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CR SINGULARITIES OF REAL FOURFOLDS IN C
3

ADAM COFFMAN

Abstract. CR singularities of real 4-submanifolds in complex 3-
space are classified by using local holomorphic coordinate changes

to transform the quadratic coefficients of the real analytic defin-
ing equation into a normal form. The quadratic coefficients deter-
mine an intersection index, which appears in global enumerative
formulas for CR singularities of compact submanifolds.

1. Introduction

If a real 4-manifold M is embedded in C
3, then for each point x on M there

are two possibilities: the tangent 4-plane at x is either a complex hyperplane
in C

3, so M is said to be “CR singular” at x, or it is not, so M is said to
be “CR generic” at x. This article considers the local extrinsic geometry of a
real analytically embedded M near a CR singular point, by finding invariants
under biholomorphic coordinate changes. The main result is a classification
of CR singularities, via a list of normal forms for the quadratic part of the
local defining function. The matrix algebra leading to the classification is
worked out in Section 2, and then summarized in Section 7 after the geometric
interpretation is developed in Sections 3–5.

The analysis of normal forms near CR singular points is part of the program
of studying the local equivalence problem for real m-submanifolds of C

n. In
this paper, we consider the m = 2n − 2 case (“codimension 2”), focusing on
real 4-manifolds in C

3, since the m = n = 2 case is well-known and larger
dimensions seem to lead to difficult computations.

In Section 3, we recall some of Lai’s formulas relating the global topology
of a real submanifold to the number of its CR singular points, counted with
sign according to an intersection number. In Section 4, we derive a simple
expression that calculates the intersection index in terms of the coefficients in
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the local defining equation, generalizing the well-known m = n = 2 case, where
CR singular points of compact surfaces in C

2 can be counted according to
their elliptic or hyperbolic nature as determined by the local Bishop invariant.
Section 6 gives some concrete examples of compact real 4-manifolds immersed
in C

3 or CP 3 to illustrate the enumerative formulas and local invariants.

2. Normal forms for CR singularities

Let n ≥ 2 and m = 2n − 2, so a real m-submanifold M of a complex n-
manifold has real codimension 2. Considering n in general shows how the well-
known (m,n) = (2,2) case is related to the higher-dimensional cases, including
(4,3). In this section, we are only interested in a small coordinate neighbor-
hood, so we let the ambient complex space be C

n, with coordinates z1, . . . , zn.
We also use the abbreviations z = (z1, . . . , zn−1)T and �z = (z1, . . . , zn)T (both
column vectors). The real and imaginary parts of the coordinate functions
are labeled zk = xk + iyk.

2.1. Local defining equations and transformations. We begin by as-
suming M is a real analytic (2n − 2)-submanifold in C

n with a CR singularity
at some point: the tangent space at that point is a complex hyperplane. We
are interested in the invariants of M under local biholomorphic transforma-
tions. By a translation that moves the CR singular point to the origin �0,
and then a complex linear transformation of C

n, the tangent (2n − 2)-plane
T�0M can be assumed to be the (z1, . . . , zn−1)-subspace. Then there is some
neighborhood Δ of the origin in C

n so that the defining equation of M in Δ
is in the form of a graph over a neighborhood D of the origin in the complex
subspace T�0M :

zn = h(z1, z̄1, . . . , zn−1, z̄n−1) = h(z, z̄),

where h(z, z̄) is a complex valued real analytic function defined for z ∈ D ⊆
T�0M , and vanishing to second order at z = (0, . . . ,0)T . Once M is in this
“standard position,” the complex defining function h(z, z̄) is of the following
form:

(2.1) h(z, z̄) = zT Qz + z̄T Rz + z̄T Sz̄ + e(z, z̄),

where Q, R, S are complex (n − 1) × (n − 1) coefficient matrices, zT and z̄T

are row vectors, and e(z, z̄) is a real analytic function on D vanishing to third
order at z = (0, . . . ,0)T . The matrices Q and S can be assumed to be complex
symmetric. It can also be assumed that D is small enough so that the function
h(z, z̄) can be expressed as the restriction to {(z,w) ∈ D × D : wk = z̄k } of the
multi-indexed series:

(2.2) h(z,w) = zT Qz + wT Rz + wT Sw +
∑

|α|+|β|≥3

eαβzαwβ,
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which converges on some set

(2.3) Dc = {(z,w) : |zk | < ε, |wk | < ε} ⊆ C
2n−2

to a complex analytic function.

Definition 2.1. A (formal, with multi-indexed complex coefficient eαβ)
monomial of the form eαβzαwβ = eαβzα1

1 · · · zαn−1
n−1 wβ1

1 · · · wβn−1
n−1 has “degree”

|α| + |β| = α1 + · · · + αn−1 + β1 + · · · + βn−1. A power series (convergent or
formal) e(z,w) =

∑
eαβzαwβ with eαβ = 0 for all terms of degree |α| + |β| <

d is abbreviated e(z,w) = O(d).

The above notation applies to expressions of the form e(z, z̄), for example,
the last term in equation (2.1) is e(z, z̄) = O(3).

We consider the effect of a coordinate change of the following form:

z̃1 = z1 + p1(z1, . . . , zn),(2.4)
...

z̃n = zn + pn(z1, . . . , zn),

abbreviated �̃z = �z + �p(�z), where p1(�z), . . . , pn(�z) are holomorphic functions
defined by series centered at �0 with no linear or constant terms. Since this
transformation of C

n has its linear part equal to the identity map, it is invert-
ible on some neighborhood of the origin and preserves the form of (2.1). In the
following calculations, we neglect considering the size of that neighborhood,
and consider only points close enough to the origin.

As the first special case of a transformation of the form (2.4) to be used,
let p1(�z), . . . , pn−1(�z) be identically zero, so z̃ = z, and let pn(�z) be a ho-
mogeneous quadratic polynomial in z1, . . . , zn−1, so pn(�z) = zT Q′z for some
complex symmetric (n − 1) × (n − 1) matrix Q′. Given a point on M near �0,
its coordinates �z = (z1, . . . , zn)T satisfy zn − h(z, z̄) = 0. The new coordinates
at that point satisfy:

z̃n = zn + pn(�z)(2.5)

= zT Qz + z̄T Rz + z̄T Sz̄ + e(z, z̄) + pn(�z)

= z̃T (Q + Q′)z̃ + ¯̃zT Rz̃ + ¯̃zT S ¯̃z + e(z̃, ¯̃z).

So, such a quadratic transformation changes the coefficient matrix Q, but
all the other coefficients of the new equation, z̃n − h̃(z̃, ¯̃z) = 0, are the same.
Choosing Q′ = S̄ − Q (and dropping the tilde notation), the defining equation
in the new coordinates is:

(2.6) zn = zT S̄z + z̄T Rz + z̄T Sz̄ + e(z, z̄),

so the first and third terms have a real valued sum and e(z, z̄) is still O(3).
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Next, we consider some linear transformations of C
n, but only those which

fix, as a set, the complex tangent hyperplane T�0M = {zn = 0}, so they are of
the form

(2.7) �̃zn×1 = Cn×n�zn×1 =

⎛⎜⎜⎜⎝
c1,1 . . . c1,n−1 c1,n

...
...

...
cn−1,1 . . . cn−1,n−1 cn−1,n

0 . . . 0 cn,n

⎞⎟⎟⎟⎠�zn×1,

with complex entries and nonzero determinant, so cn,n �= 0. The inverse ma-
trix has the block form

C−1 =

⎛⎜⎜⎜⎝
∗

A(n−1)×(n−1)

...
∗

0 . . . 0 c−1
n,n

⎞⎟⎟⎟⎠ ,

where the block A in C−1 does not depend on the entries c1,n, . . . , cn,n. In
the special case where c1,n = · · · = cn−1,n = 0, C has a block diagonal pattern
and so does its inverse, so z = Az̃. In the coordinate system defined by such
a linear transformation, the new defining equation is

z̃n = cn,nzn(2.8)

= cn,n ·
(
zT S̄z + z̄T Rz + z̄T Sz̄ + e(z, z̄)

)
= cn,n ·

(
z̃T AT S̄Az̃ + ¯̃zT ĀT RAz̃ + ¯̃zT ĀT SĀ¯̃z + ẽ(z̃, ¯̃z)

)
,

where the new higher order part is still real analytic but may have a different
domain of convergence.

If the coefficients c1,n, . . . , cn−1,n were nonzero, they would contribute only
terms of degree at least 3, not affecting the quadratic terms in (2.8). Similarly,
allowing a coordinate change with nonlinear terms, as in (2.4), would only
introduce terms of degree at least 3, or, as in (2.5), arbitrarily alter the first
quadratic term. So, under a general transformation,

(2.9) �̃z = C�z + �p(�z)

[which combines (2.4) and (2.7), and preserves the standard position, (2.1)],
the only interesting effect on the quadratic part of h(z, z̄) is that the coefficient
matrices are transformed as:

(2.10) (R,S) �→ (cn,nĀT RA,cn,nĀT SĀ).

The first invariant to notice is the pair (rank(R), rank(S)). The rank of the
concatenated matrix (R|S)(n−1)×(2n−2) is also an invariant under this action.

The group of invertible matrices A has (n − 1)2 complex dimensions, and
the group of scalars cn,n is one-dimensional; however, if A is a real multiple λ of
the identity matrix 1, then its action can be canceled by choosing cn,n = λ−2.
So, there are at most 2((n − 1)2 +1) − 1 = 2n2 − 4n+3 real parameters in the
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group action. The coefficient matrices R and S have (n − 1)2 and (n − 1)n/2
complex dimensions, for a total of 3n2 − 5n + 2 real dimensions. The number
of coefficients always exceeds the number of parameters in the group action,
so we expect infinitely many equivalence classes of matrix pairs, distinguished
by continuous invariants.

2.2. Degrees of flatness. We continue with the assumption that M is a
real analytic submanifold of C

n with real codimension 2.

Definition 2.2. A manifold M in standard position (2.1) has a defining
function h(z, z̄) in a “quadratically flat normal form” if the quadratic part,
zT Qz + z̄T Rz + z̄T Sz̄, of its defining function is a real valued polynomial.
A manifold M ⊆ C

n with a CR singular point �x ∈ M is “quadratically flat”
at �x if, after M is put into standard position (2.1) by a complex affine transfor-
mation �̃z = Ln×n · (�z − �x), there is a local holomorphic coordinate change (2.9)
such that in the new coordinates, M has a defining function in a quadratically
flat normal form.

The definition of “quadratically flat normal form” is equivalent to Q =
S̄ and R = R̄T (so R is Hermitian symmetric). Considering (2.6) and the
transformation rule (2.10), for M in standard position, the “quadratically flat”
property is equivalent to R being a complex scalar multiple of a Hermitian
symmetric matrix.

The notion of quadratic flatness is the d = 2 special case of the following
generalization to higher degree.

Definition 2.3. For d ≥ 2, a real analytic manifold M in standard po-
sition (2.1) has a defining function in a “d-flat normal form” if the defining
equation in a neighborhood of �0 is

zn = h(z, z̄) = r(z, z̄) + O(d + 1)

for some real valued polynomial r(z, z̄). A manifold M ⊆ C
n with a CR singu-

lar point �x ∈ M is “d-flat” at �x if, after M is put into standard position (2.1)
by a complex affine transformation �̃z = Ln×n · (�z − �x), there is a local holo-
morphic coordinate change (2.9) such that in the new coordinates, M has a
defining function in a d-flat normal form.

Definition 2.4. A real analytic (2n − 2)-manifold M ⊆ C
n is “formally

flattenable” at a CR singular point �x ∈ M if it is d-flat at �x for every d ≥ 2.

Definition 2.5. A manifold M ⊆ C
n with a CR singular point �x ∈ M is

“holomorphically flat” at �x if, after M is put into standard position (2.1) by
a complex affine transformation �̃z = Ln×n · (�z − �x), there is a local holomor-
phic coordinate change (2.9) such that in the new coordinates, the defining
function (2.1) is real valued.



944 A. COFFMAN

By the definition, if M is holomorphically flat near a CR singular point,
then there is a local coordinate system around the point so that a neighbor-
hood of �0 in M is contained in the real hyperplane {Im(zn) = 0}. By the
well-known normal form result of É. Cartan that a real analytic nonsingular
Levi flat hypersurface is locally biholomorphically equivalent to a real hyper-
plane, the local notion of M being holomorphically flat at �x is equivalent to the
(more coordinate-free) property that there exists a real analytic nonsingular
Levi flat hypersurface containing a neighborhood of �x in M .

2.3. The m = n = 2 case. When m = n = 2, M is a real surface in C2 with a
CR singular point. For M in standard position (2.1), the coefficient matrices
are size 1 × 1, and can be written as complex constant coefficients. The action
of (2.10) becomes (R,S) �→ (c2,2|α|2R,c2,2ᾱ

2S) for nonzero complex constants
c2,2 and α, where A1×1 = (α). If R �= 0, then (R,S) can then be transformed
into (1, γ1), γ1 ≥ 0. If R = 0, then there are two normal forms: (0,1) and
(0,0). The quadratic normal forms for the defining function of M are then:

z2 = z1z̄1 + γ1 · (z2
1 + z̄2

1) + e(z1, z̄1), γ1 ≥ 0, or
z2 = z2

1 + z̄2
1 + e(z1, z̄1), or(2.11)

z2 = e(z1, z̄1).

