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THE RESIDUALS OF LEX PLUS POWERS IDEALS AND THE
EISENBUD–GREEN–HARRIS CONJECTURE

BENJAMIN P. RICHERT AND SINDI SABOURIN

Abstract. The n-type vectors introduced by Geramita, Harima,
and Shin are in 1–1 correspondence with the Hilbert functions of

Artinian lex ideals. Letting A = {a1, . . . , an } define the degrees

of a regular sequence, we construct lpp≤(A)-vectors which are in

1–1 correspondence with the Hilbert functions of certain lex plus

powers ideals (depending on A). This construction enables us to

show that the residual of a lex plus powers ideal in an appropriate

regular sequence is again a lex plus powers ideal. We then use

this result to show that the Eisenbud–Green–Harris conjecture is

equivalent to showing that lex plus powers ideals have the largest

last graded Betti numbers (it is well known that the Eisenbud–
Green–Harris conjecture is equivalent to showing that lex plus
powers ideals have the largest first graded Betti numbers).

1. Introduction

Hilbert functions, in general, have been extensively studied. Let R =
k[x1, . . . , xn], where each xi has degree 1. Then Macaulay [11] character-
ized those sequences (called O-sequences) which occur as the Hilbert func-
tion of any k-algebra of the form R/I , where I is a homogeneous ideal. He
showed that a sequence S = {ci}i≥0 is such a Hilbert function if and only if
ci+1 ≤ c

〈i〉
i , where −〈i〉, known as Macaulay’s function, is expressed in terms

of the i-binomial expansion of an integer. In proving his result, Macaulay
shows that lex ideals have the largest first graded Betti numbers among all
ideals having a fixed Hilbert function. Bigatti [1] and Hulett [10] have inde-
pendently generalized this by showing that, over fields of characteristic 0, lex
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ideals have the largest graded Betti numbers (not just the largest first graded
Betti numbers) among all ideals having a fixed Hilbert function. Pardue [13]
generalized this to fields of arbitrary characteristic.

At about the same time that Bigatti and Hulett proved their result, Eisen-
bud, Green, and Harris together conjectured that a generalization in a dif-
ferent direction of Macaulay’s result should be true. Instead of restricting
their attention to lex ideals, they look at ideals which, modulo appropriate
powers of the variables, are lex ideals. These ideals have become known as lex
plus powers ideals; letting A = {a1, . . . , an} be a list of positive integers with
a1 ≤ · · · ≤ an, an ideal L containing xa1

1 , . . . , xan
n as minimal generators is an

A-lex plus powers ideal if L is a lex ideal in R/〈xa1
1 , . . . , xan

n 〉. The conjecture
states that as long as there is an A-lex plus powers ideal attaining the Hilbert
function H , then among all ideals with Hilbert function H that also contain
a regular sequence of elements of degrees a1, a2, . . . , an, the A-lex plus powers
ideal has the largest first graded Betti numbers.

In light of both Bigatti and Hulett’s result, and Eisenbud, Green, and
Harris’s conjecture, the following very natural conjecture was made by Char-
alambous and Evans: as long as there is an A-lex plus powers ideal attaining
the Hilbert function H , then among all ideals with Hilbert function H that
also contain a regular sequence of elements of degrees a1, a2, . . . , an, the A-lex
plus powers ideal has the largest graded Betti numbers (not just the largest
first graded Betti numbers).

As a result of Bigatti and Hulett’s results, there has been much interest
in studying lex ideals. One direction of study has led to the introduction of
n-type vectors by Geramita, Harima, and Shin. These n-type vectors are in
1–1 correspondence with Artinian lex ideals. Since all lex plus powers ideals
are by definition Artinian, it makes sense to look for an analogue to n-type
vectors for lex plus powers ideals. We do this in Section 4. This enables us to
prove our main result quite easily: that the residual of an A-lex plus powers
ideal in 〈xa1

1 , . . . , xan
n 〉 is again a lex plus powers ideal. As a consequence of

this, we show in Section 6 that the statement that lex plus powers ideals have
largest first graded Betti numbers is equivalent to the statement that lex plus
powers ideals have largest last graded Betti numbers (previously, it was shown
in [14] that lex plus powers ideals having largest first graded Betti numbers
implies having the largest last graded Betti numbers; we show the converse).

2. Background

Let R = k[x1, . . . , xn] be the polynomial ring in n variables over a field
k with maximal ideal m = (x1, . . . , xn), and fix an order on the monomials,
x1 > · · · > xn. The following definition gives a notation for referring to the
degrees of the elements of a regular sequence.
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Definition 2.1. Let {a1, . . . , an} be a set of integers such that 1 ≤ a1 ≤
· · · ≤ an. Then we call {f1, . . . , fn} an {a1, . . . , an}-regular sequence if {f1, . . . ,
fn} is a regular sequence such that deg(fi) = ai for i = 1, . . . , n.

Recall that the Hilbert function H(R/I) of an ideal I is the sequence
{dimk(R/I)d}d≥0. We denote dimk(R/I)d by H(R/I, d). Then given a
Hilbert function H, and a list of degrees {a1, . . . , an}, we can compare homo-
geneous ideals attaining H and containing an {a1, . . . , an}-regular sequence.
In this comparison, we will use as a fixed point a special ideal called an
{a1, . . . , an}-lex plus powers ideal.

Definition 2.2 (Charalambous and Evans). Suppose that A = {a1, . . . , an}
is a non-decreasing list of integers, a1 ≥ 1. Then a monomial ideal L is a lex
plus powers ideal with respect to A, also called an A-lex plus powers ideal, if
L is minimally generated by monomials xa1

1 , . . . , xan
n , m1, . . . ,ml such that for

each j = 1, . . . , l, all monomials of degree deg(mj) which are larger than mj

in lex order are contained in L. We will abbreviate the terminology “lex plus
powers with respect to A” by saying that L is LPP (A).

It is not difficult to construct (degenerative) examples of a Hilbert function
H, and a list of degrees A = {a1, . . . , an} for which no A-lex plus powers ideal
L exists with H(R/L) = H (see [14]). Thus, we require the following technical
definition.

Definition 2.3. Suppose that H is a Hilbert function and A = {a1, . . . , an}
is a nondecreasing list of integers, a1 ≥ 1. We call H an A-lpp valid Hilbert
function if there exists an LPP (A) ideal L such that H(R/L) = H. Note that
if an LPP (A) ideal L attaining a given Hilbert function H exists, then it is
clearly unique. We will sometimes refer to this ideal as LH,A.

Lex plus powers ideals are important because they are conjectured by Char-
alambous and Evans [2] to have extremal properties. In order to understand
in what sense lex plus powers ideals should be extremal, we need to intro-
duce some terminology. Recall that the i, jth graded Betti number of R/I is
defined to be βI

i,j := (Tori(R/I, k))j ; by the usual abuse of notation, we also
call this the i, jth graded Betti number of I . We will refer to the set of all
graded Betti numbers of an ideal I as βI . It is also convenient to make use
of the notation of the computer algebra system Macaulay 2 [8], so we often
refer to βI as the Betti diagram of I (the Betti diagram of I is a table listing
the graded Betti numbers of I—counting from zero, the entry in the i, jth
position in this table is βI

i,i+j).

Definition 2.4. Write L P H
A

to be the set of all sets of graded Betti num-
bers of all ideals I ⊂ R containing an A-regular sequence and attaining H.
Equivalently, this is the set of all Betti diagrams of such ideals.
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There is an obvious partial order on L P H
A

: for βI , βJ ∈ L P H
A

, we say that
βI ≥ βJ if βI

i,j ≥ βJ
i,j for all i, j. With this we can describe the conjectured

extremality of lex plus powers ideals.

Conjecture 2.5 (The lex plus powers conjecture). If H is A-lpp valid,
then writing LH,A to be the A-lex plus powers ideal attaining H, βLH,A is the
unique largest element in L P H

A
.

There is a (on the face of it) weaker version of this conjecture due to
Eisenbud, Green, and Harris, which claims that lex plus powers ideals should
be capable of largest Hilbert function growth.

Conjecture 2.6 (The Eisenbud–Green–Harris conjecture). Let I ⊂ R con-
tain an A-regular sequence, and suppose there exists an LPP (A) ideal L such
that H(R/I, d) = H(R/L,d). Then

H(R/〈Ld〉, d + 1) ≥ H(R/I, d + 1),

where 〈Ld〉 is the ideal generated by the pure powers xa1
1 , . . . , xan

n and the forms
in L of degree d.

That the lex plus powers conjecture (LPP) implies the Eisenbud–Green–
Harris conjecture (EGH) is made clear by an equivalent formulation of the
latter found in [14].

Conjecture 2.7. Given an A-lpp valid Hilbert function H, then β
LH,A

1,i ≥
βI

1,i for all i whenever I ⊂ R attains H and contains an A-regular sequence.

It is an open question whether EGH implies LPP. Some progress was made
on this question in [14] with the following theorem.

Theorem 2.8. Let L be LPP (A) for some A = {a1, . . . , an} and I be an
ideal containing an A-regular sequence such that H(R/L) = H(R/I). If EGH
holds, then dimk(soc(L)d) ≥ dimk(soc(I)d) for all d.

That is, if the β
LH,A

1,j are uniquely largest, then so are the β
LH,A

n,j . It was
not decided in that paper whether the converse was true. We will show in
this paper that the converse does hold. That is, we prove that the following
conjecture and EGH are equivalent.

Conjecture 2.9. Let L be LPP (A) for some A = {a1, . . . , an} and I be
an ideal containing an A-regular sequence such that H(R/L) = H(R/I). Then
βL

n,j ≥ βI
n,j , that is, dimk(soc(L)d) ≥ dimk(soc(I)d) for all d.

This result will be a natural application of our main result, where we show
that the residual of an LPP (A)-ideal in 〈xb1

1 , . . . , xbn
n 〉 where ai ≤ bi for all i

is again a lex plus powers ideal.
We recall here one further theorem, a result of Stanley.
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Theorem 2.10 (Stanley). For every R-module M ,
∞∑

d=0

H(M,d)td =

∑∞
d=0

∑n
i=0(−1)iβM

i,dt
d

(1 − t)n
.

This theorem simply states that fixing a Hilbert function fixes the alternat-
ing sum of the graded Betti numbers of any ideal attaining it. In particular,
if I and J have H(R/I) = H(R/J), then

∑n
i=0(−1)iβI

i,j =
∑n

i=0(−1)iβJ
i,j for

all j. This implies that for ρ the regularity of H(R/I), βI
n,ρ+n = βJ

n,ρ+n and
βI

n−1,ρ+n−1 − βI
n,ρ+n−1 = βJ

n−1,ρ+n−1 − βJ
n,ρ+n−1. These last two facts will

prove useful in Section 6.

