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REGULARITY FOR COMPLETE AND MINIMAL GABOR
SYSTEMS ON A LATTICE

CHRISTOPHER HEIL AND ALEXANDER M. POWELL

Abstract. Nonsymmetrically weighted extensions of the Balian–
Low theorem are proved for Gabor systems G(g,1,1) that are

complete and minimal in L2(R). For g ∈ L2(R), it is proved that if

3 < p ≤ 4 ≤ q < ∞ satisfy 3/p + 1/q = 1 and
∫

|x|p |g(x)|2 dx < ∞
and

∫
|ξ|q |ĝ(ξ)|2 dξ < ∞ then G(g,1,1) = {e2πinxg(x − k)}k,n∈Z

cannot be complete and minimal in L2(R). For the endpoint

case (p, q) = (3, ∞), it is proved that if g ∈ L2(R) is compactly

supported and
∫

|ξ|3|ĝ(ξ)|2 dξ < ∞ then G(g,1,1) is not com-

plete and minimal in L2(R). These theorems extend the work

of Daubechies and Janssen from the case (p, q) = (4,4). Further
refinements and optimal examples are also provided.

1. Introduction

Given g ∈ L2(R) and constants a, b > 0, the associated Gabor system is
G(g, a, b) = {gm,n}m,n∈Z ⊂ L2(R), where

gm,n(x) = e2πimbxg(x − na), m,n ∈ Z.

Thus, G(g, a, b) consists of time-frequency shifts of the window function g along
the lattice aZ × bZ in the time-frequency plane. Gabor systems are of interest
in theory and practice because they can be used to perform signal analysis
and to provide decompositions of function spaces, for example, see [11], [12],
[15]. In particular, it is important to determine for which g ∈ L2(R) and a,
b > 0 the Gabor system G(g, a, b) has desirable basis or spanning properties.
Frame theory is a standard setting in which to study such issues, for example,
see [8].
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A collection {fn}n∈Z ⊂ L2(R) is a frame for L2(R) with frame bounds 0 <
A ≤ B < ∞ if

∀f ∈ L2(R), A‖f ‖2
2 ≤

∑
n∈Z

| 〈f, fn〉 |2 ≤ B‖f ‖2
2.

A standard result in frame theory states that if {fn}n∈Z is a frame for L2(R)
then there exists a (possibly nonunique) dual frame {f̃n}n∈Z for L2(R) such
that

(1.1) ∀f ∈ L2(R), f =
∑
n∈Z

〈f, f̃n〉fn =
∑
n∈Z

〈f, fn〉f̃n,

where the series converge unconditionally in L2(R).
A collection {gn}n∈Z ⊂ L2(R) is minimal in L2(R) if for each N ∈ Z we

have gN /∈ span{gn : n ∈ Z, n 
= N }. It is complete if span{gn}n∈Z = L2(R).
A sequence that is both minimal and complete is said to be exact. Every exact
system {fn}n∈Z in L2(R) has a unique dual system {gn}n∈Z ⊂ L2(R) that
satisfies the biorthogonality conditions 〈fj , gk 〉 = δj,k. In general, however,
exactness is a rather weak condition that is not even enough to guarantee
signal expansions such as in Equation (1.1).

All frames are complete, but a frame is minimal if and only if it is the
image of an orthonormal basis under a continuous, invertible map of L2(R)
onto itself, and in this case it is called a Riesz basis. Thus, the class of
exact frames coincides with the class of Riesz bases. In particular, every
orthonormal basis is a Riesz basis, and every Riesz basis is an exact system.
However, not all exact systems are Riesz bases.

The Balian–Low theorem states that if G(g,1,1) is a Riesz basis for L2(R)
then the window function g must be poorly localized in either time or fre-
quency. There are several variations on the Balian–Low theorem; the classical
version as proved in [2], [3], [9], [21] is as follows. We use a Fourier transform
normalized as ĝ(ξ) =

∫
g(x)e−2πiξx dx.

Theorem 1.1 (Balian–Low theorem). If g ∈ L2(R) satisfies∫
|x|2|g(x)|2 dx < ∞ and

∫
|ξ|2|ĝ(ξ)|2 dξ < ∞,

then G(g,1,1) is not a Riesz basis for L2(R).

The following theorem addresses optimality in the Balian–Low theorem,
see [4]. For (p, p′) = (2,2) it shows that the Balian–Low theorem is essentially
sharp, and for other values of (p, p′) it provides examples of Gabor orthonor-
mal bases G(g,1,1) with nonsymmetric time-frequency localization. Other
related sharpness theorems can be found in [6], [7], [18].
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Theorem 1.2. Fix 1 < p < ∞ with 1
p + 1

p′ = 1 and let 2 < s. There exists
g ∈ L2(R) such that G(g,1,1) is an orthonormal basis for L2(R) and such that∫ |x|p

logs(2 + |x|) |g(x)|2 dx < ∞ and
∫ |ξ|p′

logs(2 + |ξ|) |ĝ(ξ)|2 dξ < ∞.