So, γ1 is the well-known Bishop invariant [Bishop] and the second case is
γ1 = +∞. This calculation of the quadratic normal forms shows that any
surface M with a CR singular point is quadratically flat (Definition 2.2) at
that point.

The normalization of the cubic terms depends on γ1; all the cases 0 ≤ γ1 ≤
∞ are surveyed in [C3] Section 5, and we recall a few examples here.

For γ1 ∈ (0, 1
2 ) ∪ ( 1

2 ,1) ∪ (1, ∞), it was shown by [MW] that the cubic terms
of e(z1, z̄1) can be eliminated by a holomorphic coordinate change near the
origin, and so M is 3-flat. [There may be O(4) terms that cannot be eliminated
or made real valued.]

Any M with γ1 = 1
2 is 3-flat; although there may be some cubic terms that

cannot be eliminated by a holomorphic coordinate change, such terms can
always be made real valued. For γ1 = 1, there are some M which are not
3-flat.

It was also shown by [MW], and [HK] respectively, that for 0 < γ1 < 1
2 , and

γ1 = 0, M is holomorphically flat. Results of [MW] and [Gong] show that
there exist some surfaces M with γ1 > 1

2 which are formally flattenable but
not holomorphically flat.

2.4. The m = 4, n = 3 case.

2.4.1. A quadratic normal form. In this, the main case of this paper, M is a
4-manifold in C3, which we assume is given in the form (2.6). The quadratic
coefficient matrices R, S are size 2 × 2, so there are 7 independent complex
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coefficients, and, as previously calculated, 9 real parameters in the group
action (2.10). One expects that in general, attempting to put the pair (R,S)
into a normal form leaves 5 continuous real invariants.

We choose to begin the normalization by considering the action of the
transformation R2×2 �→ cĀT RA, where c = c3,3 is a nonzero scalar and A is
an invertible 2 × 2 complex matrix. Conveniently, the problem of finding
representative matrices for the orbits of this action has already been solved
in [C2].

Proposition 2.6 ([C2], Theorem 4.3). Given a complex 2 × 2 matrix R,
there is exactly one of the following normal forms N such that N = cĀT RA
for some nonzero complex c and some invertible complex A2×2:

(1)
(

1
0

0
eiθ

)
, 0 ≤ θ ≤ π;

(2)
(

0
τ

1
0

)
, 0 ≤ τ < 1;

(3)
(

0
1

1
i

)
;

(4)
(

1
0

0
0

)
;

(5)
(

0
0

0
0

)
.

For most values of the invariants θ, τ , these normal forms are not Hermitian
symmetric—unless R is already a complex multiple of a Hermitian matrix, one
would not expect cĀT RA to be Hermitian. So, unlike the m = n = 2 case from
Section 2.3, the quadratic part of the defining function h(z, z̄) generally cannot
be made real valued by a holomorphic coordinate change. For a manifold in
standard position (2.1), the following are equivalent: (I) M is quadratically
flat at �0; (II) R is a multiple of a Hermitian matrix; (III) N = cĀT RA, where
N is one of the following normal forms from the proposition: Case (1) with
θ = 0 or π, Case (4), or Case (5).

Using N from the above proposition and introducing the notation P =
2S̄2×2, (2.6) becomes:

(2.12) z3 = (z̄1, z̄2)N
(

z1

z2

)
+ Re

(
(z1, z2)P

(
z1

z2

))
+ e(z1, z̄1, z2, z̄2).

The linear action of C (2.7), (2.8), followed by another holomorphic trans-
formation (2.5), preserves the form of the defining equation (2.12), and acts
on the coefficient matrices by the transformation:

(2.13) (N,P ) �→ (cĀT NA, c̄AT PA).

Since N is already normalized, to find a normal form for (2.12), we consider
only pairs (c,A) that preserve N : N = cĀT NA. Since this depends on the
nature of the various matrices N appearing in the proposition, we proceed in
cases.

In each case, let P =
(

a
b

b
d

)
, with complex entries a, b, d, and let A =(

α
γ

β
δ

)
, with complex entries and nonzero determinant.
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Case (1a). For N =
(

1
0

0
eiθ

)
, with 0 < θ < π, if N = cĀT NA, then c is real

(this follows from calculating determinants, for example), and

N = cĀT NA = c

(
ᾱ γ̄
β̄ δ̄

)(
1 0
0 eiθ

)(
α β
γ δ

)
implies

1 = c · (αᾱ + γγ̄eiθ),(2.14)

0 = αβ̄ + γδ̄eiθ,

eiθ = c · (ββ̄ + δδ̄eiθ).

It follows that γ = β = 0, c = |α|−2, and |δ| = |α|. So the action of (2.13) is
that P can be transformed to:

c̄AT PA =
1

|α|2
(

α 0
0 δ

)(
a b
b d

)(
α 0
0 δ

)
=

(
a α2

|α|2 b αδ
|αδ|

b αδ
|αδ| d δ2

|δ|2

)
.

When a and d are both nonzero, α and δ can be chosen to rotate them onto
the positive real axis. The value of b cannot be normalized any further except
that P with positive a, d, and complex b is equivalent to the matrix with the
same a, d, but opposite value for b.

If a = 0 or d = 0, then α and δ can be chosen to transform P into a matrix
with all nonnegative entries.

Case (1b). For N =
(

1
0

0
1

)
, the θ = 0 case of Proposition 2.6, c is real

as in the previous case, and by the calculation analogous to (2.14) with
θ = 0, in fact c is positive, so c = +1

| det(A)| . The equation N = cĀT NA =

(
√

cA)
T
N(

√
cA) shows A is a real multiple of a unitary matrix, and conversely

if A = rU for some real r and unitary U , then (c,A) = (r−2, rU) stabilizes N .
So the action of (2.13) is that P can be transformed to:

c̄AT PA =
1

| det(A)| A
T PA = r−2(rU)T P (rU) = UT PU.

The normal form problem for P is thus reduced to finding a normal form for a
complex symmetric 2 × 2 matrix under the relation of congruence by a unitary
matrix. This problem has a well-known solution by Takagi ([HJ], Section 4.4,
see also Theorem 5 of [Hua]), which says that a complex symmetric matrix
has a diagonal normal form under unitary congruence, with nonnegative real
entries. These entries can be reordered by a unitary transformation, so a
normal form is

(
a
0

0
d

)
with 0 ≤ a ≤ d.

Case (1c). For N =
(

1
0

0
−1

)
, the θ = π case of Proposition 2.6, c is real.

Briefly neglecting c, we consider the group of invertible matrices A preserv-
ing N . The condition ĀT NA = N is equivalent to ANĀT = N . For any sym-
metric coefficient matrix P , define an auxiliary matrix B = P̄T NP , which is
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Hermitian symmetric. Then the congruence action P ′ = AT PA transforms
the product:

B′ = P ′T NP ′ = (AT PA)
T
N(AT PA) = ĀT P̄T ĀNAT PA = ĀT P̄T NPA,

so B′ is related to B by Hermitian congruence. So, the action (2.13) of A
on (N,P ) (with c = 1) has been temporarily replaced by the action of si-
multaneous Hermitian congruence on the pair (N,B) of Hermitian symmetric
matrices. This normal form problem is considered by [HJ], and more recently
by [HS] and [LR]. Recalling that N is Hermitian congruent to the matrix
N ′ =

(
0
1

1
0

)
[the τ → 1− limit of Case (2) from the proposition], the result

from [HJ], [HS], [LR] is that for any Hermitian B, the pair (N,B) is equiv-
alent under simultaneous Hermitian congruence to exactly one pair from the
following list:

•
((

1
0

0
−1

)
,
(

k1
0

0
k2

))
, k1, k2 ∈ R;

•
((

0
1

1
0

)
,
(

0
k

k
1

))
, k ∈ R;

•
((

0
1

1
0

)
,
(

0
x−iy

x+iy
0

))
, x ∈ R, y > 0.

We continue with Case (1c) by splitting into subcases corresponding to the
above three intermediate normal forms.

Case (1ci). There is some nonsingular matrix A so that the Hermitian
pair (N, P̄T NP ) is simultaneously diagonalized and P ′ = AT PA is a complex
symmetric matrix

(
a
b

b
d

)
[using the same place-holding letters as in Case (1a)

even though P has been transformed once already] satisfying

(2.15) B′ = P ′T NP ′ =
(

a b
b d

)T (
1 0
0 −1

)(
a b
b d

)
=

(
k1 0
0 k2

)
.

By another transformation, of the form eiξ1 [which does not affect the pair
(N,B′)], we may assume that the entry b of P ′ satisfies b ≥ 0. It then follows
from expanding (2.15) that the entries of P ′ must satisfy either b = 0 or d = ā.
In the b = 0 case, a transformation of the form

(
α
0

0
δ

)
, with |α| = |δ| = 1,

preserves N and puts P ′ into a diagonal normal form with nonnegative real
entries. By a transformation of the form (c,A) =

(
−1,

(
0
i

i
0

))
, these entries

can be interchanged, so a unique normal form is
(

a
0

0
d

)
with 0 ≤ a ≤ d.

In the d = ā case, the same type of diagonal transformation with δ = 1/α

puts P ′ into the form
(

a
b

b
a

)
with b > 0 and a ≥ 0. However, this simplifies

even further, and is not always different from the previous (b = 0) case. When
0 < b < a, a transformation of the form

(c,A) =
(

−1
2

√
a2 − b2(−a +

√
a2 − b2)

,

(
b −a +

√
a2 − b2

−a +
√

a2 − b2 b

))
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preserves N and diagonalizes P ′ to
√

a2 − b2 · 1. When 0 ≤ a < b, N and P ′

cannot be simultaneously diagonalized, but a transformation of the form

(c,A) =
(

1
4b

√
b2 − a2

,

(
−a + i(b +

√
b2 − a2) b −

√
b2 − a2 − ia

b −
√

b2 − a2 − ia −a + i(b +
√

b2 − x2)

))
preserves N and takes P ′ to −i

b

√
b2 − a2(a − i

√
b2 − a2)N ′, which can be

rotated by A = eiθ1 to
√

b2 − a2N ′. In the 0 < a = b case, P ′ has rank 1 but
(N,P ′) is not simultaneously diagonalizable, so it is inequivalent to the b = 0
case with rank 1, where 0 = a < d. A transformation of the form

(c,A) =
(

1
4a

,

(
1 + a 1 − a
1 − a 1 + a

))
preserves N and normalizes a to 1.

Case (1cii). If there is no transformation simultaneously diagonalizing
(N,B), then there is some nonsingular matrix A so that ĀT NA = N ′, AT PA =
P ′, and B′ = ĀT BA equals either the second or third normal form from the
above list—in this subcase we consider the second. The property ĀT NA = N ′

is equivalent to ĀN ′AT = N , so

B′ = ĀT BA = ĀT P̄T NPA = ĀT P̄T ĀN ′AT PA = (AT PA)
T
N ′(AT PA).

With notation as in the previous case, P ′ = AT PA is a complex symmetric
matrix

(
a
b

b
d

)
satisfying

(2.16) B′ = P ′T N ′P ′ =
(

a b
b d

)T (
0 1
1 0

)(
a b
b d

)
=

(
0 k
k 1

)
.

By another transformation, of the form eiξ1 [which does not affect the pair
(N ′,B′)], we may assume that the entry a of P ′ satisfies a ≥ 0. However,
it follows from expanding the product in (2.16) that there are no solutions
of (2.16) with a > 0, so a = 0. Then (2.16) becomes(

0 b
b d

)T (
0 1
1 0

)(
0 b
b d

)
=

(
0 bb̄
bb̄ bd̄ + b̄d

)
=

(
0 k
k 1

)
,

so neither b nor d is 0. By yet another scalar transformation, we may as-
sume that b > 0, without changing the RHS of the above equation, so b is
an invariant determined by k, and the equality of entries b · (d + d̄) = 1 im-
plies Re(d) �= 0. A transformation (c,A) =

(
1
r ,

(
1
0

is
r

))
, with r and s real,

preserves N ′ and transforms P ′ =
(

0
b

b
d

)
into

(
0
b

b
2bis+rd

)
. Since Re(d) �= 0

and b > 0, r and s can be chosen to normalize d to 1.
Case (1ciii). The third case starts with the same steps as the previous case,

with ĀT NA = N ′ and AT PA = P ′ =
(

a
b

b
d

)
satisfying

(2.17) B′ = P ′T N ′P ′ =
(

a b
b d

)T (
0 1
1 0

)(
a b
b d

)
=

(
0 x + iy

x − iy 0

)
,
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with y > 0. By another transformation, of the form eiξ1 [which does not
affect the pair (N ′,B′)], we may assume that the entry a of P ′ satisfies a ≥ 0.
Then it follows from expanding the product in (2.17) that a > 0, b = 0, and
ad = x + iy, an invariant quantity. A transformation (c,A) =

(
a,

(
1/a
0

0
1

))
preserves N ′ and transforms P ′ =

(
a
0

0
d

)
into

(
1
0

0
ad

)
=

(
1
0

0
x+iy

)
.