3. The Hilbert function of lex plus powers ideals

In this section, we state a characterization of the Hilbert functions which
can occur for {a1, . . . , an}-lex plus powers ideals. This characterization follows
from the work of Clements and Lindström and will be useful in the next section
when we find an alternative to the Hilbert functions of lex plus powers ideals
similar to the n-type vectors found by Geramita, Harima, and Shin in [7] for
Hilbert functions of lex ideals. For more details then provided here, on the
relationship between the work of Clements and Lindström and Macaulay’s
O-sequences, see [3].

Definition 3.1. Let A = {a1, . . . , an}. Then a lex plus powers ideal L is
said to be lex plus powers with respect to ≤ A, or lpp≤(A), if L � R contains
the A-regular sequence {xa1

1 , . . . , xan
n }. Note that a B = {b1, . . . , bn}-lex plus

powers ideal is lpp≤(A) if and only if B ≤ A, that is, if bi ≤ ai for all i =
1, . . . , n.

Although Clements and Lindström used different terminology, the following
special case of the EGH conjecture can be found in their paper [3].

Theorem 3.2. Let A = {a1, . . . , an}, L be LPP (A), and I be any mono-
mial ideal in R = k[x1, . . . , xn] containing xa1

1 , . . . , xan
n such that H(R/I, d) =

H(R/L,d). Then H(R/I, d + 1) ≤ H(R/〈Ld〉, d + 1).

Since any lpp≤(A)-ideal is a monomial ideal containing xa1
1 , . . . , xan

n , we
obtain the following corollary.

Corollary 3.3. Let A = {a1, . . . , an}, L be LPP (A), and I be an lpp≤(A)
ideal such that H(R/L,d) = H(R/I, d). Then

H(R/I, d + 1) ≤ H(R/〈Ld〉, d + 1).

Keeping in the Macaulayesque mindset, we introduce the following nota-
tion.
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Definition 3.4. Let A = {a1, . . . , an}. Let L be an LPP (A)-ideal satisfy-
ing H(R/L,d) = h. Then define h〈d〉

A := H(R/〈Ld〉, d + 1). Furthermore, let
S = {ci}i≥0 be a sequence satisfying c0 = 1 and ci+1 ≤ c

〈i〉
A

i for all i. Then S
is said to be an lpp≤(A)-sequence.

Remark 3.5. In the notation of Definition 3.4, Corollary 3.3 says that H
is the Hilbert function of an lpp≤(A)-ideal if and only if H is an lpp≤(A)-
sequence. Note that, to determine the Hilbert functions of LPP (A)-ideals,
we cannot simply eliminate the sequences that are lpp≤(B)-sequences for B ≤
A, but B �= A from the set of lpp≤(A)-sequences. This is because of the
possibility of overlap. For example, I = 〈x2, y3, z4, xy2, xyz,xz2, y2z2〉 and
J = 〈x2, y3, z3, xy2, xyz〉 are, respectively LPP ({2,3,4}) and LPP ({2,3,3})-
ideals, both having Hilbert function H = 1 3 5 3 1 0 →.

Greene and Kleitman [3] found a Macaulayesque way of describing h〈i〉A ,
which we wish to consider in some detail, since we will be using their notation
in later parts of this paper. Before doing so, we recall Macaulay’s methods.

Let d,h ∈ N be given. Then it is well known that there are unique integers
k(d) > k(d − 1) > · · · > k(1) ≥ 0 such that h =

(
k(d)

d

)
+

(
k(d−1)

d−1

)
+ · · · +

(
k(1)
1

)
.

Macaulay’s theorem states that if h is the value of the Hilbert function of
a graded module in degree d, then H(M,d + 1) ≤

(
k(d)+1

d+1

)
+

(
k(d−1)+1

d−1+1

)
+

· · · +
(
k(1)+1
1+1

)
, and this bound is sharp. The process of obtaining the k(i)

and computing the bound can be beautifully visualized by writing Pascal’s
triangle as a rectangle:

0 1 2 3 4 5

1 1 1 1 1 1 . . .
1 2 3 4 5 6
1 3 6 10 15 21
1 4 10 20 35 56
1 5 15 35 70 126
1 6 21 56 126 252
...

. . .

Example 3.6. Suppose that M is a graded module such that H(M,3) = 32.
Then to obtain an upper bound for H(M,4), one must first find the k(i) which
uniquely describe 32 in degree 3. First, look at the column numbered 3, and
pick the largest number that is at most 32, namely 20. This is 3 rows down
from the top, so we take k(3) = 3+3 = 6. Then look at the column numbered
2 and pick the largest number that is at most 32 − 20 = 12, namely 10. This
is again 3 rows down, so we take k(2) = 2 + 3 = 5. Finally, pick the 2 from
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the column numbered 1, which is 1 row down, so we take k(1) = 1 + 1 = 2.

0 1 2 3 4 5

1 1 1 1 1 1 . . .
1 2 3 4 5 6
1 3 6 10 15 21
1 4 10 20 35 56
1 5 15 35 70 126
1 6 21 56 126 252
...

. . .

Recalling that the number in the ith row and jth column of Pascal’s triangle
is

(
i+j−1

j

)
, it is evident that we have just found 32 =

(
6
3

)
+

(
5
2

)
+

(
2
1

)
(note that(

6
3

)
= 20,

(
5
2

)
= 10, and

(
2
1

)
= 2). Then to compute the bound for H(M,4),

we need
(
6+1
3+1

)
+

(
5+1
2+1

)
+

(
2+1
1+1

)
, and this is obtained by taking the number one

column to the right of each of the boxed integers in the rectangular version
of Pascal’s triangle:

0 1 2 3 4 5

1 1 1 1 1 1 . . .
1 2 → 3 4 5 6
1 3 6 10 15 21
1 4 10 → 20 → 35 56
1 5 15 35 70 126
1 6 21 56 126 252
...

. . .

The result is H(M,4) ≤ 35 + 20 + 3 = 58.

Remark 3.7. There is a precise relationship between monomials of degree i
and i-binomial expansions. Namely, if h =

(
mi

i

)
+

(
mi−1
i−1

)
+ · · · +

(
mj

j

)
, then h is

the codimension of a lex-segment in the vector space of polynomials of degree
i in n = mi − i + 2 variables. Letting m be the smallest monomial of degree
i in this lex-segment, we associate h to m. Namely, let αr = #{t|mt − t =
n − 1 − r} for 1 ≤ r ≤ n − 1. Then the lex segment ending in the monomial
m = xα1

1 xα2
2 · · · xαn−1

n−1 x
i−(α1+···+αn−1)
n has codimension h in the vector space

of degree i polynomials in k[x1, . . . , xn]. (See [15] for details.)
Since α1 +α2 + · · · +αn−1 is the number of terms in the i-binomial expan-

sion of h, we see that i − (α1 + α2 + · · · + αn−1) = j − 1, so we can rewrite m
as xα1

1 xα2
2 · · · xαn−1

n−1 xj−1
n . In fact, this correspondence could have been used to
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define i-binomial expansions in the first place, and is the reason why they are
so valuable in the study of Hilbert functions.

We now wish to state the growth bound for lpp≤(A) ideals in terms of
the notation used by Greene and Kleitman in [9]. Let d1 ≤ d2 ≤ · · · ≤ dk and
put e1 := dk − 1, e2 := dk−1 − 1, . . . , ek := d1 − 1. Then they used the notation(
e1,...,ek

i

)
to be ΔH(R/I, i), where Δ represents the first difference function

and I ⊂ k[x0, . . . , xn] is the ideal of a complete intersection of type (d1, . . . , dk).
Note that

(
e1
i

)
is not the usual binomial coefficient;

(
e1
i

)
is 1 if 0 ≤ i ≤ e1 and

is 0 if i > e1. This will allow us to state the EGH conjecture using their
Macaulayesque form, but first, we need a result stated in [9].

Definition/Proposition 3.8. Let A = {a1, . . . , an} and d be given and
let 0 < h ≤ H(R/(xa1

1 , . . . , xan
n ), d). Let a′

i = ai − 1. Then h can be written
uniquely in the form

h =
(

a′
n, a′

n−1, . . . , a
′
n−(k(d)−d)

d

)
+

(
a′

n, a′
n−1, . . . , a

′
n−(k(d−1)−(d−1))

d − 1

)

+ · · · +
(

a′
n, a′

n−1, . . . , a
′
n−(k(j)−j)

j

)
,

where k(d) > k(d − 1) > · · · > k(j) ≥ j ≥ 1 and #{t|k(t) − t = i} < an−i−1 and
the last term is non-zero.

We refer to this expression as the dA-Macaulay expansion for k. Further-
more,

h〈d〉A :=
(

a′
n, a′

n−1, . . . , a
′
n−(k(d)−d)

d + 1

)
+

(
a′

n, a′
n−1, . . . , a

′
n−(k(d−1)−(d−1))

d

)

+ · · · +
(

a′
n, a′

n−1, . . . , a
′
n−(k(j)−j)

j + 1

)
.

One way to look at this proposition, is through the correspondence between
monomials m and the codimension of the lex-segments ending in monomial
m. Given a monomial m = xα1

1 · · · xαn
n , write the expansion for which αi =

#{t|k(t) − t = n − 1 − i} for 1 ≤ i ≤ n − 1, and then remove any zero terms at
the end.
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Example 3.9. Let R = k[x1, x2, x3] and A = {3,4,6}. The monomials of
degree 7 in k[x1, x2, x3]/〈x3

1, x
4
2, x

6
3〉 with their codimensions are listed below:

x2
1x

3
2x

2
3

(
5,3
7

)
+

(
5,3
6

)
+

(
5
5

)
+

(
5
4

)
+

(
5
3

)
= 8,

x2
1x

2
2x

3
3

(
5,3
7

)
+

(
5,3
6

)
+

(
5
5

)
+

(
5
4

)
= 7,

x2
1x2x

4
3

(
5,3
7

)
+

(
5,3
6

)
+

(
5
5

)
= 6,

x2
1x

5
3

(
5,3
7

)
+

(
5,3
6

)
= 5,

x1x
3
2x

3
3

(
5,3
7

)
+

(
5
6

)
+

(
5
5

)
+

(
5
4

)
= 4,

x1x
2
2x

4
3

(
5,3
7

)
+

(
5
6

)
+

(
5
5

)
= 3,

x1x2x
5
3

(
5,3
7

)
+

(
5
6

)
= 2,

x3
2x

4
3

(
5
7

)
+

(
5
6

)
+

(
5
5

)
= 1,

x2
2x

5
3

(
5
7

)
+

(
5
6

)
= 0.

