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DECREASING DILATATION CAN INCREASE DIMENSION

CHRISTOPHER J. BISHOP

ABSTRACT. We answer a question of Cui and Zinsmeister by construct-
ing a quasiconformal map f of the disk to itself with dilatation p such
that map corresponding to dilatation 1/2u, maps the circle to a curve
of dimension > 1.

1. Introduction

In this note we answer a question raised by Cui and Zinsmeister in [10]: is
the set of chord-arc curves starlike in a certain sense? To state their question
more precisely, we need a few definitions. A positive measure v on the unit
disk, D, is a Carleson measure if there is a C' < oo so that v(B(z,r)ND) < Cr
for every ball centered at a point x € T = 9D. We let

2)|%dx
CM(D) = {MEL‘X’(D) : W

Suppose G is a Fuchsian group acting on D and let

is a Carleson measure } .

M(©) = {ue 12D): Iulle <1 and ¥y € G = Tpog).
M(G) = M(G) n CM (D).

Note that G; C G2 implies M(G2) C M(Gy1). When G is trivial (just the
identity) we denote these spaces by M (1) and M(1). If € M(1) then there
is a quasiconformal map f* of D to itself, fixing 1,—1,7 with dilatation pu,
ie., f. = pfz. Two elements p, v are equivalent if f#|p = f¥|r and we write
i ~ v in this case. Similarly, there is a quasiconformal map f,, of the plane to
itself which has dilatation p inside D and which is conformal outside D. This
map sends T to some quasicircle I' = f,(T). Quasicircles have a geometric
characterization in terms of the Ahlfors 3-point condition (the smaller arc
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between any two points x,y € T' having diameter bounded by C|z — y|; see
1)).

The curves T' corresponding to p € M(1) have been geometrically charac-
terized in [4], and despite being “almost rectifiable” (e.g., they have tangents
almost everywhere with respect to harmonic measure), they need not be lo-
cally rectifiable and, indeed, may have Hausdorff dimension strictly larger
than 1. However, if u € M(1) with sufficiently small Carleson norm, then T’
is rectifiable, indeed, it is a chord-arc curve (i.e., a biLipschitz image of the
circle, characterized by the shorter arc between any two points x,y € I" having
length bounded by C|z — y]).

In [10] Cui and Zinsmeister ask the following: “Let p € M(1) be such
that f,,(OD) is a biLipschitz image of a circle or a line. Is the same true for
feu(0D), 0 < t < 177 We shall show this is false even if f,(0D) is a circle.

THEOREM 1.1.  There is a convergence group G and a p € M(G) C M(1)
so that f, maps D to itself, but there is a 0 < t <1 so that dim(f;,(T)) > 1.

I thank Michel Zinsmeister for his helpful comments on an earlier draft of
this note, and for many interesting and educational conversations over the
years.

2. The example

A Fuchsian group G is called co-compact if D/G is compact and cofinite
if D/G has finite hyperbolic area. It is called divergence type if decl -
|g(0)] = oo and convergence type otherwise. G is called “first kind” if its
limit set (the accumulation set of an orbit) is the whole circle and is called
“second kind” otherwise. We have the inclusions cocompact C cofinite C
divergence type C first kind.

If G is a divergence type and p € M(G) then f,(T) is either a circle
(or line) or has Hausdorff dimension strictly larger than 1. This is called
Bowen’s dichotomy after Rufus Bowen who proved it in the cocompact case
[8]. In this paper we will only use Bowen’s dichotomy in the cofinite case, [6],
[9], [11]; see [3] for the proof for divergence groups. Astala and Zinsmeister
showed Bowen’s dichotomy fails for all convergence groups [2] (there is always
deformation whose limit set is a rectifiable curve, but not a circle or line). If
G is convergence type and p € M(G) has compact support modulo G then
uw € CM(G) (e.g., see [7]).

If p € M(G), and G is of the first kind, then A, = f,(T) is the limit set of
the Kleinian group G, = f,0G o fljl. We let dim(G),) denote the Hausdorft
dimension of A,. Given a G and p € M(G) let G(t) = G, be the Kleinian
group fy 0 G o firl.

If G is a Kleinian group with N generators and G, is a sequence of N-
generated Kleinian groups which converges to G algebraically (this means
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that there is a set of generators {¢g1 n,...,9gnn} for G, which converges to a
set of generators for GG), then

linrriigf dim(G,) > dim(G),
i.e., the dimension of the limit set of a Kleinian group is upper semi-continuous
with respect to algebraic convergence. This is proven in [5].

The idea for the example in Theorem 1.1 is as follows. We will choose
a l-parameter family of Fuchsian groups G,, r € [0,1/4], and dilatations
tr € M(G,) so that

(1) Gy is cofinite.

(2) G, is convergence type for r > 0.

(3) p, has compact support modulo G, for all r.

(4) For all ¢t € [0,1], G, (t) — Go(t) algebraically as r — 0.

(5) pur ~0,ie, G.(1) =G,.

(6) For 0 < t < 1, Go(t) is not conjugate to Gy by Mdbius transforma-
tions.

Assume (1)-(6) hold. By (2) and (3) u, € M(G,) for r > 0. By (1),
(6) and Bowen’s dichotomy dim(Gy(t)) > 1 for all 0 < t < 1. By (4) and
upper semi-continuity of dimension, dim(G,(¢t)) > 1if 0 < ¢ < 1 and r is close
enough to 0 (depending on t) and by (5) f,, is the identity map on T. Thus
for any 0 <t < 1, G, and p, satisfy Theorem 1.1 if r is close enough to zero.

