ON A CLASS OF DOUBLY TRANSITIVE PERMUTATION GROUPS

BY
G. GLAUBERMAN

Let @ be a finite permutation group. We say that ¢ is a Zassenhaus group
if @ is doubly transitive and if no non-identity element of G leaves three or
more symbols fixed. The Zassenhaus groups have been determined by
Zassenhaus [7, 8], Feit [3], Suzuki [6], and Ito [5]. In this paper we present
an alternate proof of Ito’s result.

TuroreEM (Ito). Let G be a Zassenhaus group of degree m -+ 1 that does not
contain a regular normal subgroup. If m is a power of an odd prime p, then
G has an Abelian Sylow p-subgroup.

Our proof uses the notation of Feit [3]. Let N be the subgroup of ¢ fixing
one symbol, and let  be the subgroup of @ fixing an additional symbol. Let
g =|G|and ¢ = |Q]. Since G has no regular normal subgroup, G is not a
Frobenius group, and ¢ > 1. Thus N acts as a Frobenius group on the sym-
bols it moves. Let M be the regular normal subgroup of N. Thus | M | = m,
and
N=MQ MnQ=1 |[N|=mg g=(m+1)|N|=(m+ 1)mg

We require the following result of Frobenius and Schur [4, (3.5), page 23]:

TarorEM (Frobenius-Schur). Let x be an rreducible complex character
of a finite group G. Let

(%) = (1/]G]) 2aeo x(2").

Then
(1) v(x) = 0#f x is not real-valued;
(i1) »(x) = 1 if x s the character of a representation of G over the real
numbers; and
(i) w»(x) = —1 otherwise.

The following result is a slight variation on Lemma 4 of [1].

TrarorEM (Brauer). Let G be a finite group of even order and let M be a
subgroup of G.  Suppose T s an tnvolution of G and U s a subset of M such that
no element of U is a product of two conjugates of 7. Let 6 be a generalized
character of M that vanishes on M — U, and let 9™ be the generalized character of
@ induced by 0. Then

22 (0%, x)e x()*/x(1) = 0,
where x ranges over all the trreducible characters of G.

Proof. Let xe U. Since z is not a product of two conjugates of 7, a well-
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known formula ((21), page 580, of [2]) yields

x(7)’x(z7™)
0=2"5m

Multiply the above equation by 6(z) and sum over all ze U. We obtain

"0, x | sw | M|
0 — X(T) ( y X | MM
2 x(1)
By the Frobenius Reciprocity Theorem, (6, x |a)x = (6%, x)¢. This com-
pletes the proof of Brauer’s Theorem.

We may now prove Ito’s Theorem. Assume G satisfies the hypothesis of
the theorem. By Lemma 3.1 of [3] we have

(1) Cy) © M foryeM — {1};
(2) Mn aMz™" = 1 forz e G — N(M);

and N(M) = MQ = N. Now, MQ is a Frobenius group, so M must be
Abelian if ¢ is even (Satz 1 of [7]). Thus we may assume that ¢ is odd. The
proof of Lemma 3.2 of [3] shows that we may assume that

(8) @ 1s generated by the conjugates of M in G.

Let us assume (3), and assume that ¢ is odd. By Lemma 3.4 of [3], we
obtain the following:

(4) There 7s only one conjugate class of involutions in G'; it contains mq ele-
ments. No elements of M — {1} s a product of two involutions.

We also obtain some consequences regarding the characters of M, N, and G.
Here we use the notation of [3]. Let {o, {1, - - - be the irreducible characters of
M, and let z; = ¢:(1). Denote by ¢i and §; the characters of G and N re-
spectively induced by ¢;. Let Let o, 1, -+, 14 be the irreducible char-
acters of N which contain M in their kernels. Assume that { and 5o are
principal characters and that %: = fipq-pp for¢s = 1,---,(¢ —1)/2. By
(18) and (19) of [3], the characters 71, 75, - -+ , N(a-p2 are distinct and ir-
reducible, and

(5) Nirve = 15, = 1,2, -+, (¢ — 1)/2.