Conjecture 3.10. (Restatement of the EGH Conjecture): Let I ⊂ R con-
tain an A-regular sequence and suppose there exists an LPP (A)-ideal L, such
that H(R/I, d) = H(R/L,d). Then H(R/I, d + 1) ≤ H(R/I, d)〈d〉A .

Example 3.11. Suppose for instance that R = k[x1, x2, x3], A = {3,4,6},
and L is lpp≤(A) with H(R/L,4) = 9. Then we consider the following rec-
tangle

0 1 2 3 4 5 6 7 8 9 10 11 . . .

(1,1,6) : 1 1 1 1 1 1 0 →
(1,4,6) : 1 2 3 4 4 4 3 2 1 0 →
(3,4,6) : 1 3 6 9 11 12 11 9 6 3 1 0 →,

where we have written (a1, a2, a3) beside the row that consists of ΔH(R/I)
for I a complete intersection of type (a1, a2, a3). The top row is thus

(
5
i

)
for

i ≥ 0, the second row is
(
5,3
i

)
for i ≥ 0, and the third row is

(
5,3,2

i

)
for i ≥ 0.

The largest number in the column numbered 4 which is at most 9 is 4. In
the column numbered 3, we take the largest number that is at most 9 − 4 = 5,
which is 4. Finally, in the column numbered 2, we take 1. This expresses 9
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as a 4A-Macaulay expansion:

0 1 2 3 4 5 6 7 8 9 10 11 . . .

(1,1,6) : 1 1 1 1 1 1 0 →
(1,4,6) : 1 2 3 4 4 4 3 2 1 0 →
(3,4,6) : 1 3 6 9 11 12 11 9 6 3 1 0 → .

Note that the number to the right of
(
e1,...,ek

i

)
is just

(
e1,...,ek

i+1

)
. Thus, to

calculate 9〈4〉A , the bound for H(R/L,5), we again sum the numbers to the
right of our boxed integers.

0 1 2 3 4 5 6 7 8 9 10 11 . . .

(1,1,6) : 1 1 1 → 1 1 1 0 →
(1,4,6) : 1 2 3 4 → 4 → 4 3 2 1 0 →
(3,4,6) : 1 3 6 9 11 12 11 9 6 3 1 0 → .

Thus, we find that H(R/L,5) ≤ 4 + 4 + 1 = 9.

Example 3.12. Suppose that L is an A = {3,4,6} lex plus powers ideal
and H(R/L,6) = 6. The monomials of degree 6 not in L are

xy2z3, xyz4, xz5, y3z3, y2z4, and yz5

and so in degree 7, at most the following monomials are not in L:

xy2z4, xyz5, y3z4, and y2z5.

Then the diagram looks like

0 1 2 3 4 5 6 7 8 9 10 11 . . .

(1,1,6) : 1 1 1 1 → 1 → 1 → 0 →
(1,4,6) : 1 2 3 4 4 4 3 → 2 1 0 →
(3,4,6) : 1 3 6 9 11 12 11 9 6 3 1 0 →

so that as expected H(R/L,7) ≤ 2 + 0 + 1 + 1 = 4.

4. An analogue to n-type vectors for lex plus powers ideals

We wish to define a vector that will correspond in a natural way to lex plus
powers ideals. This will be an analogue to the n-type vectors that correspond
to lex ideals. Let a ≤ b. Then any LPP (a, b)-ideal is of the form

L = 〈xa, xa−1yd1 , xa−2yd2 , . . . , xa−syds , yb〉,
where d1 < d2 < · · · < ds < b. We associate to L the n-type vector T =
(d1, d2, . . . , ds, b, . . . , b) where there are a − s b’s and a ≤ b. The condition
that a ≤ b is crucial, for otherwise the ideal, would not be lex plus powers.
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Example 4.1. If we put T = (2,4,5,5,5,5), the associated ideal would
be I = 〈x6, x5y2, x4y4, y5〉. Since this violates the condition that the powers
of the variables be in nondecreasing order, the ideal is not LPP (5,6). The
LPP (5,6)-ideal with the same Hilbert function as I is J = 〈x5, x4y3, x3y5, y6〉
and this corresponds to the vector (3,5,6,6,6). They both have the same
graded Betti numbers, but for uniqueness purposes, we choose J as the
LPP (5,6)-ideal.

Remark 4.2. In three variables, it is easy to construct ([16, Remark 4.3])
many ideals which satisfy all the requirements of lex plus powers ideals except
the condition that the powers of the variables are in nondecreasing order, and
do not actually have the same graded Betti numbers as the lex plus powers
ideal.

Definition 4.3. Let A = {a1, . . . , an}.
If n = 1 and T = (d) for some 0 < d ≤ a1, we say that T is an lpp≤(A)-

vector. We say that T = Tc.i.(A) if T = (a1). We put l(T ) = σ(T ) = αA(T ) = d
unless T = Tc.i.(A), in which case we put l(T ) = σ(T ) = a1 and αA(T ) = ∞.

If n > 1, then T = (T1, . . . , Tu) is an lpp≤(A)-vector if the following con-
ditions all hold: u ≤ a1, u ≤ l(Tu), each Ti is an lpp≤(A2)-vector for A2 =
{a2, . . . , an} (in particular, l(Tu) ≤ a2), and σ(Ti) < αA2(Ti+1) for 1 ≤ i ≤
u − 1.

We define l(T ) = u to be the length of T , and σ(T ) and αA(T ) as follows:

σ(T ) =

{
σ(Tu) if Tu �= Tc.i.(A2),

σ(Tu) + s − 1 if Tu = Tc.i.(A2),
where s = #i s.t. Ti = Tu,

αA(T ) =

{
l(T ) if l(T ) < a1,

l(T ) + αA2(T1) − 1 if l(T ) = a1.

Finally, we say that T = Tc.i.(A) if l(T ) = a1 and Ti = Tc.i.(A2) for each i.

Remark 4.4. αA(T ) < ∞ unless T = Tc.i.(A). Furthermore, αA(T ) ≤ σ(T )
unless T = Tc.i.(A).

Notation. For convenience, we will denote the vector ((d1), . . . , (dm))
by (d1, . . . , dm). Thus, for example, the vector ((1), (3), (4)) will be writ-
ten as (1,3,4), and the vector (((1), (2)), ((1), (3), (4))) will be written as
((1,2), (1,3,4)). This does however create some ambiguity since (d1) could
denote either the vector ((d1)) or the vector (d1). If there is ever the possi-
bility of any confusion, we will be explicit.

Example 4.5. Let

T = (T1, T2, T3, T4, T5) = ((1,2), (1,3,4), (2,3,6,6), (5,6,6,6), (6,6,6,6)),

where each Ti is an lpp≤(4,6)-vector. Then both the vectors (T1, T2, T3, T4)
and (T2, T3, T4, T5) are lpp≤(A)-vectors where A = {4,4,6} since σ(T1) = 2 <
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αA2(T2) = 3, σ(T2) = 4 < αA2(T3) = 4 + 2 − 1 = 5, σ(T3) = 6 + 2 − 1 = 7 <
αA2(T4) = 4+5 − 1 = 8 and σ(T4) = 6+3 − 1 = 8 < αA2(T5) = ∞. However, T
is not an lpp≤(A)-vector for any A = {a1, a2, a3}, for suppose it were. Then
a1 ≥ l(T ) = 5. Since A = {a1, a2, a3} must satisfy a1 ≤ a2 ≤ a3, we also have
a2 ≥ 5, while the repeating 6’s in T4 force a3 = 6. Then αA2(T5) = 4 and
σ(T4) = 8, contradicting that σ(T4) < αA2(T5). Notice also that T3, T4 and T5

are all lpp≤(5,6)-vectors, but are not lpp≤(4,7)-vectors.

To an lpp≤(A)-vector T , it is natural to associate an ideal WT as follows:

Definition 4.6. If n = 1 (so that A = {a1}) and T is an lpp≤(A)-vector,
say T = (d) with d ≤ a1, then define WT := 〈xd

1 〉 in k[x1].
If n > 1 and T is an lpp≤(A)-vector, say T = (T1, . . . , Tu) with u ≤ a1, then

define
WT := 〈xu

1 , xu−1
1 WT1 , . . . , x1WTu−1 ,WTu 〉,

where WTi is the image in k[x2, . . . , xn] under the isomorphism induced by
xi → xi+1 of the ideal WTi ⊂ k[x1, . . . , xn−1] obtained by induction.

Example 4.7. We compute WT for the lpp≤({4,6,6})-vector

T = (T1, T2, T3, T4) = ((1,2), (1,3,4), (2,3,6,6), (5,6,6,6)).

First, we have

WT1 = 〈x2
1, x1W(1),W(2)〉 = 〈x2

1, x1x2, x
2
2〉,

WT2 = 〈x3
1, x

2
1W(1), x1W(3),W(4)〉 = 〈x3

1, x
2
1x2, x1x

3
2, x

4
2〉,

WT3 = 〈x4
1, x

3
1W(2), x

2
1W(3), x1W(6),W(6)〉 = 〈x4

1, x
3
1x

2
2, x

2
1x

3
2, x1x

6
2, x

6
2〉,

WT4 = 〈x4
1, x

3
1W(5), x

2
1W(6), x1W(6),W(6)〉 = 〈x4

1, x
3
1x

5
2, x

2
1x

6
2, x1x

6
2, x

6
2〉,

so

WT = 〈x4
1, x

3
1WT1 , x

2
1WT2 , x1WT3 ,WT4 〉

= 〈x4
1, x3

1〈x2
2, x2x3, x

2
3〉, x2

1〈x3
2, x

2
2x3, x2x

3
3, x

4
3〉,

x1〈x4
2, x

3
2x

2
3, x

2
2x

3
3, x2x

6
3, x

6
3〉, x4

2, x
3
2x

5
3, x

2
2x

6
3, x2x

6
3, x

6
3〉

= 〈x4
1, x

3
1x

2
2, x

3
1x2x3, x

3
1x

2
3, x

2
1x

3
2, x

2
1x

2
2x3

x2
1x2x

3
3, x

2
1x

4
3, x1x

3
2x

2
3, x1x

2
2x

3
3, x

4
2, x

3
2x

5
3, x

6
3〉.

Remark 4.8. If T = Tc.i.(A), then WT = 〈xa1
1 , . . . , xan

n 〉. To see this, note
that if n = 1 and T = (a1), then WT = 〈xa1

1 〉 and by induction, if T =
(Tc.i.(A2), . . . , Tc.i.(A2)) with l(T ) = a1, then

WT = 〈xa1
1 ,WTc.i.(A2) 〉 = 〈xa1

1 , . . . , xan
n 〉,

as required.
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Before showing that WT is an lpp≤(A)-ideal if T is an lpp≤(A)-vector,
we first show that α(T ) is the smallest degree of any element of WT not
in 〈xa1

1 , . . . , xan
n 〉 and that σ(T ) − 1 is the largest degree of any element of

k[x1, . . . , xn] not in WT . In fact, we give names to these parameters for any
ideal containing 〈xa1

1 , . . . , xan
n 〉.