Case (2a). For N =
(

0
τ

1
0

)
, with 0 < τ < 1, if N = cĀT NA, then c is real,

and

N = cĀT NA = c

(
ᾱ γ̄
β̄ δ̄

)(
0 1
τ 0

)(
α β
γ δ

)
implies

0 = αγ̄τ + γᾱ,(2.18)
0 = βδ̄τ + β̄δ,

1 = c · (βγ̄τ + ᾱδ),
τ = c · (γβ̄ + αδ̄τ).

It follows that γ = β = 0, ᾱδ is real, and c = (ᾱδ)−1. So the action of (2.13)
is that P can be transformed to:

c̄AT PA =
1
ᾱδ

(
α 0
0 δ

)(
a b
b d

)(
α 0
0 δ

)
=

(
aα/δ̄ bα/ᾱ
bα/ᾱ dδ/ᾱ

)
.

When b �= 0, α can be chosen to rotate it onto the positive real axis. Then,
using real α and δ, a can be either scaled onto the unit circle or the origin; if
a = 0, then d can be scaled onto the unit circle or the origin. The resulting
normal form is unique except that (a, d) is equivalent to the pair (−a, −d).

If b = 0 and a �= 0, then α and δ can be chosen to transform a into 1, leaving
d ∈ C as an invariant. If b = a = 0, α and δ can be chosen to transform d into
1 or 0.

Case (2b). For N =
(

0
0

1
0

)
, the τ = 0 case of Proposition 2.6, if N =

cĀT NA, then c does not have to be real, but the calculation is similar to
the previous (2a) case. The τ = 0 analogue of (2.18) implies γ = β = 0 and
c = (ᾱδ)−1. So the action of (2.13) is that P can be transformed to:

c̄AT PA = (αδ̄)−1

(
α 0
0 δ

)(
a b
b d

)(
α 0
0 δ

)
= δ̄−1

(
aα bδ

bδ d δ2

α

)
.

When b �= 0, δ can be chosen to rotate it onto the positive real axis. Then,
using real δ and a complex number α, d can be transformed to 1, leaving
a ∈ C as an invariant, or to 0 and then a can be transformed to 1 or 0.

If b = 0 and d �= 0, then α and δ can be chosen to transform d into 1 and a
to a nonnegative invariant. If b = d = 0, α and δ can be chosen to transform a
into 1 or 0.
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Case (3). For N =
(

0
1

1
i

)
, the group of

(
c,

(
α
γ

β
δ

))
such that N = cĀT NA

is exactly the set with γ = 0, α = δ �= 0, αβ̄ + ᾱβ = 0, and c|α|2 = 1. Then

c̄AT PA =
1

|α|2
(

aα2 aαβ + bα2

aαβ + bα2 aβ2 + 2bαβ + dα2

)
.

If a �= 0, then β can eliminate b, α can rotate a to the positive real axis,
and the complex number in the d position is an invariant. If a = 0 and b �= 0,
then β can eliminate d and α can rotate b to the positive real axis. If a = b = 0,
then α can rotate d to the nonnegative real axis.

Case (4). For N =
(

1
0

0
0

)
, the group of

(
c,

(
α
γ

β
δ

))
such that N = cĀT NA

is exactly the set with β = 0, δ �= 0, and c|α|2 = 1. The entry d of P can be
normalized to 1 or 0. In the d = 1 case, γ can eliminate any b entry, and α can
rotate a onto the nonnegative real axis. In the d = 0 case, if b �= 0, then (a, b)
can be normalized to (0,1); if b = 0, then α can rotate a onto the nonnegative
real axis.

Case (5). Under an arbitrary congruence transformation, the rank is the
only invariant of a complex symmetric matrix P under a congruence trans-
formation AT PA. The three normal forms are:
• P =

(
1
0

0
1

)
;

• P =
(

1
0

0
0

)
;

• P =
(

0
0

0
0

)
.

All these results on normal forms for the matrix pairs (N,P ) are summa-
rized by Table 1 in Section 7.

2.4.2. An alternative quadratic normal form. Instead of choosing to normalize
the R matrix first in (2.6), we could have chosen to normalize the symmetric
matrix S. Then the calculations start off in a simpler way, since first applying
the congruence transformation to the complex symmetric matrix S, the three
normal forms for ĀT SĀ are exactly as in the above Case (5).

In the first case, S = 1, the normalization problem for (R,S) reduces to
the problem of finding a normal form for R under the action R �→ cĀT RA,
where (c,A) satisfies cĀT Ā = 1. This is the generic form of S, so one still
expects five continuous real parameters in any collection of representative
matrix pairs, but we do not attempt to find such normal forms.

In the second case, the pair (c,A) stabilizing S and acting on R satisfies

cĀT

(
1 0
0 0

)
Ā =

(
1 0
0 0

)
,

leading to another normal form problem for R which we again do not pursue.
In the last case, where S is the zero matrix, the R matrix can then be put

into one of the normal forms N from Proposition 2.6.
For the special case where R is Hermitian, [I] gives a list of 2 × 2 normal

forms for (R,S), following this approach of normalizing S first.



CR SINGULARITIES OF REAL FOURFOLDS IN C
3 951

2.4.3. One example of a cubic normal form. With M in standard position
and the quadratic part of the defining function in normal form (2.12), we can
consider its cubic terms. In the expansion

z3 = (z̄1, z̄2)N
(

z1

z2

)
+ Re

(
(z1, z2)P

(
z1

z2

))
+ e3(z, z̄) + e(z, z̄),

e3(z, z̄) is the cubic part, and e(z, z̄) = O(4). In particular,

e3 = e3000z3
1 + e2100z2

1 z̄1 + e1200z1z̄
2
1 + e0300z̄3

1(2.19)
+ e2010z2

1z2 + e1110z1z̄1z2 + e0210z̄2
1z2 + e2001z2

1 z̄2

+ e1101z1z̄1z̄2 + e0201z̄2
1 z̄2 + e1020z1z

2
2 + e0120z̄1z

2
2

+ e1011z1z2z̄2 + e0111z̄1z2z̄2 + e1002z1z̄
2
2 + e0102z̄1z̄

2
2

+ e0030z3
2 + e0021z2

2 z̄2 + e0012z2z̄
2
2 + e0003z̄3

2 .

The holomorphic coordinate changes that fix the origin and preserve the stan-
dard position of M are of the form

z̃1 = c11z1 + c12z2 + c13z3 + p20
1 z2

1 + p11
1 z1z2 + p02

1 z2
2(2.20)

z̃2 = c21z1 + c22z2 + c23z3 + p20
2 z2

1 + p11
2 z1z2 + p02

2 z2
2

z̃3 = c33z3 + p200
3 z2

1 + p110
3 z1z2 + p020

3 z2
2 + p101

3 z1z3 + p011
3 z2z3

+ p300
3 z3

1 + p210
3 z2

1z2 + p120
3 z1z

2
2 + p030

3 z3
2 .

The linear coefficients are as in (2.7); the p coefficients are from (2.4). Assign-
ing to each monomial zα1

1 zα2
2 zα3

3 a “weight” α1 + α2 + 2α3, including terms
in (2.20) of higher weight, such as z2

3 , would not contribute any changes to
the quadratic or cubic coefficients of the defining function in the z̃ coordi-
nates. The effect of a coordinate change (2.20) on the cubic part e3 depends
on the quadratic coefficients from N and P . If the quadratic part has already
been put into a normal form, then in attempting to find a normal form for
the cubic terms, one would want to use only holomorphic transformations
that preserve the quadratic normal form, and this subgroup of transforma-
tions also depends on the coefficient matrices N and P . The comprehensive
problem of finding cubic normal forms for every equivalence class of CR sin-
gularities seems to be difficult, so we consider just one special but interesting
case.

Let M be given by this defining equation in standard position and with
quadratic normal form as in Case (1b) from Section 2.4.1:

(2.21) z3 = z1z̄1 + γ1 · (z2
1 + z̄2

1) + z2z̄2 + γ2 · (z2
2 + z̄2

2) + e3(z, z̄) + e(z, z̄).

The above expression is in a quadratically flat normal form: the quadratic
part is real valued with 0 ≤ γ1 ≤ γ2, and e3 is as above. Now, assume further
that 0 < γ1 < γ2, with neither γ1 nor γ2 equal to 1

2 or 1.
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It follows from the normal form result of [MW] (as in Section 2.3) that
there is a transformation of the form

z̃1 = z1 + c13z3 + p20
1 z2

1 ,(2.22)
z̃2 = z2,

z̃3 = z3 + p101
3 z1z3 + p300

3 z3
1

that eliminates the terms e3000z3
1 + e2100z2

1 z̄1 + e1200z1z̄
2
1 + e0300z̄3

1 from e3,
without changing the quadratic part. Similarly, a transformation of z2, z3

can eliminate the cubic terms depending only on z2, z̄2, without changing the
quadratic part or reintroducing the cubic terms in z1, z̄1. This leaves twelve
monomials in (2.19) with complex coefficients.

Among the transformations (2.20), the subgroup preserving this partial
normal form is given by:

z̃1 = c11z1 + p11
1 z1z2 + p02

1 z2
2 ,(2.23)

z̃2 = c22z2 + p20
2 z2

1 + p11
2 z1z2,

z̃3 = c33z3 + p210
3 z2

1z2 + p120
3 z1z

2
2 ,

again, omitting terms of higher weight. The linear coefficients c11, c22, c33

must be real, and satisfy c33 = c2
11 = c2

22. The six complex coefficients of �p
can be arbitrary, and then after a coordinate change of the form (2.23), the
defining equation becomes:

z̃3 = z̃1
¯̃z1 + γ1 · (z̃2

1 + ¯̃z2
1) + z̃2

¯̃z2 + γ2 · (z̃2
2 + ¯̃z2

2) + ẽ3(z̃, ¯̃z) + e(z̃, ¯̃z),

ẽ3 =
(

e1110

c22
− p11

1

c11c22

)
z̃1

¯̃z1z̃2 +
(

e1101

c22
− p11

1

c11c22

)
z̃1

¯̃z1
¯̃z2(2.24)

+
(

e2001

c22
− p20

2

c2
11

)
z̃2
1
¯̃z2 +

(
e0210

c22
− p20

2

c2
11

)
¯̃z2
1 z̃2

+
(

e1011

c11
− p11

2

c11c22

)
z̃1z̃2

¯̃z2 +
(

e0111

c11
− p11

2

c11c22

)
¯̃z1z̃2

¯̃z2

+
(

e1002

c11
− p02

1

c2
22

)
z̃1

¯̃z2
2 +

(
e0120

c11
− p02

1

c2
22

)
¯̃z1z̃

2
2

+
(

e2010

c22
− 2γ1p

11
1

c11c22
− 2γ2p

20
2

c2
11

+
p210
3

c2
11c22

)
z̃2
1 z̃2

+
(

e0201

c22
− 2γ1p11

1

c11c22
− 2γ2p

20
2

c2
11

)
¯̃z2
1
¯̃z2

+
(

e1020

c11
− 2γ1p

02
1

c2
22

− 2γ2p
11
2

c11c22
+

p120
3

c11c2
22

)
z̃1z̃

2
2

+
(

e0102

c11
− 2γ1p02

1

c2
22

− 2γ2p11
2

c11c22

)
¯̃z1

¯̃z2
2 .
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In general, there are not enough parameters in (2.23) to put these twelve
coefficients into a sparse normal form. We turn to yet a further special case.

Suppose that after M has been partially normalized as in (2.22), so that

e3000 = e2100 = e1200 = e0300 = e0030 = e0021 = e0012 = e0003 = 0,

eight of the remaining twelve coefficients satisfy the following conditions:

e1110 = e1101,(2.25)

e2001 = e0210,

e1011 = e0111,

e1002 = e0120.

This condition holds if (but not only if) the partially normalized e3 is real
valued, so the defining function of M is in a 3-flat normal form. Then, by
inspection of (2.24), there is a transformation with complex coefficients p02

1 ,
p11
1 , p11

2 , p20
2 that can normalize the all the e1110, . . . , coefficients in (2.25)

to 0. A transformation using p120
3 and p210

3 can then change the e2010 and
e1020 coefficients to any value, in particular, to the complex conjugates of
e0201 and e0102, so that e3 can be brought to the following real valued normal
form:

(2.26) ẽ3 = e0201z̃2
1 z̃2 + e0201 ¯̃z2

1
¯̃z2 + e0102z̃1z̃

2
2 + e0102 ¯̃z1

¯̃z2
2 .

The coefficients e0201, e0102 are not invariants since a real linear re-scaling by
c11 and c22 = ±c11 is still possible.

There is a different, more useful, statement about the conditions under
which the above normal form can be achieved.

Theorem 2.7. Suppose the real 4-manifold M in C
3 is in standard position

with defining equation in the quadratically flat normal form (2.21) with 0 <
γ1 < γ2, and neither γ1 nor γ2 equal to 1

2 , and with cubic terms e3 as in (2.19)
that satisfy the conditions

e1200 = e2100,(2.27)

e0021 = e0012,(2.28)

e1110 = e1101,

e2001 = e0210,

e1011 = e0111,

e1002 = e0120.

Then there is a holomorphic coordinate change (2.20) that puts the cubic part
into the 3-flat normal form ẽ3 (2.26).