For (p, p′) 
= (2,2), Theorem 1.2 raised the natural question of whether there
exist versions of the Balian–Low theorem for nonsymmetric weight pairs |x|p,
|ξ|p′

. Some initial progress appeared in [5], and the question was answered in
full generality by Gautam in [14], with the following theorem.

Theorem 1.3. Let g ∈ L2(R) be given.
(1) Fix 1 < p < ∞ with 1

p + 1
p′ = 1. If∫

|x|p|g(x)|2 dx < ∞ and
∫

|ξ|p′ |ĝ(ξ)|2 dξ < ∞,

then G(g,1,1) is not a Riesz basis for L2(R).
(2) If g has compact support and satisfies∫

|ξ| |ĝ(ξ)|2 dξ < ∞,

then G(g,1,1) is not a Riesz basis for L2(R).

The following theorem generalizes the Balian–Low theorem to Gabor sys-
tems G(g,1,1) that are exact but need not be frames, see [9]. The full extent
of the Balian–Low theorems for complete and minimal systems proved in [9]
is quite elegant and appears to have been somewhat overlooked in the subse-
quent literature.

Theorem 1.4. If g ∈ L2(R) satisfies∫
|x|4|g(x)|2 dx < ∞ and

∫
|ξ|4|ĝ(ξ)|2 dξ < ∞,

then G(g,1,1) is not exact in L2(R).

Other versions of the Balian–Low theorem for exact Gabor systems appear
in [9], [17], and quantify time-frequency concentration in terms of membership
in modulation spaces or Wiener amalgam spaces instead of Heisenberg-like
products.

2. Main results

Our first main result extends Theorem 1.4 to nonsymmetric (p, q) weight
pairs. Interestingly, in contrast to Theorem 1.3 for Riesz bases, which relies
on the standard dual index relation 1

p + 1
p′ = 1, here the relation between p

and q is 3
p + 1

q = 1. The proof of Theorem 2.1 will be given in Section 4.
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Theorem 2.1. If g ∈ L2(R) satisfies

(2.1)
∫

|x|p|g(x)|2 dx < ∞ and
∫

|ξ|q |ĝ(ξ)|2 dξ < ∞,

where
3 < p ≤ 4 and

3
p

+
1
q

= 1,

then G(g,1,1) is not exact.
The same result holds if the roles of p and q are interchanged in (2.1).

Our next main result addresses the endpoint case (3, ∞), which is not
covered by Theorem 2.1. The proof of Theorem 2.2 will be given in Section 5.

Theorem 2.2. If g ∈ L2(R) is compactly supported and satisfies

(2.2)
∫

|ξ|3|ĝ(ξ)|2 dξ < ∞,

then G(g,1,1) is not exact in L2(R).
The same result holds if the compact support condition is assumed to hold

for ĝ and the decay condition (2.2) is assumed to hold for g.

The final part of this paper, Section 6, is devoted to constructively demon-
strating that the (3, ∞) endpoint Balian–Low theorem for exact Gabor sys-
tems obtained in Theorem 2.2 is sharp. Specifically, we will show in that
section that for any sufficiently small ε > 0 there exists a function g ∈ L2(R)
such that g is supported in [0,2],

∫
|ξ|3−ε|ĝ(ξ)|2 dξ < ∞, and G(g,1,1) is exact.

3. Background: The Zak transform

In this section, we review some facts that we will need about the Zak
transform, which is an important tool in the analysis of Gabor systems.

The Zak transform of g ∈ L2(R) is the function Zg of two variables defined
by

Zg(x, ξ) =
∑
n∈Z

g(x − n)e2πinξ, x, ξ ∈ R.

The Zak transform has many properties which make it useful for studying
Gabor systems. A measurable function G : R

2 → C is said to be quasiperiodic
if

∀x, ξ ∈ R, G(x, ξ + 1) = G(x, ξ) and G(x + 1, ξ) = G(x, ξ)e2πiξ.

It is straightforward to verify that the Zak transform Zg of g ∈ L2(R) is
a quasiperiodic function. Without loss of information, one may therefore
concentrate on the restriction of Zg to the unit square [0,1]2 since its values
on R

2 are then uniquely determined by quasiperiodic extension. With this
identification, Z defines a unitary mapping Z : L2(R) → L2([0,1]2), see [15].
This unitarity yields the following result that allows us to equate properties
of G(g, a, b) with properties of Zg.
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Theorem 3.1. Given g ∈ L2(R), the following statements hold.
(1) G(g,1,1) is an orthonormal basis for L2(R) if and only if |Zg| = 1 a.e.
(2) G(g,1,1) is a Riesz basis for L2(R) if and only if there exist 0 < A ≤ B <

∞ such that A ≤ |Zg| ≤ B a.e.
(3) G(g,1,1) is exact in L2(R) if and only if 1/Zg ∈ L2([0,1]2).
(4) G(g,1,1) is complete in L2(R) if and only if Zg 
= 0 a.e.

