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A STOCHASTIC MOVING BOUNDARY VALUE PROBLEM

KUNWOO KIM, CARL MUELLER AND RICHARD B. SOWERS

ABSTRACT. We consider a stochastic perturbation of a moving
boundary problem proposed by Ludford and Stewart and studied
by Caffarelli and Vazquez. We prove existence and uniqueness.

1. Introduction

Moving boundary problems are one of the important areas of partial differ-
ential equations. They provide the correct quantitative description of a wide
range of physically interesting phenomena where a system has two phases.
However, since the boundary between these phases is defined implicitly by
the behavior of the rest of the system, they provide deep mathematical chal-
lenges in the areas of existence, uniqueness, and regularity.

Our goal here is to study the effect of noise on a specific free boundary
problem which was introduced by Stewart [Ste85] and subsequently addressed
in the mathematics literature (see [CS05], [CV95], [Vaz96]). Fix a probability
triple (2,.%#,P) and assume that B is a Brownian motion on (Q,.%,P). We
consider the SPDE

2
du(t,x) = %(t7 x)dt + au(t,x) dt + u(t,z) o dBy,
x> (),
(1) lim %(t x)=1
N ION, A

u(0,z) =uo(x), =R,
{(t,x) e Ry xR Ju(t,z) >0} ={(t,x) e Ry xR |z > p(¢)}.
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The constant o € R is fixed (we shall later see why it is more natural than
not to include this term). We also assume that the initial function u, € C'(R)
satisfies some specific properties:

e uo,=0o0nR_, uo >0 on (0,00), and lim,\ o dd%(x) =1.

o u, and its first three derivatives exist on (0,00) and are square-integrable

(on (0,00)).

In (1), odB; represents Stratonovich integration, and the last line means that
the boundary between u =0 and u > 0 is the graph of g.

In fact, it is not yet clear that (1) makes sense. Differential equations are
pointwise statements. Stochastic differential equations are in fact shorthand
representations of corresponding integral equations; pointwise statements typ-
ically don’t make sense. It will take some work to restate the pointwise sto-
chastic statement in the first line of (1) as a statement about stochastic inte-
grals.

There has been fairly little written on the effect of noise on moving bound-
ary problems (see [BDP02] and [CLMO0G6]; see also the work on the stochastic
porous medium equation in [BDPRO09], [DPR04a], [DPR04b], [DPRRWO06],
[Kim06]). We note here that the multiplicative term u in front of the dB
places this work slightly outside of the purview of the theory of infinite-
dimensional evolution equations with Gaussian perturbations. The multi-
plicative term is in fact a natural nonlinearity. It means that bubbles where
u is positive cannot spontaneously nucleate within the region where v = 0.

Our major contributions here are to formulate several techniques which
can (hopefully) be applied to a number of stochastic moving boundary value
problems. In our particular case, where the randomness comes from a single
Brownian motion, several transformations [the transformations of Lemmas
3.3 and 3.5 and (17)] can transform the problem into a random nonlinear
PDE [see (18)]. All of these transformations are not in general available when
the noise is more complicated, but most of the techniques we develop here
should be. Secondly, the irregularity of the Brownian driving force requires
some detailed analysis, no matter what perspective one takes; namely in the
analysis of Lemma 3.2 and the iterative bounds of Lemma 4.4.

2. Weak formulation

To see what we mean by (1), let’s replace odB by a smooth path b; the
Wong-Zakai result (cf. [KS91, Section 5.2D]) implies that SDE with smoothed
versions of dB converge to Stratonovich SDE (and that the Stratonovich in-
terpretation is correct when we do so). Let’s also assume that there is only
one interface. Namely, consider the PDE

2

ov 0%v
a(t,x) = 92 + av(t,z) + v(t,z)b(t),

(2) x> Bo(t),
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. ov B
By g BT =T
v(0,2) =uo(z), z€R,
{(t,x) eRL xR |v(t,z) >0} ={(t,z) Ry xR | x> F5(t)}.

This will be our starting point.
Let’s see what a weak formulation looks like (see [Fri64, Ch. 8]). Fix
v € C(Ry x R). Assume that [, is differentiable. Define

oo

va0 | _ vlta)e(t.a)ds = [ et

=fo (t)
Differentiating, we get that
. b ov 0
0, (t) = [E_ﬁo(t){a(t 2)o(t,z) +o(t, x)a—f(t,x)} do
v(t, Bo(1))p(t, B (1)) 3o (1)

and we can use the fact that v(¢,55(t)) =0 to delete the last term. We can
also use the PDE for v for > 3,(t) to rewrite W Integrating by parts, we
have that

/OO @(t,x)go(t,x) dz

m:go (t) ax2

= lim {—%(t x)p(t, Bo(t )>+v(t,ﬁo(t))g—i(t,ﬁo(t>)}

z\go (t)
o0 62Q0
—|—/ v(t,z)=—= (¢, x) dz.
=0 (t) 8x2

Again we use the fact that v(t,3,(¢)) =0, and we can also use the boundary
condition on %. Recombining things, we get the standard formula that

. 2
U, (t) = /ERv(t, x){ Zf (t,z) + %(t,x) + acp(t,x)} da

+ {/JCERU(t,x)cp(t,x) dz}b(t) —o(t, Bo(1))-

Replacing b by odB, we should have the following formulation: that for
any p € C°(Ry x R) and any ¢ > 0,

/IGR u(t,z)p(t, z) dx
:/mERuo(ac)go(t,x)dx
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/TO»/:EER ra:{at(rx) Z(p(rz)+a¢(rw)}dxd7ﬁ

.
+/{/u o(r,a d;z:}odB plr. () dr

The Ito formulation of this would be that

/zemu(t’x)‘p(tvx)dx
:/ uo () p(t, ) dx

/TO/rGJR r,x {8—<p(7“ x)-i—%(r J))—‘r&sp(r’q;)}dxdr

+ / O{ / ERu(r, z)o(r, ) d:c} dB, — / tow(r,ﬁ(r)) dr

where @:a—i—%.

REMARK 2.1. Thus the structure of the SPDE (1) is invariant under Ito
and Stratonovich formulations; this is the motivation for including « in (1).

We can now formally define a weak solution of (1). In this definition, we

allow for blowup. We let .%; def o{Bs;0 < s <t} for all ¢ >0; then B is a
Brownian motion with respect to {.% }+~¢ and stochastic integration against
B will be with respect to this filtration.

DEFINITION 2.2. A weak solution of (1) is a predictable path {u(t,-)]|0 <
t <7} in C(R) N LY(R), where 7 is a predictable stopping time with respect
to {Zt}t>0, such that for any ¢ € C°(R; x R) and any finite stopping time
T <,

/I eRu(T’,x)w(T',x) da
- [ w00 i
/T 0/1:€]R rac{ (ryz) + ng(r z) + ap(r, l‘)}dxdr

n / _0{ / el dz}dBr— / :)w(r,ﬁ(r))dv"
and where

{(t,z) €[0,7) xR |u(t,z) >0} ={(t,z) €[0,7) xRz > [(¢)}.