Proof. The last four out of the above six conditions are copied from (2.25).
The proof of the theorem is to proceed as above, first eliminating the cubic
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terms in z1, z̄1 only. The condition (2.27) allows this to be done by a trans-
formation of the form (2.22), but with p101

3 = 0. (This is possible even in the
γ1 = 1 case, cf. Example 5.6 of [C3].) Similarly, the cubic terms in z2, z̄2 only
can be eliminated by a transformation of the form

z̃1 = z1,(2.29)
z̃2 = z2 + c23z3 + p02

2 z2
2 ,

z̃3 = z3 + p030
3 z3

2 ,

without reintroducing any of the previously eliminated terms. Again, the con-
dition (2.28) (and γ2 �= 1

2 ) means that a term p011
3 z2z3 is not needed in (2.29).

These first two steps may alter the numerical values of the remaining coeffi-
cients, but the claim is that if the cubic coefficients e1110, . . . , e0120 satisfy the
reality conditions (2.25) at the start of the process, then the new correspond-
ing coefficients continue to satisfy those conditions. The calculation to verify
this is straightforward but omitted; however, the assumption p101

3 = p011
3 = 0

is crucial: if either were nonzero, cubic terms not satisfying (2.25) could ap-
pear in the new defining equation. The rest of the normalization proceeds
exactly as above. �

The conclusion of the above theorem holds in particular when M has the
specified quadratic normal form and is also 3-flat.

2.5. Flatness in higher dimensions. Proposition 2.6 showed that for the
m = 4, n = 3 case considered in Section 2.4, R cannot, in general, be put into
a Hermitian normal form. Similarly for higher dimensions n > 2, m = 2n − 2,
quadratic flatness is a nongeneric property for codimension 2 manifolds with
CR singularities. Higher degree flatness is even more nongeneric.

Consider the quadratically flat case, where M is in standard position in C
n

and the coefficient matrix R happens to be Hermitian symmetric. This prop-
erty of R is preserved by the action of (cn,n,A) from (2.7) if and only if cn,n

is real—unless R is the zero matrix, in which case there is no such condition
on cn,n.

For a nonzero Hermitian matrix R, the transformations (2.10) [or (2.13)]
of the defining function that preserve the property of being in a quadratically
flat normal form have the following action: R �→ cn,nĀT RA, a congruence
transformation of R, followed by real scalar multiplication. The Hermitian
property of R is preserved, along with its rank. Congruence transformations
also preserve the signature (p, q): the number of positive, and negative, eigen-
values; R is “definite” if p = n or q = n. Multiplying by a negative scalar cn,n

interchanges the p and q quantities. The rank ρ(R), the number σ(R) = |p − q|
(from which p and q can be recovered, modulo switching), and the property
of definiteness (or indefiniteness) are invariants of R under the action of this
transformation group.
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If R is the zero matrix, then cn,nR is still Hermitian even if cn,n is not
a real number. M is quadratically flat: the quadratic part of h(z, z̄) can be
made real valued by a transformation of the form (2.5).

Including both cases R �= 0, R = 0, we can conclude that if M has a defin-
ing function h(z, z̄) in a quadratically flat normal form, then any holomorphic
coordinate change that preserves the property that h(z, z̄) is in a quadrati-
cally flat normal form must leave invariant the rank ρ(R) and the number
σ(R) = |p − q|. In particular, these quantities are also invariants of a defining
function in a d-flat normal form, or which is real valued (the holomorphically
flat case), under holomorphic coordinate changes that preserve the flatness
property of the defining function. The determinant of R is real and trans-
forms as: det(cn,nĀT RA) = cn−1

n,n | det(A)|2 det(R), so the sign of det(R) is also
an invariant if n is odd.

For arbitrary dimensions m = 2n − 2, n ≥ 2, if the (n − 1) × (n − 1) co-
efficient matrix R in (2.6) is Hermitian and definite (so that R transforms
by congruence to the identity matrix 1), the result of Takagi is that then
there is a unitary coordinate change diagonalizing S, with real entries 0 ≤
γ1 ≤ · · · ≤ γn−1 on the diagonal. These numbers are called “generalized
Bishop invariants” by [HY], since the 0 ≤ γ1 < ∞ normal form (2.11) from
Section 2.3 is the n = 2 special case. The definite normal form from Case (1b)
of Section 2.4.1 is the n = 3 case. The R = 1, S = 0(n−1)×(n−1) case, where
zn = z1z̄1 + · · · + zn−1z̄n−1 + O(3), is considered by [HY].

For P complex symmetric and R Hermitian symmetric, but not necessarily
definite, a description of canonical representatives for the equivalence relation
(R,P ) ∼ (ĀT RA,AT PA) is given by [E]. Allowing scalar multiplication, as
in (2.13), with real cn,n as above, is different only in that (R,P ) is equivalent to
(−R, −P ) under the action of (2.13), while they may be inequivalent according
to [E]. In the 2 × 2 case, the choices made by [I] and [E] for canonical forms are
different from those in the calculations of Section 2.4.1, Cases (1b), (1c), (4),
(5). However, it is straightforward to check how our list of normal forms, as
summarized in Examples 7.3–7.7, corresponds (modulo scalars) to the systems
of canonical forms in [I], [E].

3. Topological considerations

We recall some well-known general facts on Grassmannian manifolds, and
also recall from [L] some topological properties of real m-submanifolds of
complex n-manifolds: the local property of “general position” for real sub-
manifolds, and also global properties measured by characteristic classes. The
Grassmannian constructions and formulas of [L], in the special case of the
topology of real surfaces immersed in complex surfaces (m = n = 2), are also
reviewed by [BF], [Bohr], [F], [ABKLR], Section 8.5.3. In this section, we
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work with connected, m-dimensional, smooth manifolds M , not necessarily
real analytic.

3.1. The Grassmannian construction. For 0 < m < 2n, let G(m,R2n)
denote the Grassmannian manifold of m-dimensional real linear subspaces of
R

2n. The real dimension of G(m,R2n) is m · (2n − m).
Similarly, let SG(m,R2n) denote the manifold of oriented m-dimensional

subspaces of R
2n. Its real dimension is also m · (2n − m). There is a two-to-one

covering map F : SG(m,R2n) → G(m,R2n) given by forgetting the orienta-
tion, and an involution R : SG(m,R2n) → SG(m,R2n) given by reversing the
orientation.

For any immersion ι of a real m-manifold M into R
2n, we can define the

Gauss map γ : M → G(m,R2n) : x �→ Tι(x)M . If M has an orientation, then
the corresponding map is denoted γs : M → SG(m,R2n).

When m is even and there is a “complex structure operator,” J , a real linear
map R

2n → R
2n such that J ◦ J = −1, then G(m,R2n) contains C, the set of

J -invariant subspaces. C is a submanifold: it is the image in G(m,R2n) of the
inclusion embedding of the complex Grassmannian manifold CG(m/2,Cn) of
complex subspaces in Cn.

In the case m = 2n − 2, the manifold CG(n − 1,Cn) is homeomorphic to
the complex projective space CPn−1, and the real dimension of C is 2(n − 1),
half the dimension 4(n − 1) of G(2n − 2,R2n). The inverse image F −1(C) ⊆
SG(2n − 2,R2n) is a disjoint union C+ ∪ C −, where C+ is the set of oriented
subspaces whose orientation agrees with that given by the complex structure,
and C − is the set of subspaces where these orientations are opposite (so they
could be called “anticomplex” subspaces). Each component C+ and C − is the
image of an embedding of CG(n − 1,Cn), with real dimension, and codimen-
sion, equal to 2(n − 1). The C+ submanifold has a natural orientation.

For 0 < m < 2n and 0 ≤ j ≤ n, given an immersion of an m-submanifold
ι : M → R

2n = C
n, let Nj denote the subset

Nj = {x ∈ M : dimR(TxM ∩ J · TxM) ≥ 2j },

so at a point x ∈ Nj , the tangent space TxM contains a J -invariant subspace
of real dimension 2j , which is a complex subspace of complex dimension j
in C

n.
For m = 2n − 2, Nn−2 = M and Nn−1 = γ−1(C) is the CR singular locus.

The immersion is in “general position” at x ∈ M if the Gauss map γ : M →
G(2n − 2,R2n) meets C transversely at γ(x). M is trivially in general position
at all its CR generic points, and the immersion is said to be in general position
if it is in general position at every point. Then, by counting dimensions, an
immersion in general position has only isolated CR singular points, and if M
is compact, then the CR singular locus Nn−1 is a finite set.
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If M has an orientation, then the CR singular locus is the same set as (F ◦
γs)−1(C) = γ−1

s (F −1(C)) = γ−1
s (C+ ∪ C −), which is a disjoint union γ−1

s (C+) ∪
γ−1

s (C −). So, Nn−1 = N+
n−1 ∪ N −

n−1, where N+
n−1 = γ−1

s (C+) and N −
n−1 =

γ−1
s (C −). The local and global notions of “general position” as defined previ-

ously are equivalent to the analogous transverse meeting of γs with C+ ∪ C −

in SG(2n − 2,R2n). At each point of N+
n−1 in general position, there is an

oriented intersection number, ±1, of γs with the oriented submanifold C+:
the intersection number at γs(x) is be denoted the index, ind(x).

To define the intersection index at a point x of N −
n−1, [L] makes a choice

of orientation for C − which is opposite to that induced by R : C+ → C −.
Then ind(x), the intersection number of γs with C − at γs(x), is equal to
the intersection number of R ◦ γs with C+ at R(γs(x)). Equivalently, if
M − denotes the manifold M with its orientation reversed, with Gauss map
γ′

s : M − → SG(2n − 2,R2n), then ind(x) is equal to the intersection number
of γ′

s with C+ at γ′
s(x).

3.2. Bundle maps. More generally, let M be a smooth, oriented mani-
fold with real dimension 2n − 2, and let F be a smooth, oriented real vector
bundle over M with 2n-dimensional fibers. Then the space of oriented real
(2n − 2)-subspaces of fibers of F forms a “Grassmann bundle” SG(2n − 2, F )
over M—on a local coordinate patch U of M where F can be trivialized as
U × R

2n, the Grassmann bundle is of the form U × SG(2n − 2,R2n). Sup-
pose F admits a smooth complex structure operator J . Then for each point
x ∈ M , the Jx-invariant subspaces form sets C+

x and C −
x in the fiber over x,

giving a pair of smooth bundles C+, C − of complex Grassmannians over M ;
each total space has codimension 2n − 2 in the total space SG(2n − 2, F ).
If T is another smooth, oriented real vector bundle over M , with (2n − 2)-
dimensional fibers, then a nonsingular bundle map μ : T → F induces a sec-
tion γμ : M → SG(2n − 2, F ) : x �→ μ(Tx), generalizing the Gauss map. The
transverse intersection of γμ with C+ and C − defines a notion of “general
position” for T , and the intersection numbers define the index of generally
isolated points x where γμ(x) = μ(Tx) is a Jx-invariant subspace of Fx.

A special case of this bundle construction is where T is the tangent bundle
TM of M , and ι is an immersion of M in an almost complex manifold A,
with real dimension 2n and a smooth complex structure operator J on T A.
Then the differential of ι defines a smooth bundle map μ : TM → F = ι∗T A,
inducing γμ : M → SG(2n − 2, F ). A point x ∈ M is a CR singular point of ι
if γμ(x) = μ(TxM) is a J -invariant subspace of Tι(x)A.

If, additionally, T A admits a positive definite Riemannian metric g, then
there is an oriented real 2-plane normal bundle νM orthogonal to TM in
ι∗T A, and further, if g has the property that J is an isometry with respect
to g, then TxM is a complex hyperplane in ι∗TxA if and only if νxM is a
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complex line. Such a metric g can be chosen for any (T A, J), although we do
not use it except to define the normal bundle.

3.3. Characteristic class formulas. Following the notation of [F], for an
immersion ι : M → A (or bundle map μ : T → F ) as in the previous subsec-
tion, we define index sums:

I+ =
∑

x∈N+
n−1

ind(x),

I− =
∑

x∈N −
n−1

ind(x).

When M is compact and the immersion (or bundle map) is in general position,
I+ and I− are finite sums of ±1 terms. Then I+, I−, I+ + I−, and I+ − I−
are all invariants of the homotopy class of ι (or μ). Reversing the orientation
of M interchanges the values of I+ and I−, so I+ +I− is the same and I+ − I−
has the opposite sign.

If, instead of following [L] as in Section 3.1, we make the other choice of
orientation for C −, then I− has the opposite sign and the quantities I+ + I−
and I+ − I− are switched. Some of the following examples show that this is the
choice of orientation that corresponds to index sums appearing in enumerative
formulas of [Webster], [HL1], [HL2], [Domrin], and [C1].

Our notation for characteristic classes in cohomology is copied from [L]:
denote the Euler class of the tangent bundle TM by Ω, denote the Euler class
of the normal bundle νM → M of the immersion by Ω̃, and denote the total
Chern class of the pullback bundle ι∗(T A, J) → M by 1 + c1 + c2 + · · · + cn.

Proposition 3.1 ([L]). For an immersion ι of a compact, oriented (2n −
2)-manifold M in general position in an almost complex 2n-manifold A,

I+ =
∫

M

1
2

(
Ω +

n−1∑
r=0

Ω̃rcn−1−r

)
.