It is useful to note that the conditions of Theorem 3.1 are invariant un-
der the Fourier transform because of the Zak transform identity Zĝ(x, ξ) =
e2πixξZg(−ξ, x). For example, since our main focus will be on exact systems,
the following equivalent result holds.
(3′) G(g,1,1) is exact in L2(R) if and only if 1/Zĝ ∈ L2([0,1]2).
The utility of the Zak transform for studying Gabor systems extends well
beyond the list of properties in Theorem 3.3. For example, the Zak transform
can also be used to characterize Gabor systems that are Bessel sequences,
frames, or Schauder bases, see [15], [17].

Given its close connection with Gabor systems, it is not surprising that the
Zak transform may be interpreted as a time-frequency representation. For
example, the following result follows from Theorem 4.4 in [16] and Theorem 1
in [10].

Theorem 3.2. Let ε > 0 and 1 < p,p′ < ∞ with 1
p + 1

p′ = 1 be given. If
g ∈ L2(R) satisfies∫

|x|p+ε|f(x)|2 dx < ∞ and
∫

|ξ|p′+ε|f̂(ξ)|2 dξ < ∞

then the Zak transform Zg is continuous on R2.

The importance of the continuity of Zg comes from the following property
of quasiperiodic functions [15].

Theorem 3.3. If G : R
2 → C is quasi-periodic and continuous then G has

a zero.

Consequently, if g ∈ L2(R) and Zg is continuous, then by Theorem 3.1,
G(g,1,1) cannot be a Riesz or orthonormal basis for L2(R). The hypotheses
in the Balian–Low theorem do not imply that Zg is continuous, and the proof
of Theorem 1.1 requires a more subtle analysis of Zg.

The hypotheses corresponding to the endpoint case ε = 0 in Theorem 3.2
also do not imply that Zg is continuous, but this can be addressed in terms of
Sobolev spaces. Given r, s > 0 and G ∈ L2(R2), we say that G is in the mixed
Sobolev space Sr,s(R2) if

‖G‖Sr,s =
(∫ ∫

(|u|r + |v|s + 1)|Ĝ(u, v)|2 dudv

)1/2

< ∞.

The following theorem was obtained in [14].
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Theorem 3.4. If r, s > 0 and g ∈ L2(R) satisfy∫
|x|r |g(x)|2 dt < ∞ and

∫
|ξ|s|ĝ(ξ)|2 dξ < ∞,

then for any smooth compactly supported function ϕ ∈ C∞
c (R2) we have ϕZg ∈

Sr,s(R2).

This again leads to the conclusion that G(g,1,1) cannot be a Riesz basis
for L2(R).

4. Nonsymmetric Balian–Low theorem for exact Gabor systems

We will prove Theorem 2.1 in this section.
In addition to the usual notations of analysis, the notation A � B will mean

that there exists an absolute constant C such that A ≤ CB. We allow the
absolute constant C to depend on other fixed locally defined quantities when
appropriate, and will not explicitly point out these dependencies since they
are usually clear from context.

Proof of Theorem 2.1. I. For the given range of parameters p, q we have
q > p′, so it follows from Theorem 3.2 that Zg is continuous. Therefore, by
Theorem 3.3, the quasiperiodic function Zg has a zero, and hence G(g,1,1)
is not a Riesz basis. We must show that G(g,1,1) is not exact. Without loss
of generality, we assume that the zero of Zg is located at the origin, that is,
Zg(0,0) = 0.

II. We shall estimate the behavior of Zg(x, y) near (0,0). It follows from
Theorem 3.4 that Zg is locally in the mixed Sobolev space Sp,q(R2). That is,
if ϕ ∈ C∞

c (R2) is any smooth cutoff function and G = ϕZg, then∫ ∫
|Ĝ(γ, ξ)|2(1 + |γ|p + |ξ|q)dγ dξ < ∞.

We take a smooth cutoff function ϕ ∈ C∞
c (R2) that is identically one on an

open neighborhood of (0,0). It then suffices to estimate G = ϕZg near (0,0).
We calculate that

|G(x, y)| = |G(x, y) − G(0,0)|(4.1)

≤
∫ ∫

|Ĝ(γ, ξ)|
∣∣1 − e2πi(xγ+yξ)

∣∣dγ dξ

�
(∫ ∫

|Ĝ(γ, ξ)|2(1 + |γ|p + |ξ|q)dγ dξ

)1/2

×
(∫ ∫

sin2 π(xγ + yξ)
1 + |γ|p + |ξ|q dγ dξ

)1/2

= ‖G‖Sp,q

(∫ ∫
sin2 π(xγ + yξ)
1 + |γ|p + |ξ|q dγ dξ

)1/2

.
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So, we need to bound the integral

I =
∫ ∫

sin2 π(xγ + yξ)
1 + |γ|p + |ξ|q dγ dξ

�
∫ ∫

sin2 π(xγ)
1 + |γ|p + |ξ|q dγ dξ +

∫ ∫
sin2 π(yξ)

1 + |γ|p + |ξ|q dγ dξ = I1 + I2.