Our main existence and uniqueness theorems are the following. The argu-
ments leading up to these results will come together in Section 4.
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THEOREM 2.3 (Existence). A solution of (1) exists. Furthermore, u(t,-) €
C?[B(t),00) for all t €[0,7) and
2

_ )
Tgmf{tzo: ’a—;;(t—,ﬁ(t))’ :oo}.

Proof. Combine Lemmas 4.6 and 4.7. (|
We also have uniqueness.

THEOREM 2.4 (Uniqueness). Suppose that {uy(t,-);0 <t <71} and {us(t,
;0 <t <7} are two solutions of (1). Assume that for i € {1,2}, the map
x— ui(t,x — B;(t)) has three generalized square-integrable derivatives on (0,
00). Then ui(t,-) =usa(t, ) for 0 <t <min{m,m}.

Proof. The proof follows from Lemma 4.8. O

3. Regularity and a transformation

The proof of Theorems 2.3 and 2.4 will hinge upon a transformation of
(1) into a nonlinear integral equation on a fixed (as opposed to an implicitly
defined) domain; we will address this in Section 3.2. First, however, let’s
make sure that we understand a bit about regularity; this will illuminate the
assumptions needed.

3.1. Regularity. While regularity of moving boundary-value problems is an
incredibly challenging area (see [CS05]), we can make some headway. Namely,
if we assume enough regularity for the boundary, we can get better control of
the sense in which the boundary behavior holds.

The following representation result will help us in carrying out this analysis.
Define

po(t,x)d— ! exp[—ﬁ}7 t>0,z€R,
47t
P (b2, ) = {po(t,w — ) £ po(t, + 1) e
(3) = {po(t,x —y) £po(t,—z —y)}e™, t>0,2,y€R,
D (t,3,9) = {po(t,z — y) £ po(t,z +y) e
= {po(t,z —y) £po(t,—z —y)}e*; t>0,z,y€R

the second representations of p4 and p+ stem from the fact that p, is even in

its second argument. The distinction between py and p+ naturally lies in the

distinction between Ito and Stratonovich calculations. We then have that

Opx ps

W(a 3 ):a—:yg(t7x7y)+ap:t(taxay), t>0,l’,y€R,

O
ot Oy?

(t7x7y)+dﬁi(t,$,y), t>07x7y€R7
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i t,x,:)=limps(t,x, ) =0, R\ {0
t{%pi( ) tl\r%pi( ,x,) =0z x€R\ {0}

the relevant distinction between p; and p_ is their behavior at £ = 0. This
will come up in the arguments of Lemma 3.2.

LEMMA 3.1. Let u be a weak solution of (1) and assume that [ is contin-
wous. If 0 <t <7 and x> ((t), then

(5) ult,z) = — / BB (1 s = B(1), 6(s) — () ds
e / s (b= A0).5 = B(0)) s o) .

Furthermore, u(t,-) is C* on (B(t),o0).
Proof. Fix t>0, z €R, § >0 and ¢ € R and define

<ptxgc(sy)§ (t+d—s,x—cy—c), se€l0,t],yeR,

P+
Utw6c é/ @twécsy) (Say)dya s§<T.
ye

Fix next a finite stopping time 7/ < 7. For s € [0,t], we have that

sAT'

(6)  Urwse(sAT') = Usss.(0) + / Usoso(r) dB,
r=0

/

SAT
- / Ot,z,0,c(r,B(r)) dr

=0

S
= Ut’x,(;’c(()) + / Ut’x’é’c(’r A TI)X[OJ-/] (T‘) dBT
=0

[ eraaclr 80 xo (1) dr

Thus by Ito’s formula and some simple calculations, we have that

1
Utz5,c(s NT')exp [—BS + 55]

s 1
= Ut,z,&C(O) - / Ut,z,s,c(r A 7'/) €xXp {Br + 27”} X(T/,oo)(r) dB;
r=0

1 [° 1
+ 5 / Ut ws.c(r ANT')exp [—BT + 57‘} X(r',00) (1) dr
r=0

s 1
[ rasetr o) e -Be+ o] o) ar
r=0
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for all s €[0,t]. Taking s =t A7/, we have that

1
Ut.z.5,c(t A T’) exp {_Bt/\,,—/ + §t A 7’}

/

tAT 1
- Ut,x7§,c(0) - / @t,xﬁ,c(nﬁ(r)) €xXp l:_Br + Er:| dr

=0
and thus (using the fact that the integral is against ds)

1
Utws.c(t A )= Ut,z.,6,¢(0) exp [Bt/\-r/ - §t A 7J:|

tAT

1

[ et B 50 | Busos = B = y(ene’ =) .
r=0

Next taking 7’ ' 7, we have that

1
Utw,s.c(tAT) =Up 4.5.(0) exp [BMT — §t A T:|

tAT
- [ el B0 x| Burs — By -

B l(tmr)] dr.

2

Again using the fact that this is an integral against ds, we can take ¢ = ((t).
If t <7, then

1
Ut,z,&,,@(t)(t) = Ut,z,&,,@(t)(o) €Xp [Bt - 54

- /r:O Pt,x,8,8(t) (r,ﬁ(r))exp [Bt - Br - %(t - 7A):| dr.
If t <7, x> f(t), and 3 is continuous,
int (1=l + (= 5(0) - (30— 5(:)
= guin {[t — s/ + |(z - 5()) - (8(¢) - ﬁ(S))I} >0,
O;ng{|t—s|+|(x— 0) + (B0 >|}
= Juin {|t—s\+’(az— (1)) + (B(t) — B(s))|} > 0.
Thus,
(%I{Y(l)oiup [Pt ,2.6,80) (5, B(s)) — b (t — s,2 — B(t), B(s) — B(t))| =0,

(%I{II(I)Sllp‘(,Dtxéﬁ(t)(Oy) P+ (t,x— B(t),y — B(t )‘_0

This gives us the claimed representation result. We can then differentiate to
get the claimed smoothness. O
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Note that (5) is not an explicit formula for u since the right-hand side of
(5) depends on u through 8. We also note that the proof effectively converts
the Ito integral of (6) into a Stratonovich one, implying that py is converted
back into p4.

Next, let’s see what happens if we in fact assume that (8 is continuously
differentiable. It turns out that not only does the boundary behavior of (1)
hold pointwise, but we can find an evolution equation for 8 (which depends
on u). To get the general idea of this latter fact, let’s return to our determin-
istic PDE (2). By definition v(¢,8,(t)) =0, so differentating (and using an
approximation just to the right of 8,) we get that

v v .
O 650 0)) + 57 660(£)) s (1) =0.

Using the PDE for v and the boundary conditions (again, a rigorous proof
would require pushing the calculation just a bit to the right of 3,), we get
that in fact

. 0%v *v
@ b =-{ Gt avte i)} = G o).

For the SPDE (1), we should have the same result (since the noise term
vanishes at the boundary).