Definition 4.9. Let I be any ideal of k[x1, . . . , xn] containing 〈xa1
1 , . . . ,

xan
n 〉. Then put

αA(I) = min{i|f ∈ I \ 〈xa1
1 , . . . , xan

n 〉,degf = i} and
σ(I) = min{i|Ii = k[x1, . . . , xn]i}.

We use αA instead of α to distinguish it from the usual α, which is just
α(I) = min{i|f ∈ I,degf = i}. σ(I) is defined as usual.

Lemma 4.10. Let T be an lpp≤(A)-vector. Then αA(WT ) = αA(T ).

Proof. The result is clear for n = 1, so assume that n > 1. Furthermore,
the result is clear if T = Tc.i.(A), so we assume this is not the case.

Let T = (T1, . . . , Tu, Tu, . . . , Tu), where l(T ) = u+ v, so there are v +1 Tu’s.
Then

WT = 〈xu+v
1 , xu+v−1

1 WT1 , . . . , x
v+1
1 WTu−1 ,WTu 〉.

There are four cases to consider, determined by whether or not Tu = Tc.i.(A)

and whether or not u + v = a1. Each proof is similar, so we include only the
case for which Tu = Tc.i.(A) and u + v = a1 as a representative.

We know by the induction hypothesis that the smallest degree of any el-
ement of WTi not in 〈xa2

2 , . . . , xan
n 〉 is αA2(Ti). Now, WTu = 〈xa2

2 , . . . , xan
n 〉,

so we can ignore it. Now for i < u, we have αA2(Ti) ≤ σ(Ti) < αA2(Ti+1),
so αA(WT ) = u + v − 1 + αA2(T1) = a1 − 1 + αA2(T1) = l(T ) + αA2(T1) − 1 =
αA(T ). �

Lemma 4.11. Let T be an lpp≤(A)-vector. Then σ(WT ) = σ(T ).

Proof. If n = 1, the result is clear, so suppose that n > 1. Let T = (T1, . . . ,
Tu, . . . , Tu), where l(T ) = u + v and there are v + 1 Tu’s (if v > 0 then Tu is
necessarily Tc.i.(A2)). Then we have

WT = 〈xu+v
1 , xu+v−1

1 WT1 , . . . , x
v+1
1 WTu−1 ,WTu 〉.

We know that there is an element of xv
1k[x2, . . . , xn]σ(Tu)−1 that is not in WT .

We claim that (WT )σ(Tu)+v = k[x1, . . . , xn]σ(Tu)+v . So let f be a monomial of
degree σ(Tu) + v. If xv+1

1 |f , then we have that f ∈ xv+i
1 k[x2, . . . , xn]σ(Tu)−i

for some i. But σ(Tu) − i ≥ σ(Tu−i), so f ∈ WT . If xv+1
1 does not divide f ,

then the part of f in k[x2, . . . , xn] has degree at least σ(Tu), so f ∈ WT , as
required. �

Theorem 4.12. If T is an lpp≤(A)-vector, then WT is an lpp≤(A)-ideal.
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Proof. If n = 1, the result is clear. So, let T = (T1, . . . , Tu, Tu, . . . , Tu), where
l(T ) = u + v, so there are v + 1 Tu’s. Then

WT = 〈xu+v
1 , xu+v−1

1 WT1 , . . . , x
v+1
1 WTu−1 ,WTu 〉.

By the induction hypothesis, each WTi is an lpp≤(A2)-ideal. Further-
more, since l(T ) ≤ a1, and l(T ) ≤ l(Tu) ≤ a2, it is enough to show that
any largest degree element of xu+v−i

1 k[x2, . . . , xn] not in xu+v−i
1 WTi has de-

gree smaller than any smallest degree element of x
u+v−(i+1)
1 WTi+1 not in

〈xa1
1 , xa2

2 , . . . , xan
n 〉. Thus, we need to show that σ(WTi) − 1 + u + v − i <

αA2(WTi+1) + u + v − (i + 1) or in other words (from Lemmas 4.10 and 4.11)
that σ(Ti) < αA2(Ti+1). Since T is an lpp≤(A)-vector, we are done. �

To a given lpp≤(A)-vector, we associate a Hilbert function as follows.

Definition 4.13. If n = 1, so that T = (d) is an lpp≤(A)-vector, then
define HT to be the sequence HT := 1 1 1 · · · 1 0 → with d 1’s.

If T = (T1, . . . , Tu), then define HT to be the sequence

HT (i) :=
u∑

j=1

HTj (i − u + j).

We want to show that if T is an lpp≤(A)-vector, then H(R/WT ) = HT .
We need the following lemmas.

Lemma 4.14. Let T be an lpp≤(A)-vector. Then αA2(T1) + j ≤ αA2(Tj+1)
for all 0 ≤ j ≤ l(T ) − 1.

Proof. The proof is easy, and hence omitted. �
Lemma 4.15. Let T be an lpp≤(A)-vector. Let 0 ≤ j ≤ l(T ) − 1. Then

σ(T ) − j ≥ σ(Tl(T )−j).

Proof. The proof is easy, and hence omitted. �
Lemma 4.16. Let T = (T1, . . . , Tu, Tu, . . . , Tu) be an lpp≤(A)-type vector.

Then WTi � WTi+1 for all i = 1, . . . , u − 1.

Proof. For notational convenience, we leave out the bar notation and as-
sume it to be understood, so we write WT1 as WT1 and W(T1)1 as W(T1)1 .

We use induction on n, where n is the length of A.
n = 2: T = (e1, . . . , eu, eu, . . . , eu). We need to show that 〈xei

1 〉 � 〈xei+1
1 〉 for

i < u, but this is true since ei+1 > ei.
n > 2: We first show that ((Ti)l(Ti)−j , (Ti+1)l(Ti+1)−j) is an lpp≤(A2)-type

vector for 0 ≤ j ≤ l(Ti) − 1. Let Ti = ((Ti)1, (Ti)2, . . . , (Ti)l(Ti)) and Ti+1 =
((Ti+1)1, . . . , (Ti+1)l(Ti+1)). Now,

σ
(
(Ti)l(Ti)−j

)
≤ σ(Ti) − j by Lemma 4.15
< αA2(Ti+1) − j
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≤ αA3((Ti+1)1) + l(Ti+1) − j − 1
≤ αA3

(
(Ti+1)l(Ti+1)−j

)
by Lemma 4.14.

Thus, each ((Ti)l(Ti)−j , (Ti+1)l(Ti+1)−j) is an lpp≤(A2)-type vector for 0 ≤ j ≤
l(Ti) − 1.

Thus, by the induction hypothesis (and since l(Ti) ≤ l(Ti+1)),

W(Ti)l(Ti)
� W(Ti+1)l(Ti+1)

;

W(Ti)l(Ti)−1
� W(Ti+1)l(Ti+1)−1

;

...
W(Ti)1 � W(Ti+1)l(Ti+1)−l(Ti)+1

.

Thus,

WTi+1 :=
〈
x

l(Ti+1)
2 , x

l(Ti+1)−1
2

(
W(Ti+1)1

)
, . . . , x

l(Ti)
2 W(Ti+1)l(Ti+1)−l(Ti)

,

x
l(Ti)−1
2 W(Ti+1)l(Ti+1)−l(Ti)+1

, . . . ,W(Ti+1)l(Ti+1)

〉
�

〈
x

l(Ti)
2 , x

l(Ti)−1
2 W(Ti)1 , . . . ,W(Ti)l(Ti)

〉
= WTi . �

Theorem 4.17. Let T be an lpp≤(A)-vector. Then H(R/WT ) = HT .

Proof. We use induction on n, the length of A. If n = 1, the result is clear.
So suppose that n > 1. Let T = (T1, . . . , Ts). Let R = k[x1, . . . , xn]. Then
WT = 〈xs

1, x
s−1
1 WT1 , . . . ,WTs 〉. It is enough to show that

codim(WT )d =
s∑

e=1

codim(WTe)d−s+e.

Now,
codim(WT )d = #{monomials in Rd not in WT }.

Let M be the set of all monomials of R not in WT , and let T = k[x2, . . . , xn].
Then,

M ⊆ {monomials in T not in WTs }
·

∪ {x1 · (monomials in T not in WTs−1)}
...

·
∪ {xs−1

1 · (monomials in T not in WT1)}.

We will show equality. Certainly, any monomial of T that is not in WTs can-
not be in WT . Consider any monomial m of xs−i

1 T that is not in xs−i
1 WTi .

By Lemma 4.16, WTj ⊆ WTi for all j ≥ i. Write m = xs−i
1 p, where p ∈

k[x2, . . . , xn]. Now, if we had m ∈ WT , then we would have m
xj−i
1

∈ xs−j
1 WTj
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for some j > i. In other words, m = xs−i
1 p for some p ∈ WTj , and some j > i.

This contradicts that WTj ⊆ WTi for all j ≥ i. �

So far, we have seen that if T is an lpp≤(A)-vector, then WT is an lpp≤(A)-
ideal with H(R/WT ) = HT , αA(H) = αA(T ) and σ(H) = σ(T ). In particular,
H(R/WT ) is an lpp≤(A)-sequence. We now wish to show that given any
lpp≤(A)-sequence H , we can obtain an lpp≤(A)-vector T , and furthermore
that the function H → T and the function T → HT are inverses of each other.

We begin by decomposing a given lpp≤(A)-sequence S into two “smaller”
such sequences S1 and S′

1 by using a decomposition similar to that used by
Geramita, Maroscia, and Roberts in [5]. Suppose S = 1 b1 b2 b3 · · · , where
b1 ≥ 2.

Put ei =
(an −1,an−1−1,...,an−(b1−2)−1

i

)
and ci = bi+1 − ei+1. Define S1 as

follows:
(1) if ci ≥ 0 for all i, set S1(i) = ci for all i;
(2) if ci ≥ 0 for all i ≤ h − 1 and ch < 0, then set S1 = c0 c1 · · · ch−10 →.

In any case, we let h (possibly infinite) be the smallest integer for which
ch < 0. Then define S′

1 as follows:

S′
1(i) =

{
ei if i ≤ h,

bi if i ≥ h + 1.

From the definition of S1 and S′
1, it is clear that S(i) = S′

1(i) + S1(i − 1).

Theorem 4.18. Let S = {bi}i≥0 be an lpp≤(A)-sequence. Let S1 and S′
1

be constructed as above. Then S1 and S′
1 are lpp≤(A)-sequences.