All that remains is to construct groups and dilatations that satisfy (1)—(6).
For 0 <r <1/4and 3/4 <s<1,let

Qs =C\ U B <;+n+is <;+m> ,r) ,
n,me”Z

and Sy s = Q,s/(Z + isZ). See Figure 1. For r = 0, this is a finite area
Riemann surface, a genus one torus with a single puncture, and for r > 0 it
is a torus with a disk removed.

Let G s be the Fuchsian group on the disk which covers S, ;. For r = 0 this
is a cofinite group and for r > 0 it is a convergence group, so conditions (1)
and (2) hold. Moreover, it is clear that G, s — Go s as r — 0. Also note that
distinct values of s give surfaces Sy s which are not conformally equivalent; if
there were a conformal map between two of them, it would lift to a conformal
map between the respective domains €y 5, and since points are removable for
conformal maps, this would extend to a conformal map of the plane (hence
linear) fixing infinitely many points (hence the identity).

Next, suppose W is the strip W = {z = a4y : |y| < 1/4} = Rx[-1/4,1/4]
and suppose we have a quasiconformal map ® of W onto itself of the form

(2.1) O(z+1y) =z +ip(y),

for some increasing, piecewise linear, homeomorphism ¢ of [—1/4,1/4] to
itself. Let u = ug be the dilatation of ® and assume that ¢ty is the dilatation
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FIGURE 1. The domains 1 and €21, » > 0 and the
corresponding quotients: a torus with a puncture (cofinite)
and another with a funnel (convergence type).

of a quasiconformal mapping ®; from W into a substrip R x [—n(¢), n(¢)] of the
form @ (x+iy) = z+ip:(y) where ¢, is also a piecewise linear homeomorphism
(and is the identity if ¢ = 0) and

(2.2) n(t) <1/4, for 0 <t < 1.

We will show later that such a map exists.

Let A(t) = 2 4+ n(t) and define a quasiconformal map ¥, of the plane to
itself by W¢(z +iy) = @ + ih(y), where 1(0) = 0 and ¥(y) = ¢;(y — y]) if
dist(y,Z) < 1/4 and ¥;(y) = 1 if dist(y,Z) > 1/4. Then ¥, is the identity.
For 0 <t < 1, U, takes a strip centered on a horizontal line at height n and
width 1/2 and maps it to a horizontal strip at height nA(t) and width 2n(¢).
See the shaded strips in Figure 2. Between these strips the map is conformal
and linear.

The map ¥, is periodic in the sense that

Uy (z+iy+n+im) = U(x +iy) + n+imA(¢),

and so it corresponds to a well defined quasiconformal map from S 1 to S, x¢)-
This map, in turn, lifts to a quasiconformal map between the universal covers
of these surfaces, i.e., to a quasiconformal map f,¢ of the unit disk to itself.
Moreover, if i, ; is the dilatation of this map, then 1, ; = ty,- 1 by construction.

Let ptr = ptr1. Clearly p, is compactly supported modulo G, so condition
(3) holds. Also note that G, (t) = frr 0G0 f;tl — Gyp(t) as r — 0, so (4)
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FIGURE 2. The map V¥ vertically contracts in the shaded
strips and is an isometry elsewhere.

holds. Since ¥, preserves €,.; and is isotopic to the identity, f, 1 must be the
identity on T and so (5) holds. Finally, Go(t) is the covering group for Sy x)
which for 0 < ¢ < 1 is not conformally equivalent to Sy 1, since A(t) < 1 for
0 < t < 1. Thus (6) holds. This completes the proof of Theorem 1.1, except
for the construction of the map .

To simplify notation we will assume W = R x [0, 1] (then just rescale by a
linear map to get the desired mapping). The particular ¢ we will use is very
simple: for a € (0,2) consider the piecewise linear map given by

() = ay, if0<y<1/2;
T le-a-b). i2<y<t

Then ¢ has slope a on (0, 1/2) and slope 2—a on (1/2,1), so ®(x,y) = (z,¢(y))
is quasiconformal with constant

1 1 1 1 1
K = supmax (cp’,/) = max (a,,2—a, ) = max <,>
x © a 2—a a' 2—a

If a € (0,1), then the K = 1/a. If y € (0,1/2), then the dilatation y of ®

is
0;® (% + 2%) (z+ip(y) 1_4
“(x’y):a@: o _ ;98 : T 1+a
22 (2 -i) @ +ivy)
If y € (1/2,1), then a similar computation shows
1-(2-a) a-1
M(‘Tay)* 1+(2_a) - 3_a‘
If 0 <t <1, then what map ®; has dilatation tu? It should have the form

(z,y) — (x,p+(y)) where ¢, is piecewise linear. For y € (0,1/2) the slope s
of ; satisfies

1—s 1—a

1+s 1+4a

b
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and solving for s gives

1-b  (1+a)—(1-a)
TIvb Ota)+(-at

Similarly, the slope of ¢; on (1/2,1) is given by

3—a)—(a—1)t
(B—a)+ (a—1)t

Thus the map ¢; maps the interval [0, 1] to the interval [0, ¢;(1)] where

-0 (3] ot Sy

2 4 I+a)+(1—-a)t @B—a)+(a—1)t

Setting a = 1/2 gives (15 +¢2)/(15 + 2t — t?). This equals 1 when ¢t = 0,1
and is strictly less than 1 for ¢ € (0,1), as desired. This completes the proof

of

Theorem 1.1.
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