To proceed, let’s rewrite (5) in a slightly more convenient way. If {u(¢,-) |
0<t< 7} is a weak solution of (1) and 0 <t < 7, set

t
Aq(t,e) def / exp[B; — Bi—s + as]po (878 +06(t) — Bt — s)) ds,
s=0

e e R\ {0},

AE () 2 o / pe(tiey — B®)us(y)dy, &€
yER

Then some simple manipulation (which reflects the second representation of
p+ in (3) and the fact that p, is even in its second argument) shows that

(8) u(t,B(t) +e) = —Ai(t,e) — Ai(t, —¢) + AF (t,¢)
=—A(t,e) + Ai(t,—¢e) + A5 (t,¢).
We in fact have the following lemma.
LEMMA 3.2. Let {u(t,") |0 <t <7} be a solution of (1). If B is continu-
ously differentiable, then
(9) ) E%%t) %(t,x) =1 and E’%) %(t, z)=—05(t)
for allt €[0,7).
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Proof. From (8), we have that

ou oA 04, 0AS
5y (BB +e) = == (te) + 5—=(t,—e) + 7= (te),
0%u B 0%A, 0%A, 0?AF
ﬁ(t,ﬂ(t) +e)= —W(t,e) + W(t,—s) + 5 (t,e).
Note that
8p°( x)——LieX ——2 and
(10) N AN
@(t ) = R S 1 o
oz \b¥) = o AR | 2 exp il
Thus,
A ! Ipo
E(t,s) = /5:0 exp[B: — Bi—s — as]%(s,s +B(t) — Bt —s)) ds
__ e+ B(t) — Blt —s)
=— vin ) exp[B; — B + as] $3/2
_ )2
oI =B,
4s
= _Al,l(tﬂs) - Al,Q(ta€)7
82141 i 82]70
w(t,&) = /SZO eXp[Bt — B+ OéS] w2 (S,E +B(t) - ,6(2‘: — S)) ds
1 (e +8(t) — Bt —5))?
=T /S:O exp[B; — Bi—s + as]{ 55 — 1}
(e+B(t) —Bt—5)*] 1
X exp {— s ] ds
= Ag,l(t,é“) =+ Agg(t,é‘) + A273(t,6),
where
. 1 ¢ €
Al’l(t,g) = m - exp[Bt — Btfs + O[S]m
. B 2
o EHAO =B =9)?]

4s

! — _
AL?(ta 5) = 2\/1@ /5:0 exp[Bt —Bi_s+ QS]W
X exp | — (e+8(t) ;sﬁ(t —5))2] s
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~ 1 t 62
AQ,l(tag):m eXp[BtBt_S+as]{Zgl}
s=0
- ot ohen
<exp| - (e+8() 45ﬁ(t s)) | 53% i,
¢ —_ J—
Aza(t,e) = 2\/1@ /5:0 exp[B; — By + as]ﬁ%w
X exp)| — (e 4 B(t) — Bt — 5))? s
L 4s |
- ¢ e
A273(ta€) = Win /S:O exp[B; — Bi—s + as] () Sf/(j 5))
« exp| - EFAM) ;Sﬂ(t =] 4o

Since (§ is by assumption continuously differentiable,

K o 180 =8E-0)

0<6<t o
is finite. Thus,
Bt)— Bt —s) K
‘ @ﬂ =57
(8() = Bt - 5)?| _ K*
$5/2 =172

for all s € (0,¢]. Since s — % is integrable on (0,¢], we can use dominated
convergence to see that

o Bt) — Bt —s)
EIEI%)A1,2(t7€) 2\/@/5 Oexp — By s+ as]T
Bt — §))2
Xexp{_(ﬁ(ﬂ s,
i (5(6) Bt — 5))?
iy Azalhre) = \/E / o FPLBe = Brs Fras
Bt — §))2
X exp {— (B() fs(t ) } ds.

To understand fllyl, 121272 and A~2’3, we make the change of variables u =
le|/+/s and rearranging things to get that

Al l(t E) = Sgn -Bt—EZ/u2 + a‘€2/u2]

\/ﬁ/—ame}(p
Xw%710+60 Mtswu»1mh

4 €
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sgn(e) [ _ ae? Ju? B(t) — Bt — & /u?)
A2 2( ) \/E /u_|5/\/-eXp[Bt Bt—s2/u2 + ae / } 62/u2

2 _ o 27,2V\ 2
xexp[—u—<l—|— Bt) — Bt —e*/u )> }du.
4 €
Suppose that £ <1/(2K). If u>1, then

’ﬂ t—€2/u) <K < Ke<

in which case
(11) exp {—“; (1 O _ﬂ(z_gz/“Q))T < exp [—“—2}

On the other hand, if u < 1, we obviously have that
2 _ 27,2V 27
e[ (1 BB

3

Dominated convergence here ensures that

. 1 - 1 o0 u? 1
sh—% MALI(LE) = \/—_/ exp |:——_ du= 5,

1 u?] B1)
li Ayt —— | du=—~.
=0 sgn(e) 22(t:€) \/471/u 0 [ | Y 2

We next consider Ay (t,€). In fact, we should jointly consider Ay ;(t,e)
and Ag1(t, —¢). We have that

t 2
Ana(tie) = dan(t,—<) = %/ exp[By — By (i - 1)
s=0
p- (57655(t) - ﬂ(t - S))% ds_

The value of this is that p_(s,e,0) =0 for all s >0 and £ € R. We also note
that
Op—

Ty(t,z,O) :—288];0 (t,z)e™, t>0,z€R

and

32]70 82po (

a2po 82po o
) = { G =) = S ) e
{ o912 (t7x7y)7 o2

t,xy)}e"‘t, t>0,zeR,yeR,
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where the last representation uses the fact that p, is even in its second argu-
ment. Thus,

P (.2, 8(0) — Bt~ 2)) = ~2(8(1) — At — ) 22 s, )

Thus,
Azi(tye) = Ao (t,—e) = A5 1 (t,e) + Ab 1 (t,6) — A 1 (t, —)
+ A5 (t,e) — A5, (¢, ),
where
¢ 2
A5 1(te)=— eXp[Bt_BtS+O[8]<— _1)
s=0 2s
ﬂ(t 75@75) apo
X p o (s,e)ds,
t 1 2 (B(8) — Blt — a2
A, (te) == / / S O IO R )
s=0Jr=0

oz >
:_/S O/r Oexth By_ g+ozs]<ﬂ() 6(ts)>2

Ope (5,5 — r(ﬁ(t) —0B(t— 5))) drds,

0x?
' — _ 2
st == [ [ explp v OB
apo

X —— (s,e—r(ﬁ(t) ﬁ(t—s)))drds

:"/S O/T explB,— B gws](ﬂ() 5“5)>25

(5,5 r(B(t) — Bt —s))) drds.