Proof. Using the Macaulayesque notation for the generalized binomial co-
efficients, the proof of this statement follows word for word the proof of [5,
Theorem 3.2], so we omit it. �

Before showing the correspondence between lpp≤(A)-vectors and Hilbert
functions of lpp≤(A)-ideals, we need the following lemma.

Lemma 4.19. Let A = {a1, . . . , an} and let S be an lpp≤(A)-sequence, and
S1 obtained from S as above. Suppose that S(1) = n. Then αA(S1) < αA(S).

Proof. If S1(1) < S(1), then αA(S1) = 1 < αA(S), so suppose that S1(1) =
S(1). We consider three cases.

Case 1: αA(S) ≤ h. We again use the notation that a′
i = ai − 1. Then

S1

(
αA(S) − 1

)
= bαA(S) − eαA(S)

<

(
a′

n, a′
n−1, . . . , a

′
1

αA(S)

)
−

(
a′

n, a′
n−1, . . . , a

′
2

αA(S)

)

=
(

a′
n, a′

n−1, . . . , a
′
2

αA(S) − 1

)
+

(
a′

n, a′
n−1, . . . , a

′
2

αA(S) − 2

)
+ · · ·
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+
(

a′
n, a′

n−1, . . . , a
′
2

αA(S) − a′
1

)

≤
(

a′
n, a′

n−1, . . . , a
′
2

αA(S) − 1

)
+ · · · +

(
a′

n, a′
n−1, . . . , a

′
2

αA(S) − a′
1

)

+
(

a′
n, a′

n−1, . . . , a
′
2

αA(S) − 1 − a′
1

)

=
(

a′
n, a′

n−1, . . . , a
′
1

αA(S) − 1

)
.

So, αA(S1) ≤ αA(S) − 1.
Case 2: h + 1 ≤ αA(S) < ∞. Then S1(αA(S) − 1) = 0 <

(a′
n,a′

n−1,...,a′
1

αA(S)−1

)
, so

αA(S1) < αA(S).
Case 3: αA(S) = ∞. Then S(i) = bi =

(
a′

n,...,a′
1

i

)
and in particular, b1 =(

a′
n,...,a′

1
1

)
= n, so ei =

(
a′

n,...,a′
2

i

)
. Then

S1(i) = bi+1 − ei+1

=
(

a′
n, . . . , a′

1

i + 1

)
−

(
a′

n, . . . , a′
2

i + 1

)

=
(

a′
n, . . . , a′

2

i

)
+ · · · +

(
a′

n, . . . , a′
2

i + 1 − a′
1

)

=
(

a′
n, . . . , a′

2, a
′
1 − 1

i

)

and hence αA(S1) < ∞ = αA(S). �

Theorem 4.20. There is a 1–1 correspondence between lpp≤(A)-vectors
and Hilbert functions of lpp≤(A)-ideals, where if T corresponds to H (we
write T ↔ H), then αA(T ) = αA(H) and σ(T ) = σ(H).

Proof. We first show that the map T → HT is 1–1. We already know
that it preserves σ and αA and that it does map lpp≤(A)-vectors to lpp≤(A)-
sequences. We use induction on n, the base case n = 1 being trivial.

So suppose that T → H and T ′ → H . We first reduce to the case where
Tl(T ) �= Tc.i.(a2,...,an) and T ′

l(T ′) �= Tc.i.(a2,...,an).
Suppose that T = (T1, . . . , Tu, Tu, . . . , Tu) and T ′ = (T ′

1 , . . . , T ′
v , T ′

v , . . . , T ′
v )

where Tu = Tc.i.(A2). Then σ(T ) = σ(c.i.(a2, . . . , an)) + #Tu’s − 1.
If T ′

v �= Tc.i.(A2), then σ(T ′) = σ(T ′
v ) < σ(c.i.(a2, . . . , an)), contradicting that

σ(T ′) = σ(T ). So, T ′
v = Tc.i.(aA2) and σ(T ′) = σ(c.i.(a2, . . . , an)) + #T ′

v ’s −1.
Then #Tu’s = #T ′

v ’s. So, we also have (T1, . . . , Tu−1) and (T ′
1 , . . . , T ′

v−1) get
mapped to the same Hilbert function. Thus, we may assume that Tl(T ) �=
Tc.i.(A2) and T ′

l(T ′) �= Tc.i.(A2).
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So let T = (T1, . . . , Tu) and T ′ = (T ′
1 , . . . , T ′

v ). Since αA(T ) = αA(H) =
αA(T ′), we have u = v. From here, the argument that T = T ′ follows word
for word the argument in [7, Theorem 2.6], so we omit it.

Now, we define the map H → T inductively as follows:
If n = 1, then H = 1 1 · · · 1 0 → where there are d 1’s, for some d ≤ a1. So

put H → T = (d).
If n > 1, we may as well assume that ai ≥ 2 for all i, and that H(1) = n, for

if H(1) < n, then we claim that H is also an lpp≤(A2)-sequence. To see this,
consider the Macaulayesque rectangle used to construct lpp≤(A)-sequences,
where the ith row consists of

(
an −1,...,an−i+1−1

j

)
for j ≥ 0. So if H(1) ≤ n − 1,

then H cannot in any degree occur below the row consisting of
(
an −1,...,a2−1

j

)
for j ≥ 0. So H is also an lpp≤(A2)-sequence. Thus, in this case we may use
induction on n.

Now, decompose H into H1 and H ′
1. By induction on n, send H ′

1 → T ′
1 . By

Lemma 4.19, αA(H1) < αA(H), so by induction on αA (the base case αA = 1
being the induction hypothesis on n), we send H1 → T1 = ((T1)1, . . . , (T1)l(T1)).
Then send H → ((T1)1, . . . , (T1)l(T1), T ′

1 ). This is an lpp≤(A)-vector, since

σ
(
(T1)l(T1)

)
≤ σ(T1) = σ(H1) by induction
≤ h by construction of H1

< αA2(H
′
1) by construction of H ′

1.

Next, we claim that H → T → H is the identity map. This is clearly true
when n = 1, so we use induction on n and assume that n > 1. Note that if
H → T = (T1, . . . , Tu), we must have H1 → (T1, . . . , Tu−1) and H ′

1 → Tu, by
definition. Then

H → T = (T1, . . . , Tu) → HTu(i) + H(T1,...,Tu−1)(i − 1) by definition

= H ′
1(i) + H1(i − 1) by induction since

H ′
1 → Tu and H1 → (T1, . . . , Tu−1)

= H(i).

This, together with T → HT being 1–1 shows that T → HT and H → T
are inverses of each other. �

Corollary 4.21. Given an LPP (A) ideal L, there is an lpp≤(A)-vector
T such that WT = L.

Proof. We show by induction on n that if T is the lpp≤(A)-vector (from
Theorem 4.20) with HT = H(R/L) = H for an LPP (A) ideal L, then WT
minimally contains each of xx1

1 , . . . , xan
n . That is, we show that WT is LPP (A)

(we already know by Theorem 4.12 that WT is lpp≤(A)). This is sufficient
because H(R/WT ) = HT = H (by Theorem 4.17), but the LPP (A) ideal
attaining H is unique.
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If n = 1, it is easy to see that WT = 〈xa1
1 〉, so clearly WT minimally contains

xa1
1 .
Now, suppose that n > 1. By Theorem 4.20, we have that αA(T ) = αA(H)

and αA(H) ≥ a1 since L is LPP (A), so l(T ) = a1 and xa1
1 is a minimal gener-

ator of WT . By the definition of WT , xa2
2 , . . . , xan

n are minimal generators of
WT if and only if they are minimal monomial generators of WTl(T ) . Following
the proof of Theorem 4.20, we have that Tl(T ) = T ′

1 where T ′
1 corresponds

to H ′
1. Thus, we are done by induction if H ′

1 is the Hilbert function of a
LPP (a2, . . . , an) ideal in k[x2, . . . , xn]. Writing h to be the smallest (possibly
infinite) degree of a nonpure power monomial generator of L which is not
divisible by x1, then because L is LPP (A), we have

〈x1, x
a2
2 , . . . , xan

n 〉d = 〈L,x1〉d

for all d < h and 〈L,x1〉d = Ld for all d ≥ h. Hence, it follows directly from
the definition of H ′

1 that H ′
1 = H(R/L) where L is the image of L in R =

k[x2, . . . xn] (here we assume that a1 > 1, else we are done by induction, and
hence that ei = H(R/〈x1, x

a2
2 , . . . , xan

n 〉, i)). This completes the proof. �

Example 4.22. Consider the lpp≤({4,4,6})-vector

T = (T1, T2, T3, T4) = ((1,2), (1,3,4), (2,3,6,6), (5,6,6,6)).

Then letting T → H and Ti → Hi, we have

H4 : 1 2 3 4 4 4 3 2 0 →
H3 : 1 2 3 4 4 2 1 0 →
H2 : 1 2 3 2 0 →
H1 : 1 2 0 →

H : 1 3 6 10 13 10 5 3 0 → .

Now, beginning with H = 1 3 6 10 13 10 5 3 0 →, an lpp≤(A)-sequence,
we have:

bi : 1 3 6 10 13 10 5 3 0 →
ei : 1 2 3 4 4 4 3 2 1 0 →

ci : 1 3 6 9 6 2 1 −1 0 → .

So, S1 = 1 3 6 9 6 2 1 0 → and S′
1 = 1 2 3 4 4 4 3 2 0 →.

Continuing, we decompose S as

1 2 3 4 4 4 3 2 0 →
1 2 3 4 4 2 1 0 →

1 2 3 2 0 →
1 2 0 → .
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We decompose each of these further to obtain:

1 2 3 4 4 4 3 2 0 → ←→ (5,6,6,6)
1 2 3 4 4 2 1 0 → ←→ (2,3,6,6)
1 2 3 2 0 → ←→ (1,3,4)
1 2 0 → ←→ (1,2).

So we indeed obtain T back from H .

5. Ideal colon

In this section, our goal is to show that the residual of an lpp≤(A)-ideal in
the complete intersection of type (a1, . . . , an) is again an lpp≤(A)-ideal.

In two variables, where A = {a, b}, the residual of an LPP (A)-ideal inside
the c.i.(a, b) is always a lex ideal, namely

〈xa, yb〉 : 〈xa, xa−1yd1 , xa−2yd2 , . . . , xa−syds , yb〉
= 〈xs, xs−1yb−ds , . . . , xyb−d2 , yb−d1 〉.

