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DECREASING DILATATION CAN INCREASE DIMENSION

CHRISTOPHER J. BISHOP

Abstract. We answer a question of Cui and Zinsmeister by construct-
ing a quasiconformal map f of the disk to itself with dilatation µ such
that map corresponding to dilatation 1/2µ, maps the circle to a curve
of dimension > 1.

1. Introduction

In this note we answer a question raised by Cui and Zinsmeister in [10]: is
the set of chord-arc curves starlike in a certain sense? To state their question
more precisely, we need a few definitions. A positive measure ν on the unit
disk, D, is a Carleson measure if there is a C <∞ so that ν(B(x, r)∩D) ≤ Cr
for every ball centered at a point x ∈ T = ∂D. We let

CM(D) =
{
µ ∈ L∞(D) :

|µ(z)|2dxdy
1− |z|

is a Carleson measure
}
.

Suppose G is a Fuchsian group acting on D and let

M(G) =
{
µ ∈ L∞(D) : ‖µ‖∞ < 1 and ∀g ∈ G,µ =

g′

g′
µ ◦ g

}
,

M(G) = M(G) ∩ CM(D).

Note that G1 ⊂ G2 implies M(G2) ⊂ M(G1). When G is trivial (just the
identity) we denote these spaces by M(1) and M(1). If µ ∈M(1) then there
is a quasiconformal map fµ of D to itself, fixing 1,−1, i with dilatation µ,
i.e., fz = µfz. Two elements µ, ν are equivalent if fµ|T = fν |T and we write
µ ∼ ν in this case. Similarly, there is a quasiconformal map fµ of the plane to
itself which has dilatation µ inside D and which is conformal outside D. This
map sends T to some quasicircle Γ = fµ(T). Quasicircles have a geometric
characterization in terms of the Ahlfors 3-point condition (the smaller arc
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between any two points x, y ∈ Γ having diameter bounded by C|x − y|; see
[1]).

The curves Γ corresponding to µ ∈ M(1) have been geometrically charac-
terized in [4], and despite being “almost rectifiable”(e.g., they have tangents
almost everywhere with respect to harmonic measure), they need not be lo-
cally rectifiable and, indeed, may have Hausdorff dimension strictly larger
than 1. However, if µ ∈ M(1) with sufficiently small Carleson norm, then Γ
is rectifiable, indeed, it is a chord-arc curve (i.e., a biLipschitz image of the
circle, characterized by the shorter arc between any two points x, y ∈ Γ having
length bounded by C|x− y|).

In [10] Cui and Zinsmeister ask the following: “Let µ ∈ M(1) be such
that fµ(∂D) is a biLipschitz image of a circle or a line. Is the same true for
ftµ(∂D), 0 < t < 1?” We shall show this is false even if fµ(∂D) is a circle.

Theorem 1.1. There is a convergence group G and a µ ∈M(G) ⊂M(1)
so that fµ maps D to itself, but there is a 0 < t < 1 so that dim(ftµ(T)) > 1.

I thank Michel Zinsmeister for his helpful comments on an earlier draft of
this note, and for many interesting and educational conversations over the
years.

2. The example

A Fuchsian group G is called co-compact if D/G is compact and cofinite
if D/G has finite hyperbolic area. It is called divergence type if

∑
g∈G 1 −

|g(0)| = ∞ and convergence type otherwise. G is called “first kind” if its
limit set (the accumulation set of an orbit) is the whole circle and is called
“second kind” otherwise. We have the inclusions cocompact ⊂ cofinite ⊂
divergence type ⊂ first kind.

If G is a divergence type and µ ∈ M(G) then fµ(T) is either a circle
(or line) or has Hausdorff dimension strictly larger than 1. This is called
Bowen’s dichotomy after Rufus Bowen who proved it in the cocompact case
[8]. In this paper we will only use Bowen’s dichotomy in the cofinite case, [6],
[9], [11]; see [3] for the proof for divergence groups. Astala and Zinsmeister
showed Bowen’s dichotomy fails for all convergence groups [2] (there is always
deformation whose limit set is a rectifiable curve, but not a circle or line). If
G is convergence type and µ ∈ M(G) has compact support modulo G then
µ ∈ CM(G) (e.g., see [7]).

