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LOCALLY TRANSITIVE TOURNAMENTS AND THE
CLASSIFICATION OF (1, 2)–SYMPLECTIC METRICS ON

MAXIMAL FLAG MANIFOLDS

NIR COHEN, MARLIO PAREDES, AND SOFÍA PINZÓN

Abstract. We give a new proof of a classification theorem of (1,2)–

symplectic metrics on maximal flag manifolds proved by Cohen, Ne-
greiros and San Martin. We use locally transitive tournaments in order

to simplify the demonstration of this theorem. Finally, using a result due

to Brouwer we count the number of invariant almost complex structures
which admit (1,2)–symplectic metrics on a maximal flag manifold.

1. Introduction

Let F (n) be the geometrical maximal flag manifold, i.e.,

(1) F (n) = {(L1, . . . , Ln) : Li is a subspace of Cn, dimCLi = 1, Li⊥Lj},
endowed with an almost–complex structure J .

Burstall and Salamon [2] proved the existence of a bijective relation between
almost–complex structures on F (n) and tournaments with n vertices. This
relation has been used to study geometric properties of F (n) using properties
of the tournaments; see, for example, Cohen, Negreiros and San Martin [3],
[4]; Mo and Negreiros [7], [8], Negreiros and San Martin [15]; and Paredes
[10], [11], [12], [13], [14].

Cohen, Negreiros and San Martin [3] proved the following result:

Theorem 1. The maximal flag manifold (F (n), J) admits an invariant
(1, 2)–symplectic metric if and only if the associated tournament T (J) does
not contain coned 3–cycles ((5) and (6) in Figure 1).

This theorem was conjectured by Paredes [10], and proved in [7] for n = 3, 4
and in [11] for n = 5, 6, 7. The sufficiency of the condition that the tournament
T (J) does not contain coned 3–cycles was studied in [12], where an affirmative
answer was obtained for certain classes of tournaments. The necessity was
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(1) (2) (3)

(4) (5) (6) (7)

(0,1,2,3) (1,1,1,3) (0,2,2,2) (1,1,2,2)

(0,1) (0,1,2) (1,1,1)

Figure 1. Isomorphism classes of n–tournaments for n = 2, 3, 4.

established in [7]. Paredes [10] stated this theorem in the following equivalent
form:

Theorem 2. The maximal flag manifold (F (n), J) admits an invariant
(1, 2)–symplectic metric if and only if all 4–subtournaments of the associated
tournament T (J) are isomorphic to (4) or (7) in Figure 1.

The tournaments characterized in [12] for which F (n) admits (1,2)–sym-
plectic metrics were used to construct many examples of harmonic maps by
applying a theorem due to Lichnerowicz [6].

Theorem 1 has been generalized by Negreiros and San Martin [15] to gen-
eralized flag manifolds associated to complex semi–simple Lie groups.

In the proof of Theorem 1 given by Cohen, Negreiros and San Martin [3]
the concept of cone–free tournaments is used. In this note we show that
the concept of cone–free tournaments is equivalent to the concept of locally
transitive tournaments, and using results from Brouwer’s paper [1] we rederive
the classification of (1, 2)–symplectic metrics, obtained in [3], in a more direct
way.

In addition, using the concept of locally transitive tournaments we give
an answer to the following question: How many invariant almost complex
structures which admit (1, 2)–symplectic metrics on F (n) are there? This
problem has been studied in [10], where it was proved that for n = 3, 4, 5, 6,
and 7 there exist, respectively, 2, 2, 4, 6, and 10 families of invariant almost
complex structures which admit (1,2)–symplectic metrics on F (n). In [14]
the number of families of invariant almost complex structures which admit
(1,2)–symplectic metrics on F (n) was calculated for n ≤ 20.
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2. Tournaments

A tournament or n–tournament is a directed graph with n vertices or play-
ers without loops such that for each pair of vertices x 6= y there is a unique
oriented edge x→ y or y → x. If x→ y, then we say x wins against y.

A tournament T is transitive if for any three vertices x, y, z such that x→ y
and y → z we have x→ z.

Let T1 and T2 be tournaments with vertices {1, . . . , n} and {1, . . . ,m}, res-
pectively. A homomorphism between T1 and T2 is a mapping φ : {1, . . . , n} →
{1, . . . ,m} such that

(2) s
T1−→ t =⇒ (φ(s) T2−→ φ(t) or φ(s) = φ(t)).

When φ is bijective we say that T1 and T2 are isomorphic.
An n–tournament determines a score vector (s1, . . . , sn), 0 ≤ s1 ≤ · · · ≤ sn,

such that
∑n
i=1 si =

(
n
2

)
, whose components representing the number of games

won by each player. Isomorphic tournaments have identical score vectors.
Figure 1 shows the isomorphism classes of n–tournaments for n = 2, 3, 4,
together with their score vectors. In Figure 1 we use Moon’s notation in
which not all of the arcs are included in the drawings. If an arc joining two
vertices has not been drawn, then it is to be understood that the arc is oriented
from the higher vertex to the lower vertex (see [9]).