Since M is nilpotent, we may assume that 2z = 1. Let { = {1. Denote
the restriction of a character 6 of @ to a subgroup H by 6 |x. By (18) and
(20) of [3] and by the Frobenius Reciprocity Theorem, we have

and

(7) (§*7 "H)G

= (& il = (I/m)m + 1 + 2o i(@) = (I/m)m = 1
fore =1, ---, (¢ — 1)/2.
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Recall that @ is given as a permutation group. For each z e @, let ¢o(x)
be the number of symbols fixed by z and let I'(z) = o(x) — 1. Let xo be
the principal character of G. By (2.3), (8.3), and (9.9) of [4], T is an irre-
ducible character of ¢ and

(8) m =¢=x+T.

Since p(x) = 1forallze M — {1},

(9) (%Mo = (5, Tla)ar = (1/m)s(1)T(1) = L.
Similarly,

(10) (&% x0)e = (& xola)ar = (&, o) = 0.
By (5) and (8), we obtain

(11) o=@ = (m+m+ - + )"

=x + T+ 20 + - + 2nlenp.

Let O(G) be the set of all elements of odd orderin G. By considering cyclic
subgroups of @, it is easy to see that the mapping given by & — 2’ is a permuta-
tion of O(@). Suppose ze @ — O(GF). By (1), x does not centralize any
non-identity element of /. Hence z is not conjugate to an element of M,
and {*(z) = 0. Similarly, {*(2*) = 0 unless z is an involution. By (4)
and (10), we have

Zzeof*(xg)
(12) = gmi*(1) 4+ Deow TG = gmgim + 1) 4+ Do (@)
= g9 + D wal () = qg.

For every irreducible character x of G, let ¢(x) be the multiplicity of x in
¢*, and define »(x) as in the Frobenius-Schur Theorem. Then¢* = > ¢(x)x.
By (12),

g = (1/9) aea (@) = (1/g) 2xe(x) Do x(&) = 2xe(x)r(x).
But by (6), 9 + 1 = > c(x)’. Hence
(13) 1=(g+1) —qg= 2 clx)(cx) — »(x)).

By the Irobenius-Schur Theorem, »(x) = 0, 1, or —1 for each irreducible
character x. Thus every summand in (13) is a nonnegative integer. Con-
sequently, (13) shows that ¢(x1) = 1 and »(x1) = 0 for a unique irreducible
character x; and that

(14) cx) =vix) =1 or ¢c(x) =0, ifxx.
Since »(x1) = 0, x1 is not real-valued. Therefore,

E3 ES
(15) xt # xo, Tyni, oo Ngnype
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Let S be the set of all irreducible characters x for which ¢(x) # 0 and
X #= X1, F: 77:‘7 DR} ’7?11—1)/2' By (7)’ (9>’ (10)7 (14)5 a'nd (15))

(16) T =¢ =x+T 4+ + - +10ve + Dysx and xo¢S.

Let p = &1 — {o, and let p* be the generalized character of @ induced by p.
By (11) and (16),

A7) p* = - =xa— X — M — = v T DX
Let 7 be an involution in G. As N has odd order,
ni(r) = -+ = nig-pp(r) = 0.

Since u(1) = 0 and no element of M — {1} is a product of two involutions,
Brauer’s Theorem and (17) yield

0= =14 x(r)"/x(1) + Zresx(r)*/x(1).
Thus
(18) xi(r)? = xa(l).

By (25.4), page 152 of [4], every irreducible character of N that does not
contain M in its kernel has the form §; for some ¢ > 0; conversely, §; is an
irreducible character of N for every ¢ > 0. Let n be the number of distinct
characters of the form §;. We may assume that {1, ---, &, are distinct.
Now, f1(1) = ¢t1(1) = g¢; for some positive integer ¢ we may assume that
&, -+, & have degree q and that {1, - -+, {» have larger degree (or that
t=n).

