}
.

Since K ⊂ D, in any of the above cases it is true that 0 /∈ K or ∞ /∈ K.
Because of the invariance of the condenser equilibrium energy under Möbius
transformations, we have that

md(λD \ K) = md
(

1
λ

λD
∖ 1

λ
K

)
= md

(
D

∖ 1
λ

K

)
.

So, the function λ �→ md(D \ λK) is harmonic on { 1
λ : λ ∈ B(λ0, r)}. Since

Ĉ \ K is connected, as before, by Lemma 5.2 we have that there exist positive
numbers s1 < s such that

(4) Ĉ \ K
n.e.=

{
z ∈ Ĉ : s1 < |z| < s

}
or

(5) Ĉ \ K
n.e.=

{
z ∈ Ĉ : |z| < s

}
or

(6) Ĉ \ K
n.e.=

{
z ∈ Ĉ : |z| > s

}
.
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Since D \ K is connected, (ii) follows immediately.
Suppose that 0, ∞ ∈ ∂D. Then 0, ∞ /∈ ∂K and, as before, one of the re-

lations (4), (5) and (6) must hold. But (4) cannot be true because D \ K is
connected. If (5) or (6) were true, we would have ∞ ∈ K ⊂ D or 0 ∈ K ⊂ D,
respectively, which is impossible since 0, ∞ ∈ ∂D. Therefore, the assumption
0, ∞ ∈ ∂D cannot be true.

(ii) ⇒ (iii). Suppose that D \ K is nearly everywhere equal to an annulus{
z ∈ Ĉ : r < |z| < s

}
.

Then

md(λD \ K) = log
|λ|s
r

and λ �→ md(λD \ K) is harmonic on N .
(iii) ⇒ (i). This is obvious. �

Remark 5.3. I do not know whether the assumptions that at least one
connected component of K is a nondegenerate continuum and at least one
connected component of ∂D is a nondegenerate continuum are necessary.

Acknowledgments. I would like to thank P. Poggi-Corradini for his sug-
gestion to examine the condenser energy under a holomorphic motion as a
generalization of dilation.
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