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THE EMBEDDING OF A CYCLIC PERMUTABLE
SUBGROUP IN A FINITE GROUP

JOHN COSSEY AND STEWART E. STONEHEWER

Abstract. In earlier work, the authors described the structure of the
normal closure of a cyclic permutable subgroup of odd order in a finite

group. As might be expected, the even order case is considerably more
complicated and we have found it necessary to divide it into two parts.
This part deals with the situation where we have a finite group G with a
cyclic permutable subgroup A satisfying the additional hypothesis that
X is permutable in A2X for all cyclic subgroups X of G (where A2 is

the 2-component of A).

1. Introduction and statement of main results

A subgroup A of a group G is said to be permutable if AX = XA for all
subgroups X of G. Clearly this is equivalent to the product AX itself being a
subgroup. In [3] we proved that when G is finite and A is a cyclic permutable
subgroup of G, then, provided A has odd order,

[A,G] is abelian and A acts on it as a group of power automorphisms.

This was achieved by reducing to the case where G is a p-group for an odd
prime p. From then on, most of our arguments failed when p was replaced by 2.
The purpose of the present work is to show how, using different methods, the
requirement that A has odd order can be dropped. While our main theorems
here include the principal results of [3] (viz. Theorem 1.1) as a special case,
it turns out that in general [A,G] is not abelian and A does not act on it
as a group of power automorphisms. However, as we shall see, the difference
between the conclusions of Theorems A and B here and Theorem 1.1 of [3] is
minimal in a literal sense.

As in [3], we begin by reducing to the situation where G has prime power
order, in this case a power of 2. Then in the remainder of Section 2 and in
Section 3 we prove a succession of preliminary results, many of which have key
significance in relation to establishing our main theorems. Section 4 contains
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the proofs of these theorems reduced to the 2-group case. Finally in Section
5 we give examples showing how, when A has even order, the results of the
earlier work in [3] fail to extend.

Let G be a finite p-group which is the product of two cyclic subgroups
A and X. When p is odd, Huppert showed in [5, Hauptsatz I] that G is
metacyclic and in [5, Satz 15] that every subgroup of G is permutable. On
the other hand, when p = 2, then G is not metacyclic in general (see [5, §3]);
and clearly not every subgroup of G need be permutable, as can be seen from
the dihedral group of order 8. However, if A is permutable in G, then

(1) AX is metacyclic,

by [12, Theorem 5.2.13]. But again the dihedral group of order 8 shows that
this is not sufficient to guarantee that every subgroup of G is permutable.
When p is odd, then AX has a modular subgroup lattice, which is not always
the case when p = 2, even when A is a permutable subgroup. Thus in passing
from p odd to p = 2, we encounter a lack of symmetry in these products
AX of cyclic subgroups. This is particularly evident right at the start of our
previous work in [3], where in Lemma 2.3(v), with A = 〈a〉, we were able to
show that each element of the derived subgroup of AX has the form [a, x]
for some element x in X. This had far-reaching applications in [3], where
we showed that if G is a p-group, with p odd, and if A = 〈a〉 is a cyclic
permutable subgroup of G, then every element of [A,G] has the form [a, g],
for some element g of G. If G is the dihedral group of order 16, with A the
normal cyclic subgroup of order 8, and if X is a non-central subgroup of order
2, then G = AX. But not every element of [A,G] has the form [a, g].

Thus in order to extend our earlier work [3] to include cyclic permutable
subgroups of even order, we shall adopt an additional hypothesis ((∗) below).
But first we recall the following fundamental result.

Lemma 1.1 ([12, Lemma 5.2.11]). Let A be a cyclic permutable subgroup
of a group G. Then every subgroup of A is also permutable in G.

Throughout, for any finite group G and prime p, we shall use the notation
Gp to denote a Sylow p-subgroup of G. Then when A is a cyclic permutable
subgroup of G, our additional hypothesis is

(∗) X is permutable in A2X, for all cyclic subgroups X of G.

This is automatically satisfied whenever A has odd order, hence our new
results will include those of [3]. Since a permutable subgroup of a finite group
is always subnormal [9], it follows that a cyclic permutable 2-subgroup will be
centralised by all elements of odd order. Thus (∗) is really only required when
X is a 2-group. When A is also a 2-group, then, by (1), AX is metacyclic
and so has a normal subgroup K = 〈k〉, say, with AX/K cyclic. Therefore
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AX = KY with Y = 〈y〉, say, also cyclic. Then (∗) is equivalent to

(2) either AX is quaternion of order 8 or ky = kr with r ≡ 1 mod 4.

For,

(3) if X is also permutable in AX, then AX satisfies (2),

by [8] (see also [12, 5.2.14]). Conversely, (2) is equivalent to AX having a
modular subgroup lattice, by a theorem of Iwasawa ([6]; see also [12, Theorem
2.3.1]); and then (∗) follows from [12, Lemma 2.3.2]. The important point
about (∗) is that dihedral actions cannot occur in the metacyclic groups A2X.

We shall see in Section 5 that even when A is a cyclic permutable sub-
group of a finite group G satisfying (∗), then [A,G] is not always abelian
and A does not always act on it as a group of power automorphisms. So our
results here are best possible. In the absence of (∗), we can still get strong
structure theorems for [A,G] and the A-action, but they are less precise than
Theorems A and B. Thus it is more convenient and appropriate to publish
that work separately. For the present, therefore, we set our sights on proving
the following results.

Theorem A. Let A be a cyclic permutable subgroup of a finite group G
satisfying (∗) and let N be the derived subgroup of [A,G]. Then

(i) N has order at most 2 and lies in A; and
(ii) A acts on [A,G]/N as a group of universal power automorphisms.

Theorem B. Let A be a cyclic permutable subgroup of a finite group G
satisfying (∗). Then [A,G] is abelian if and only if A acts on [A,G] as a group
of power automorphisms.

By a well-known result of Cooper [2], all power automorphisms of a finite
abelian group are universal, i.e., all elements map to the same power.

If H is a subgroup of a group G, then HG is the core and HG the normal
closure of H in G. For any prime p, the set of all primes different from p
is represented by p′. The centre of a group G will be denoted by Z(G) and
the second centre by Z2(G). The intersection of the normalisers of all the
subgroups of G is called the norm of G and is denoted by norm(G). In a
p-group G, Ω(G) is the subgroup generated by the elements of order p, and
Ω2(G) is the subgroup generated by the elements of order at most p2. Finally
Cn denotes a cyclic group of order n. All other notation is standard.

2. Reduction to 2-groups and other preliminary results

We begin by showing that the proofs of Theorems A and B both reduce to
the case when G is a 2-group.
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Theorem 2.1. Let A be a cyclic permutable subgroup of a finite 2-group
G satisfying (∗) and let N be the derived subgroup of [A,G]. Then

(i) N has order at most 2 and lies in A; and
(ii) A acts on [A,G]/N as a group of universal power automorphisms.

Theorem 2.2. Let A be a cyclic permutable subgroup of a finite 2-group
G satisfying (∗). Then [A,G] is abelian if and only if A acts on [A,G] as a
group of power automorphisms.