X
8372
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We will again use the transformation u = |¢|/y/s. We compute that for
e>0

t

- 1 2
A5 1(te) = W/ exp[B; — Bi_s + as] (;—S — 1)
s=0
Bt) —pBt—s) « g2
X f@ exp _E ds
e} u2
=— sgn(a)/ exp[B; — By_c2 2 + ae” /U] (? - 1)
u=e/\t
B = Bt—e2/u?) T W] 1
X g2/u2 exp —Z \/T_Trd’u

Thus by dominated convergence,

lim A% | (t,¢) B(t)/oo (“2 1> [ “2} L u=0
1m €)= — —1|exp|—— | —=du=0.
e\.0 2,1 u=0 2 P 4 \/47T
Similarly,
A21(t € E/ / exp[B; — By_c2 2 + ae” Ju?]
2 Jumfel/vi Jr=0

) <ﬂ(t)ﬁ(t€2/u >)2

g2 Ju?

x (€% /u ) ( 2ju? e —r(B(t) — Bt — €2 /u?))) dr du.
From the second equality of (10)7 we see that there is a K > 0 such that

0%pe K 22 K
92 (s,x)‘ < o exp[ 85} < a2

for all s € (0,t] and x € R. Assume again that ¢ < 1/(2K). If u <1, then

(12)

’(53/113)%(52/112»5 —r(ﬂ(t) —0(t— 62/u2)))‘ < K% =K.

On the other hand, if u > 1, we have that

(€% /u) 88;’; (2/u2,e —r(B(t) — B(t — €2 /u?)))
(/u?) (e —r(B(t) = B(t — % /u?)))?
< Kerayneo|- =/ |

gKexp[f@rﬂ(t)ﬁ(ts?/u%ﬂ SK@XPV;]

e

exp
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by again using (11). Combining things together, we see that there is a K >0
such that

oo 2

|45 1 (t,e)| < Ks/ exp {%] du = Kev2r;

u=0
thus indeed

;%Agl(t,a) =0.

We next turn to A5 ;. We here use the last bound of (12). Since s+ 1/1/s is
integrable on (0, 1], we can use dominated convergence to see that

2
hmASEtg :77/ / exp|B; — By s+oz8]<ﬂ() 6(t$)> s
s=0Jr=0

X ap;(s r(B(t) — Bt — 5))) drds,

this integral being finite. We have again availed ourselves of the fact that p,
is even in its second argument.
Finally, let’s understand the relevant behavior of AY. We have that

. OAT 0
iy )= | G 0= A0t
5 y€e
_ PAy 82p_
lin %52 (1) = G (0.5 = 8Os dy.
ye

From the second expression for p1 in (3), we have that

e 0 = L2t -9) - L21-) | =0,

We also have that p_(¢,0,y) =0 for all ¢ >0, so
2

_ Op_
b (t707y) = L(Loay) fap_(t,O,y) =0.

0x? ot
Thus, in fact
0AF 0%A;
lim —= = li 2 =0.
lim, === 2 (t,e)=0 and lim = (t,e)=0
Combining things together, we indeed get (9). O

3.2. A transformation. The characterization of 8 given in (9) allows us
to rewrite the moving boundary-value problem in a more convenient way.
The calculation which gives us some analytical traction is found in [Lun04]
(see also [Fri64, Ch. 8]). Again, let’s return to our deterministic PDE (2).
For all t >0 and x € R, define 0(¢,z) =v(t,x + Bo(t)) + e~ *. Then v(t,x) =
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(t,x — Bo(t)) — exp[—x + Bo(t)]. Assuming that G, is differentiable, we have
that for x >0 and t > 0,

ov ov

ov .
8_§(t’) o7 (24 Bo(t)) + o (13 + Bo (1)) Bo (t),
(13)  Dlta)= oo (bt () —e "
0?0 0%

g5z (1) = 5 (b 4 Balt) 67"

‘We can combine these equations and use the PDE for v to rewrite the evolution
of ¥ as
ov 0%v
(14) a(tx) = 8 2 (t x + ﬂo( )) + CYU(t,I + ﬂo(t)) +’U(t,$ +/80(t))b(t)
ov .
— (1 (1)) Bo(t
+ 5o (bt (1) Bu(t)
2 D D .
L)~ a(ilta) ) + (G0 + e ) A0
+ (0(t, ) — e ")b(t).
Note also that
o
or
Furthermore, 9(¢,0) =1 for all ¢ > 0, so evaluating (14) at =0 (or more
accurately, as z \,0), we get that

(t,0)=1—1=0.

00 0?0 .
—1 o (1)-
0=200)= T2 (1,00~ 14 401
Thus, in fact
: %o
1 L) =1—22(t,0);
(15) Bty=1- 220
alternately by combining (7) and the last line of (13), we have that

Bl =~ 5500, =~ { S5 0.0 -1},

Inserting the dynamics of G, back into (14) we can collect things and get a
PDE for v; we have that

B0 029 i -
a(t,.’ﬂ) = ﬁ(t’l.) ’U )
v 82~
+(6 )<1_@ ; o>
+(f;(t,x)—e “)o(t), t>0,2>0,
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v
(,0)=0, t>0,
5 0)

def

0(0,2) = to(x) = uo(x) +e™*, x>0.

Replacing b by our Brownian motion B and « by &, we now get the fol-
lowing.

LEMMA 3.3. Suppose that {u(t,") |0 <t <7} C C(R)NL(R) is a weak so-
lution of (1). Suppose also that 3 is continuously differentiable and {F;}i>0-
adapted. Then a(t,x) =u(t,z+ B(t)) + e~ " satisfies the integral equation

16 i) = | " et (us(y) + e V) dy

y:
o0
/ pilt—s,2.9)
y=0
i

0
* /StO
" {(%(S’y) +e_y> <1 B %@0)) —(a+ 1)€_y}dyds
+ /t_o /:075+(t —s,z,y){u(s,y) — e Y} dydB,

for allt >0 and x > 0.

Thanks to Lemmas 3.1 and 3.2, the assumption that (§ is continuously
differentiable ensures that the spatial derivatives of @ on the right-hand side
of (16) are well-defined.

Proof of Lemma 3.3. Fix £ >0 and T > 0. For t € [0,7), define

U (1) 4t / Ut y)p (Tt y)dy = AT (1) + AL (1),
y=0

where
FHORY b+ )T~ ) dy
y:
=/ u(t,y)ps (T —t,z,y — B(t)) dy
y=p(t)
= / u(t,y)p+ (T —t,z,y — B(t)) dy,
yeR
Ag(t) :/ 067yﬁ+(T*t7l’,y)dy
.
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Using Definition 2.2 and (4), we get that

op 02
dAlT(t):/yERu(t,y){—%(T—t,x,y—ﬁ(t))—|— 85; (T—t,m,y—ﬁ(t))

#8547 ~ g = 5(0) = 5 (T =ty = 5(0) 500y

+ {/yERu(t,y)m (T —t,z,y— (1)) dy} dB; — p+ (T —t,x,0) dt
= —{/ U(t,y)%(T —t,x,y — ﬁ(t)) dy}ﬂ(t) dt

=B(t)