III. The following change of variables formula holds for s > 1, r > 0 and
will be useful in our subsequent computations:∫ ∞

0

1
1 + |γ|r + |ξ|s dξ =

1
1 + |γ|r

∫ ∞

0

1
1 +

∣∣ ξ
(1+|γ|r)1/s

∣∣s dξ(4.2)

= (1 + |γ|r) 1
s −1

(∫ ∞

0

1
1 + |u|s du

)
.

IV. To find an upper bound on I , we begin by estimating the integral I1:

I1 �
∫ ∞

0

∫ ∞

0

sin2 π(xγ)
1 + |γ|p + |ξ|q dξ dγ =

∫ ∞

1
|x|

∫ ∞

0

+
∫ 1

|x|

0

∫ ∞

0

= J1 + J2.

First, note that 3
p + 1

q = 1 and 3 < p ≤ q < ∞, so applying equation (4.2) we
obtain

J1 ≤
∫ ∞

1/|x|

∫ ∞

0

1
1 + |γ|p + |ξ|q dξ dγ

=
∫ ∞

1/|x|
(1 + |γ|p) 1

q −1

(∫ ∞

0

1
1 + |u|q du

)
dγ

�
∫ ∞

1/|x|
|γ|

p
q −p dγ

=
∫ ∞

1/|x|
|γ| −3 dγ � |x|2.

Next, if we assume |x| < 1
2 then by again applying Equation (4.2) we have

J2 ≤ π2|x|2
∫ 1/|x|

0

∫ ∞

0

|γ|2
1 + |γ|p + |ξ|q dξ dγ

= π2|x|2
∫ 1/|x|

0

|γ|2(1 + |γ|p) 1
q −1

(∫ ∞

0

1
1 + |u|q du

)
dγ

� |x|2
∫ 1/|x|

0

(1 + |γ|p) 2
p + 1

q −1 dγ

= |x|2
∫ 1/|x|

0

1
(1 + |γ|p)1/p

dγ

� |x|2(1 + log |x| −1) � |x|2| log |x| |.
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It follows that for |x| near 0 we have:

I1 � |x|2 + |x|2| log |x| | � |x|2| log |x| |.
V. Next, we estimate the integral I2 by writing

I2 �
∫ ∞

0

∫ ∞

0

sin2 π(yξ)
1 + |γ|p + |ξ|q dγ dξ

=
∫ ∞

1
|y|

∫ ∞

0

+
∫ 1

|y|

0

∫ ∞

0

= K1 + K2.

The estimates for K1 and K2 are similar to the ones for J1 and J2, but there
are differences due to the asymmetry between p and q. In particular, we have
3
p + 1

q = 1 (but not 3
q + 1

p = 1) and 3 < p ≤ 4 ≤ q < ∞.
Since 1

q + 3
p = 1, we have q = p

p−3 and therefore q
p − q = 1−p

p−3 = F (p). For
p in the interval (3,4], we have F (p) ≤ −3. Using this and proceeding as for
J1, we obtain for |y| < 1 that

K1 �
∫ ∞

1/|y|
|ξ|

q
p −q dξ �

∫ ∞

1/|y|
|ξ| −3 dξ � |y|2.

Similarly, for |y| < 1
2 ,

K2 � |y|2
∫ 1/|y|

0

(1 + |ξ|q) 2
q + 1

p −1 dξ

= |y|2
∫ 1/|y|

0

(1 + |ξ|q) 1
q (2+ q

p −q) dξ

≤ |y|2
∫ 1/|y|

0

(1 + |ξ|q)− 1
q dξ

� |y|2(1 + log |y| −1) � |y|2| log |y| |,
where we have again used the fact that q

p − q ≤ −3. Combining these estimates
for K1 and K2, we have

I2 � |y|2 + |y|2| log |y| | � |y|2| log |y| |.
VI. Combining the estimates for I1 and I2 and using Equation (4.1), we

see that in a neighborhood of (0,0) we have

(4.3) |G(x, y)|2 � I � I1 + I2 � |x|2| log |x| | + |y|2| log |y| |.
In particular, these estimates show that one almost has a Sobolev embedding
into the space of Lipschitz continuous functions. More importantly for us,∫ 1

0

∫ 1

0

1
|G(x, y)|2 dxdy �

∫ 1/2

0

∫ 1/2

0

1
|x|2| log |x| | + |y|2| log |y| | dxdy = ∞.