Proof of Theorem A. Let p be a prime and let P = Ap. Then P is per-
mutable in G, by Lemma 1.1, and P is subnormal in G, by [9]. Therefore
PG = P [P,G] is a p-group. All elements of G, of order relatively prime to
p, normalise P . Also P is contained in each Sylow p-subgroup Gp. We claim
that, when p is odd,

(4) [P,G] is abelian and P acts on it as a group of power automorphisms.

For, if P is normal in G, then (4) is trivially true. So suppose that PG < P .
By [7], P/PG lies in the hypercentre of G/PG. Therefore elements in G, of
order relatively prime to p, centralise P/PG and hence also centralise P . Thus
[P,G] = [P,Gp] and (4) follows from [3, Theorem 2.1].

Since A is subnormal in G, AG = A[A,G] is nilpotent. Let A = P1×· · ·×Ps
be the decomposition of A into its primary components. Then

(5) [A,G] = [P1, G]× · · · × [Ps, G].

Hence, by (4) and Theorem 2.1, N = [A,G]′ has order at most 2. If N 6= 1,
then |A| must be even and we may assume that P1 is the 2-component of A.
By Theorem 2.1, N = [P1, G]′ ≤ P1 ≤ A and (i) follows.

For (ii), again let P = 〈x〉 be any one of the Pi corresponding to the prime
p. Then

(6) P acts as a group of power automorphisms on [A,G]/N.

For, write any element of [A,G] in the form uv, with u a p-element and v a
p′-element. So u lies in [P,G]; and ux = un if p is odd, by (4). If p = 2,
then ux ≡ un mod N , by Theorem 2.1. Also vx = v in both cases. As in
the proof of [3, Theorem 1.1], it follows that there is an integer r such that
(uv)x ≡ (uv)r mod N . Then (6) is true and so (ii) follows. �

Proof of Theorem B. Suppose that [A,G] is abelian. Then Theorem A(ii)
shows that

(7) A acts on [A,G] as a group of power automorphisms.

Conversely, suppose that (7) is true. The factors on the right hand side of
(5), corresponding to odd primes, are abelian, by [3, Theorem 1.1]; while if
one of the factors is a 2-group, then it is abelian, by Theorem 2.2. Therefore
[A,G] is abelian. �
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From now on we can restrict our attention to 2-groups G with a cyclic
permutable subgroup A = 〈a〉 satisfying (∗). Even without the hypothesis
(∗), there is a good analogue to [3, Lemma 2.3].

Lemma 2.3. Let G = AX be a finite 2-group, where A = 〈a〉 and X = 〈x〉
are cyclic subgroups and A is permutable in G. Then

(i) G is metacyclic;
(ii) G′ = 〈[a, x]〉;
(iii) for each integer i, 〈[ai, x]〉 = 〈[a, x]i〉;
(iv) a conjugates [a, x] to a power congruent to 1 modulo 4; and
(v) each element of G′ has the form [ai, x], for some integer i.

Proof. (i) This is (1) above.
(ii) Let N = 〈[a, x]〉. Then N ≤ G′ and N is normal in G, by (i). Since

G/N is abelian, we must have N = G′.
(iii) Without loss of generality we may assume that i ≥ 1. Let 2t be the

highest power of 2 dividing i. So 〈a2t〉 = 〈ai〉. Thus by Lemma 1.1 and (ii)
above,

〈[ai, x]〉 = 〈[a2t , x]〉.
Also 〈[a, x]i〉 = 〈[a, x]2

t〉 and so we may assume that i = 2t. Then, by induc-
tion on t, it suffices to establish the case t = 1. Modulo N2, N is central in
G, so [a2, x] ∈ N2. Conversely, suppose that 〈[a2, x]〉 < N2. So [a, x]2 6= 1.
By (i), there is a cyclic normal subgroup K of G with G/K cyclic. Then we
may assume that N < K. Also we may assume that [a, x]4 = [a2, x] = 1,
and so a2 ∈ Z(G). If [a, x] ∈ A, then [a2, x] = [a, x]2 = 1. Therefore suppose
that [a, x] 6∈ A. Hence A ∩K ≤ N2 ≤ K4. Now a must centralise K/K4 for
A to be permutable in G. Thus a must centralise N (of order 4). Therefore
1 = [a2, x] = [a, x]2, a contradiction. So (iii) follows.

(iv) It is sufficient to assume that N4 = 1 and to show that a centralises N .
Since [a, x, a] ∈ N2, we may assume that |N | = 4. But a cannot invert [a, x],
otherwise [a2, x] = 1 and then [a, x]2 = 1, by (iii). Therefore a centralises N .

(v) This is clear if |G′| = 2. Thus suppose that |G′| = 2n, n ≥ 2, and
proceed by induction on |G′|. By (iii), [a2n−1

, x] has order 2 and lies in Z(G).
By induction, each element of G′ has the form

[ai, x][a2n−1
, x]ε,

where ε = 0 or 1. But when ε = 1, this product is [aj , x], j = i + 2n−1, and
so (v) follows. �

From part (iii) we immediately obtain:

Corollary 2.4. Let A = 〈a〉 be a cyclic permutable subgroup of a finite
2-group G. Then [A,G] = 〈[a, g] | g ∈ G〉.
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Our objective is to find the structure of AG when A = 〈a〉 is a cyclic
permutable subgroup of a finite 2-group G. When G is a p-group with p an
odd prime, then, as we proved in [3], each element of [A,G] has the form
[a, g]. This is not the case when p = 2, as is shown by taking G to be the
dihedral group of order 16 and A the normal cyclic subgroup of order 8. There,
however, each element of [A,G] has the form [ai, g], and this would have been
sufficient, had it been generally true, to prove that [A,G] is always abelian
with A acting on it as a group of power automorphisms. But we shall see in
Section 5 that this is not the case, even when (∗) is satisfied. Nevertheless
the key to finding the structure of AG is to get information about the form
of the elements of [A,G] in terms of simple commutators. The subgroup A2

will play a vital rôle and our starting point is the following.

Lemma 2.5. Let A be a cyclic permutable subgroup of a finite 2-group G.
Then

(i) [A2, G] = [A,G]2.
If in addition (∗) is satisfied, then

(ii) [A2, G] = [A,G2].

Proof. Let A = 〈a〉. For each g ∈ G, Lemma 2.3(iii) gives 〈[a2, g]〉 =
〈[a, g]2〉. Thus [A2, G] ≤ [A,G]2 (using Corollary 2.4). Conversely, we may
assume that [A2, G] = 1. Then [A,G] is generated by commutators [a, g] of
order at most 2 and centralised by a, by Lemma 2.3(iv). Therefore [A,G]
is centralised by A and hence also by AG. Thus [A,G] is abelian and even
elementary. So [A,G]2 = 1 and (i) follows.

Now we suppose that (∗) is satisfied. Assume first that [A2, G] = 1. Then
by Lemma 2.3(iii) and (∗), for each g ∈ G we have 〈[a, g2]〉 = 〈[a, g]2〉 =
〈[a2, g]〉 = 1. Therefore [A,G2] = 1. Hence [A2, G] ≥ [A,G2]. Conversely,
[A2, G] is generated by cyclic subgroups 〈[a2, g]〉 = 〈[a, g2]〉 ≤ [A,G2]. Hence
[A2, G] ≤ [A,G2] and (ii) follows. �

Remark. Again the dihedral group of order 16 shows that (ii) can fail if
(∗) is not satisfied.