If µ ∈M(G), and G is of the first kind, then Λµ = fµ(T) is the limit set of
the Kleinian group Gµ = fµ ◦G ◦ f−1

µ . We let dim(Gµ) denote the Hausdorff
dimension of Λµ. Given a G and µ ∈ M(G) let G(t) = Gtµ be the Kleinian
group ftµ ◦G ◦ f−1

tµ .
If G is a Kleinian group with N generators and Gn is a sequence of N -

generated Kleinian groups which converges to G algebraically (this means
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that there is a set of generators {g1,n, . . . , gN,n} for Gn which converges to a
set of generators for G), then

lim inf
n→∞

dim(Gn) ≥ dim(G),

i.e., the dimension of the limit set of a Kleinian group is upper semi-continuous
with respect to algebraic convergence. This is proven in [5].

The idea for the example in Theorem 1.1 is as follows. We will choose
a 1-parameter family of Fuchsian groups Gr, r ∈ [0, 1/4], and dilatations
µr ∈M(Gr) so that

(1) G0 is cofinite.
(2) Gr is convergence type for r > 0.
(3) µr has compact support modulo Gr for all r.
(4) For all t ∈ [0, 1], Gr(t) → G0(t) algebraically as r → 0.
(5) µr ∼ 0, i.e., Gr(1) = Gr.
(6) For 0 < t < 1, G0(t) is not conjugate to G0 by Möbius transforma-

tions.
Assume (1)–(6) hold. By (2) and (3) µr ∈ M(Gr) for r > 0. By (1),

(6) and Bowen’s dichotomy dim(G0(t)) > 1 for all 0 < t < 1. By (4) and
upper semi-continuity of dimension, dim(Gr(t)) > 1 if 0 < t < 1 and r is close
enough to 0 (depending on t) and by (5) fµr is the identity map on T. Thus
for any 0 < t < 1, Gr and µr satisfy Theorem 1.1 if r is close enough to zero.

All that remains is to construct groups and dilatations that satisfy (1)–(6).
For 0 < r < 1/4 and 3/4 < s ≤ 1, let

Ωr,s = C \
⋃

n,m∈Z
B

(
1
2

+ n+ is

(
1
2

+m

)
, r

)
,

and Sr,s = Ωr,s/(Z + isZ). See Figure 1. For r = 0, this is a finite area
Riemann surface, a genus one torus with a single puncture, and for r > 0 it
is a torus with a disk removed.

Let Gr,s be the Fuchsian group on the disk which covers Sr,s. For r = 0 this
is a cofinite group and for r > 0 it is a convergence group, so conditions (1)
and (2) hold. Moreover, it is clear that Gr,s → G0,s as r → 0. Also note that
distinct values of s give surfaces S0,s which are not conformally equivalent; if
there were a conformal map between two of them, it would lift to a conformal
map between the respective domains Ω0,s, and since points are removable for
conformal maps, this would extend to a conformal map of the plane (hence
linear) fixing infinitely many points (hence the identity).

Next, supposeW is the stripW = {z = x+iy : |y| < 1/4} = R×[−1/4, 1/4]
and suppose we have a quasiconformal map Φ of W onto itself of the form

Φ(x+ iy) = x+ iϕ(y),(2.1)

for some increasing, piecewise linear, homeomorphism ϕ of [−1/4, 1/4] to
itself. Let µ = µΦ be the dilatation of Φ and assume that tµ is the dilatation
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Figure 1. The domains Ω0,1 and Ωr,1, r > 0 and the
corresponding quotients: a torus with a puncture (cofinite)
and another with a funnel (convergence type).

of a quasiconformal mapping Φt from W into a substrip R×[−η(t), η(t)] of the
form Φt(x+iy) = x+iϕt(y) where ϕt is also a piecewise linear homeomorphism
(and is the identity if t = 0) and

η(t) < 1/4, for 0 < t < 1.(2.2)

We will show later that such a map exists.
Let λ(t) = 3

4 + η(t) and define a quasiconformal map Ψt of the plane to
itself by Ψt(x+ iy) = x+ iψt(y), where ψt(0) = 0 and ψ′t(y) = ϕ′t(y − byc) if
dist(y,Z) < 1/4 and ψ′t(y) = 1 if dist(y,Z) > 1/4. Then Ψ0 is the identity.
For 0 < t < 1, Ψt takes a strip centered on a horizontal line at height n and
width 1/2 and maps it to a horizontal strip at height nλ(t) and width 2η(t).
See the shaded strips in Figure 2. Between these strips the map is conformal
and linear.