+{/ o utt, y)ﬁ+(T—t,x,y—ﬁ(t))dy}dBt—ﬁ+(T—t,x,0)dt
(t
{/y a0 8y WP+ (T —t, .y — B(t)) dy ¢ 5(t)
+{ typ+(T t,x,y — B(t) dy}dBt P (T —t,z,0)dt
ou
—{/yoayty+ﬁ()) twydy}ﬁ(t
+{/ ty—i—ﬁ ) tgcydy}dBt —t,2,0)dt
y

- P+ (
{ w(% (t,y)+e” > —t:rydy}ﬂ()dt
+ )b+

{/y_( a(t,y) —e Y

We have here used the fact that u(t,5(t)) =0. We have also employed a
fairly straightforward generalization of the integral equality in Definition 2.2
to predictable integrands; the continuous differentiability and adaptedness of
£ allow us to apply this. Combining the characterization of 3 as in Lemma 3.2
and a calculation as in (15), we get that

—t,x,y dy}dBt—ﬁ+(T—t,x,0)dt.
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A straightforward differentiation, on the other hand, shows that

A7 (t) =—/ e_y%(T—t,x,y)dy
y=0

oo aQA
:—/ Oe—y a;;(T—t,x,y)dy
Y=

—/ e Yap, (T —t,x,y)dy

y=0

_ b+
dy

(@) / V(T — t,,y) dy.
y=0

(T —t,2,0)+p+ (T —t,2,0)

Note that %(T —t,2,0) =0. Combine things to get that
UT(t)=U07(0)

AL G ) (- Gen)

X pp(T — s,z,y) dy} ds

- (d-i—1)/:_0{/1:006_”}5+(T—s,m,y)dy} ds

+/St {/m (a(s,y)ey)m(Ts,:c,y)dy}st-

=0 y=0
Now let T\, t to get the claimed result. O

Of course (16) is equivalent to the SPDE

24
dﬁ(t,l’) = {%(t,x) + év(ft(t,x) — 679:) —e Z

(P ) (1- Z200) Y

X
+ (a(t,z) —e *)dB;, t>0,2>0,
ou

—(t,0) = t
&C(,O) 0, t>0,

w(0,2) = Uo(x) =uo(x) + 7%, x>0.
We can also find a converse to Lemma 3.3. First of all note the following.
LEMMA 3.4. Suppose that {u(t,") |0 <t <71} C C*(R;) satisfies (16).

Then @(t,0) =1 for all 0 <t < 7. Furthermore, u(t,x) >0 for all t >0 and
x> 0.
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Proof. Let’s first smooth things out. Fix § > 0 and define

ﬂWwﬂg/imwxy)@w@

— /OO Pyt +6,7,9) (uo(y) +e¥)dy

N foes
{< 7) (1_ %(3’00 - (d+1)€_y}dyds

+/ / p+(t+06—s,zy){u(s,y) —e Y} dydBs;
s=0Jy=0

we have of course used the fact that p is a semigroup of integral kernels. For
each z > 0, some straightforward computations show that

2~
diis(t, ) & { %(t, ) + Giis (¢, :17)} dt
X

+(Limw%m
X {(%(t,y) + ey> (1 - %(m)) —(a+ 1)ey} dy) dt

+ (/yo_ooﬁJr((S,x,y){ﬂ(t,y) - e_y}dy) dB,.

We now let § \, 0 and use the assumed continuity of 4. We also fix ¢ > 0 and
evaluate the result at x =¢. We get that

t 82~

a(t,e) = o () + O 2(3 E)ds—i—oz/:oa(s,g)ds
+/st_o<%(s’5)+ )(1—%(8 0))ds

(d+1)/st_oesds+/t (a(s,e) — e ¢) dB,

0

— i () +/St_0{%(s,€) - 222‘( O)(%(s,e) +e_€>}ds

t ~

t
L 8Z (s,e)ds+ /s=0 (i(s,e) — e ¢) dB,.
Letting € \, 0, we see that

a(t,0) :1+/1 (a(s,0) —1)dB,
s=0
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or alternately
1
a(t,0) — 1:/ (iu(s,0) — 1) dBs
s=0

which indeed implies that @(¢,0) =1 for all ¢ € [0,7).
To see the positivity, we define

(17) w*(t,x) € (a(t,x) — e *)e B, £>0,2>0,

Some straightforward calculations show that u* satisfies the random PDE

* 2, % 2, % *
ou 0*u (8 u (t,O)eB‘) ou

ot (t7x):W(ta‘r)+au (t,.’I})— W ox (t,l'),

t>0,2>0,
u*(t,0)=e" P, t>0,
u*(0,2) =uo(x), x=>0.

(18)

Note that e=5t >0 for all + >0 and u,(z) > 0 for all z > 0. Standard calcu-
lations for the heat equation then ensure that indeed w*(¢,2z) > 0 for all ¢ >0
and z* > 0. O

‘We then have

LEMMA 3.5. Suppose that {u(t,") |0 <t <7} C C?*(Ry)NLYR,) satisfies
(16). Set

(19) ﬁ(t)z/st_o{l—%(s,o)}ds, 0<t<r

and define

(20)  u(t,x) {f‘(t’x—ﬂ(ﬂ)—exp[—(w—ﬂ(t))L x> B(t),0<t <,
’ 0 z<B(t),0<t <.

Then {u(t,-) |0 <t <7} is a weak solution of (1).

Proof. Fix p € C°(Ry x R) and define

U(t) d:‘ff/ ot )ut, ) dz = Ay() — Ao(t), 0<t<T,
z€ER

mo= [ emlte—so)de= [ ol pw)ia i

oo

As(t) = /00 o(t, ) exp[— (x — ﬁ(t))] dx :/ ga(t,x —I—ﬁ(t))e_m dz.

=0
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To see the evolution of Ay, we repeat some of the regularization we used
in Lemma 3.4. Fix § > 0 and define

st ) / b G, y)ilty) dy, @0,
y=0

us(t x)dif as(t,x — B(t)) —exp[—(z — B(t))], =>p(t),0<t<T,
R x<Bt),0<t<T.

Then define
A< / ot + B(1))as(t, ) de = AT (8) + AP (1) + AY(1),
x=0

t [e'e) [e'e)
A= [ [ ol B0+ S - s dedyds,
AB(r) = / O / h / moso(t,xw(t))m(tw—s,z,y>52<s,y> dvdydB,,
s= T y=

=0
A= [ f T ot B(0)) Pt + 8,2,y (y) dardy,
z=0 Jy=0

where finally
ou 0%
&(tx) = (az(t’ x) +e‘”) <1 2 (t, 0)> (a+1)e™"

ou 0%u

= 5o (b + B() 55 (6.A() — (@ + 1)

&(t,2) =u(t,z) —e " = u(t,x +B(1)).
We also note that we can rewrite the evolution of 3 as

. 0%u
ﬂ(t)zfﬁ(tvﬁ(t»? tE[O,T).
Thus,

AT (1) :(/// { (tz+ B(1))ps(t 46 — 5,2,)

+ g_ (t,2+ B(1)) P (£ 40 — 5,2,9)3(1)

+<,0(t,x+ﬁ(t))aal(t+6 s x,y)}fl(s,y) dmdyds) dt

* </:00 /UOOO go(t, T+ ﬂ(t))ﬁ+(5, z,y)&1(t,y) dv dy) dt

</so/zo/ {8tt$+ﬂ()) +(t+5—s,2,9)
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25
-l-go(t,x—l—ﬂ(t))aa 5 (t+0—s,2,y)

R D

K Dot 48— 5,2,9)61(5,y) ds do dymt)) dt

(/L /io (b4 B0 6,06 ) o dy ) .