As before, we associate to the LPP (A)-ideal

〈xa, xa−1yd1 , xa−2yd2 , . . . , xa−syds , yb〉

the lpp≤(A)-vector T = (d1, . . . , ds, b, , . . . , b), where there are a − s b’s, so that
the length of T is a. Then we associate to the residual lex ideal the 2-type
vector (b − ds, . . . , b − d1). We can use monomial lifting (see [4, Theorem 2.2])
to associate a finite set of points to each of these ideals. The set of points ob-
tained from the lex ideal in this way is an example of a k-configuration. From
the lpp ideal, we obtain the complement of the k-configuration in the c.i.(a, b);
this complementary set of points is an example of a weak k-configuration, as
defined in [6, Definition 2.8]. In fact, lpp≤({a, b})-vectors are exactly the
“types” of weak k-configurations that occur in Theorem 2.10 of their paper.
It was this fact that motivated the definition of lpp≤({a, b})-vectors and the
generalization to larger numbers of variables.

Example 5.1. The following ideal is LPP(5,7): I = 〈x5, x4y,x3y3, x2y4, y7〉.
We associate to I the lpp≤({5,7})-vector (1,3,4,7,7). Then inside a c.i.(5,7),
we draw a weak k-configuration of type (1,3,4,7,7):

• ◦ ◦ ◦ ◦ ◦ ◦
• • • ◦ ◦ ◦ ◦
• • • • ◦ ◦ ◦
• • • • • • •
• • • • • • •

In this case, the complement of the weak k-configuration is a k-configuration
of type (3,4,6).
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The fact that the residual of an LPP {a, b}-ideal in the c.i.(a, b) is a lex ideal
provides a proof of the LPP conjecture in two variables (for another proof,
see [14, Theorems 5.1 and 5.2]). Since xa, yb are never minimal generators
of the residual lex ideal, the resolution of the lex plus powers ideal obtained
from dualizing the minimal free resolution of the lex ideal is in fact minimal
(see page 154 of [12]). Hence, since lex ideals have extremal resolutions, it
follows that the lex plus powers ideals have extremal resolutions among all
ideals containing an {a, b}-regular sequence.

In more than two variables, this argument does not work for several reasons.
First, the generators of the complete intersection might be generators of the
residual ideal; second, even if they were not, we would not be guaranteed that
the resolution obtained by dualizing was minimal, and third, the residual of
an LPP (A)-ideal is no longer necessarily a lex ideal.

In this section, however, we show that the residual of an lpp≤(A)-ideal is
necessarily another lpp≤(A)-ideal. Given an lpp≤(A)-vector T , we want to
define a residual lpp≤(A)-vector T ∗. As the original definition was motivated
by considering points, we observe the following in passing: we can associate to
WT , and hence to T , a natural set of points X in Pn contained in a complete
intersection of type (a1, . . . , an) obtained by lifting the monomial ideal WT .
It will turn out that T ∗ is defined such that lifting WT ∗ yields Xc where the
complement is taken in c.i.(a1, . . . , an).

Definition 5.2. If n = 1, so that T is an lpp≤(A)-vector (d), d ≤ a1, then
T ∗ := (a1 − d) if d < a1; otherwise, we define T ∗ = ∅.

If T is an lpp≤(A)-vector (T1, . . . , Tu) and if u < a1, then

T ∗ :=
(
(Tu)∗, . . . , (T1)∗, Tc.i.(A2), . . . , Tc.i.(A2)

)
,

where there are a1 − u Tc.i.(A2)’s; otherwise, T ∗ = ((Tu)∗, . . . , (T1)∗). In par-
ticular, (Tu)∗ = (T ∗)1 unless (Tu)∗ = ∅.

Remark 5.3. Note that we can define l(T ∗), αA(T ∗), and σ(T ∗), just
as we defined these parameters for T , even before knowing that T ∗ is an
lpp≤(A)-vector; we also put α(∅) = σ(∅) = 0. Furthermore, if T �= Tc.i.(A),
then we can perform the same operation on T ∗ as we did on T to obtain T ∗,
and we get T back. We write this as (T ∗)∗ = T . As well, it is clear that
l(T ) < a1 ⇔ (T ∗)l(T ∗) = Tc.i.(A2).

We want to show that if T is an lpp≤(A)-vector, then so is T ∗.

Notation. In what follows, we remove the subscript A from the α notation
and assume it to be understood. So we write α(T ) for αA(T ), α(Ti) for
αA2(Ti), α((Ti)j) for αA3((Ti)j), etc., assuming the subscript is understood.

Lemma 5.4. Let T be an lpp≤(A)-vector, T �= Tc.i.(A). Then

α(T ) + σ(T ∗) = σ(c.i.(a1, . . . , an)) = σ(T ) + α(T ∗).
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Proof. When n = 1, the result is trivial. To show that α(T ) + σ(T ∗) =
σ(c.i.(A)), we consider the two cases l(T ) < a1 and l(T ) = a1.

If l(T ) < a1, then (T ∗)l(T ∗) = Tc.i.(a2,...,an). Then,

α(T ) + σ(T ∗) = l(T ) + σ(c.i.(a2, . . . , an)) + s − 1,

where s = #{i|(T ∗)i = Tc.i.(A2)}. But l(T ) + s = a1, so

α(T ) + σ(T ∗) = a1 + σ(c.i.(a2, . . . , an)) − 1 = σ(c.i.(a1, . . . , an)).

If l(T ) = a1, then (T ∗)l(T ∗) �= Tc.i.(A2). So

α(T ) + σ(T ∗) = a1 + α(T1) − 1 + σ
(
(T ∗)l(T ∗)

)
.

But (T ∗)l(T ∗) = (T1)∗, so

α(T1) + σ
(
(T ∗)l(T ∗)

)
= σ(c.i.(a2, . . . , an))

by induction, so

α(T ) + σ(T ∗) = a1 − 1 + σ(c.i.(a2, . . . , an)) = σ(c.i.(a1, . . . , an)).

To show that σ(T )+α(T ∗) = σ(c.i.(a1, . . . , an)), we consider the two cases
Tl(T ) = Tc.i.(a2,...,an) and Tl(T ) �= Tc.i.(a2,...,an).

If Tl(T ) = Tc.i.(a2,...,an), then l(T ∗) < a1, so α(T ∗) = l(T ∗). Furthermore,
σ(T ) = σ(c.i.(A2)) + s − 1, where s is the number of integers i such that
Ti = Tc.i.(A2). But l(T ∗) + s = a1, so

α(T ∗) + σ(T ) = a1 + σ(c.i.(A2)) − 1 = σ(c.i.(A)).

If Tl(T ) �= Tc.i.(a2,...,an), then l(T ∗) = a1. So

α(T ∗) = a1 + αA2((T ∗)1) − 1 = a1 + αA2

((
Tl(T )

)∗)
− 1,

since (Tl(T ))∗ �= ∅. Furthermore, σ(T ) = σ(Tl(T )). By the induction hypothe-
sis, αA2((Tl(T ))∗) + σ(Tl(T )) = σ(c.i.(A2)), so

σ(T ) + α(T ∗) = a1 + σ(c.i.(A2) − 1 = σ(c.i.(A)). �

Theorem 5.5. Let S and T be lpp≤(A)-vectors, S �= Tc.i.(A). Then σ(S) <
α(T ) ⇒ σ(T ∗) < α(S ∗).

Proof. We consider several cases below.
Case 1: Suppose Sl(S) = Tc.i.(a2,...,an) and l(T ) < a1. Then l(S ∗) < a1 and

(T ∗)l(T ∗) = Tc.i.(a2,...,an). Then since σ(S) < α(T ), we have σ(Sl(S))+ s − 1 <
l(T ) where s = #{i| Si = Sl(S)}. Now,

σ(T ∗) < α(S ∗) ⇔ σ
(
(T ∗)l(T ∗)

)
+ t − 1 < l(S ∗),

where t = #{i|(T ∗)i = (T ∗)l(T ∗)}. But,

σ
(

Sl(S)

)
= σ

(
T ∗

l(T ∗)

)
= σ(c.i.(a2, . . . , an)),

so it is enough to show that l(T ) − s = l(S ∗) − t. But, l(T )+t = a1 = l(S ∗)+s,
so we are done in this case.
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Case 2: Suppose Sl(S) = Tc.i.(a2,...,an) and l(T ) = a1. Then l(S ∗) < a1 and
(T ∗)l(T ∗) �= Tc.i.(a2,...,an). So, σ(T ∗) = σ((T ∗)l(T ∗)) and α(S ∗) = l(S ∗). We
need to show that σ((T ∗)l(T ∗)) < l(S ∗). If T = Tc.i.(A) this is obvious, so we
may assume that T �= Tc.i.(A). Note that l(S ∗) = a1 − s where s = #{i| Si =
Sl(S)}. Since σ(S) < α(T ), we have σ(Sl(S)) + s − 1 < l(T ) + α(T1) − 1. Note
that α(T1) < ∞ since T �= Tc.i.(A) implies T1 �= Tc.i.(A2) when l(T ) = a1. Thus,
we may rewrite the inequality to obtain σ(Sl(S)) − α(T1) < l(T ) − s = a1 − s.
But (T1)∗ = (T ∗)l(T ∗) since l(T ) = a1 hence by Lemma 5.4, σ((T ∗)l(T ∗)) =
σ(c.i.(A2)) − α(T1) < a1 − s = l(S∗), as required.

Case 3: Suppose Sl(S) �= Tc.i.(a2,...,an) and l(T ) < a1. Then l(S ∗) = a1

and (T ∗)l(T ∗) = Tc.i.(a2,...,an). Let s = #{i|(T ∗)i = (T ∗)l(T ∗)}. We need
to show that σ((T ∗)l(T ∗)) + s − 1 < a1 + α((S ∗)1) − 1 or in other words,
σ(c.i.(a2, . . . , an)) − α((S ∗)1) < a1 − s = l(T ). But l(S ∗) = a1, so ((S ∗)1)∗ =
Sl(S) and hence (S ∗)1 = (Sl(S))∗. So by Lemma 5.4 applied to Sl(S), the left-
hand side of this last inequality is σ(Sl(S)). But σ(Sl(S)) = σ(S) < α(T ) =
l(T ), so we are done in this case.

Case 4: Suppose Sl(S) �= Tc.i.(a2,...,an) and l(T ) = a1. Then, l(S ∗) = a1

and (T ∗)l(T ∗) �= Tc.i.(a2,...,an). Since σ(S) < α(T ), we have σ(Sl(S)) < a1 +
α(T1) −1. We need to show that σ(T ∗) < α(S ∗), in other words, σ((T ∗)l(T ∗)) <
a1 + α((S ∗)1) − 1. Note that if T1 = Tc.i.(A2), then σ((T ∗)l(T ∗)) = 0 while
α((S ∗)1) > 0, so we may assume T1 �= Tc.i.(A2). It is enough to show that

σ
(

Sl(S)

)
− α(T1) = σ

(
(T ∗)l(T ∗)

)
− α((S ∗)1),

in other words, that

σ
(

Sl(S)

)
+ α((S ∗)1) = σ

(
(T ∗)l(T ∗)

)
+ α(T1).