Corollary 3.2. With the orientation convention for C − as in [L],

I− =
∫

M

1
2

(
Ω +

n−1∑
r=0

(−1)r+1Ω̃rcn−1−r

)
,

I+ + I− =
∫

M

(
Ω +

�n/2� −1∑
k=0

Ω̃2k+1cn−2k−2

)
,

I+ − I− =
∫

M

�(n−1)/2�∑
k=0

Ω̃2kcn−2k−1.
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Proof. I− is calculated by reversing the orientation of the tangent and
normal bundles TM and νM , which switches the sign of Ω and Ω̃. Then,
applying the formula from the proposition, integrating over M − gives the
opposite of the integral over M . �

Example 3.3. When A = C
n, the Chern classes are trivial, so for M im-

mersed in general position,

I+ =
∫

M

1
2
(Ω + Ω̃n−1),

I− =
∫

M

1
2
(
Ω + (−1)nΩ̃n−1

)
.

If, in addition, ι is an embedding, then Ω̃ is the zero class, so I+ = I− =
1
2χ(M), where χ(M) is the Euler characteristic of M ([L], Theorem 4.10).

Example 3.4. For n = 2, ι is an immersion of a compact, oriented real
surface M in a 4-manifold A with an almost complex structure J . Com-
plex or anticomplex points with Lai’s index +1 are “elliptic,” or “hyperbolic”
with index −1. Again following the notation of [F] and [ABKLR], if e+ (re-
spectively, e−) is the number of elliptic points with positively (negatively)
oriented complex tangent spaces and h+ (h−) is the number of positive (neg-
ative) hyperbolic points, and e = e+ + e−, h = h+ +h−, then for M in general
position,

I+ = e+ − h+ =
∫

M

1
2
(Ω + c1 + Ω̃),

I− = e− − h− =
∫

M

1
2
(Ω − c1 + Ω̃),

I+ + I− = e − h =
∫

M

(Ω + Ω̃),

I+ − I− = (e+ − e−) − (h+ − h−) =
∫

M

c1.

The last formula was also proved by [Webster] and is a special case of a
degeneracy locus formula of [HL2] and [Domrin]. When ι is an embedding into
A = C

2, Ω̃ = 0, so the formulas are e+ − h+ = e− − h− = 1
2χ(M), which were

known to [Bishop] and [Wells] in the special cases where M is an embedded
sphere or torus. Immersions with double points are considered by [BF] and
[Bohr].

Example 3.5. For n = 3, ι is an immersion of a compact, oriented real
4-manifold M in a 6-manifold A with an almost complex structure J . For M
in general position, we adapt from the previous example the notation e+, h+

for counting elements of N+
2 , and e−, h− for elements of N −

2 . (However, the
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terms “elliptic” and “hyperbolic” are not adapted here from n = 2 to n ≥ 3,
they appear in Section 7 in a more specific application.)

I+ = e+ − h+ =
∫

M

1
2
(Ω + c2 + Ω̃c1 + Ω̃2),

I− = e− − h− =
∫

M

1
2
(Ω − c2 + Ω̃c1 − Ω̃2),

I+ + I− = e − h =
∫

M

(Ω + Ω̃c1),

I+ − I− = (e+ − e−) − (h+ − h−) =
∫

M

(c2 + Ω̃2).

There are also formulas

I+ − I− =
∫

M

(c2 + p1νM)(3.1)

=
∫

M

(c2
1 − c2 − p1TM),(3.2)

where p1 is the first Pontrjagin class of the normal bundle νM or tangent
bundle TM . The equality (3.1) follows from the well-known identity of char-
acteristic classes Ω̃2 = p1νM . Formula (3.2) is a special case of the degeneracy
locus formulas of [HL2] and [Domrin]—the calculation establishing the equiv-
alence of (3.1) and (3.2) appears in [C1].

Example 3.6. Not every compact, oriented 4-manifold can be immersed
in R

6 ∼= C
3—for example, CP 2 cannot [Hirsch]. If such a 4-manifold M is

immersed in general position in C3, then I+ + I− = χ(M) and

I+ − I− =
∫

M

p1νM =
∫

M

−p1TM = −p1M,

the opposite of the first Pontrjagin number of M [HL1]. The number
∫

M
p1νM

is also three times the algebraic number of triple points of an immersion in
general position [Herbert]. A compact, oriented 4-manifold admitting a CR
generic immersion in C

3 must have χ(M) = p1M = 0; the converse problem,
finding a sufficient condition for the existence of a CR generic immersion, is
considered by [JL].

Example 3.7. Consider the complex projective space A = CP 3, and a
nonsingular, degree d complex hypersurface Y ⊆ CP 3. In terms of the hy-
perplane class H in the cohomology ring of CP 3, there are well-known for-
mulas ([GH], Sections 1.1, 3.4, 4.6) for Chern classes: c2(TCP 3|Y ) = 6H2,
c1(TCP 3|Y ) = 4H , and c1νY = dH . Since

∫
Y

H2 = d,∫
Y

(
c2(TCP 3|Y ) + (c1νY )2

)
= 6d + d3,
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Y

(
c2TY + c1νY · c1(TCP 3|Y )

)
= χ(Y ) + 4d2.

Let M be a smooth real submanifold of CP 3 isotopic to Y , that is, homotopic
through a family of smooth embeddings. Then the Chern classes of Y pull
back to classes on M , and if M is in general position, then∫

Y

(
c2(TCP 3|Y ) + (c1νY )2

)
=

∫
M

(
c2(TCP 3|M ) + Ω̃2

)
= 6d + d3 = I+ − I−,∫

Y

(
c2TY + c1νY · c1(TCP 3|Y )

)
=

∫
M

(
Ω + Ω̃ · c1(TCP 3|M )

)
= χ(M) + 4d2 = I+ + I−

by the formulas from Example 3.5. These numbers are always positive; there is
no CR generic submanifold of CP 3 isotopic to a smooth complex hypersurface.
One also expects that sufficiently nearby perturbations of Y would have only
positively oriented complex tangents (N −

2 = Ø), so I− = 0 and we recover the
formula χ(Y ) = χ(M) = d3 − 4d2 + 6d ([GH], p. 601).

In particular, consider the holomorphic embedding given in homogeneous
coordinates by c : CP 2 → CP 3 : [z0 : z1 : z2] → [z0 : z1 : z2 : 0], so the im-
age Y is a complex hyperplane with degree d = 1. CP 2 considered only as a
smooth, oriented 4-manifold (forgetting its complex structure) has χ(CP 2) =
3. An embedding of M = CP 2 as an oriented real submanifold in general po-
sition and isotopic to c has seven complex tangents, counted as an index sum
with multiplicity according to either the I+ + I− or I+ − I− sign convention.
In Section 6, we give a concrete example of such an isotopy from c to a smooth
embedding CP 2 → CP 3 in general position with exactly seven CR singular
points in N+

2 , each with index = +1: I+ = e+ = 7, h+ = I− = e− = h− = 0.

Remark 1. If ι : CP 2 → CP 3 is any immersion (or any continuous map
homotopic to an immersion), then ι is homotopic to either the embedding c
from the above example, or the composite c ◦ κ, where κ is the orientation-
preserving involution [z0 : z1 : z2] �→ [z̄0 : z̄1 : z̄2] ([Thomas], [LP]). Equiva-
lently, either ι or ι ◦ κ is homotopic to c.

3.4. Local coordinates for the Grassmannian. For 0 < m < 2n, each
element v ∈ G(m,R2n) is the image of some linear map Rm → R2n with
standard matrix representation X2n×m of rank m, and any two linear maps
with the same image are right-equivalent (X ∼ XY for invertible Ym×m).
If v0 is the m-plane {(v1, . . . , vm,0, . . . ,0)T } in R

2n, then it is the image of
X0 =

(1m×m

0

)
2n×m

, and any elements sufficiently near v0 are the image of
some linear map whose matrix representation can be column-reduced to the



962 A. COFFMAN

form

(3.3)
(

1m×m

V(2n−m)×m

)
2n×m

.

The matrices V in a neighborhood of the (2n − m) × m zero matrix form
a local coordinate chart around v0 in G(m,R2n). The inverse image of a
sufficiently small chart under F : SG(m,R2n) → G(m,R2n) gives a pair of
charts in SG(m,R2n), one around each element of F −1(v0), the m-plane with
its two possible orientations.

In the case where m is even and R
2n has coordinates (x1, y1, . . . , xn, yn)T

and a complex structure operator

J2n×2n =

⎛⎜⎜⎜⎜⎜⎝
0 −1
1 0

. . .
0 −1
1 0

⎞⎟⎟⎟⎟⎟⎠ ,

consider the m-plane

v0 = {(x1, y1, . . . , xm/2, ym/2,0, . . . ,0)T }.

Since v0 is J -invariant, v0 ∈ C. Any element v of the intersection of C with
the local coordinate chart around v0 would have matrix representation X =(1
V

)
2n×m

, such that J · X ∼ X . The equivalence

J ·
(

1
V

)
=

(
Jm×m

J(2n−m)×(2n−m) · V

)
∼

(
J

J · V

)
· (−J)m×m =

(
1

−J · V · J

)
shows v ∈ C ⇐⇒ V = −J · V · J ⇐⇒ V · J = J · V , that is, V is complex
linear with respect to Jm×m and J(2n−m)×(2n−m).

For example, in the m = 4, n = 3 case, the coordinates near v0 in the
8-dimensional space G(4,R6) are of the form V =

(
a1
b1

a2
b2

a3
b3

a4
b4

)
, and the

elements of C have coordinates V satisfying(
0 −1
1 0

)
·
(

a1 a2 a3 a4

b1 b2 b3 b4

)

=
(

a1 a2 a3 a4

b1 b2 b3 b4

)
·

⎛⎜⎜⎝
0 −1
1 0

0 −1
1 0

⎞⎟⎟⎠ .

This linear condition on a1, . . . , b4 has a 4-dimensional solution subspace

{b1 = −a2, b2 = a1, b3 = −a4, b4 = a3}.
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Now consider v0 with its orientation as a complex subspace of (R6, J), so
v0 ∈ C+ ⊆ SG(4,R6). Also, instead of 2 × 4 matrices, we put the eight coordi-
nate functions for SG(4,R6) near v0 in a column vector format, (a1, a2, a3, a4,
b1, b2, b3, b4)T . Then, in this chart around v0, C+ is the image of the linear
map R

4 → R
8 with matrix representation⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(
14×4

J4×4

)
.

Returning to the general situation of codimension 2 in C
n, the above pat-

tern still holds, so that C+ is the column space of
(1
J

)
2(2n−2)×(2n−2)

in the
coordinate chart around v0 in SG(2n − 2,R2n).

4. A reformulation of Garrity’s transversality criterion

Given a real (2n − 2)-submanifold of C
n with a CR singular point, we

now consider the problem of determining from the local defining equation
whether M is in general position, as defined in Section 3, and if so, how the
local defining equation determines the intersection index. The transversality
problem was also considered by [Garrity] for real (2n − 2)-submanifolds of C

n,
using different methods but arriving at an equivalent result. Our result (The-
orem 4.1) relates transversality to an expression in terms of the coefficient
matrix notation from Section 2.

4.1. A determinantal formula. We begin by assuming M is in standard
position, given an orientation agreeing with the orientation of its complex
tangent space at the origin. M can be described by a complex implicit equa-
tion (2.1) in a neighborhood Δ of �0:

(4.1) 0 = zn − h(z, z̄) = zn −
(
zT Qz + z̄T Rz + z̄T Sz̄ + e(z, z̄)

)
.

If we now consider two real functions, f1(x1, y1, . . . , xn−1, yn−1) = Re(h(z, z̄))
and f2(x1, . . . , yn−1) = Im(h(z, z̄)), then the real (2n − 2)-manifold M has a
local parametrization π with domain D ⊆ R

2n−2 and embedding target R
2n:

(4.2) π : (x1, . . . , yn−1)T �→ (x1, . . . , yn−1, f
1, f2)T .
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The differential of this map assigns to each point z ∈ D a linear map from
R

2n−2 to Tπ(z)M ⊆ R
2n; this linear map has matrix representation:⎛⎜⎜⎜⎜⎜⎝

1(2n−2)×(2n−2)

df1

dx1
· · · df1

dyn−1

df2

dx1
· · · df2

dyn−1

⎞⎟⎟⎟⎟⎟⎠
(2n)×(2n−2)

.

This matrix is already in the form (3.3), so in the local coordinate systems π
for M and V for SG(2n − 2,R2n), the oriented Gauss map has the form

γs : (x1, y1, . . . , xn−1, yn−1)T �→
(

df1

dx1
· · · df1

dyn−1
df2

dx1
· · · df2

dyn−1

)
2×(2n−2)

.