Since N has odd order, none of the characters §; is real-valued. Hence ¢

and n are even, and we may assume that 2,1 and §3; are complex conjugates
forz = 1,2, ---, n/2. Since

Toit = Bpi1 = (o if1 £ ¢ = n/2,
we may assume that {o; = feqfore = 1,2, .-+, n/2, Let xa = x1. As
v(x1) =0, x2# xa. By (14) and (16),
19) &= = =x+T+2 4+ - + 200 + Dxsx

Suppose 3 < ¢ < n. An easy argument shows that {1 (x) = §:(z) whenever
xeM — {1}. Moreover, {1 — {» vanishes on 1 and on N — M. Therefore,
by (16) and (19),

(i — x2, e = (4 — 63, D)o = (51 — &, e
G =8,y =(G1— &, 8)v=0.

Hence
(20) (x1,¢)e = (xz, $1)e i3 542 .
Since inner products of characters are integers,

(X2) g‘:k)G = (XQ) g-:k)G = ()_(2, g——?—).a = (Xl;f?)a'
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Thus, by (20),
(21) (x1, pic1)e = (xa, $2i)e it 2 <4 < n/2.

Assume that 3 = ¢ < ¢ Then (1) = ¢ = &H(1),802; = 21 = 1. Our
proof of (16) depends only on the assumption that z; = 1, and therefore a
similar equation is valid for ;2‘. Hence ¢; is the sum of a unique non-real
irreducible character of G and several real-valued irreducible characters of G.
By (20),

(22) (x1,t5)e =0 3 <is<t

Consider the restriction of x1 to N. By (5), (8), and (15), (x1, \*)e¢ = 0
for every irreducible character N of N that contains M in its kernel. By the
Frobenius Reciprocity Theorem, (xi|y, N)» = 0 for every such A\. Con-
sequently, xi|v has the form D a;§; for some nonnegative integers
Qap, 02, *°*, Qn. By (16)7 (19>; (21)7 and (22):

(23) xily =&+ Z¢/2<¢§n/2a2¢(§~'2¢—1 + $20).
Suppose t < 7 = n. Since z; > 1 and M is a p-group, z; is a power of p.
Now, §:(1) = gz;. By (23) we obtain
Xl(l) = fl(l) = 07 mOd q,

x1(1) = {i(1) = ¢ # 0, mod p,
and

xi(1) = &) + D ipcicap2aiaia(l) = H(1) = ¢ # 0 mod 2.

Let x1(1) = qx, and let m = p°. Since g = gm(m + 1) = ¢p°(m + 1),
z divides m + 1.

Let = be an involution in G. Since ¥ = 1, the eigenvalues of a matrix
representing 7 are 1 and —1. Suppose 1 occurs with multiplicity ¢ and —1
occurs with multiplicity . Then

x(r) =a—b=a-+b=x(1) £0 mod?2.

Therefore, x1(r) ¢ 0. By (4), = has mq conjugates in G. Therefore,
mqxi(7)/x1(1) is an algebraic integer. Since x;(1) = ¢z, x divides myi(7).
As z divides m + 1, z divides x:(r). By (18), 2° = x(7)* £ x(1) = 2q.
Thus x:(1) < gz £ ¢*. However, by (28) of [3], we obtain

¢z x()*z14+ @F)(¢—1m+1).
Therefore, ¢* > (g/4)(m + 1), and
(24) m < 4.

Since N is a Frobenius group, ¢ divides m — 1. Let d be the smallest posi-
tive integer such that ¢ divides p? — 1. By the Euclidean Algorithm, the
congruence p° = 1 mod ¢, implies that d divides e. Lete = kd. Since qis
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odd and p* — 11is even, 2 ¢ divides p* — 1. By (24),
4¢>m=9p" =p"= (2¢+ 1"

Therefore, k = 1 or 2.

Suppose k = 2. Since pisodd, m = (p*)* = 1 mod 4,s0m + 1 = 2 mod 4.
No involution in ¢ fixes any of the permuted symbols. Therefore every
involution is a product of (m -+ 1)/2 disjoint transpositions and is thus an
odd permutation. Consequently, the even permutations in G' form a normal
subgroup of index two, contrary to our assumption that the conjugates of M
generate G. Hence k = 1, and m = p®. Let M’ be the derived group of M.
Then N/M’ is a Frobenius group, so ¢ divides |M/M’| — 1 and | M /M’ |
is a power of p®. Since |M| = p®, M’ = 1. This completes the proof of
Ito’s Theorem.
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