The map Ψt is periodic in the sense that

Ψt(x+ iy + n+ im) = Ψt(x+ iy) + n+ imλ(t),

and so it corresponds to a well defined quasiconformal map from Sr,1 to Sr,λ(t).
This map, in turn, lifts to a quasiconformal map between the universal covers
of these surfaces, i.e., to a quasiconformal map fr,t of the unit disk to itself.
Moreover, if µr,t is the dilatation of this map, then µr,t = tµr,1 by construction.

Let µr = µr,1. Clearly µr is compactly supported modulo Gr, so condition
(3) holds. Also note that Gr(t) = fr,t ◦ Gr ◦ f−1

r,t → G0(t) as r → 0, so (4)
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Figure 2. The map Ψ vertically contracts in the shaded
strips and is an isometry elsewhere.

holds. Since Ψ1 preserves Ωr,1 and is isotopic to the identity, fr,1 must be the
identity on T and so (5) holds. Finally, G0(t) is the covering group for S0,λ(t)

which for 0 < t < 1 is not conformally equivalent to S0,1, since λ(t) < 1 for
0 < t < 1. Thus (6) holds. This completes the proof of Theorem 1.1, except
for the construction of the map ϕ.

To simplify notation we will assume W = R× [0, 1] (then just rescale by a
linear map to get the desired mapping). The particular ϕ we will use is very
simple: for a ∈ (0, 2) consider the piecewise linear map given by

ϕ(y) =

{
ay, if 0 ≤ y ≤ 1/2;
(2− a)

(
y − 1

2

)
, if 1/2 ≤ y ≤ 1.

Then ϕ has slope a on (0, 1/2) and slope 2−a on (1/2, 1), so Φ(x, y) = (x, ϕ(y))
is quasiconformal with constant

K = sup
x

max
(
ϕ′,

1
ϕ′

)
= max

(
a,

1
a
, 2− a,

1
2− a

)
= max

(
1
a
,

1
2− a

)
.

If a ∈ (0, 1), then the K = 1/a. If y ∈ (0, 1/2), then the dilatation µ of Φ
is

µ(x, y) =
∂z̄Φ
∂zΦ

=

(
∂
∂x + i ∂

∂y

)
(x+ iϕ(y))(

∂
∂x − i ∂

∂y

)
(x+ iϕ(y))

=
1− a

1 + a
.

If y ∈ (1/2, 1), then a similar computation shows

µ(x, y) =
1− (2− a)
1 + (2− a)

=
a− 1
3− a

.

If 0 < t < 1, then what map Φt has dilatation tµ? It should have the form
(x, y) → (x, ϕt(y)) where ϕt is piecewise linear. For y ∈ (0, 1/2) the slope s
of ϕt satisfies

1− s

1 + s
= t

1− a

1 + a
= b,
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and solving for s gives

s =
1− b

1 + b
=

(1 + a)− (1− a)t
(1 + a) + (1− a)t

.

Similarly, the slope of ϕt on (1/2, 1) is given by
(3− a)− (a− 1)t
(3− a) + (a− 1)t

.

Thus the map ϕt maps the interval [0, 1] to the interval [0, ϕt(1)] where

ϕt(1) =
1
2

[
ϕ′

(
1
4

)
+ ϕ′

(
3
4

)]
=

1
2

[
(1 + a)− (1− a)t
(1 + a) + (1− a)t

+
(3− a)− (a− 1)t
(3− a) + (a− 1)t

]
Setting a = 1/2 gives (15 + t2)/(15 + 2t− t2). This equals 1 when t = 0, 1
and is strictly less than 1 for t ∈ (0, 1), as desired. This completes the proof
of Theorem 1.1.
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