This map takes the CR singular point �0 ∈ M ⊆ (R2n, J) to the complex hy-
perplane v0 ∈ C+ ⊆ SG(2n − 2,R2n), with coordinates V = 02×(2n−2). If we
arrange the above two rows into column vector format (as in the end of Sec-
tion 3.4), then the differential of the Gauss map at the origin has matrix
representation:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d
dx1

( df1

dx1
) d

dy1
( df1

dx1
) . . . d

dxn−1
( df1

dx1
) d

dyn−1
( df1

dx1
)

d
dx1

( df1

dy1
) d

dy1
( df1

dy1
) . . . d

dxn−1
( df1

dy1
) d

dyn−1
( df1

dy1
)

...
...

d
dx1

( df1

dxn−1
) d

dy1
( df1

dxn−1
) . . . d

dxn−1
( df1

dxn−1
) d

dyn−1
( df1

dxn−1
)

d
dx1

( df1

dyn−1
) d

dy1
( df1

dyn−1
) . . . d

dxn−1
( df1

dyn−1
) d

dyn−1
( df1

dyn−1
)

d
dx1

( df2

dx1
) d

dy1
( df2

dx1
) . . . d

dxn−1
( df2

dx1
) d

dyn−1
( df2

dx1
)

d
dx1

( df2

dy1
) d

dy1
( df2

dy1
) . . . d

dxn−1
( df2

dy1
) d

dyn−1
( df2

dy1
)

...
...

d
dx1

( df2

dxn−1
) d

dy1
( df2

dxn−1
) . . . d

dxn−1
( df2

dxn−1
) d

dyn−1
( df2

dxn−1
)

d
dx1

( df2

dyn−1
) d

dy1
( df2

dyn−1
) . . . d

dxn−1
( df2

dyn−1
) d

dyn−1
( df2

dyn−1
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣⎛⎜⎜⎜⎜⎝
0
...
0

⎞⎟⎟⎟⎟⎠
=

(
Hf1

Hf2

)
2(2n−2)×(2n−2)

,

where Hf1 and Hf2 are the real (2n − 2) × (2n − 2) real Hessian matrices
of second derivatives, evaluated at (x1, . . . , yn−1)T = (0, . . . ,0)T . The tangent
space of the image γs(M) at γs(�0) = v0 is spanned by the columns of this ma-
trix, so in the coordinate chart around v0, it is a (2n − 2)-dimensional subspace
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that meets C+ transversely if the columns of this matrix are independent:

(4.3)
(

1 Hf1

J Hf2

)
2(2n−2)×2(2n−2)

.

So, M has a CR singularity in general position if and only if the determinant
of the above matrix is nonzero. The intersection index at the origin is related
to the sign of the determinant: ind = +1 for det > 0, ind = −1 for det < 0.

This product has the same determinant:(
1 0
1 J

)
·
(

1 Hf1

J Hf2

)
=

(
1 Hf1

0 Hf1 + J · Hf2

)
,

so calculating the determinant reduces to a smaller, (2n − 2) × (2n − 2) real
determinant, det(Hf1 + J · Hf2).

In the m = 4, n = 3 case, the 4 × 4 matrix Hf1 + J · Hf2 is:

(4.4)

⎛⎜⎜⎝
f1

x1x1
− f2

y1x1
f1

x1y1
− f2

y1y1
f1

x1x2
− f2

y1x2
f1

x1y2
− f2

y1y2

f1
y1x1

+ f2
x1x1

f1
y1y1

+ f2
x1y1

f1
y1x2

+ f2
x1x2

f1
y1y2

+ f2
x1y2

f1
x2x1

− f2
y2x1

f1
x2y1

− f2
y2y1

f1
x2x2

− f2
y2x2

f1
x2y2

− f2
y2y2

f1
y2x1

+ f2
x2x1

f1
y2y1

+ f2
x2y1

f1
y2x2

+ f2
x2x2

f1
y2y2

+ f2
x2y2

⎞⎟⎟⎠ ,

evaluated at (x1, y1, x2, y2)T = (0,0,0,0)T . These real number entries can be
expressed in terms of the derivatives at the origin of the original function
h(z, z̄):

2

⎛⎜⎜⎝
Re(hz1z̄1 + hz̄1z̄1) Im(−hz1z̄1 + hz̄1z̄1 ) Re(hz̄1z2 + hz̄1z̄2 ) Im(−hz̄1z2 + hz̄1z̄2 )

Im(hz1z̄1 + hz̄1z̄1 ) Re(hz1z̄1 − hz̄1z̄1 ) Im(hz̄1z2 + hz̄1z̄2 ) Re(hz̄1z2 − hz̄1z̄2 )

Re(hz1z̄2 + hz̄1z̄2) Im(−hz1z̄2 + hz̄1z̄2 ) Re(hz̄2z2 + hz̄2z̄2 ) Im(−hz̄2z2 + hz̄2z̄2 )

Im(hz1z̄2 + hz̄1z̄2 ) Re(hz1z̄2 − hz̄1z̄2 ) Im(hz̄2z2 + hz̄2z̄2 ) Re(hz̄2z2 − hz̄2z̄2 )

⎞⎟⎟⎠ ,

evaluated at z = (0,0)T . The (3,1) entry can be checked, for example, by the
following calculation which is similar to the derivation of all the other entries:

2Re(hz1z̄2 + hz̄1z̄2)

= 2Re
(

1
2

(
∂

∂x2
+ i

∂

∂y2

)
1
2

(
∂

∂x1
− i

∂

∂y1

)
(f1 + if2)

+
1
2

(
∂

∂x2
+ i

∂

∂y2

)
1
2

(
∂

∂x1
+ i

∂

∂y1

)
(f1 + if2)

)
=

1
2
(f1

x1x2
+ f1

y1y2
− f2

x1y2
+ f2

y1x2
+ f1

x1x2
− f1

y1y2
− f2

x1y2
− f2

y1x2
)

= f1
x1x2

− f2
x1y2

.

Note that the entries in the above matrix do not depend on the second z-
derivatives hzjzk

, which are determined by the coefficient matrix Q in (4.1).
This agrees with the notion that transversality and the index should not
depend on the local holomorphic coordinate system, since it was shown in
Section 2 how the coefficients Q could be arbitrarily altered by holomorphic
coordinate changes. However, it is not as easy to see from the form of (4.3)
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or (4.4) that they do not depend on the Q coefficients. We also see in the
above matrix that the entries depend only on the coefficients from R and S
in the expression (4.1) for h(z, z̄), and not on e(z, z̄) = O(3).

By Lemma 4.3 (the proof of which is left to Section 4.3), the determinant
of the above matrix is equal to

24 det
(

R 2S
2S R

)
.

The above calculations (including the lemma) generalize to other dimensions
n, and the index formula is even simpler with the defining equation in the
form (2.12), with (n − 1) × (n − 1) complex symmetric coefficient matrix P =
2S̄:

Theorem 4.1. Given a real (2n − 2)-submanifold M in C
n with a CR

singular point in standard position and local defining equation:

(4.5) zn = z̄T Rz + Re(zT Pz) + e(z, z̄),

then M is in general position if and only if the matrix

Γ =
(

R P
P R

)
is nonsingular. Further, if M is given an orientation agreeing with the ori-
entation of the complex (z1, . . . , zn−1)-hyperplane tangent to M at �0, then the
intersection index (±1) is the sign of the determinant det(Γ).

Example 4.2. In the n = 2 case, if M is in standard position, oriented
to agree with the orientation of the z1-axis near the origin, and has defining
equation

z2 = z1z̄1 + γ1z
2
1 + γ̄1z̄

2
1 + e(z1, z̄1) = z1z̄1 + Re(2γ1z

2
1) + e(z1, z̄1), γ1 ∈ C,

then the index is the sign of det
(

1
2γ1

2γ̄1
1

)
= 1 − 4γ1γ̄1, which is +1 for 0 ≤

|γ1| < 1
2 and −1 for |γ1| > 1

2 . M is not in general position for |γ1| = 1
2 (the

“parabolic” case).

For n in general, the real number value of det(Γ) is not an invariant un-
der holomorphic transformations, only its sign is invariant. Generalizing the
action of the group from (2.13) to n dimensions,

(4.6) (R,P ) �→ (cĀT RA, c̄AT PA),

for A = A(n−1)×(n−1), c = cn,n. The matrix Γ and its determinant transform
as:

Γ �→
(

cĀT RA c̄AT PA

c̄AT PA cĀT RA

)
(4.7)

=
(

c1 0
0 c̄1

)(
ĀT 0
0 AT

)(
R P
P R

)(
A 0
0 Ā

)
,
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det(Γ) �→ |c|2(n−1)| detA|4 det
(

R P
P R

)
.

Even if the determinant is zero, (4.7) shows that the rank of Γ is a biholo-
morphic invariant.

It also follows from the transformation formula that the vector

(| det(R)|2, | det(P )|2,det(Γ)) ∈ R
3

has an invariant direction (the expression is invariant modulo positive scalar
multiplication), and ratios such as det(Γ)

| det(R)|2 are numerical invariants (when
well-defined).

4.2. Invariants at flat points. In the holomorphically flat case (as in
Sections 2.2, 2.5), where in some local coordinates h(z, z̄) is real valued and
so M is a real (2n − 2)-hypersurface inside R2n−1 = {yn = 0}, and f2 = 0
in (4.2), the (2n − 2) × (2n − 2) matrix Hf1 +J · Hf2 (4.4) is just the Hessian
Hf1. Since Hf1 is a real symmetric matrix, it has all real eigenvalues, and
it follows from the above construction and the proof of Lemma 4.3 that Γ is
Hermitian symmetric, with real eigenvalues equal to 1

2 times the eigenvalues
of Hf1. When M is oriented as in Theorem 4.1, so the normal vector at
the origin is in the positive xn direction, the Hessian is exactly the matrix
representation of the Weingarten shape operator at the origin [Thorpe]. Its
determinant is the Gauss–Kronecker curvature (the product of the 2n − 2 real
eigenvalues, which are the principal curvatures). So, when M is a hypersurface
in R

2n−1, in general position, and positively oriented at a CR singular point,
the index and the curvature have the same sign, which is [L], Lemma 4.11.
If we consider holomorphic coordinate changes that preserve the property
that M is contained in R

2n−1 (as in Section 2.5), then the matrix A in the
transformations (4.6), (4.7) may be arbitrary, but if R �= 0, then c must be real.
The A part acts as a Hermitian congruence transformation on Γ, preserving
its rank ρ(Γ) and signature (p, q), but if c is negative, then the signature
is switched to (q, p). For R = 0, the transformation (4.7) is a Hermitian
congruence transformation of Γ for any complex c �= 0: instead of using the
matrix factorization as in (4.7), let c = ρeiθ, ρ > 0, 0 ≤ θ < 2π, in order to
choose a square root, and then use the matrix

( √
ρe−iθ/2A

0
0√

ρeiθ/2Ā

)
on the

right.
We can conclude that for M ⊆ R

2n−1, the rank ρ(Γ) and the quantity
σ(Γ) = |p − q| (from which one can recover the signature, modulo switching,
of Γ) are invariant under holomorphic transformations preserving the real
valued property of h(z, z̄). Since the action of (c,A) on Γ is not affected by the
higher degree terms, ρ(Γ) and σ(Γ) are also invariants of a defining function
h(z, z̄) in a quadratically flat normal form, under holomorphic transformations
preserving the property of being in a quadratically flat normal form.
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For Hermitian R, if we think of the quadratic part of (4.5),

z̄T Rz + Re(zT Pz),

as a real valued quadratic form on R2n−2, then its zero locus is a real alge-
braic variety. The dimension of this variety, and whether it is reducible or
irreducible, are properties that are invariant under scalar multiplication of
the form, and also under real linear coordinate changes of the domain R

2n−2.
In particular, they are also invariants under complex linear transformations
z �→ Az of Cn−1. Real valued quadratic forms on Cn−1 are considered by
[CS], where the zero set is called a “quadratic cone” if it is irreducible and
has dimension 2n − 3. The action of scalar multiplication and complex linear
transformations A on the set of equations of quadratic cones in C

n−1 is the
same as the above action (4.6) on the set of matrix pairs (R,P ) appearing in
a quadratically flat normal form.

In the n = 3 case, a list of equivalence classes of real valued quadratic
forms defining quadratic cones in C

2 is given by [CS], and each type of cone
corresponds to one of the normal forms for 2 × 2 matrix pairs (R,P ) computed
in Section 2.4.1. Our list of normal forms for pairs (R,P ), with R Hermitian,
(summarized in Examples 7.3–7.7) is longer since [CS] excludes the reducible
and lower-dimensional varieties.

4.3. Some matrix calculations. Let R =
(

α
γ

β
δ

)
and S =

(
a
c

b
d

)
be 2 × 2

matrices with arbitrary complex entries. Consider the following 4 × 4 matrices
with real entries:

R′ =

⎛⎜⎜⎝
Re(α) − Im(α) Re(β) − Im(β)
Im(α) Re(α) Im(β) Re(β)
Re(γ) − Im(γ) Re(δ) − Im(δ)
Im(γ) Re(γ) Im(δ) Re(δ)

⎞⎟⎟⎠ ,

S′ =

⎛⎜⎜⎝
Re(a) Im(a) Re(b) Im(b)
Im(a) − Re(a) Im(b) − Re(b)
Re(c) Im(c) Re(d) Im(d)
Im(c) − Re(c) Im(d) − Re(d)

⎞⎟⎟⎠ .

Lemma 4.3. det(R′ + S′)4×4 = det
(

R
S

S
R

)
4×4

.

Proof. Let

K =
√

2
2

⎛⎜⎜⎝
1 i 0 0
0 0 1 i
1 −i 0 0
0 0 1 −i

⎞⎟⎟⎠ .

Then K is a unitary matrix with det(K) = 1. A calculation shows that

KR′K̄T =
(

R 0
0 R

)
,
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KS′K̄T =
(

0 S
S 0

)
.