Similar calculations show that

dAéb (/ / / {_tp t,x+ B(t)py(t+6 — s,2,9)
s=0Jz=0Jy=0 0
313

+o(t,z+ B(t ))

(t—i—(5 x,y)

+@gp(t,x+ﬁ(t))g§+(t+§s,x,y)}fg(s,y)dxdyst
t [e'e] [e%¢) 8@

+/S_O/w_0/y_0%(t,x+ﬂ(t))

X Py (t+0 — s,2,y)&2(s,y) dBs d dyﬁ(t)) di

/ /y_ (t,z+ B(t)p+ (6, z,y)&(t,y) dxdy) dB,

and finally

dAS(t) —( { (t,z+ B() Py (t+ 6, 2,y)

+o(t,e ﬁ())

+ew(t,x+/3<t>)m<t+6,x,y>}ao<y> de dy

(t+(5a: Y)

/m 0/ == (tx+ B()) P+ (t+ 6, 2,y)io(y) da:dyff(t)) dt

Adding these expressions together, we get that,
AQ(t) — A}(0)

_ /:0 </°° (gf + a(p> (ssz+ B(s)) s (s, 2) do
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+/:090(8,w+ﬂ< ))‘9 2 (5,7) da
+/oo g*”(sxw 5(s,2) dzf(s ))
/ </x 0/ (5,2 +B(s p+(5>$»y>51(379)d$dy> ds

+/s:0 (/w_o /y_o‘p s,¢ + B(5)) D+ (8, 2,y)2(s,y) dxdy) dB,.

We can force the evolution of As into a similar expression. We have
. P 9 )
As(t) :/ { af (t,z+ (1)) + ;(t,x+ﬁ(t))ﬁ(t)}ex dz
/0
:/ (a—f—kmp) (t,z+ B(t)e " dx
o0 o0 8 .
+ /FO o(t,z+pB(t))e "dx+ /I:O a—i (t,x+ B(t))e " daf(t)
—(a@+1) /OO o(t,x+B(t))e * de.
x=0

Again combining things, we get that

(A1(1) — A (1)) — (41(0) — A2(0))
:/:_ </;OO (%—f—kaap) (s,z+ B(s))us(s,z + B(s)) dz

0
) 0

o= 08
7
+(a+1)/oo (s, + 6(s))e _sz:)ds

/s 0</x 0/ (s, 2+ B(s p+(5>$»y>51(379)d$dy> ds
+/s 0(/36 O/y ow S’x+ﬂ(s))ﬁ+(5»$»y)€2(87y)dxdy) dB,

_ /_0 (/ (Z—f T +as0) (5.2 + B(s))us (5.2 + B(s)) de
[ o 506 G s 805 dais)

Us

p(s,z+ B(s ))aa 5 (s x4+ B(s ))
()

i(s z+ B(s))us (s, z + B(s)) dz(s)



950 K. KIM, C. MUELLER AND R. B. SOWERS

— ol BN P (5, 4(5)) + 9 (5, 5(3))a 5, 5(5)
~ (s, B(5) s, 5()) ) da
(a+1)/ o(s,z+B(s))e _"”dx> ds

/s 0</— / (5,2 +5( ))ﬁ+(5,$,y)€1(8,y)dxdy> ds
/S O<L 0/ (5,2 +5( ))ﬁ+(5»$»y)§2(8,y)dzdy> dB,.

8u5

By definition of p;, we conclude that F*(s,((s)) = 0. We also have by
Lemma 3.4 that lims\ o us(s, 6(s)) =0. Upon letting ¢ \, 0 and rearranging
things, we indeed get a weak solution of (1). O

4. A Picard iteration

Our main task now is to show that we can indeed solve (16). The main
complication is that (16) is fully nonlinear due to the presence of the gﬂg (t,0)
term in the drift. If we turn off the noise, we can do this via semigroup theory
as in [Lun04]. The noise, however, complicates things, as we need to respect
the rules of Tto integration and (unless we want to use more advanced theories
of stochastic integrals) integrate against predictable functions.

Our approach will be to set up a functional framework in which we can use
Picard-type iterations to show existence and uniqueness. As usual, C§°(R)
is the collection of infinitely smooth functions on [0,00) whose support is
bounded. Define next

C(O even(R+ dif
in other words, Cg%.e,(R4) are those elements of C§°(R;) which can be

extended to an even element of C*°(R) (namely, consider the map y — ¢(|yl)).
For all ¢ € C§°(R4), define

def . 2
lelle = Z/ | (2)]” da.
z€(0,00)

Let H be the closure of C§°(R;) with respect to || - |z and let Heyen be the
closure of Cg% ., (Ry) with respect to || - |r. We also define

def
nwL—¢/ (p(a) o
z€(0,00)

for all square-integrable functions on R;. Of course H and Heye, are Hilbert
spaces (H is more commonly written as H?; i.e., it is the collection of functions

{pecCg (Ry) | ™ (0) =0 for all odd n € N};
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on R which possess three weak square-integrable derivatives). The important
aspect of H is the following fairly standard result.

LEMMA 4.1. We have that H C C%. More precisely, for any ¢ € H, we
have that

sup [0 (2)] < 2]l -
rER
i€{0,1,2}

Finally, foric{0,1,2}, ¢ (0) def lim, o ¢ (2) is well-defined.

The proof is in Section 4.1.
Fix L >0 and ¥y € C*(R;[0,1]) such that ¥y(x) =1 if |z| <L and
Up(z)=0if || > L+ 1. Set

itta)= [ peltag)io)dy
y=0
for all ¢ >0 and x € R and recursively define

(21) Gy (t @)

x{Eﬁgwwmfﬂﬁ(pfifwﬂQWAMﬂaﬂm>

t [e%¢)
+/ / ﬁ_}.(t*S,SC,y){ﬂﬁ(S,y)*eiy}dyst, t>0,$>0
s=0Jy=0

For each n € N, {al(t,-);t >0} is a well-defined, adapted, and continuous
path in Heyen-

To study (21), we will use the Neumann heat semigroup. For ¢ € C§°(R,),
t >0, and = > 0, define

def

(E@@%=/:m@wwwwmy

LEMMA 4.2. For each t >0, T, has a unique extension from C3°(R4) to H
such that TyH C Heyen and such that | Tefllg < ||fllg for all f € H. Secondly,
there is a K4 >0 such that

. K
IT:flle < W”.fHH
for all f € Heyen NCH(R ).
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Again, we delay the proof until Section 4.1.
Another convenience will be to rewrite the ds part of (21). Define