But l(S ∗) = a1, so (S ∗)1 = (Sl(S))∗ and l(T ) = a1, so (T1)∗ = (T ∗)l(T ∗). Thus
by Lemma 5.4 applied to Sl(S) and T1,

σ
(

Sl(S)

)
+ α((S ∗)1) = σ(c.i.(a2, . . . , an)) = σ

(
(T ∗)l(T ∗)

)
+ α(T1),

as required. �

Corollary 5.6. If T is an lpp≤(A)-vector, T �= Tc.i.(A), then so is T ∗.

Proof. Let A = {a1, . . . , an}. If n = 1, the result is obvious, so assume n > 1
and let T = (T1, . . . , Tu) be an lpp≤(A)-vector so that u ≤ a1, u ≤ l(Tu), each
Ti is an lpp≤(A2)-vector and σ(Ti) < αA2(Ti+1) for 1 ≤ i ≤ u − 1. Then

T ∗ =
(
(Tu)∗, . . . , (T1)∗, Tc.i.(A2), . . . , Tc.i.(A2)

)
,

where there are a1 − u (possibly 0) Tc.i.(A2)’s. By the induction hypothesis,
each T ∗

i is an lpp≤(A2)-vector and l(T ∗) ≤ a1 by construction. To see that
l(T ∗) ≤ l((T ∗)l(T ∗)), we consider two cases.

Case 1: u < a1. Then (T ∗)l(T ∗) = Tc.i.(A2) and l((T ∗)l(T ∗)) = a2 ≥ a1 ≥
l(T ∗).
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Case 2: u = a1. Let T = (T1, . . . , Tu) = (T1, . . . , Ts, Tc.i.(A2), . . . , Tc.i.(A2))
where Ts �= Tc.i.(A2) and s ≤ u = a1. Then l(T ∗) = s and (T ∗)l(T ∗) = (T1)∗,
so we need to show that l((T1)∗) ≥ s. First note that since σ(T1) < αA2(T2) ≤
σ(T2) < · · · < αA2(Ts) ≤ σ(Ts), we have σ(T1) ≤ σ(Ts) − s + 1 ≤ σ(c.i.(A2)) −
1 − s + 1 = σ(c.i.(A2)) − s.

If n = 2, then T1 = σ(T1) ≤ σ(c.i.(A2)) − s = a2 − s, so s ≤ a2 − T1 = (T1)∗ =
l((T1)∗) as required. If n > 2, then let t be the number of Tc.i.(A3)’s in T1. If t =
0, then l((T1)∗) = a2, and a2 ≥ a1 ≥ s, so l((T1)∗) ≥ s as required. Otherwise,
σ(T1) = σ(c.i.(A3)) + t − 1 ≤ σ(c.i.(A2)) − s = σ(c.i.(A3)) + a2 − 1 − s. So,
t ≤ a2 − s; that is, s ≤ a2 − t = l((T1)∗), as required.

Thus, it only remains to prove that σ((T ∗)i) < α((T ∗)i+1) for all i =
1, . . . , l(T ∗) − 1, that is, that σ((Ti)∗) < α((Ti−1)∗) for i = 2, . . . ,m, where
m is the largest index such that Tm �= Tc.i.(A), but this is the content of The-
orem 5.5. �

Theorem 5.7. Suppose that L � 〈xa1
1 , . . . , xan

n 〉 is an LPP (A)-ideal. Then
〈xa1

1 , . . . , xan
n 〉 : L is lpp≤(A).

Remark 5.8. Chris Francisco has also discovered a (quite different) proof
of this result.

Proof. By Corollary 4.21, there is an lpp≤(A)-vector T such that WT =
L. By Corollary 5.6 and Theorem 4.12, it is enough to show that WT ∗ =
〈xa1

1 , . . . , xan
n 〉 : WT . Proceed by induction on n. If n = 1, then T = (d) for

d < a, T ∗ = (a1 − d), WT = (xd
1), and WT ∗ = (xa1−d

1 ), so clearly WT ∗ = 〈xa1
1 〉 :

WT .
Now let n > 1. There are four cases to consider: L(T ) = a1 and Tl(T ) =

Tc.i.(A2), L(T ) = a1 and Tl(T ) �= Tc.i.(A2), L(T ) < a1 and Tl(T ) = Tc.i.(A2), and
L(T ) < a1 and Tl(T ) �= Tc.i.(A2). The proof is similar in each case, so we provide
only the first instance as a representative.

Suppose
T = (T1, . . . , Tu, . . . , Tu),

where there are v + 1 Tu = Tc.i.(A2)’s and l(T ) = u + v = a1. Then

T ∗ = ((Tu−1)∗, . . . , (T1)∗),

WT = (xu+v
1 , xu+v−1

1 WT1 , . . . , x
v+1
1 WTu−1 ,WTu)

=
(
xu+v

1 , xu+v−1
1 WT1 , . . . , x

v+1
1 WTu−1 ,WTc.i.(A2)

)
,

and
WT ∗ =

(
xu−1

1 , xu−2
1 W(Tu−1)∗ , . . . , x1W(T2)∗ ,W(T1)∗

)
.

We first show that WT ∗ ⊆ 〈xa1
1 , . . . , xan

n 〉 : WT . Let let m be a minimal mono-
mial generator of WT ∗ . If m = xu−1

1 , then the result is clear, so suppose
that m = xu−j

1 m′ where m′ ∈ W(Tu−j+1)∗ . We need to show that mxv+j−i
1 ×
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WTu−(j−i) ⊆ 〈xa1
1 , . . . , xan

n 〉 for i = 1, . . . , j − 1. By the induction hypothe-
sis, W(Tv−j+1)∗ = 〈xa2

2 , . . . , xan
n 〉 : WTv−j+1 , so applying Lemma 4.16, we have

〈xa1
1 , . . . , xan

1 〉 ⊇ mxv+j−1
1 WTu−j+1 ⊇ mxv+j−2

1 WTu−j+2 ⊇ · · · ⊇ mxv+1
1 WTu−1 as

required.
Now suppose that m is a minimal monomial generator in 〈xa1

1 , . . . , xan
n 〉 :

WT . If m = xj
1, then mxv+1

1 WTu−1 forces j = u − 1. So write m = xu−1−j
1 m′

where 1 ≤ j ≤ u − 1 and m′ ∈ k[x2, . . . , xn]. Since

mxv+j
1 WTu−j ⊆ 〈xa1

1 , . . . , xan
n 〉,

it must be that m′ ∈ 〈xa2
2 , . . . , xan

n 〉 : WTu−j = W(Tu−j)∗ and hence m ∈ WT ∗ as
required. �

6. Applications of the theorem for colon ideals

The fact that the residual of a lex plus powers ideal is again lex plus powers
allows us to prove the (moral) converse to the following theorem in [14].

Theorem 6.1. Let L be LPP (A) for some A = {a1, . . . , an}, and I be an
ideal containing an A-regular sequence such that H(R/L) = H(R/I). If EGH
holds, then dimk(soc(L)d) ≥ dimk(soc(I)d) for all d, where soc(L)d refers to
the dth graded piece of the socle of R/L (and similarly for I).

We will here demonstrate that if lex plus powers ideals can be shown to
have always largest socles, the EGH must be true. More precisely, we will
prove that EGH is equivalent to the following conjecture.

Conjecture 6.2. Suppose that L is LPP (A) for some A = {a1, . . . , an},
and I is an ideal containing an A-regular sequence such that H(R/L) =
H(R/I). Then βL

n,j ≥ βI
n,j for all j.

The proof of the equivalence will require a few lemmas and a proposi-
tion. We give the following comments to motivate these preliminary results.
Suppose that L is LPP (A) with x = {xa1

1 , . . . , xan
n }, I contains an A-regular

sequence y = {ya1
1 , . . . , yan

n }, and H(R/L) = H(R/I). Our goal is to com-
pare the socles of (x : L) and (y : I) (via Conjecture 6.2) and transfer this
comparison to a comparison of the first graded Betti numbers of L and I .
By Theorem 5.7, we know that (x : L) is again a lex plus powers ideal, so
Conjecture 6.2 will apply if we can demonstrate that (y : I) contains a reg-
ular sequence in the same degrees as those of the minimal monomial regular
sequence in (x : L) (note that the Hilbert functions of the two colon ideals
are obviously equal). This follows from the lemmas below. We first prove
(Lemma 6.3) that if L is LPP (A), then the degrees of the minimal monomial
regular sequence in the residual can only drop in degrees for which the colon
consists of a lex segment. We then use this fact to show (Lemma 6.4) that
(y : I) contains a regular sequence in the degrees of the minimal monomial
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regular sequence in (x : L). Proposition 6.5 then allows us to compute the
first graded Betti numbers of L and I from the socle degrees of (x : L) and
(y : I), respectively. After these preparations, we will be able to prove the
theorem.

Lemma 6.3. Let L be an {a1, . . . , an}-lex plus powers ideal and x be the
ideal generated by {xa1

1 , . . . , xan
n }. If (x : L) is an {a′

1, . . . , a
′
n}-lex plus powers

ideal with a′
s < as for some 1 ≤ s ≤ n, then (x : L)a′

s
is a lex segment.

Proof. Note that if a′
i = a′

s for some i > s, then a′
i = a′

s < as ≤ ai, so we can
assume without harm that a′

s < a′
s+1 or s = n. It follows that if m ∈ (x : L)a′

s

and m < x
a′

s
s , then m is not a pure power. Because x

a′
s

s is a minimal generator,
m must be a minimal generator as well, and thus it is part of the lex segment
of (x : L)a′

s
.

So it is enough to show that if m ∈ Ra′
s

and m > x
a′

s
s , then m ∈ (x : L). Note

that s > 1 (otherwise we are finished). If m /∈ (x : L), then there is a minimal
monomial generator λ ∈ L such that mλ /∈ x. It follows that m(i) + λ(i) < ai

for all i = 1, . . . , n. Now, since x
a′

s
s ∈ (x : L), we have λx

a′
s

s ∈ 〈x〉, and so
λ(s) + a′

s ≥ as. In particular, this implies that λ(s) > 0. If degλ = d, then
since λ(i) < ai for all i, λ is part of the lex segment of Ld, and thus if λ′ ∈ Rd

and λ′ > λ, then λ′ ∈ Ld as well.
Now let t < s be such that m(t) > 0 (such an element exists because m >

x
a′

s
s ) and consider the element

λ′ = x
λ(1)+γ(1)
1 · · · xλ(s−1)+γ(s−1)

s−1 x
λ(s+1)+γ(s+1)
s+1 · · · xλ(n)+γ(n)

n ,

where the γ(i) for i �= s are any choice of elements of N such that
∑

i 	=s γ(i) =
λ(s), γ(t) ≥ 1, and γ(i) ≤ m(i) for all i �= s. Such a choice of γ(i) is possible
unless λ(s) =

∑
i 	=s γ(i) >

∑
i 	=s m(i) = deg(m) − m(s) = a′

s − m(s) in which
case λ(s) + m(s) > a′

s, a contradiction. The existence of such a γ, however,
also gives a contradiction. Because λ′ > λ, we have that x

a′
s

s λ′ ∈ x. But
λ′(s) = 0 and a′

s < as, so for some i �= s, ai ≤ λ(i) + γ(i) ≤ λ(i) + m(i). �

Lemma 6.4. Suppose that I minimally contains an A = {a1, . . . , an}-regular
sequence y, H(R/I) is A-lpp valid, and let L be the A-lex plus powers ideal
such that H(R/I) = H(R/L). If (x : L) is {a′

1, . . . , a
′
n}-lex plus powers, then

(y : I) contains an {a′
1, . . . , a

′
n}-regular sequence.