Since det(R′ + S′) = det(K(R′ + S′)K̄T ), the claimed formula follows. �

The lemma generalizes to complex n × n matrices and the corresponding
2n × 2n matrices following the same pattern. In the n = 1 case, the analogous
matrix K is K =

√
2

2

(
1
1

i
−i

)
, for n = 3,

K =
√

2
2

⎛⎜⎜⎜⎜⎜⎜⎝
1 i 0 0 0 0
0 0 1 i 0 0
0 0 0 0 1 i
1 −i 0 0 0 0
0 0 1 −i 0 0
0 0 0 0 1 −i

⎞⎟⎟⎟⎟⎟⎟⎠ ,

etc. Even without the result of the lemma, it is easy to see that elementary
identities imply

(
R
S

S
R

)
2n×2n

has a real determinant. In the application of the
lemma in Section 4.1, the S block is assumed to be symmetric—however, the
lemma does not need that assumption.

5. Complexification

We return to the description of M ⊆ R
2n = C

n as the image of a real
analytic parametric map, with domain D ⊂ R

2n−2 and target C
n. Rewriting

equation (4.2) in complex form gives:

z �→ (z,h(z, z̄)) = (z1, . . . , zn−1, h(z1, z̄1, . . . , zn−1, z̄n−1)).

The following complex analytic map, with domain Dc ⊆ C
2n−2 [as in (2.3)]

and target Cn, is a complexification of the above parametric map:

(z1, . . . , zn−1,w1, . . . ,wn−1) �→ (z1, . . . , zn−1, h(z1,w1, . . . , zn−1,wn−1)).

The coordinates w = (w1, . . . ,wn−1) are new complex variables; the new map
restricted to w = z̄ [by substitution in the series expansion of h(z, z̄), as
in (2.2)] is exactly the original map. A geometric interpretation of such a
complexification construction (as the composite of a holomorphic embedding
Dc → C

2n and a linear projection C
2n → C

n) is given in [C3], Section 4; the
n = 2 case is used in [MW]. The complex map is singular at the origin [its
complex Jacobian drops rank there since h(z,w) has no linear terms].

The origin-preserving local biholomorphic transformations of C
n, �̃z = C�z +

�p(�z), as in (2.9), act on the function h(z, z̄); this induces an action on the com-
plex map (z,w) �→ (z,h(z,w)). This group of transformations is a subgroup
of a larger transformation group, which acts on the set of (germs at the origin
of) maps C

2n−2 → C
n, by composition with origin-preserving biholomorphic

transformations of both the domain and the target. The algebraic interpre-
tation of the complexification construction is that the larger group allows the
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transformation of the z and w (formerly z̄) variables independently. Any in-
variants under the larger group action are also invariants under the action of
the subgroup.

In the case n = 2, the map (z1,w1) �→ (z1, h(z1,w1)) can be put into one of
three normal forms under the larger group: (z1,w

2
1 +O(3)), (z1, z1w1 +O(3)),

(z1,O(3)). As described in [C3], the first two cases correspond, respectively,
to Whitney’s fold and cusp singularities of maps C

2 → C
2. In the fold case, a

point near the origin in the target C
2 has two inverse image points.

In the case n = 3, the map Dc → C3:

(z1, z2,w1,w2) �→ (z1, z2, h(z1,w1, z2,w2))

can be transformed to (z̃1, z̃2, q̃(z̃, w̃) + O(3)), where q̃(z̃, w̃) is the quadratic
part, falling into one of the following six normal forms (the calculation is
omitted):

w̃2
1 + w̃2

2, z̃2w̃2 + w̃2
1, w̃2

1, z̃1w̃1 + z̃2w̃2, z̃1w̃1, 0.

With h(z, z̄) of the form (2.1), the rank of the coefficient matrix S is an
invariant of the complexification under the large group, and so is the rank of
(R|S)2×4. These two numbers uniquely determine the equivalence class of the
quadratic part under the larger group; the rank of R is not an invariant. The
first of the above six cases is the generic one, where ρ(S) = 2 and the inverse
image of a point near the origin in the target C

3 is a complex analytic curve
in Dc ⊆ C

4.

6. Various global examples

Here, we collect some examples of compact real 4-manifolds embedded in
complex 3-manifolds.

Example 6.1. The 4-sphere S4 has a real algebraic embedding in a real
hyperplane R

5 ⊆ C3, which is (globally) holomorphically flat. For positive
coefficients d1, d2, d3, d4, d5, the implicit equation

d1x
2
1 + d2y

2
1 + d3x

2
2 + d4y

2
2 + d5x

2
3 = 1

defines an ellipsoidal hypersurface in the real hyperplane {y3 = 0}. There
are exactly two CR singularities, where the tangent space is parallel to the
(z1, z2)-subspace. The two points are holomorphically equivalent to each
other, and the two local real defining equations can be put into a complex
normal form (2.12) with N = 1, and P real diagonal. The Hessian at each
point is definite, with the entries of P in the interval [0,1), depending on
d1, . . . ,d5. Putting an orientation on S4 induces opposite orientations at the
two points (one complex, the other anticomplex), so I+ = I− = 1, consistent
with the characteristic class formulas from Section 3.3: for any immersion of
S4 in general position in C

3, I+ + I− = χ(S4) = 2, and I+ − I− = −p1S
4 = 0.

For n ≥ 3, spheres S2n−2 in Cn are considered by [DTZ2].
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Example 6.2. Every compact, oriented, three-dimensional, smooth man-
ifold M3 admits a smooth immersion in R4, τ1 : M3 → R4 ([Hirsch], [JL]).
Not every such 3-manifold M3 admits an embedding, but the manifolds S3,
S2 × S1, and S1 × S1 × S1 all can be embedded as hypersurfaces of revolution
in R

4. There is an immersion (but not an embedding) of RP 3 in R
4 ([Hirsch],

[M]). Also consider any oriented immersion of the circle, τ2 : S1 → R
2. For

any (almost) complex structures on R4 and R2, τ1 is a CR regular immersion,
τ2 is a totally real immersion, and the product τ1 × τ2 : M3 × S1 → R

4 × R
2

is an oriented, CR regular immersion (with respect to the product complex
structure). The index sums I+ = I− = 0 are consistent with the topological
formulas from Section 3.3, since χ(M3 × S1) and p1(M3 × S1) are both zero.

Example 6.3. The 4-manifold S2 × S2 does not admit any CR regular
immersion in C3; an immersion in general position has I+ + I− = χ(S2 ×
S2) = 4 and I+ − I− = −p1(S2 × S2) = 0, so I+ = I− = 2. We consider a real
algebraic embedding in R

3 × R
3, given by a product of ellipsoids:

{ax2
1 + by2

1 + cx2
3 = 1,dx2

2 + ey2
2 + fy2

3 = 1},(6.1)

with positive coefficients a, . . . , f. There are exactly four CR singularities, at
the points with z1 = z2 = 0. Solving the real defining equations for x3 and y3,
setting z3 = x3 + iy3, and translating the CR singularities into standard posi-
tion, the local equation at each point is real analytic:

x3 + iy3 =
η1√

c

(
(−1) +

√
1 − ax2

1 − by2
1

)
+ i

η2√
f

(
(−1) +

√
1 − dx2

2 − ey2
2

)
,

z3 =
η1

2
√

c

(
a ·

(
z1 + z̄1

2

)2

+ b ·
(

z1 − z̄1

2i

)2)
+ i

η2

2
√

f

(
d ·

(
z2 + z̄2

2

)2

+ e ·
(

z2 − z̄2

2i

)2)
+ O(4),

where the four CR singular points correspond to the four sign choices η1 = ±1,
η2 = ±1. After a transformation (2.5), the equation can be written in the
form (2.12), with diagonal coefficient matrices (R,P ):

z3 = (z̄1, z̄2)

(
η1

a+b
4

√
c

0
0 iη2

d+e
4

√
f

)(
z1

z2

)

+ Re

(
(z1, z2)

(
η1

a−b
4

√
c

0
0 η2i

d−e
4

√
f

)(
z1

z2

))
+ O(4).
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The normal form for the coefficient matrix pair, from Case (1a) of Sec-
tion 2.4.1, has the same form for all four points: for η1 = η2,

(R,P ) ∼
((

1 0
0 i

)
,

(
|a−b|
a+b 0
0 |d−e|

d+e

))
,

and for η1 = −η2,

(R,P ) ∼
((

1 0
0 i

)
,

(
|d−e|
d+e 0
0 |a−b|

a+b

))
,

not depending on c, f. The nonnegative diagonal entries are local biholomor-
phic invariants. For any values of a, b, d, e, η1, η2, the matrix pair satisfies
det(Γ) > 0, so the index is +1 for each CR singular point; there are two
complex points and two anticomplex points.

We also note that this particular embedding of S2 × S2 is contained in the
(Levi nondegenerate) real hypersurface

{ax2
1 + by2

1 + cx2
3 + dx2

2 + ey2
2 + fy2

3 = 2},

an ellipsoid in C
3. So, the 4-manifold S2 × S2 admits some topological em-

bedding as a hypersurface in R
5, but the extrinsic geometry of this product

embedding (6.1) is that globally, it is not contained in a Levi flat hypersurface,
and locally, it is not quadratically flat at its CR singular points.

Example 6.4. Consider M = CP 2 with homogeneous coordinates [z0 : z1 :
z2] and A = CP 3 with coordinates [Z0 : Z1 : Z2 : Z3]. For each t ∈ R, let

ιt : CP 2 → CP 3 :(6.2)
[z0 : z1 : z2] �→ [z0 · P : z1 · P : z2 · P : t · Q],

where P is the polynomial expression

P = P (z0, z1, z2) = 6z0z̄0 + z1z̄1 + 6z2z̄2

and Q is the polynomial expression

Q = Q(z0, z1, z2) = 2z2
0 z̄1 + 2z0z1z̄2 − z0z2z̄1 + 2z1z2z̄0.

Note that for any [z0 : z1 : z2], P �= 0, and the first three components in the
RHS of (6.2) have no common zeros. The formula (6.2) also has a homogeneity
property:

ιt([λ · z0 : λ · z1 : λ · z2]) = [λ2λ̄ · z0 · P : λ2λ̄ · z1 · P : λ2λ̄ · z2 · P : λ2λ̄ · t · Q],

so ιt is well defined. Observe that for t = 0,

ι0([z0 : z1 : z2]) = [z0 · P : z1 · P : z2 · P : 0 · Q] = [z0 : z1 : z2 : 0]

is exactly the embedding c from Example 3.7. To show that for each t, ιt is
a real analytic embedding, and that the family ιt is real analytic in t (so that
this construction is an isotopy as in Example 3.7, and an “unfolding” as in
[C3]), we view ιt in local affine coordinate charts.
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The restriction of ιt to the {z0 = 1} neighborhood has image contained in
the {Z0 �= 0} neighborhood of the target CP 3, and is given by the formula:

[1 : z1 : z2] �→
[
1 : z1 : z2 :

t · Q(1, z1, z2)
P (1, z1, z2)

]
,(6.3)

(z1, z2) �→
(

z1, z2,
t · (2z̄1 + 2z1z̄2 − z2z̄1 + 2z1z2)

6 + z1z̄1 + 6z2z̄2

)
.

This is a graph over the (z1, z2)-hyperplane of a rational (in z, z̄) function
Ft(z1, z̄1, z2, z̄2) = t · Q/P with a nonvanishing denominator, so this restric-
tion of ιt is a real analytic embedding. The dependence on t is real analytic,
where ι0 is just the graph of the constant function 0. For each t �= 0, the graph
is a smooth real submanifold Mt in C

3, which is not a complex submanifold
but which inherits its orientation from the (z1, z2)-hyperplane. Its CR singu-
larities can be located by solving the system of two complex equations

(6.4)
d

dz̄1
Ft = 0,

d

dz̄2
Ft = 0.

The solution set does not depend on t (for t �= 0), and it is easy to check
that each of the following five points (ζ1, ζ2) in the domain is a zero of the
z̄-derivatives: {

(0,2),
(√

3,1
)
,
(

−
√

3,1
)
, (3i, −1), (−3i, −1)

}
.

The points (ζ1, ζ2, Ft(ζ1, ζ̄1, ζ2, ζ̄2)) are the CR singularities of Mt, each with
a positively oriented complex tangent space. Given Ft, calculations with the
assistance of [Maple] found the above five points by solving four real equations
in four real unknowns, and (omitting the details) verified that these five points
are the only solutions of (6.4) in this neighborhood.

The challenge in constructing this example by making a good choice for the
above P and Q is to find coefficients which are simple and sparse enough so
that solving the system is a tractable computation with a numerically exact
solution set, but not so simple that Mt is not in general position and has a
CR singularity with a degenerate normal form (ind �= ±1).

To calculate the index of the CR singular point at (ζ1, ζ2, Ft), we use The-
orem 4.1 and find the sign of det(Γ)—this is where we need the exact coordi-
nates of the CR singularities. By the form of (6.3), it is enough to check the
t = 1 case, since for t �= 0, Mt is related to M1 by an invertible complex linear
transformation of C

3.
Corresponding to the solution (0,2), translating the CR singular point to

the origin in C3 gives a multivariable Taylor expansion:

F1(z1, z̄1, z2 + 2, z2 + 2) =
4
15

z1 − 1
25

z1z2 − 1
25

z1z̄2 − 1
30

z2z̄1 + O(3).