It follows that 1/Zg /∈ L2[0,1]2, and hence that G(g,1,1) is not exact.
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Finally, note that the same theorem holds with the roles of p and q inter-
changed in (2.1) because of condition (3′) following Theorem 3.1. �

Remark 4.1. For perspective on the upper bound

I =
∫ ∞

0

∫ ∞

0

sin2 π(xγ + yξ)
1 + |γ|p + |ξ|q dγ dξ � |x|2| log |x| | + |y|2| log |y| |

used in the proof of Theorem 2.1, we note the following lower bound. Assume
that 0 ≤ x, y ≤ 1, and let

Ω = Ωx,y =
{

(γ, ξ) : 0 ≤ xγ ≤ 1
4

and 0 ≤ yξ ≤ 1
4

}
.

Then

I ≥
∫ ∫

Ω

sin2 π(xγ + yξ)
1 + |γ|p + |ξ|q dγ dξ �

∫ ∫
Ω

(xγ + yξ)2

1 + |γ|p + |ξ|q dγ dξ

� |x|2
∫ 1/(4x)

0

∫ 1/(4y)

0

|γ|2
1 + |γ|p + |ξ|q dγ dξ

+ |y|2
∫ 1/(4x)

0

∫ 1/(4y)

0

|ξ|2
1 + |γ|p + |ξ|q dγ dξ

� |x|2
∫ 1/4

0

∫ 1/4

0

|γ|2
1 + |γ|p + |ξ|q dγ dξ

+ |y|2
∫ 1/4

0

∫ 1/4

0

|ξ|2
1 + |γ|p + |ξ|q dγ dξ

� |x|2 + |y|2.

Remark 4.2. As noted after (4.3), the condition (2.1) with 3
p + 1

q = 1
implies that the Zak tranform Zg is almost Lipschitz continuous. If one
instead imposes the stronger condition 3

p + 1
q < 1 in Theorem 2.1 then similar

computations as in the proof of Theorem 2.1 show that the Zak transform
Zg is Lipschitz continuous. This should be compared with the condition
1
p + 1

p′ = 1 in Theorem 1.3. The proof of Theorem 1.3 involves an embedding
of the Zak transform Zg into the space of vanishing mean oscillation (which
often serves as a reasonable substitute for the space of continuous functions).
If one imposes the stronger condition 1

p + 1
p′ < 1 then by Theorem 3.2 one has

that the Zak transform is continuous. In view of this, Theorems 1.1, 1.3, 1.4,
and 2.1 deal with “critical” time-frequency regularities.

5. Endpoint regularity for exact Gabor systems

This section is devoted to proving Theorem 2.2, which addresses the end-
point case (3, ∞) in Theorem 2.1.
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We make use of the following additional notation. For g ∈ L2(R) and s > 0,
we shall say that g ∈ Hs(R) if ‖g‖Hs = (

∫
|ξ|2s|ĝ(ξ)|2 dξ)1/2 < ∞. Also, χS

will denote the characteristic function of a set S ⊆ R.

Proof of Theorem 2.2. I. It follows from Theorem 3.2 that Zg is continuous
on R

2 and hence that Zg has a zero. We assume without loss of generality
that Zg(0,0) = 0. We will show that 1/Zg cannot be in L2[0,1]2, which in
turn implies that G(g,1,1) is not exact.

II. Assume that g ∈ H3/2(R). Then ĝ ∈ L1(R), so g is continuous and
g ∈ L∞(R). Since g is compactly supported, its Zak transform is given by the
finite series

Zg(x, ξ) =
N∑

n=−N

g(x − n)e2πinξ, (x, ξ) ∈ [0,1]2,

for some N ≥ 0. Therefore,

|Zg(x, ξ)|2(5.1)
= |Zg(x, ξ) − Zg(0,0)|2

� |Zg(x, ξ) − Zg(0, ξ)|2 + |Zg(0, ξ) − Zg(0,0)|2

�
N∑

n=−N

|g(x − n) − g(0 − n)|2 +
N∑

n=−N

|e2πinξ − 1|2
∥∥gχ[n,n+1]

∥∥2

∞

�
N∑

n=−N

|g(x − n) − g(0 − n)|2 + |ξ|2
N∑

n=−N

|πn|2
∥∥gχ[n,n+1]

∥∥2

∞

�
N∑

n=−N

|g(x − n) − g(0 − n)|2 + |ξ|2‖g‖2
∞.

III. By Hölder’s inequality, we have for all x, y ∈ R that

|g(x) − g(y)|2 =
∣∣∣∣∫ ĝ(ξ)(e2πixξ − e2πiyξ)dξ

∣∣∣∣2
�

(∫
(|ξ|3 + 1)|ĝ(ξ)|2 dξ

)(∫
sin2 π(x − y)ξ

|ξ|3 + 1
dξ

)
� ‖g‖2

H3/2

∫
sin2 π(x − y)ξ

|ξ|3 + 1
dξ.