Let A be a permutable subgroup of prime order p in a group G. In [12,
Theorem 5.2.9], it is shown that AG is elementary abelian. Moreover, if A
is not normal in G, then [A,G] lies in Z(G). For the case p = 2, there is a
better result.

Lemma 2.6. Let A be a cyclic permutable subgroup of order 2 or 4 in a
finite group G. Then

(i) AG is abelian, elementary if |A| = 2 and of exponent 4 if |A| = 4.
If in addition (∗) holds, then



EMBEDDING OF A CYCLIC PERMUTABLE SUBGROUP IN A FINITE GROUP 95

(ii) AG ≤ norm(G) ≤ Z2(G); and
(iii) [A,G] ≤ Z(G).

Proof. Let A = 〈a〉. Of course the second inclusion in (ii) is Schenkman’s
result [11]. If |A| = 2, then [12, Theorem 5.2.9] and easy arguments suffice.
Therefore suppose that |A| = 4. Since elements of odd order centralise A, we
may assume that G is a 2-group.

(i) By Lemma 1.1, A2 is permutable in G and so again Schmidt’s result
shows that AG has exponent 4. Let g ∈ G. By Lemma 2.3(iv), a centralises
[a, g]. It follows that a commutes with all its conjugates and this proves (i).

(ii) Let X be a cyclic subgroup of G. To show that A normalises X, we
may assume that A ∩X = 1. Put X1 = Ω(X). Then AX1 is a subgroup and
so X1 normalises A. By (∗), AX1 is abelian and therefore X1 is normal in
AX. By induction on |X|, we may assume that A normalises X modulo X1.
Thus A normalises X and (ii) follows.

(iii) This is an immediate consequence of (ii). �

Another application of Schmidt’s results gives us a particularly useful ex-
pression for elements of [A,G].

Lemma 2.7. Let A = 〈a〉 be a cyclic permutable subgroup of a finite 2-
group G satisfying (∗). Then each element of [A,G] has the form ai[a, g], for
some integer i and element g in G.

Proof. We proceed by induction on |G|. Let A1 = Ω(A) and suppose first
that A1 is normal in G. By induction, each element of [A,G] has the form
ai[a, g] modulo A1 and therefore has the required form in G. Now suppose
that AG = 1. By Lemma 1.1, A1 is permutable in G and so, by Lemma 2.6,
[A1, G] ≤ Z(G). It follows from Lemma 2.3(v) (and (∗)) that there is a central
element [a, g1] of order 2, for some g1 ∈ G. Therefore, again by induction,
each element of [A,G] has the form ai[a, g] or ai[a, g][a, g1] = ai[a, g1g], as
required. �

For elements in [A2, G], it turns out that we can take i = 0 above, and this
is one of our key results.

Lemma 2.8. Let A = 〈a〉 be a cyclic permutable subgroup of a finite 2-
group G satisfying (∗). Then each element of [A2, G] has the form [a, u],
where u ∈ G2.

Proof. By Lemma 1.1, A2 is permutable in G, so if |A| ≤ 8, then [A2, G] ≤
Z(G), by Lemma 2.6(iii). Thus, by Lemma 2.5(ii), [A2, G] is generated by
central elements of the form [a, u] with u ∈ G2. But products of such elements
have the same form, as required.
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Therefore suppose that |A| ≥ 16. We proceed by induction on |A|. Thus
we may assume that each element w of [A4, G] has the form [a2, u1], with
u1 ∈ G2. Since

w ∈ (A2〈u1〉)′ ≤ (A〈u1〉)′,
we have w = [a, ui1], for some integer i, again by Lemma 2.3 and (∗). Here
ui1 ∈ G2. Also [A4, G] C G and so there is a central series of G passing through
[A4, G]. Therefore, using the identity

(8) [a, xy] = [a, y][a, x]y,

a simple induction allows us to assume that

(9) [A4, G] = 1.

Then it follows, from Lemma 2.3(iii), that |[a, g]| ≤ 4, for all g in G. Thus a
centralises [a, g], by Lemma 2.3(iv), and hence A centralises [A,G]. Then AG

also centralises [A,G] and we see that

(10) [A,G] is abelian.

In particular,

(11) [A,G] has exponent at most 4.

Let |A| = 2n, n ≥ 4. From (9), A4 C G and therefore, by Lemma 2.6(iii),

[A,G,G] ≤ A4 ∩ [A,G].

Thus, by (11),

(12) [A,G,G] ≤ Ω2(A).

Let x, y ∈ G. Then

[a, x2, y] = [[a, x]2, y] (by Lemma 2.3(iii) and (∗))
= [a, x, y]2 (by (10))

∈ Ω(A) (by (12))(13)

≤ Z(G) (by (9)).(14)

Therefore [a, x2, y2] = [a, x2, y]2 = 1, by (14) and (13), respectively.
It follows that [a, x2, G2] = 1 and so [a, g2

1 . . . g
2
n] = [a, g2

1 ] . . . [a, g2
n], for all

g1, . . . , gn in G. Thus [A,G2] is generated by elements of the form [a, g2] and
therefore each element of [A,G2] has this form. But [A2, G] = [A,G2], by
Lemma 2.5(ii), and so the proof is complete. �

Since ai in the statement of Lemma 2.7 is in [A,G], we see that if A ∩
[A,G] = 1, then each element of [A,G] has the form [a, g]. In this case we
can easily show that [A,G] is abelian with A acting on it as a group of power
automorphisms.
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Lemma 2.9. Let A = 〈a〉 be a cyclic permutable subgroup of a finite 2-
group G such that each element of [A,G] has the form [a, g], for some element
g in G. Then [A,G] is abelian and A acts on it as a group of power automor-
phisms.

Proof. By Lemma 2.3(ii), A normalises every subgroup of [A,G] and there-
fore so also does AG (≥ [A,G]). Thus by a famous result of Dedekind [4] and
Baer [1], [A,G] is either abelian or isomorphic to a direct product of the
quaternion group of order 8 and an elementary abelian 2-group (see also [12,
Theorem 2.3.12]). In the latter case, each element [a, g] has order at most 4
and so it is centralised by a, by Lemma 2.3(iv). Then A centralises [A,G] and
hence AG does the same. But this implies that [A,G] is abelian, a contradic-
tion. The lemma follows. �

Remark. Of course A acts as a group of universal power automorphisms
in Lemma 2.9, by Cooper’s result [2].

If A ∩ [A,G] = 1 in Lemma 2.7, then the hypotheses of Lemma 2.9 are
satisfied and we have [A,G] abelian with A acting as a group of power au-
tomorphisms. It follows that we have to investigate the case A ∩ [A,G] = B
(say) 6= 1. If G 6= 1, then clearly B < A. In fact, the case |A : B| = 2 occurs
very rarely, as we now see.

Lemma 2.10. Let A be a cyclic permutable subgroup of a finite 2-group G
satisfying (∗) and suppose that A ∩ [A,G] = A2. Then

(i) A2 C G; and
(ii) |A| ≤ 4.