The linear term can be eliminated by a complex linear transformation z̃3 =
z3 + c31z1, which does not change the quadratic or higher degree terms and
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brings M1 into standard position (2.1). The (R,S) coefficient matrix pair
satisfies S = 02×2 and det(R) �= 0, so Γ =

(
R
0

0
R̄

)
and det(Γ) = | det(R)|2 > 0.

This CR singularity has index +1.
Similarly, corresponding to the solution (

√
3,1), translating to the origin

gives the series expansion:

F1

(
z1 +

√
3, z1 +

√
3, z2 + 1, z2 + 1

)
−

√
3

3

=
1
5
z1 −

√
3

15
z2 −

√
3

75
z2
1 +

1
15

z1z2 +
2

√
3

75
z2
2

− 8
√

3
225

z1z̄1 +
4
75

z1z̄2 − 4
75

z2z̄1 − 8
√

3
75

z2z̄2 + O(3).

Again in this case, the holomorphic terms are irrelevant, S = 0, and det(R) �=
0, so the CR singularity has index +1. Each of the remaining three points,
by a similar (but omitted) calculation, also has index +1, so M1 is in general
position.

It remains to check the points “at infinity,” where z0 = 0 and ιt restricts
to a holomorphic linear embedding

[0 : z1 : z2] �→ [0 : z1 · P : z2 · P : t · 0] = [0 : z1 : z2 : 0].

This restriction is one-to-one and misses the image of Ft in the {Z0 = 1} affine
neighborhood, which shows that ιt is one-to-one for each t.

To look for more CR singularities on the line at infinity, we consider the
restriction of ιt to another affine coordinate chart. The restriction of ιt to the
{z1 = 1} neighborhood has image contained in the {Z1 �= 0} neighborhood of
the target CP 3, and is given by the formula:

[z0 : 1 : z2] �→
[
z0 : 1 : z2 :

t · Q(z0,1, z2)
P (z0,1, z2)

]
,

(z0, z2) �→
(

z0, z2,
t · (2z2

0 + 2z0z̄2 − z0z2 + 2z2z̄0)
6z0z̄0 + 1 + 6z2z̄2

)
.(6.5)

This is another graph of a rational function Gt(z0, z̄0, z2, z̄2) = t · Q/P with
a nonvanishing denominator, which is real analytic in z, z̄ and t. Since we
have already found all the CR singularities of the form ιt([1 : z1 : z2]), we can
simplify the computational problem of finding new CR singularities in the
graph of Gt by adding the equation z0 = 0 to get this system:

(6.6)
d

dz̄0
Gt = 0,

d

dz̄2
Gt = 0, z0 = 0.

The solution set does not depend on t (for t �= 0), and a calculation with
[Maple] shows that (ζ0, ζ2) = (0,0) is the only solution of (6.6). The graph
of Gt is already in standard position; at t = 1, the quadratic part of the
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defining function is the numerator from (6.5):

G1(z0, z̄0, z2, z̄2) = 2z2
0 + 2z0z̄2 − z0z2 + 2z2z̄0 + O(3).

This is a CR singularity with index +1; the graph is in general position.
There is one last point to check, ιt([0 : 0 : 1]) = [0 : 0 : 1 : 0]. The restriction

of ιt to the {z2 = 1} neighborhood is given by the formula:

[z0 : z1 : 1] �→
[
z0 : z1 : 1 :

t · Q(z0, z1,1)
P (z0, z1,1)

]
,

(z0, z1) �→
(

z0, z1,
t · (2z2

0 z̄1 + 2z0z1 − z0z̄1 + 2z1z̄0)
6z0z̄0 + z1z̄1 + 6

)
.

Since this image is also a real analytic graph, ιt is a (global) real analytic
embedding depending real analytically on t. The origin in this neighborhood is
another CR singularity of the image; the graph is already in standard position
and, for t �= 0, in general position, with a CR singular point of index +1.

The conclusion is that for t �= 0, ιt : CP 2 → CP 3 has exactly seven CR
singular points, at the image of{

[1 : 0 : 2],
[
1 : ±

√
3 : 1

]
, [1 : ± 3i : − 1], [0 : 1 : 0], [0 : 0 : 1]

}
.

Every image point is in N+
2 (positively oriented tangent space), with index

+1, consistent with the characteristic class calculations of Example 3.7.

7. Summary

Theorem 7.1. Given a real analytic 4-dimensional submanifold M in C
3,

for any CR singular point there is a local holomorphic coordinate neighborhood
so that the CR singular point is at the origin, the tangent space is the (z1, z2)-
hyperplane, and the local defining equation for M is given by

z3 = h(z, z̄)(7.1)

= (z̄1, z̄2)N
(

z1

z2

)
+ Re

(
(z1, z2)P

(
z1

z2

))
+ e(z1, z̄1, z2, z̄2),

where e(z, z̄) = O(3) is real analytic. The coefficient matrices N , P fall into
one of the cases from Table 1, and exactly one (modulo equivalences as indi-
cated).

In Table 1, the third column is the number of real moduli for each case.
The last column indicates the sign of det(Γ) that can occur for various values
of the entries of N and P : positive, negative, or zero (+, −,0).

Theorem 7.2. Given a real analytic 4-dimensional submanifold M in C3

with local defining equation (7.1) in one of the normal forms from Theo-
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Table 1. Normal forms for Theorem 7.1

N P(
1
0

0
eiθ

)
0 < θ < π

(
a
b

b
d

)
5 a > 0, d > 0, b ∼ −b ∈ C + − 0(

0
b

b
d

)
3 b ≥ 0, d ≥ 0 + − 0(

a
b

b
0

)
3 a > 0, b ≥ 0 + − 0(

1
0

0
1

) (
a
0

0
d

)
2 0 ≤ a ≤ d + − 0

(
1
0

0
−1

) (
a
0

0
d

)
2 0 ≤ a ≤ d + − 0(

0
b

b
0

)
1 b > 0 +(

1
1

1
1

)
0 +(

0
1

1
0

) (
0
b

b
1

)
1 b > 0 +0(

1
0

0
d

)
2 Im(d) > 0 +(

a
b

b
d

)
5 b > 0, |a| = 1, (a, d) ∼ (−a, −d) + − 0(

0
b

b
d

)
3 b > 0, |d| = 1, d ∼ −d + − 0(

0
τ

1
0

)
0 < τ < 1

(
0
b

b
0

)
2 b > 0 + − 0(

1
0

0
d

)
3 d ∈ C +0(

0
0

0
1

)
1 +(

0
0

0
0

)
1 +(

a
b

b
1

)
3 b > 0, a ∈ C + − 0(

1
b

b
0

)
1 b > 0 + − 0(

0
0

1
0

) (
0
b

b
0

)
1 b > 0 + − 0(

a
0

0
1

)
1 a ≥ 0 +0(

1
0

0
0

)
0 0(

0
0

0
0

)
0 0

(
0
1

1
i

) (
a
0

0
d

)
3 a > 0, d ∈ C + − 0(

0
b

b
0

)
1 b > 0 +0(

0
0

0
d

)
1 d ≥ 0 +

(
1
0

0
0

) (
a
0

0
1

)
1 a ≥ 0 + − 0(

0
1

1
0

)
0 +(

a
0

0
0

)
1 a ≥ 0 0

(
0
0

0
0

) (
1
0

0
1

)
0 +(

1
0

0
0

)
0 0(

0
0

0
0

)
0 0
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Table 2. Normal forms for Theorem 7.2, Example 7.3

P ρ(P ) ρ(N |P ) ρ(Γ) σ(Γ) sign(det(Γ))(
0
0

0
0

)
0 2 4 4 +(

0
0

0
d

)
0 < d < 1 1 2 4 4 +(

0
0

0
1

)
1 2 3 3 0(

0
0

0
d

)
1 < d 1 2 4 2 −(

a
0

0
d

)
0 < a ≤ d < 1 2 2 4 4 +(

a
0

0
1

)
0 < a < 1 2 2 3 3 0(

a
0

0
d

)
0 < a < 1 < d 2 2 4 2 −(

1
0

0
1

)
2 2 2 2 0(

1
0

0
d

)
1 < d 2 2 3 1 0(

a
0

0
d

)
1 < a ≤ d 2 2 4 0 +

rem 7.1, if the quadratic part of h(z, z̄) in (7.1) is real valued, then the co-
efficient matrices N , P fall into exactly one of the cases from the following
Examples 7.3–7.7.

The whole numbers in the middle columns are invariants of the defining
function h(z, z̄) under local biholomorphic coordinate changes that preserve
the property of being in a quadratically flat normal form.

As previously mentioned, related lists of normal forms for pairs have ap-
peared in [I], [E], and [CS].

Example 7.3. For N =
(

1
0

0
1

)
, ρ(N) = 2, σ(N) = 2 (see Table 2). The di-

agonal elements of P in the above table are the previously mentioned “gener-
alized Bishop invariants.” This is the only example where cases with σ(Γ) = 4
occur, that is, where Γ is definite, or, equivalently, where the real Hessian is
definite, as discussed in Section 4.1. These are the points called “flat elliptic”
points by [DTZ1], [DTZ2], and [Dolbeault], and they appeared in the flat em-
bedding of the ellipsoid in Example 6.1. The definiteness of Γ characterizes
this elliptic property among all the equivalence classes from Theorem 7.2 and
Examples 7.3–7.7. The first line in the above chart, where P = 0, represents
the case considered by [HY].

We also see a difference from the real surface M ⊆ C
2 case, where a com-

plex point (in N+
1 ) has the elliptic property if and only if ind = +1. That

characterization does not generalize to dimensions m = 4, n = 3; even in Ta-
ble 2, flat elliptic complex points have ind = +1, but so do some quadratically
flat, nonelliptic points.

The normal forms in Table 2 with full rank ρ(Γ) = 4 and indefinite signature
σ(Γ) = 2 or 0 represent the equivalence classes of points called “hyperbolic”
by [Dolbeault].
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Table 3. Normal forms for Theorem 7.2, Example 7.4

P ρ(P ) ρ(N |P ) ρ(Γ) σ(Γ) sign(det(Γ))(
0
0

0
0

)
0 2 4 0 +(

0
0

0
d

)
0 < d < 1 1 2 4 0 +(

0
0

0
1

)
1 2 3 1 0(

0
0

0
d

)
1 < d 1 2 4 2 −(

a
0

0
d

)
0 < a ≤ d < 1 2 2 4 0 +(

a
0

0
1

)
0 < a < 1 2 2 3 1 0(

a
0

0
d

)
0 < a < 1 < d 2 2 4 2 −(

1
0

0
1

)
2 2 2 0 0(

1
0

0
d

)
1 < d 2 2 3 1 0(

a
0

0
d

)
1 < a ≤ d 2 2 4 0 +(

1
1

1
1

)
1 2 4 0 +(

0
b

b
0

)
0 < b 2 2 4 0 +

Table 4. Normal forms for Theorem 7.2, Example 7.5

P ρ(P ) ρ(N |P ) ρ(Γ) σ(Γ) sign(det(Γ))(
0
b

b
1

)
0 < b �= 1 2 2 4 0 +(

0
1

1
1

)
2 2 3 1 0(

1
0

0
d

)
0 < Im(d) 2 2 4 0 +

Example 7.4. For N =
(

1
0

0
−1

)
, ρ(N) = 2, σ(N) = 0 (see Table 3). In

Table 3, we see that the discrete invariants in the last 5 columns are repeated
in a few cases, so they are not enough to distinguish inequivalent matrix
normal forms of different shapes (such as diagonalizable or not).

Example 7.5. For N =
(

0
1

1
0

)
, ρ(N) = 2, σ(N) = 0 (see Table 4). Some

of the rows in Table 4 have the same ρ and σ data as rows from the previous
example.

Example 7.6. For N =
(

1
0

0
0

)
, ρ(N) = 1, σ(N) = 1 (see Table 5).

Example 7.7. For N =
(

0
0

0
0

)
, ρ(N) = 0, σ(N) = 0 (see Table 6).

Acknowledgments. The author was motivated to start writing this paper
after conversations with F. Forstnerič and D. Zaitsev, during an overseas trip
funded in part by the Indiana University Office of International Programs. In
particular, Section 2.4.3 addresses a question posed by Zaitsev.



CR SINGULARITIES OF REAL FOURFOLDS IN C
3 979

Table 5. Normal forms for Theorem 7.2, Example 7.6

P ρ(P ) ρ(N |P ) ρ(Γ) σ(Γ) sign(det(Γ))(
0
0

0
1

)
1 2 4 2 −(

a
0

0
1

)
0 < a < 1 2 2 4 2 −(

1
0

0
1

)
2 2 3 1 0(

a
0

0
1

)
1 < a 2 2 4 0 +(

0
1

1
0

)
2 2 4 0 +(

0
0

0
0

)
0 1 2 2 0(

a
0

0
0

)
0 < a < 1 1 1 2 2 0(

1
0

0
0

)
1 1 1 1 0(

a
0

0
0

)
1 < a 1 1 2 0 0

Table 6. Normal forms for Theorem 7.2, Example 7.7

P ρ(P ) ρ(N |P ) ρ(Γ) σ(Γ) sign(det(Γ))(
1
0

0
1

)
2 2 4 0 +(

1
0

0
0

)
1 1 2 0 0(

0
0

0
0

)
0 0 0 0 0
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