We will estimate∫
sin2 π(x − y)ξ

|ξ|3 + 1
dξ =

∫
|ξ|≤1/|x−y|

+
∫

|ξ|≥1/|x−y|
= I1 + I2.
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If |x − y| < 1
2 then

I1 �
∫

|ξ|≤1/|x−y|

|x − y|2|ξ|2
|ξ|3 + 1

dξ

� |x − y|2
(
1 +

∣∣log |x − y|
∣∣)

� |x − y|2
∣∣log |x − y|

∣∣.
Likewise, if |x − y| < 1

2 then

I2 �
∫

|ξ|>1/|x−y|

1
|ξ|3 + 1

dξ � |x − y|2.

It follows from our bounds on I1 and I2 that for |x| ≤ 1
2 we have

(5.2) |g(x − n) − g(0 − n)|2 � |x|2| log |x| | + |x|2 � |x|2| log |x| |.
IV. Combining Equations (5.1) and (5.2), we have for (x, ξ) near (0,0) that

|Zg(x, ξ)|2 � |x|2| log |x| | + |ξ|2.
Consequently,∫ 1

0

∫ 1

0

1
|Zg(x, ξ)|2 dxdξ �

∫ 1/2

0

∫ 1/2

0

1
|x|2| log |x| | + |ξ|2 dxdξ = ∞.

Hence, 1/Zg /∈ L2[0,1]2, so G(g,1,1) is not exact.
Finally, note that by condition (3′) following Theorem 3.1, the same result

holds if the compact support condition is assumed to hold for ĝ and the decay
condition (2.2) is assumed to hold for g. �

It is clear that if G(g,1,1) is complete then the support of g must have at
least unit measure, that is, | supp(g)| ≥ 1. The following result is a simple
refinement of Theorem 2.2 for exact Gabor systems with minimal support.

Theorem 5.1. If g ∈ L2(R) is supported within [0,1] and satisfies∫
|ξ|2|ĝ(ξ)|2 dξ < ∞,

then G(g,1,1) is not exact in L2(R).

Proof. Since g ∈ H1(R) it follows from the Sobolev embedding theorem,
for example, [20, Theorem 8.5, p. 205], that g is continuous and

∀x, y ∈ R, |g(x) − g(y)| ≤ ‖g′ ‖2|x − y|1/2.

Since g is continuous and supported on [0,1], we have Zg(x, ξ) = g(x) for all
0 ≤ x, ξ ≤ 1. Since g(0) = 0, we also have |Zg(x, ξ)| = |g(x)| = |g(x) − g(0)| �
|x|1/2, and hence∫ 1

0

∫ 1

0

1
|Zg(x, ξ)|2 dxdξ �

∫ 1

0

∫ 1

0

1
|x| dxdξ = ∞.
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Therefore, G(g,1,1) is not exact. �

6. Examples

The following example will show that the (3, ∞) endpoint Balian–Low
theorem (Theorem 2.2) is sharp in the sense that for any sufficiently small
ε > 0 there exists a function g ∈ L2(R) such that g is supported in [0,2],∫

|ξ|3−ε|ĝ(ξ)|2 dξ < ∞, and G(g,1,1) is exact.

Example 6.1. Fix 0 < α < 1, and let g = gα ∈ L2(R) be any function that
satisfies the following properties (1)–(8):

(1) supp(g) = [0,2],
(2) g is real-valued and continuous on R,

Figure 1. Typical functions gα from Example 6.1. Part (a)
gives a rough sketch of an example when α is very close to 1.
Part (b) gives a rough sketch of an example for a moderate
value of 0 < α < 1 (the “Taj Mahal” function).
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(3) g is C∞ at all x ∈ R except at x = 1
2 and x = 3

2 ,
(4) g(x) = 1 for x ∈ [ 14 , 1

2 ] ∪ [ 32 , 7
4 ],

(5) there exists 0 < Δ < 1
8 such that:

g(x) =

{
1 +

(
x − 1

2

)α
, for x ∈

[
1
2 , 1

2 + Δ
]
,

1 +
(

3
2 − x

)α
, for x ∈

[
3
2 − Δ, 3

2

]
,

(6) g(x) = g(2 − x) for all 0 ≤ x ≤ 1,
(7) g is nondecreasing on [0,1] and positive on (0,2),
(8) g(1) = 2 and g(1/8) = g(15/16) = 1

2 .
We shall prove in Theorem 6.3 that the function g = gα satisfies:

• G(g,1,1) is exact, and
• if ε > 0 is fixed and α = α(ε) is sufficiently close to 1 then∫

|ξ|3−ε|ĝα(ξ)|2 dξ < ∞.

In particular, g is essentially optimal with respect to Theorem 2.2.

We shall need the following standard lemma whose proof we include for
the sake of completeness.