Proof. Let t be the smallest integer such that (y : I) fails to contain an
{a′

1, . . . , a
′
t}-regular sequence. Thus, there is a {b1, . . . , bn}-regular sequence

in (x : I), such that bi ≤ a′
i for 1 ≤ i < t, and a′

t < bt ≤ at. We can choose
{b1, . . . , bn} such that bt satisfies the second inequality because (y : I) contains
an {a1, . . . , an}-regular sequence by construction and thus certainly contains
an {a′

1, . . . , a
′
t−1, at, at+1, . . . , an}-regular sequence. By Lemma 6.3, a′

t < at
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implies that (x : L)a′
t

is a lex segment. Consider then the ideals (x : L)a′
t
+

〈x1, . . . , xn〉a′
t+1 and (y : I)a′

t
+ 〈x1, . . . , xn〉a′

t+1. Both of these ideals attain
the same Hilbert function, and the former is a lex ideal containing a regular
sequence of length at least t in degree a′

t. It is not difficult to show (see, i.e.,
Corollary 2.13 in [14]) that all ideals attaining a given Hilbert function contain
a regular sequence in the degrees of the minimal monomial regular sequence
in the lex ideal with that Hilbert function. Thus, (y : I)a′

t
+ 〈x1, . . . , xn〉a′

t+1

must also contain a regular sequence of length at least t by degree a′
t, that is,

(y : I) must contain a regular sequence in degrees a1, . . . , at, a contradiction.
�

Corollary 6.5. Let A = {a1, . . . , an} be a list of degrees, write |j| to de-
note the number of elements of A equal to j, and suppose that y is an A-regular
sequence in an ideal I ⊂ R. Then for all j there exist 0 ≤ tj ≤ |j| such that

β
(y:I)

n,ω−j = βI
1,j − tj . Furthermore, if y is minimally contained in I , then tj = |j|

for all j.

Proof. We suppose first that y is minimally contained in I . Let F • be a
minimal free resolution of R/I

F • := 0 →
∑

j

RβI
n,j [−j] δn−→ · · · δ2−→

∑
j

RβI
1,j [−j] δ1−→ R → 0,

and K• be the Koszul complex

K • = 0 → R[−ω] ∂n−→
∑

j

RβK
n−1,j [−j]

∂n−1−−−→ · · · ∂2−→
∑

j

RβK
1,j [−j] ∂1−→ R → 0

resolving R/y, where the βK
i,j are the Betti numbers of the Koszul complex

resolving R/y and ω =
∑

ai. Note that |j| = βK
1,j . The map φ : R/y → R/I

induces a chain map

0
∑

j

RβI
n,j [−j] δn

∑
j

RβI
n−1,j [−j] δn−1 · · ·

0 R[−ω]

φn

∂n

∑
j

RβK
n−1,j [−j]

φn−1

∂n−1 · · ·

· · · δ2

∑
j

RβI
1,j [−j] δ1

R 0

· · · ∂2

∑
j

RβK
1,j [−j]

φ1

∂1
R

φ0

0.
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We know that φ0 = 1R by construction and that φ1 is a rank n matrix
(over k) all of whose entries are in k because y is minimally contained in I .
Let E • denote the mapping cone on the diagram induced by φ,

E • := 0 → R
ψn+1−−−→ RαI

n ⊕ Rn ψn−−→ · · · ψ2−−→ RαI
1 ⊕ R

ψ1−−→ R → 0,

where we have used αI
j to denote the jth Betti number of R/I and have

suppressed the graded notation at this step so that the resolution is more
legible. The dual of E• is

E ∗
• := 0 → R

ψ∗
1−−→ RαI

1 ⊕ R
ψ∗

2−−→ RαI
2 ⊕ Rn ψ∗

3−−→ · · · ψ∗
4−−→ RαI

n ⊕ R
ψ∗

n+1−−−→ R → 0,

and it is not difficult to show that E ∗
• is a free resolution of R/(y : I). This

resolution is never minimal, but we are able to identify the cause of the non-
minimality in the (n − 1)st, the nth, and the (n + 1)st terms of E ∗

• . In fact,
the map ψ∗

1 is just multiplication by 1R (actually, 1R∗ ) in the right coordi-
nate, ψ∗

1(m) = (0,m). This implies that the copy of R constituting En+1 maps
isomorphically onto the copy of R belonging to Fn in E ∗

n, and we may remove
both from the resolution. So

E ′
• := 0 → RαI

1
ψ∗

2−−→ RαI
2 ⊕ Rn ψ∗

3−−→ · · · ψ∗
4−−→ RαI

n ⊕ R
ψ∗

n+1−−−→ R → 0,

is a free resolution of R/(y : I) where we abuse notation and reuse ψ∗
2 to

denote the restriction of ψ∗
2 to RαI

1 .
Now, for m ∈ RαI

1 , ψ∗
2(m) = (δ∗

2(m), −φ∗
1(m)), and as we noted above φ1

(and hence also φ∗
1) is a rank n matrix consisting of degree zero elements. Thus

for each i, a copy of R[−ω + ai] in E ′
n maps isomorphically onto the copy of

R[−ω + ai] in E ′
n−1 (we remember the grading at this step). These pairs may

be removed from E ′
•, so write ψ

∗
2 to be the map given by restriction of ψ∗

2 to∑
j RβI

1,j − |j|[−ω + j], and ψ
∗
3 to be the restriction of ψ∗

3 to
∑

j RβI
2,j [−ω + j].

Thus

E ′ ′
• := 0 →

∑
j

RβI
1,j − |j|[−ω + j]

ψ
∗
2−−→

∑
j

RβI
2,j [−ω + j]

ψ
∗
3−−→ · · ·

ψ∗
n+1−−−→ R → 0,

is a free resolution of R/I , and although it may fail to be minimal, no further
cancellation can occur between

∑
j RβI

1,j − |j|[−ω + j] and
∑

j RβI
2,j [−ω + j].

We conclude that β
(y:I)

n,ω−j = βI
1,j − |j| as required.

In the case that I fails to minimally contain an A-regular sequence, this
argument needs only a small modification. The cyclic module R/(y : I) can
again be resolved using the dual of the mapping cone on R/y → R/I , yielding

E ∗
• := 0 → R

ψ∗
1−−→ RαI

1 ⊕ R
ψ∗

2−−→ RαI
2 ⊕ Rn ψ∗

3−−→ · · · ψ∗
4−−→ RαI

n ⊕ R
ψ∗

n+1−−−→ R → 0,

and we can again remove the extra copy of R which constitutes E ∗
n+1. The

result then follows after noting that there are at most |j| copies of R[−ω + j]
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in E ′
n−1 =

∑
j RβI

2,j [−ω + j] ⊕
∑

j RβK
1,j [−ω + j] which can cancel with copies

of R[−ω + j] in E ′
n =

∑
j RβI

1,j [−ω + j]. We conclude that β
(y:I)

n,ω−j = βI
1,j − tj

for 0 ≤ tj ≤ |j| as required. �

Proving the main theorem of this section is now easily accomplished.

Theorem 6.6. Suppose that L is lex plus powers with respect to the degree
sequence A = {a1, . . . , an}, I ⊂ R, both share the same Hilbert function, and
I contains an A-regular sequence. If the lex plus powers conjecture for socles
(Conjecture 6.2) holds, then βL

1,j ≥ βI
1,j for all j.

Proof. Let x = {xa1
1 , . . . , xan

n } ⊂ L and let y be an {a1, . . . , an}-regular se-
quence in I . We know that (x : L) and (y : I) share the same Hilbert func-
tion, the former is {a′

1, . . . , a
′
n}-lex plus powers, and the latter contains an

{a′
1, . . . , a

′
n}-regular sequence (by Lemma 6.4). By Proposition 6.5, β

(x:L)
n,ω−j =

βL
1,j − |j|, and β

(y:I)

n,ω−j = βI
1,j − tj . But by hypothesis, β

(x:L)
n,j ≥ β

(y:I)

n,j , and as
|j| ≥ tj , we conclude that βL

1,j ≥ βI
1,j for all j as required. �

We conclude by noting that in order to prove Conjecture 6.2, it is enough to
demonstrate that lex plus powers ideals have largest socles in a single degree.
In particular, Conjecture 6.2, and hence EGH, is equivalent to the following.

Conjecture 6.7. Let L be LPP (A) for some A = {a1, . . . , an} and let ρH
be the regularity of H = H(R/L). Then βL

n,ρH+n−1 ≥ βI
n,ρH+n−1 for any ideal

I ⊂ R containing an A-regular sequence and attaining H.

Theorem 6.8. Conjecture 6.7 and Conjecture 6.2 are equivalent.

Proof. It is obvious that Conjecture 6.2 implies Conjecture 6.7. So suppose
that Conjecture 6.7 holds, L is LPP (A) for some A = {a1, . . . , an}, I ⊂ R con-
tains an A-regular sequence, and H(R/L) = H(R/I) = H has regularity ρH.
Now βL

n,ρH+n−1 ≥ βI
n,ρH+n−1 by hypothesis, and βL

n,ρH+n = βI
n,ρH+n because

L and I attain the same Hilbert function. Thus, it remains to show that
βL

n,j ≥ βI
n,j for all j ≤ ρH + n − 2. This is easily accomplished. Let L and

I be the ideals L + 〈x1, . . . , xn〉ρH and I + 〈x1, . . . , xn〉ρH , respectively. Then
H(R/L) = H(R/I) and ρH(R/L) = ρH − 1; by induction on ρ we have that

βL
n,j = βL

n,j ≥ βI
n,j = βI

n,j for j ≤ ρH + n − 2 as required (where we make use
of the fact that adding 〈x1, . . . , xn〉ρH to L and I only perturbs the last two
rows of their Betti diagrams). �
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