Proof. (i) We proceed by induction on |A|. If |A| ≤ 4, then [A,G] ≤ Z(G),
by Lemma 2.6. Then A2 C G. Therefore suppose that |A| ≥ 8. Let N be the
normal closure of Ω(A) in G. By induction, A2N C G. But

N = Ω(A)[Ω(A), G]

and [Ω(A), G] is elementary abelian and central in G, by Lemma 2.6. There-
fore

(A2N)2 = (A2[Ω(A), G])2 = A4 C G.

But modulo A4, A has order 4 and so A2/A4 C G/A4 by the above. Therefore
A2 C G.

(ii) Let A = 〈a〉. By Lemma 2.6(iii), [A,G,G] ≤ (A4)G = A4, by (i).
Thus, modulo A4, the elements of [A,G] have the form [a, g]. In particular,
a2 = [a, g]a4i, for some element g in G and integer i. Therefore a2 = [a, x],
for some x in G, by Lemma 2.3(v) and (∗). Hence ax = a3. If |A| ≥ 8, then
a2 6∈ 〈x〉 = X, say. Thus A∩X ≤ A4 and so AX/A4X2 is the dihedral group
of order 8, contradicting (∗). Therefore |A| ≤ 4. �
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In Lemma 2.8 we deduced that [A,G] had exponent at most 4 from the
facts that all commutators [a, g] had order at most 4 and [A,G] was abelian
(see (11), (9) and (10), respectively). In fact, (10) was not really required
there. Rather (11) is a consequence of (9) for more general reasons, which we
now present (and will require later).

Lemma 2.11. Let A = 〈a〉 be a cyclic permutable subgroup of a finite 2-
group G and let [A,G] have exponent 2n. Then there is a commutator [a, g]
of order 2n.

Proof. We proceed by induction on |[A,G]|. Let the maximum order of an
element of the form [a, g] be 2m. So m ≤ n and we may assume that m ≥ 1.
Let N = [A2m−1

, G]. Then, by Lemma 2.3, N is generated by elements of
order 2 and centralised by A. Therefore AG centralises N and hence N is
elementary abelian. By induction [A,G]/N has exponent 2m−1 and so [A,G]
has exponent at most 2m. Then n ≤ m and therefore n = m, as required. �

3. The structure of AG

In this section we shall find the precise structure of [A,G] and the way in
which A acts (as a cyclic permutable subgroup of a finite 2-group satisfying
(∗)). Already from the previous section we have sufficient information to give
a good global picture of what is going on. Thus let A = 〈a〉 and assume the
hypotheses of Theorems 2.1 and 2.2. Then Lemmas 2.3 and 2.8 show that A
normalises every cyclic and hence every subgroup of [A2, G]. Therefore AG

does the same and so [A2, G] has all its subgroups normal. As in the proof of
Lemma 2.9, we see that

[A2, G] is abelian.
Since power automorphisms of finite abelian groups are universal, it follows
that a induces by conjugation a universal power automorphism of [A2, G],
i.e., there is a positive integer r such that a conjugates each element of [A2, G]
to its rth power. Let u ∈ [A2, G] and g ∈ G. Then u[a,g] = ua

−1g−1ag =
((ua

−1g−1
)r)g = (ur)a

−1
= u. Thus

(15) [A2, G] ≤ Z([A,G]).

By Lemma 2.3(iii), [A,G]/[A2, G] = B (say) is generated by elements of
order at most 2, all centralised by A. Thus B is centralised by A and therefore
by AG. It follows that B is elementary abelian. Hence, by (15), we have

[A,G] has nilpotency class at most 2.

Therefore [A,G]′ is elementary abelian. Summarising these results, we have:

Lemma 3.1. Let A be a cyclic permutable subgroup of a finite 2-group G
satisfying (∗). Then
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(i) [A2, G] is abelian and A acts on it as a group of power automorphisms;
(ii) [A2, G] ≤ Z([A,G]);
(iii) [A,G] has class at most 2; and
(iv) [A,G]′ is elementary abelian.

Suppose that A is a cyclic permutable subgroup of a finite p-group G. We
know that when p is odd, [A,G] is abelian and A acts on it as a group of
power automorphisms. But we shall see in Section 5 (Example 5.2) that there
is a group G of order 217 with a cyclic permutable subgroup A of order 27

and satisfying (∗) such that [A,G] is not abelian. In that example, [A,G]′ has
order 2. Of course Theorem A shows that [A,G]′ always has order at most
2 when A is a cyclic permutable subgroup of a finite group G satisfying (∗).
The key result now in proving Theorem A is the following.

Lemma 3.2. Let A = 〈a〉 be a cyclic permutable subgroup of a finite 2-
group G satisfying (∗). Let [A,G] have exponent 2n (n ≥ 1) and let x, y ∈ G.
Then there are integers r and s congruent to 1 modulo 4 such that [a, x]a =
[a, x]r, [a, y]a = [a, y]s and r ≡ s modulo 2n−1. In particular, all commutators
of the form [a, g] of order at most 2n−1 map under conjugation by a to the
same power.

Proof. We may assume that n ≥ 3, otherwise a centralises [A,G] and we
can take r = s = 1. By Lemma 2.11, there is an element g ∈ G such that
|[a, g]| = 2n. Let [a, g]a = [a, g]q. By Lemma 2.3(iv), q ≡ 1 mod 4. Let
|[a, x]| = 2m, so m ≤ n, and let [a, x]a = [a, x]r, with r ≡ 1 mod 4. We show,
by induction on m, that whenever m < n, then

(16) r ≡ q mod 2m.

If m ≤ 2, then certainly (16) is true. Therefore suppose that m ≥ 3 and that
(16) holds for smaller values of m. Put u = [a, g]2

n−m
. Then u belongs to

[A,G]2 = [A2, G] (by Lemma 2.5) and u has order 2m.
Since there is a central series of G passing through [A2, G], it follows from

Lemma 2.8, the commutator identity (8) and a simple induction argument,
that every element of the coset [A2, G][a, x] has the form [a, h], for some
element h of G. Therefore we may assume that

(17) u[a, x] = [a, h].

Here |[a, h]| ≤ 2m, because u and [a, x] both have order 2m and [A,G] has
class ≤ 2 with [A,G]′ elementary abelian (Lemma 3.1).

Replacing x by x2, we see by induction that r ≡ q mod 2m−1. Thus r =
q + k2m−1, for some integer k. We may assume that k is odd, otherwise (16)
follows. Therefore

(18) r ≡ q + 2m−1 mod 2m.
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Let [a, h]a = [a, h]t. If |[a, h]| < 2m, then induction gives t ≡ q mod |[a, h]|
and we can take t = q. On the other hand, if |[a, h]| = 2m, then the argument
above shows that t ≡ q mod 2m−1 and t = q + `2m−1. Either ` is even,
in which case again we can take t = q; or ` is odd, and then we can take
t = q + 2m−1. However, if t = q, then since ua = uq, (17) and Lemma 3.1
show that a conjugates [a, x] to its qth power, contradicting (18). Similarly
if t = q + 2m−1, then in the same way we see that a conjugates u to its
(q + 2m−1)-th power, which is not the case. Therefore the induction goes
through and (16) is true.