Lemma 6.2. Fix α > − 1
2 and δ > 0. Let ϕ ∈ C∞

c (R) be a smooth function
supported on [−4δ,4δ] that is identically 1 on [−2δ,2δ], and let f(x) = fα(x) =
xαχ[0,∞](x)ϕ(x). Then

∀0 < s <
2α + 1

2
,

∫
|ξ|2s|f̂(ξ)|2 dξ < ∞.

Proof. Case 1 : − 1
2 < α ≤ 1

2 . We shall use the fact (e.g., see [23, Prop. 4])
that if h ∈ L2(R) and 0 < s < 1 then

(6.1)
∫

|ξ|2s|ĥ(ξ)|2 dξ < ∞ ⇐⇒
∫ ∫ |h(x + t) − h(x)|2

|t|2s+1
dxdt < ∞.

If 0 < s < 2α+1
2 then 0 < s < 1 and so we may apply Equation (6.1) to the

function f = fα. Since∫
|t|≥δ

∫ |f(x + t) − f(x)|2
|t|2s+1

dxdt � ‖f ‖2
2

∫
|t|≥δ

1
|t|2s+1

dt < ∞,

we only need show that∫ δ

−δ

∫ |f(x + t) − f(x)|2
|t|2s+1

dxdt =
∫ δ

−δ

1
|t|2s+1

∫
|f(x + t) − f(x)|2 dxdt(6.2)

< ∞.

Hence, our goal is to estimate

(6.3) I(t) =
∫

|f(x + t) − f(x)|2 dx.
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Note that I(t) = I(−t), so it suffices to consider 0 < t < δ. Now, since f is
compactly supported on [0,4δ] and has a bounded derivative on (δ, ∞), we
have |f(x + t) − f(x)| � |t| for x > δ. Therefore,

(6.4)
∫ ∞

δ

|f(x + t) − f(x)|2 dx �
∫ 4δ

δ

|t|2 dx � |t|2.

Next, consider the subcase −1/2 < α < 1/2. Since |(x+t)α − xα| ≤ |α| |t| |x|α−1,
it follows that∫ δ

− ∞
|f(x + t) − f(x)|2 dx(6.5)

=
∫ t

−t

|f(x + t) − f(x)|2 dx +
∫ δ

t

|(x + t)α − xα|2 dx

�
∫ t

−t

(|x + t|2α + |x|2α)dx +
∫ δ

t

|t|2|x|2α−2 dx

� |t|2α+1 + |t|2.
Hence,

I(t) =
∫ ∞

δ

|f(x + t) − f(x)|2 dx +
∫ δ

− ∞
|f(x + t) − f(x)|2 dx

� |t|2α+1 + |t|2,
so ∫ δ

−δ

I(t)
|t|2s+1

dt �
∫ δ

−δ

|t|2α+1 + |t|2
|t|2s+1

dt < ∞.

In the subcase when α = 1/2, one proceeds similarly as above to obtain I(t) �
|t|2 + |t|2| log t|, so the desired conclusion also holds for α = 1/2.

Case 2 : 1
2 < α. Take an integer n ≥ 1 such that α ∈ (n − 1

2 , n + 1
2 ]. Note

that f, f (1), . . . , f (n−1) are all absolutely continuous and in L1(R), and we also
have f (n) ∈ L1(R). Therefore, f̂ (n)(ξ) = (2πiξ)nf̂(ξ). Moreover, f (n)(x) =
c1x

α−nϕ1(x)χ[0,∞)(x) for some c1 ∈ R and ϕ1 ∈ C∞
c (R) that is supported on

[−4δ,4δ] and equals 1 on [−2δ,2δ]. Since α − n ∈ (− 1
2 , 1

2 ], it follows from
Case 1 that, for any 0 < s < 2(α−n)+1

2 ,

(2π)n

∫
|ξ|2s+2n|f̂(ξ)|2 dξ =

∫
|ξ|2s|(2πiξ)nf̂(ξ)|2 dξ

=
∫

|ξ|2s
∣∣f̂ (n)(ξ)

∣∣2 dξ < ∞.

Therefore,

(6.6)
∫

|ξ|2s|f̂(ξ)|2 dξ < ∞ for n < s <
2α + 1

2
.
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Equation (6.6) extends to the remaining range of parameters, 0 < s ≤ n, by
noting that if 0 < a < b then we have∫

|ξ|a|f̂(ξ)|2 dξ ≤
∫ 1

−1

|f̂(ξ)|2 dξ +
∫

|ξ|b|f̂(ξ)|2 dξ. �

Theorem 6.3. Fix 0 < α < 1. If g = gα ∈ L2(R) is a compactly supported
function as described in Example 6.1, then G(g,1,1) is exact in L2(R) and

(6.7)
∫

|ξ|2s|ĝ(ξ)|2 dξ < ∞, 0 < s <
2α + 1

2
.