Uy () (1= 4(0) U (|[¢]|a)
for all 9» € H. Then

[y} (1- G w0 )wallake
T,

~{ Gt e Lk )
for all n € N. For ¢ and n in H, let’s also define

(DU 1) () < —ii(0) L ([l ) + (1 —Wﬂww”m%'

LEMMA 4.3. For each v andn in H, (DU1)(s,n) is the Gateauz derivative
of ¥ at 1 in the direction of . Furthermore, there is a Kp >0 such that

(D) (W, 0)| < Kpxpo,en) (19l m) 0]l
for all ¢ and n in H.
Proof. The claim is straightforward. O
def .7,

For each n € N, we now define wk (t,z) = 4k, (t,x) — ak(t,z) for all z >0
and t > 0. Clearly supg<, <7 E[||@f[|3,] < oo for all T'> 0. We then write that

X Uy (@k(s,") + Mok(s, ) dsdx

= [ (1 ) ) o) ks s

A _ / S Ouyy L

Piear= [ ([ s san{ G 125 E e bay)
L
L

0
(8,°) + ABE (s, ), Wk (s,-)) dsdA
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1 t o0
AP = [ - samedy
A=0Js=0Jy=0

x DU (ﬂﬁ(s, )+ )\1215(3, -),1215(5, )) dsd\
1 t
:/ / (T E) (&) DU (G (5, ) + ME(s, ), B (s, ) dsd,
A=0Js=0
t fe’e]
AP ) = | ( | it st dy) aB,
s=0 y=0

_ / (T (s ) @) B,
def

where for convenience we have set E(x) = e~” for all z > 0. Note that the

~L> ~L> :
uy;’s and w;’s are all in Heyen-

An easy calculation gives us that

B{A 5] = [ BTk el s< [ Bl ds

We similarly have (using Jensen’s inequality) that
t

B4 () ) < 0 [ 1T BB s, ds

t
<KBIEN [ Ellak. )R ds

To bound A™ and A", we use the fact that t=3/4 is locally integrable.
More precisely,

for all ¢ > 0. Thus,

! 1 1/4
. ds=4t
/s=o (t— P71 ?
~L
Tt_saw"(s,~)H ds

t 2
/s:O Ox H ]
/t [CACOIPPNE

o= (t—s)3/1

b OE[llwg (s, )l
< 4K2 K2 t1/4/ n\2 H d
SORARER | T s

(AL 3] < K3

< KﬁKgE[

Finally, we have that
E[[l 457 (¢, )|7]

t
/s:O

gK%IE{

out owk
Tt—s< Oz (57)+>‘ Oz (S’.))HH
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% Xfo,z+1] ([1ar (5,-) + X (s, ) | 1) 1y (5, )| r ds

/st_o(tlj%” w (s, m ds 2}

Y
<AKZKY(L+1)21/4 / O —[”(;”Z(S?)BJJH] ds.
s=

LEMMA 4.4. For each T >0, we have that %" supg<,;<r E[||ak,, —

]

< KjK%E{

al|g] < co.  Thus, P-as., ul(t,) =) lim,, oo ul(t,-) exists as a limit in
C([0,T); H) and u* satisfies the integral equation

(22) at(t.x) = / " ()i (y) dy

=0
/ / Sw){<a;$ (s + )

( )WL(HU (s a')||H)_(d+1)6_y}dyds
[, /y=0p+“ — 5,2, y){a (s,y) — ¥} dydB.,

t>0,z>0.

Proof. See also [Wal86, Lemma 3.3]. Fixing 7" > 0 we collect the above
calculations to see that there is a K7 > 0 such that

C O[],

L 2
Ellly 1 (8 )[E] < Kr o (t—s)3/1

for all t € [0,T]. Tterating this, we get that

n—2
Ellak (t.) ] < K:’ﬁlt("‘”/“{ [T B0+ i/4 1/4)} sup E[Jlat )
=1 <t<

where B is the standard Beta function and thus that
1/2
B[k (t,)|3,] < K™D/ 2n=0/ {H B(1+j/4, 1/4)}

x sup /[y |7]-
0<t<T

To show that the terms on the right are summable, we use the ratio test. It
suffices to show that

1/2
(23) lim K}/Qtl/S(B(H 1 1/4)) =0.

n—oo
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We calculate that
1

B(1+n/4,1/4) = / sV — )3 ds
s=0

1-1 1
:/ 5"/4(1—8)73/4d5—|—/ sV — )3 ds
s=0 s=1-—1
1-1 1
§n3/4/ s"/4ds+/ (1—5)_3/4(15
s=0 s=1—1

4TL3/4 1 1/4
< +4(_) .
n+4 n

This implies (23). The rest of the proof follows by standard calculations. O

We can finally show uniqueness.

LEMMA 4.5. The solution of (22) is unique.

Proof. Let u; and us be two solutions. Define w def u1 —ug. By calculations
as above, we get that
¢

Bl (t,)IIF] < Kr /:O(t —5) " E[[la(s, )[[7] ds.

We can iterate this inequality several times to get (cf. [Wal86, Theorem 3.2])

Ellat i < &2 [ @-9 [ (s=n ol drds

s=

= KB/ [ (=) Bt dr

< K3B(1/4,1/4)

X t —r)2 ' r— s) T3 AE||w(s, )| %] ds dr
[ = [ Bl dsa

= K7B(1/4,1/4)B(1/2,1/4) /:O(t —5) V[l (s, )|3] ds

< K}B(1/4,1/4)B(1/2,1/4)

t —s)V | s—r)3/ w(r,- rds
/ (=) 14[:0( ) SEl(r, ) [13] dr d

t

= K$B(1/4,1/4)B(1/2,1/4)B(3/4,1/4) /70E[HI‘[](T, 3] dr.

r=

We can now use Gronwall’s inequality. 0

Let’s now see what happens as L " 0o. Define the random times

7 Cinf{t>0: |t )|y > L}, L>0,
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' m (1, AL).

L—oo

Let’s also define
u(t, ) ' Tm @ LNy, x), t>0,2>0.

— 00

LEMMA 4.6. We have that

I [t )l = o,

Define u as in (19)—(20). Then {u(t,-) |0 <t <7} is a weak solution of (1).

Proof. Fixing L' > L we have from the uniqueness claim of Lemma 4.5
that @& (t,-) =al(t,-) for 0 <t <7y. Thus, 77, > 77 for all L’ > L, and so
T =limy 0o 7 =limp (7 A L) and 7 is predictable. We also have that
a(t,-) =limy o @ (t,-) for 0 <t < 7. From this and Lemma 3.5, we conclude
that {u(t,) |0 <t <7} as defined by (19)—(20) indeed is a weak solution of
(1). The characterization of ||a(t,-)|| iy at 7— is obvious. O

In fact, we have a more explicit characterization of 7.
LEMMA 4.7. We have that
0%

lim
o2

t/T
Proof. For each L > 0, define

(t,O)‘:oo

9?u .

o (=, 0)’ > L} (inf@=1).

By standard SPDE calculations like we used in Lemma 4.4, we know that (22)
has a solution on [0,7]. Thus, in fact 7> 77 and hence

0
or Q(TLvo)‘ =L.