The lemma now follows if either |[a, x]| < 2n or |[a, y]| < 2n. Therefore
suppose that |[a, x]| = |[a, y]| = 2n. By Lemma 3.1, a conjugates [a, x]2 and
[a, y]2 to the same power, because they both lie in [A2, G] (= [A,G]2), on
which a acts as a universal power automorphism. Thus if [a, x]a = [a, x]r

and [a, y]a = [a, y]s, then r ≡ s mod 2n−1 and the lemma follows in this case
also. �

We shall need another result about the form of elements in [A,G], this time
without the hypothesis (∗).

Lemma 3.3. Let A = 〈a〉 be a cyclic permutable subgroup of a finite 2-
group G = 〈a, x, y〉. Then

(19) [A,G] = (A ∩ [A,G])〈[a, x]〉〈[a, y]〉.

Proof. We argue by induction on |G|. Clearly we may assume that [A,G] 6=
1. Let N be a minimal normal subgroup of G lying in A or in [A,G]. By
induction

(20) [A,G]N = N(A ∩ [A,G])〈[a, x]〉〈[a, y]〉.

Let A1 = Ω(A) and suppose that A1 C G. In this case we can take N = A1

in (20). If N ≤ [A,G], then N ≤ A ∩ [A,G] and (20) becomes (19). On the
other hand, if N ∩ [A,G] = 1, then intersecting both sides of (20) with [A,G]
gives (19).

Finally suppose that AG = 1. Then without loss of generality L = [A1, 〈x〉]
6= 1 and by Lemma 2.3(iii) and [12, Theorem 5.2.9], L is a central subgroup
of order 2 in G. (Note that we cannot use Lemma 2.6(iii) here, because we
are not assuming that (∗) is satisfied.) So we can take N = L in (20) and
then N ≤ 〈[a, x]〉. Again (20) becomes (19) and we have the result. �

Remark. Of course Lemma 3.3 extends naturally to the general case in
which G is generated by a and any number of other elements. Also it is not
necessary for G to be a 2-group. But in proving Theorem 2.2 we reduce to
the case covered by Lemma 3.3 and so we restrict to that notationally simpler
situation here.
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In the proof of Theorem 2.1 we shall need the extension of Lemma 2.5 to
powers other than the square. Care has to be taken here, because given a
group G and integers m and n, Gmn is smaller than (Gm)n in general. For
example, the Burnside group B of exponent 4 generated by 2 elements has
order 212 and B2 also has exponent 4. In our case we can avoid this difficulty.
Again we focus on our particular needs.

Lemma 3.4. Let H be a finite 2-group of class at most 2 and suppose
that H ′ has exponent at most 2. Let m and n be integer powers of 2. Then
(Hm)n = Hmn.

Proof. We may assume that m,n ≥ 2. Certainly Hmn ≤ (Hm)n. For the
reverse inclusion, it suffices to show that xn ∈ Hmn for each element x ∈ Hm.
We have

x = hm1 . . . hm` ,

where each hi ∈ H. So x = (h1 . . . h`)mu, for some u ∈ H ′. Put h = h1 . . . h`.
Thus xn = (hmu)n = hmnun, since u ∈ Z(H). Therefore xn = hmn, since
u2 = 1, and so xn ∈ Hmn, as required. �

4. Proofs of the main results

We establish the second of our main theorems first.

Proof of Theorem 2.2. Here G is a finite 2-group and A = 〈a〉 is a cyclic
permutable subgroup satisfying (∗). We suppose that the element a acts on
[A,G] as a power automorphism. Then A normalises every subgroup of [A,G]
and therefore so also does AG. As in the proof of Lemma 2.9, it follows that
[A,G] is abelian.

Conversely, suppose that [A,G] is abelian. It is sufficient to show that a
conjugates any two commutators [a, x] and [a, y] to the same power. For then
a will conjugate all commutators [a, g] to the same power and a will act as a
power automorphism on [A,G]. Thus we may assume that

G = 〈a, x, y〉.

Let [A,G] have exponent 2n. Since [A,G] = 〈[a, x], [a, y]〉G, we may assume
without loss of generality that |[a, x]| = 2n. Suppose that |[a, y]| < 2n. By
Lemma 3.2 there are integers r and s such that [a, x]a = [a, x]r and [a, y]a =
[a, y]s and r ≡ s mod 2n−1. But then [a, y]s = [a, y]r and we are finished.
Therefore suppose that |[a, x]| = |[a, y]| = 2n.

Put B = A ∩ [A,G]. If |B| ≤ 4, then by Lemma 2.7, each element u of
[A,G] has the form ai[a, g], with |ai| ≤ 4. But a conjugates [a, g] to its kth
power, where k ≡ 1 mod 4, by Lemma 2.3(iv). Thus a conjugates u to its
kth power, i.e., a acts as a power automorphism on [A,G]. Therefore we may
assume that |B| ≥ 8.
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By Lemma 2.6(iii),

[A,G,G] ≤ (A4)G ∩ [A,G] = A4[A4, G] ∩ [A,G]

= B[A4, G] C G,(21)

since B = A ∩ [A,G] = A4 ∩ [A,G], by Lemma 2.10(ii). We claim that we
may assume that

(22) [A,G,G] is not contained in B2[A4, G] = K,

say. For K ≤ [A2, G], by Lemma 2.5(i). So if (22) is false, then every element
of [A,G,G] has the form [a, u], where u ∈ G2, by Lemma 2.8. However, there
is a central series of G passing through [A,G,G]; and modulo [A,G,G] each
element of [A,G] has the form [a, g] with g ∈ G. Then a simple induction
using (8) shows that every element of [A,G] has the form [a, g]. Therefore a
induces a power automorphism on [A,G], necessarily universal by [2]. Thus
we may assume that (22) holds.

Put X = 〈[a, x]〉 and Y = 〈[a, y]〉. By Lemma 3.3, [A,G] = BXY . There-
fore

[A,G,G] = [BXY,G] = [B,G][X,G][Y,G] ≤ [A4, G][X,G][Y,G],

since B ≤ A4. By (22) we may assume, without loss of generality, that

(23) [X,G] is not contained in K.

Note that K = B2[A4, G] = (B[A4, G])2[A4, G] C G, by (21). Now by Lemma
2.3(iv) and (∗), [a, x, a] and [a, x, x] both belong to X4 = 〈[a4, x]〉 ≤ [A4, G] ≤
K. Therefore by (23) we must have

(24) [a, x, y] 6∈ K.
Let [a, x]a = [a, x]r. Then since [A,G] is abelian, we have

(25) [a, x, y]a = [[a, x]r, y[y, a]] = [a, x, y]r.

Also, by (21), (24) and Lemma 2.8, there is a generator b of B such that

(26) [a, x, y] = b[a, u],

where u ∈ G2. Let [a, u]a = [a, u]s. By Lemma 3.2, r and s can be chosen
so that r ≡ s modulo 2n−1. But [a, u] ∈ [A,G2] = [A2, G], and so |[a, u]| ≤
2n−1, by Lemma 2.3(iii). Therefore [a, u]a = [a, u]r. Then by (25) and (26),
b[a, u]a = (b[a, u])r, i.e., b[a, u]r = br[a, u]r and so

(27) r ≡ 1 mod |B|.
We distinguish 2 cases.