Proof. I. Note that Zg is continuous on R2 since g is continuous and com-
pactly supported. Since g is supported on [0,2] we have

Zg(x, ξ) = g(x) + g(x + 1)e−2πiξ, (x, ξ) ∈ [0,1]2.

With g defined as in Example 6.1 , it is not difficult to see that if 0 ≤ x, ξ ≤ 1
then

Zg(x, ξ) = 0 ⇐⇒ (x, ξ) =
(

1
2
,
1
2

)
.

Also, note that |g(x)|/|g(x + 1)| 
= 1 for all x ∈ [0, 1
2 ) ∪ (1

2 ,1], and g(x) 
= 0 for
all 0 < x < 2. Since g is continuous, there exists an η > 0 such that

(6.8) 0 < η ≤
∣∣|g(x)|2 − |g(x + 1)|2

∣∣, x ∈
[
0,

1
2

− Δ
]

∪
[
1
2

+ Δ,1
]
.

II. We shall make use of the following formula, for example, see [19, Exer-
cise 17, p. 207], to show that 1/Zg ∈ L2[0,1]2: for all A ∈ R\{−1,1},∫ 1

0

dξ

|A + e−2πiξ |2 =
1
2π

∫ 2π

0

dθ

1 + A2 − 2A cosθ
=

1
|1 − A2| .

Since |g(x)|/|g(x + 1)| 
= 1 for a.e. x ∈ [0,1], we have

‖1/Zg‖2
L2[0,1]2 =

∫ 1

0

∫ 1

0

dξ dx

|g(x) + g(x + 1)e−2πiξ |2

=
∫ 1

0

1
|g(x + 1)|2

(∫ 1

0

dξ∣∣ g(x)
g(x+1) + e−2πiξ

∣∣2
)

dx

=
∫ 1

0

1
|g(x + 1)|2

dx∣∣1 − | g(x)
g(x+1) |2

∣∣
=

∫ 1

0

dx

| |g(x + 1)|2 − |g(x)|2|

=
∫ 1

2+Δ

1
2 −Δ

+
∫

[0, 1
2 −Δ]∪[ 12+Δ,1]

= I1 + I2.

It follows immediately from Equation (6.8) that I2 < ∞.
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III. For x ∈ [ 12 − Δ, 1
2 + Δ] ⊂ [ 14 , 3

4 ], we have |g(x) + g(x + 1)| ≥ 2. Since
0 < α < 1, it follows that

I1 =
∫ 1

2+Δ

1
2 −Δ

dx

|g(x + 1) − g(x)| |g(x + 1) + g(x)|

�
∫ 1

2+Δ

1
2 −Δ

dx

|g(x + 1) − g(x)|

�
∫ 1

2+Δ

1
2

dx

(x − 1
2 )α

< ∞.

Combining this with our bound for I2, it follows that 1/Zg ∈ L2[0,1]2. So
G(g,1,1) is exact.

IV. It remains to show that Equation (6.7) holds. Since g(x) is compactly
supported on [0,2] and is C∞ except at x = 1

2 and x = 3/2 it suffices to work
locally near these two points. In view of the definition of g(x) near x = 1

2 and
x = 3/2, Equation (6.7) follows from Lemma 6.2. �

The following example addresses optimality in Theorem 5.1.

Example 6.4. Fix ε > 0. Example 5.11 and Theorem 6.1 in [17] construc-
tively show that there exists a function g ∈ L2(R) such that

• supp(g) = [0,1],
• G(g,1,1) is exact in L2(R) (in fact, it is a Schauder basis for L2(R)), and
•

∫
|ξ|2−ε|ĝ(ξ)|2 dξ < ∞.

Thus, Theorem 5.1 is essentially sharp.

We note that the lattice structure of G(g,1,1) has played an essential role
in our analysis of time-frequency localization of exact Gabor systems. In
contrast to lattice Gabor systems, it is known that there exist irregular Gabor
systems G(g,Λ), where Λ is not a lattice, that are exact and where the window
function g(x) = e−πx2

is the Gaussian, see [1]. In particular, window functions
for irregular exact Gabor systems can be very nicely localized in both time
and frequency.

A concrete example of an exact Gabor system with the Gaussian can be
obtained as follows. It is known that if g(x) = e−πx2

then G(g,1,1) is complete
in L2(R), and remains complete if any single element is removed from this
system, see [13, Theorem 3.41]. Moreover, G(g,1,1) does not remain complete
if any two elements are removed. In particular, G(g,1,1)\{g} is exact but does
not have the full structure of a lattice Gabor system.

As a final remark, recall that Theorems 1.3 and 2.1 provide Balian–Low
theorems for Riesz bases and exact systems in terms of two different scales of
parameters. An interesting question is to determine what happens “between”
Riesz bases and exact systems, and to appropriately interpret the intermediate
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parameter scales. While this article was under review, the authors learned of
the recent preprint [22] which sheds substantial insight into this question.
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