7 inf{t € [0, 7] ‘

Consequently,
2 ~
U
LIEI;O o 2(TL,O)‘ = 00.

Since 77 < 7, we of course also have that lim;_,.,77 <7. On the other

hand, ||u(t, )|z may become large for many reasons other than \ 4(77,0)]
becoming large, so necessarily 7 <limy_,o, 77. Putting things together we
get that limy,_, ., 7, = 7. The claimed result now follows. O

To finish things off, we prove uniqueness.

LEMMA 4.8 (Uniqueness). If {a(t,-) |0<t <7} C H and {@'(¢,-) | 0<t<
7'} C H are two solutions of (16), then a(t,-) =@ (t,-) for 0 <t < min{r,7’'}.
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Proof. For each L >0, define

2~ 2/

o0“u
Sol=z}

e o°u
oL d:finf{te 0,7 AT): ‘5‘ (, 0)‘ > L or

infl=7A7".
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Then 7 AT <limj,_ o or. We can use standard uniqueness theory to conclude

that @ and @' coincide on [0,0], and we then let L /" co.

O

4.1. Proofs. We here give the delayed proofs. We start with the structural

claims about H.

Proof of Lemma 4.1. The fact that H C C? is well-known; [Eva98].

e CFP(Ry), x €(0,00), and i € {0,1,2}. We then have that
3i<p B r+1 aiso z+1 31@0 aiw
ox? (z) = /S:m ox? (s)ds - / { ox? ()= ox? (I)} ds
z+1 ai z+1 az+1
:/S:m axl s)ds —/S / l+1 r)drds
z+1

z+1 ai az-}-l(p
:/ axi(s)ds—/_ ($+1_T)8xi+1(r>dr'

x+1
Cds+ 3

\//w-l-l
oD (@) — oW ()| < Vlella vz -yl

Of course, we also have that
so the stated limits at x = 0 exist.

Thus,

aerl
z+1

S 7'

6361

We next study {7} }+>0-

dTS 2\l

Fix

Proof of Lemma 4.2. The proof relies upon a combination of fairly stan-

dard calculations.
To begin, fix ¢ € C§°(R4) and define

u(t, ) / el =)oy dy

= /OO po(tvx—y)@(y)dy+/2 po(t,x —y)p(—y)dy

=0

_ /:{po@,xy>+p0<t,x+y>}w<y>dy
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Thus, u(t,z) = (Typ)(x) for z > 0, and since p; is even in its second argument,
ut.~a)= [ polt—a+w)e(ul)dy
yeR
— [ pat—a el dy=u(t.o)
yeR

so in fact u(t,-) is even. Thus, we indeed have that 2
n € N; thus Ty € Heven-

A standard calculation shows that T; is a contraction on H. Indeed, for
each nonnegative integer n,

“u(t,0) =0 for all odd

oxm

d o"u ont2y, 9"u
=2 -
dt Jyep|Oxm 52 (6%) dx /zeR Dz 2 (t,x )8 —(t,z)dx
8"+1u 2
/xeR 9xnt1 (t,z)| dz<0
and thus
> o"u 2 1 o™ 2
24 gy dp — + . p
2y /wZO axn( @) do 2 /;vE]R 33@"( 7)| dz
1 an 2
=35 d
~2 /a:e]R Ox™ g (07)|

:/ o™ ()] da
x=0

Summing these inequalities up for n € {0,1,2,3}, we see that ||Ty¢[|% < |loll%
for all ¢ € C§°(R,). This implies that T} is a contraction on C§°(R;) and
has the claimed extension.

To proceed, fix ¢ € Cf%en(Ry) and define

v@aw=/Zu%wx—yruhmx+yn¢”@My

:/ polt, — )0 (Jy]) dy:
yER

note for future reference that since ¢ (0) =0, y+— ™M (|y|) is continuous at
y = 0. Differentiating, we get that

(25) )= [ Eola—p)e(yl)dy

:/ po(ts — )™ () sen(y) dy.
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/ fo(t, )2 de < / o) (@) de,
=0 x=0

/ v dxg/ ’@(2)($)‘2dx.
x=0 x=0

Thus in particular

p —(t,x)

Differentiating (25) again, we get that

0%v Opo
St = [ Feta =) ) senty) do
ye

v 0%p,
Tmta) = [ St el sens) dy
ye

_ Ipo 2)
=222 1.2 0)

Ipo 3
+/ t.x—1y)e® (Jyl) dy
o o)
We now note that there is a K > 0 such that
Ipo K

tz)| < —=po(2t,
P t0)] < (21,0
for all £ >0 and x € R. Thus,

0%v K
< / no(2ta =)o (D) do
ye

o 2(t x)
0%v 2K
‘%(t,x)‘ < Wpo(%,x)hp@) 0)]

K
S / po(2t, 2 — )| ® ()| dy.
yeR

We can now fairly easily conclude from (24) with n =0 that

\//xo dx<—\// 0@ (2)| de.

‘We also note that

tx

8:52

z2
< R
\//z po 2th dx \/\/_ eXp|: 2t:|d$

(27715)1/4
Thus,
03v 2 K 5 K )
\// et < e )(O)”%\//m:()'@“)(x” dz

959
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Combine things together to get the last claim. O

5. Numerical simulation

In this section, we will see from numerical simulations where the moving
boundary is. In general, it is difficult to simulate the SPDE (1) directly since
we need to find a solution of a stochastic heat equation and at the same time
we need to trace the position of the moving boundary. Here, we can avoid this
difficulty since we have the explicit formula for the solution w in Lemma 3.5.
That is,

ﬂ(t,a: — ﬁ(t)) —exp [— (x — B(t))], x> p(1t),0<t<T,
0, x<B(),0<t<T,

(26)  u(t,z) {
where [(t) is defined as

(27) ﬁ(t):/st {1—%(3,0)}(1& O<t<r

=0
and @ is a solution of the SPDE

it ) = { T2 t,2) + a(alt,z) — ) — e
“’m_aﬁ , T alult,x e e
ou . %1
(28) + (a(t,z) —e *)dBy, t>0,2>0,
ot
%(t,O)—O, t>0,

4(0,z) = Uo(x) =uo(z) +e %, x>0.

Therefore, we first need to solve the SPDE (28) numerically in order to obtain
the moving boundary ((¢) and then the weak solution wu(t,z). Here, we first
discretize space by using the explicit finite difference scheme, then we can
obtain SDE’s. Now we use the Euler-Maruyama Method to find numerical
solutions of SDE’s (see [Gai96], [Hig02]). Since there is a stability issue for
parabolic PDE, we note that At/(Axz)? < 1/2, where At is a time step and
Ax is a space step. Figure 1 is a simulation with initial condition

xT £L'2 :
o () = 117’ if x >0,
0, else

and a=0.5. We can clearly see that there are two phases separated by the
black line, which is the moving boundary, and how w is changing on the colored
region where u > 0.
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FIGURE 1. Weak solution wu(t,x).
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