Suppose that |B| < 2n. By Lemma 2.7, each element of [A,G] has the
form c[a, g], where c ∈ B. Let [a, g]a = [a, g]t. Since r is unique modulo
2n (= |[a, x]|), Lemma 3.2 shows that we can choose t ≡ r mod 2n−1 and
so ct = cr = c, by (27). Therefore (c[a, g])a = c[a, g]t = (c[a, g])t. Thus a
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conjugates each element of [A,G] to a power and so acts as a universal power
automorphism on [A,G], as required.

Suppose that |B| = 2n. In this case it follows from (27) that [a, x]a = [a, x].
We must show that a also centralises [a, y]. Again we distinguish 2 cases.

(i) Suppose that w = [x, y, a] 6∈ K. By the Three Subgroup Lemma (see [10,
5.1.10]), w ∈ [A,G,G] ≤ B[A4, G] (by (21)) and so w = b′v, where B = 〈b′〉
and v ∈ [A4, G]. But [x, y] ∈ G2 and therefore

w ∈ [A,G2] = [A2, G],

(by Lemma 2.5) of exponent 2n−1. Also |v| ≤ 2n−2 and hence |b′| ≤ 2n−1, a
contradiction.

(ii) Suppose that w ∈ K. By (24) and the Three Subgroup Lemma, we
must have [a, y, x] 6∈ K. Thus [Y,G] is not contained in K and we may repeat
the argument from (23) with x and y interchanged. Then we deduce that a
centralises [a, y] as required. This completes the proof of Theorem 2.2. �

Now we can prove our main structure theorem.

Proof of Theorem 2.1. We have A = 〈a〉, a cyclic permutable subgroup
of a finite 2-group G satisfying (∗), and N = [A,G]′. We must show that
N ≤ Ω(A) and that a acts on [A,G]/N as a power automorphism.

Let [A,G] have exponent 2n. If n ≤ 2, then A centralises [A,G], by Lemma
2.3(iv). So AG does the same. Therefore N = 1 and the theorem is true. Thus
we may suppose that n ≥ 3.

Let W = [A,G]2
n−1

. By Lemma 3.1, H = [A,G] satisfies the hypotheses
of Lemma 3.4. Therefore by Lemma 2.5(i), W = [A2n−1

, G]. By Lemma
3.2, there is an integer r ≡ 1 mod 4 such that a conjugates each commutator
[a, g] to its rth power modulo W . But H/W has class at most 2 and derived
subgroup elementary abelian, by Lemma 3.1, and hence a conjugates each
element of H/W to its rth power. In the usual way we deduce that H/W
has all its subgroups normal and is therefore abelian, as in Lemma 2.9. So we
have proved that

(28) H/W is abelian with a conjugating each element to its rth power.

Suppose that A ∩W = 1. In this case, |A ∩ H| = 2m with m ≤ n − 1.
By (28), r ≡ 1 mod 2m. Let g ∈ G and [a, g]a = [a, g]s. By Lemma 3.2,
we can choose s ≡ r mod 2n−1 (since r is unique modulo 2n−1) and hence
s ≡ 1 mod 2m. Therefore a conjugates each element of the form ai[a, g] in H
to its sth power. Then by Lemma 2.7, A normalises every subgroup of H and
we deduce as usual that

(29) [A,G] is abelian with a acting on it as a power automorphism.

To complete the proof we distinguish 2 cases.
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(i) Suppose that AG = 1. Since [a, g]2
n

= 1 for all g ∈ G, we have [a2n , g] =
1 for all g, by Lemma 2.3(iii), and so a2n = 1. Thus by Lemma 2.11, |A| = 2n.
But by Lemma 2.6(iii) applied to A2n−1

, W ≤ Z(G) and so A∩W = 1. Then
(29) holds and the theorem is true.

(ii) Suppose that AG 6= 1. If A ∩H = 1, then A ∩W = 1 and again (29)
follows. Therefore with |A ∩H| = 2m, we may assume that m ≥ 1. Clearly
m ≤ n. Since a centralises A ∩ H, we see from (28) that r ≡ 1 mod 2m−1.
Choose g ∈ G. Then as above, [a, g]a = [a, g]s with s ≡ r mod 2n−1. Hence
s ≡ 1 mod 2m−1. Thus, modulo Ω(A), a conjugates each element of the form
ai[a, g] in H to its sth power. Now in the usual way, using Lemma 2.7, we see
that

H/Ω(A) is abelian with a acting on it as a power automorphism.

Therefore N = H ′ ≤ Ω(A) as required. If N = Ω(A), then we are finished.
On the other hand, if N = 1, then the theorem follows from Theorem 2.2. �

It is clear that the complications in our work arise when B = A∩[A,G] 6= 1.
In many cases, including metacyclic groups and the first two examples of
Section 5, it turns out that B C G. Were this always true, then it would
surely be of some significance. However, we shall find in Example 5.3 that it
is not the case in general. But B always lies in Z([A,G]), as we now see.

Corollary 4.1. Let A be a cyclic permutable subgroup of a finite group
G satisfying (∗). Then A ∩ [A,G] ≤ Z([A,G]).

Proof. Using standard arguments (see [3, Theorem 1.1]) we easily reduce
to the case where G is a 2-group. Let H = [A,G] and B = A ∩H. Then we
must show that [H,B] = 1. By the Three Subgroup Lemma, this will follow
from

(30) [B,G,A] = 1.

Let H have exponent 2n. By Theorem 2.1, we may assume that

N = H ′ = Ω(A) ≤ H2n−1
,

the last inclusion following from Lemma 3.2 (which forces H/H2n−1
to be

abelian). Let |B| = 2m and A = 〈a〉. By Theorem 2.1, a acts on H/N
as a power automorphism, raising each element to the rth power, say, where
r ≡ 1 mod 4 (Lemma 2.3(iv)). Also r ≡ 1 mod 2m−1, since a centralises B/N .
Put B = 〈b〉. Then since Ω(B) = Ω(A) ≤ Z(G), it follows from Lemma 2.3(iii)
that |[b, g]| ≤ 2m−1 for all g belonging to G. Therefore

(31) [b, g]r = [b, g].

Certainly b ∈ 〈a2〉. So [b, g] ∈ 〈[a, g]2〉, by Lemma 2.3(iii). However,

[a, g]a ≡ [a, g]r mod N,
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so [a, g]2a = [a, g]2r and thus [b, g]a = [b, g]r = [b, g], by (31). Therefore (30)
follows. �

5. Examples and counterexamples

We showed in [3] that when G is a p-group, for an odd prime p, with a
cyclic permutable subgroup A = 〈a〉, then every element of [A,G] has the
form [a, g] for some element g in G. Were this always the case when p = 2,
then we could simply have omitted the requirement that A has odd order in
[3, Theorem 1.1]. However, we know that it is not the case, simply by looking
at the dihedral group of order 16. One might have conjectured the weaker
statement each element of [A,G] has the form [ai, g] for some integer i, and
again that would have implied that [A,G] is abelian with a acting as a power
automorphism. But in fact this weaker statement also fails, even when (∗) is
satisfied. Our first example shows this.

Example 5.1. There is a group G of order 210, with a cyclic permutable
subgroup A = 〈a〉 of order 8 satisfying (∗), such that not every element of
[A,G] has the form [ai, g] with i an integer and g an element of G.

Construction. Let X = 〈x〉, Y = 〈y〉 and Z = 〈z〉 be cyclic groups of order
8 and let H be the split extension of Y × Z by X where x acts as follows:

yx = yz, zx = z.

Then x acts faithfully, H has order 29 and H ′ = Z(H) = Z. Now H has an
automorphism of order 2 defined by

(32) x 7−→ x5, y 7−→ y5.

For, H = 〈x, y | x8 = y8 = [x, y, x] = [x, y, y] = 1〉 is a presentation of H and
the map (32) preserves the relations and is surjective. Since z is fixed, there
is an extension G of H by a group of order 2 defined as follows:

G = 〈H, a | a2 = z2, [x, a] = x4, [y, a] = y4〉

(see [13, 9.7.1(ii)]).
Let A = 〈a〉 of order 8. We claim that

(33) A is permutable in G.

For, a2 ∈ Z(G), so we can factor G by A2 and assume that a2 = 1. Now
z2 = 1 and G has class 2, with G′ = 〈x4, y4, z〉 ∼= C2 × C2 × C2. Also a
conjugates x and y to their 5th powers and hence a conjugates every element
of G to its 5th power. Thus (33) is true.

Next we claim that (∗) is satisfied. For, let W = 〈x4, y4, z4〉. Then W is
elementary abelian of order 8 and normal in G. Since G/W has class 2, it
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has exponent 4 and it follows that G has exponent 8. Also [A,G] = W . Let
K = 〈k〉 be a cyclic subgroup of G. We must show that

(34) K is permutable in AK.

If |K : A ∩ K| ≤ 4, then [A,K] ≤ A2K4 = A2, by (33). (Recall that
A2 ≤ Z(G).) Thus K normalises A and so ak = ar with r ≡ 1 mod 4,
since [A,G] is elementary. Then (34) is true. Therefore we may suppose that
A ∩ K = 1 and |K| = 8. By (1), AK is metacyclic and so there is a cyclic
normal subgroup N of order 8 in AK such that AK/N is cyclic of order 8. If
AK = AN , then again AK must have a modular subgroup lattice. Therefore
we may assume that AK = KN = S, say. Thus S′ = [K,N ] = [A,K] of
order ≤ 2 and again (34) follows. This proves that (∗) is satisfied.

Finally, since a2 ∈ Z(G), it suffices to show that a4 (= z4 ∈ [A,G]) cannot
be expressed in the form [a, g] for any element g. Thus let g = aixjykz`. Then

[a, g] = [a, xjyk] = [a, yk][a, xj ]y
k

= y4k(x4j)y
k

.

If k is odd, then [a, g] = y4x4jz4j = y4 or y4x4z4. If k is even, then [a, g] =
x4j = x4 or 1. Thus in no case do we get a4 for [a, g]. �

It follows that there was no hope in the present work of trying to emulate
the approach in [3]. It appears that Lemma 2.8 here is, in some sense, the
best possible result in this direction.

Our second example shows that [A,G] in Theorems A and 2.1 is not abelian
in general.

Example 5.2. There is a group G of order 217 with a cyclic permutable
subgroup A of order 27 satisfying (∗) such that [A,G] is not abelian. By
Theorem A, this implies that [A,G]′ = Ω(A) and A does not act on [A,G] as
a group of power automorphisms.

Construction. Let C = 〈c〉 be a cyclic group of order 27. Then C has an
automorphism of order 25 defined by c 7→ c21. Thus there is a group G1 of
order 212 which is an extension of C by a cyclic group of order 25, presented
by

〈a, c | a128 = 1, a32 = c32, [c, a] = c20〉
(see [13, 9.7.1(ii)]). Let A = 〈a〉 of order 27. Since 21 ≡ 1 mod 4, G1 = AC
has a modular subgroup lattice.

Next we check easily that the map a 7→ a65, c 7→ a64c(= c65) defines an
automorphism of G1 of order 2. Since a32 ∈ Z(G1), the Scott reference above
shows that there is a group

G2 =
〈
a, b1, c | a128 = 1, a32 = b21 = c32,(35)

[c, a] = c20, [a, b1] = [c, b1] = a64
〉
,
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which is an extension of G1 by a group of order 2. So |G2| = 213. Also
G2 = AC〈b1〉 = A〈b1〉C.

By similar routine calculations we see that G2 has an automorphism α
defined by

a 7−→ ab−1
1 , b1 7−→ b1, c 7−→ a80c.

This map preserves the relations of G2 and is surjective. Also

α4 : a 7−→ a65, b1 7−→ b1, c 7−→ a64c,

agreeing with conjugation in G2 by b1. Thus a third application of [13,
9.7.1(ii)] shows that there is a group

G3 = 〈a, b2, c | a128 = 1, a32 = b82 = c32, [c, a] = c20, [a, b2] = b−4
2 , [c, b2] = a16〉,

which is an extension of G2 by a cyclic group of order 4. Here b42 = b1 and
the last two relations of (35) are consequences of the last two relations of the
above presentation of G3. Thus |G3| = 215. Also G3 = A〈b2〉C.

Finally we extend G3 by a cyclic group of order 4 to get our group G as
follows. Routine calculations show that G3 has an automorphism β defined
by

a 7−→ ab−1
2 , b2 7−→ b2, c 7−→ a52b22c.

Also β4 maps a 7→ ab−4
2 , b2 7→ b2, c 7→ ca16, agreeing with conjugation in G3

by b2. Therefore putting b4 = b2, we get a group

(36) G = 〈a, b, c | a128 = 1, a32 = b32 = c32, ba = b5, ca = c21, cb = a52b8c〉,

which is an extension of G3 by a cyclic group of order 4. The last relation in
the presentation of G3 is a consequence of the relations in (36). The group G
has order 217 and this has been confirmed using MAGMA by M. F. Newman,
to whom we are most grateful. MAGMA also showed that G has class 4.
Putting B = 〈b〉, we have G = BA〈b2〉C = ABC. In fact, G is the product of
A, B and C in any order.

We claim that

(37) A is a permutable subgroup of G.

For, AB has a modular subgroup lattice and so, by Lemma 2.3(iii),

〈[a8, b]〉 = 〈[a, b]8〉 = 〈b32〉 = 〈a32〉.

Similarly 〈[a8, c]〉 = 〈c32〉 = 〈a32〉. Therefore A8 C G and in order to establish
(37) we may factor G by A8 and include a8 = 1 as a relation. Then

(38) cb
2

= (a4b8c)b = (ab−4)4b8a4b8c = a8c = c,

since [b4, a] = b16 has order 2 and lies in Z(AB). We claim that

(39) a normalises each cyclic subgroup 〈bicj〉 with power action ≡ 1 mod 4.
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To see this, we first calculate (bicj)2. By (38), if i is even, then bi and cj

commute; while if i is odd, then

(cj)b
i

= (a4b8c)j = a4jb8jcj+16ε,

where ε =
(
j
2

)
. (Note that [a4, c] = c16.) Therefore if i is even, then (bicj)2 =

b2ic2j ; while if i is odd, then

(bicj)2 = a4jb2i+8jc2j+16ε.

We distinguish 4 possibilities.

Case 1. i and j are both odd. Then we have (bicj)2 = a4b2i+8jc2j+16ε

and so (bicj)4 = b4i+16c4j . Then (bicj)20 = b20i+16c20j = b4ic20j = [bicj , a].
Therefore

(40) (bicj)a = (bicj)21.

Case 2. i is odd and j is even. Here (bicj)2 = b2i+8jc2j+16ε and (bicj)4 =
b4ic4j = b4ic20j , since c16j = 1. So

(41) (bicj)a = (bicj)5.

Case 3. i is even and j is odd. Now (bicj)20 = b20ic20j = b4ic20j and we
have (40).

Case 4. i and j are both even. Then (bicj)4 = b4ic4j = b4ic20j and we have
(41).

Thus (39) is true, i.e., modulo A8, A〈bicj〉 is a subgroup with a modular
subgroup lattice and so all its subgroups are permutable. It follows that, for
any integer k,

A〈akbicj〉 ≡ A〈bicj〉 mod A8.

Now passing back to the group G as presented by (36), in which A8 is a normal
subgroup, we see that A〈akbicj〉 is a subgroup and so (37) is true.

Finally we show that (∗) is satisfied, i.e., for all cyclic subgroups X of G,

(42) AX has a modular subgroup lattice.

Certainly AX = K (say) is metacyclic by (1), so there is a cyclic normal
subgroup N of K with K/N cyclic. By (3) we may assume that K = NX.
Thus K ′ ≤ N2 and so if N2 ≤ X, then X C K and again K has a modular
subgroup lattice. Therefore suppose that N2 is not contained in X. In this
case, since we may assume that X is not in N , we have K/X2N4 of order
8 and so A8 ≤ X2N4. But in proving that A is permutable above, we saw
that K/A8 has a modular subgroup lattice and therefore the same is true of
K/X2N4. Thus this quotient is not dihedral. Since it has 2 minimal normal
subgroups, it must be abelian and so K ′ ≤ X2N4 ∩N = N4. Therefore (42)
is true and the construction of Example 5.2 is complete. �
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We observe that [A,G] in the above example is not abelian, since b4 and
c4 both belong to [A,G], while [c4, b4] = c−4(ca16)4 = a64 6= 1. We list other
facts about this group G.

(i) By Theorem 2.1 we have [A,G]′ = A64 of order 2.
(ii) We must have [A,G] 6= {[ai, g] | i an integer, g ∈ G}, otherwise [A,G]

would be abelian.
(iii) The element a does not act on [A,G] as a power automorphism, by

Theorem 2.2.
In this example A∩ [A,G] = B (say) = A16 C G. Similarly in Example 5.1,

with the same notation, B has order 2 and lies in Z(G). In fact, all examples
to which we have so far made reference have B C G. To conclude, we show
that this is not always the case.

Example 5.3. There is a group G of order 210 with a cyclic permutable
subgroup A of order 8 satisfying (∗), such that A∩ [A,G] is not normal in G.

Construction. Let X = 〈x〉 and A = 〈a〉 be cyclic groups of order 32 and
8, respectively, and let H be the split extension of X by A defined as follows:

H = 〈a, x | a8 = x32 = 1, xa = x5〉.
Then H has an automorphism θ defined by a 7→ a5, x 7→ a2x5. We see that
θ4 fixes a and maps x to x17 and this coincides with conjugation in H by a4.
Therefore by [13, 9.7.1(ii)], there is a group

G = 〈a, x, y | a8 = x32 = 1, xa = x5, [a, y] = y4, xy = a2x5, a4 = y4〉.
Here G is an extension of H by a cyclic group of order 4 and |G| = 210. Also
X4 is centralised by y and so X4 C G. Thus A4X4 C G and we must have
[A,G] = A4X4. Put B = A ∩ [A,G]. Then B = A4. But [a4, x] = x16 6= 1
and so B is not normal in G.

We claim that

A is permutable in G and (∗) is satisfied.

First we note that a typical element of G has the form

(43) g = akyixj ,

for suitable integers i, j, k. By routine calculations one shows, using induction
on i, that xy

i

= a2ix4i+1. Then we find that

(44) g4 = aqyrxs,

where q = 4(k+ij), r = 2i(5k+1), s = (8i+2)j5k+16i
(
j5k

2

)
+2j+16(k+ij)j;

and g8 = xt, where t = (16i+ 4)j5k + 4j. To see that A〈g〉 is a subgroup, we
distinguish 3 cases.

Suppose that j is odd. Then 〈g8〉 = X8 C G and modulo X8 we have
A2 central in G. Also modulo A2X8, the derived subgroup of G is X4 and
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therefore G/A2X8 has class 2. Thus ga ≡ akyix5j ≡ g5 mod A2X8 and so
A〈g〉 is a subgroup.

Suppose that j ≡ 2 mod 4. Now g8 = x8j generating X16 (C G). Also
modulo X16, a2 is centralised by x2 and by y and therefore by g. The quotient
〈a, x2, y〉/A2X16 has derived subgroup generated by X8 and thus has class 2.
Then

ga ≡ akyix5j ≡ g5 mod A2X16

and again A〈g〉 is a subgroup.

Suppose that j ≡ 0 mod 4. Let K = 〈a, x4, y〉, so g ∈ K. We have K ′ =
〈a4, x16〉, the 4-group, lying in Z(K). Also a2 ∈ Z(K). Thus ga ≡ akyix5j ≡
g5 mod A2 and again A〈g〉 is a subgroup.

Therefore A is a permutable subgroup of G. It remains to show that (∗)
is satisfied. Let g be given by (43). By (1), A〈g〉 = L, say, is metacyclic and
so there is a cyclic normal subgroup N of L with L/N cyclic. As in Example
5.2, we may assume that L = N〈g〉. We must show that L′ ≤ N4. Therefore
suppose that this is not the case. Then L′ = N2 6= 1. Put M = 〈g〉. By (3),
we may assume that M does not contain N2 (otherwise M C L).

Now M2N4 C L and L/M2N4 ∼= D8, the dihedral group of order 8. So

(45) L/L4 has D8 as an epimorphic image.

Observe that a4 = y4 ∈ L4. Thus

(46) [a, g] = [a, yixj ] = [a, xj ][a, yi][a, yi, xj ] ≡ x−4j+16ij mod L4.

Since yixj ∈ L, putting k = 0 in (44) gives xs ∈ L4, where

s = (8i+ 4)j + 16i
(
j

2

)
+ 16ij.

Thus if j is odd, then x4 ∈ L4 and so L/L4 is abelian, by (46), a contradiction.
If j ≡ 2 mod 4, then (44) gives 〈g4〉 ≡ 〈x8〉 ≡ 〈[a, g]〉 mod L4, by (46). So
again L/L4 is abelian, contradicting (45). Similarly if j ≡ 4 mod 8, then
〈g4〉 ≡ 〈x16〉 ≡ 〈[a, g]〉 mod L4; while if j ≡ 0 mod 8, then [a, g] ∈ L4. Thus
L/L4 is abelian in every case and we conclude that (∗) is satisfied. �
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