Given a tournament T and a vertex v ∈ T we define the subtournaments

(3) T −(v) = {x ∈ T : x→ v} and T +(v) = {x ∈ T : v → x},

which are called the in–neighbor and the out–neighbor of v, respectively. T is
called locally transitive if and only if the subtournaments T −(v) and T +(v)
are transitive for each vertex v (see [1]).

Given a tournament T , we say that a 3–cycle formed by the vertices i, j, k
of T is coned if there exists another vertex x such that

(x→ i, x→ j and x→ k) or (i→ x, j → x and k → x).

We say that the tournament T is cone–free if and only if it does not contain
any coned 3–cycle.

Proposition 3. A tournament T is locally transitive if and only if it is
cone–free.

Proof. Suppose that T is not cone–free. Then it contains one of the 4–tour-
naments (5) or (6) in Figure 1. If T contains (5) then the vertex that wins
over the other three vertices is such that its out–neighbor is not transitive.
Similarly, if T contains (6) then the vertex that loses to the other vertices is
such that its in–neighbor is not transitive. Then T is not locally transitive.

Now, suppose that T is not locally transitive. Then there exists a vertex x
such that T −(x) is not transitive or T +(x) is not transitive. If T −(x) is not
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transitive then it contains a 3–cycle i → j → k → i and i → x, j → x and
k → x. Hence, the tournament formed by the vertices i, j, k, x is the same as
(6) in Figure 1. Thus T is not cone–free. �

Proposition 4. A tournament T is locally transitive if and only if all
4–subtournaments of T are locally transitive.

Proof. If T is locally transitive then all subtournaments of T are locally
transitive; in particular, all 4–subtournaments are locally transitive.

Now, suppose that T is not locally transitive. Then there exists a vertex v
of T such that either T −(v) or T +(v) is not transitive. If T −(v) is not tran-
sitive then it contains a 3–cycle. Therefore the 4–subtournament determined
by the 3–cycle and v is not locally transitive. �

The following result and its proof are taken from Brouwer’s paper [1].

Proposition 5. Let T be a locally transitive tournament and a, x vertices
of T . If a ∈ T +(x) then T +(a) is the union of a terminal interval in T +(x)
and an initial interval in T −(x).

Proof. Suppose that the vertices b, c ∈ T −(x) are such that b → c, c ∈
T +(a) and b /∈ T +(a). Then c, x, a ∈ T +(b), and therefore T +(b) contains
the 3–cycle formed by c, x, a. But this is a contradiction because T +(b) is
transitive and does not contain 3–cycles. �

For each n–tournament T we can associate an n× n matrix m(T ) = (aij),
called the incidence matrix of T , defined by

aij =

 1 if i→ j,
0 if i = j,
−1 if j → i .

The following definition was introduced by Cohen, Negreiros and San Mar-
tin [3]. An n–tournament T with vertices {1, . . . , n} is called stair–shaped if
there are integers s, t, with 1 ≤ s ≤ t ≤ n, such that the following axioms are
satisfied:

(1) The subtournament of T formed by the vertices 1, . . . , t is a maximal
transitive tournament.

(2) The subtournament of T formed by the vertices s, . . . , n is a maximal
transitive tournament.

(3) If z → x and z > x, then x < s and t < z.
(4) If x′ ≤ x and z ≤ z′, then z → x and z > x implies z′ → x′ and

z′ > x′.



LOCALLY TRANSITIVE TOURNAMENTS 1409

In other words, a tournament is stair–shaped if its incidence matrix is of the
following type:

0 1 1 · · · 1 −1 −1 · · · −1
−1 0 1 · · · 1 −1 −1 · · · −1
−1 −1 0 · · · 1 1 −1 · · · −1

−1 −1 −1
. . . 1 1 1 · · · −1

...
...

...
...

. . .
...

... · · ·
...

...
...

...
...

...
. . .

... · · ·
...

...
...

...
...

...
...

. . . · · ·
...

...
...

...
...

...
...

...
. . .

...
1 1 1 · · · · · · · · · · · · · · · 0



.

The following result was proved in [3].

Theorem 6. A tournament is cone–free if and only if it is isomorphic to
a stair–shaped tournament.

This theorem and Proposition 3 imply that a tournament T is locally tran-
sitive if and only if it is isomorphic to a stair–shaped tournament.

The proof of Theorem 6 is long and complicated. We will give here a
simpler proof using the following characterization of the tournaments under
consideration.

Let T be a locally transitive tournament and choose an arbitrary vertex v
of T . Given another vertex x of T , we say that x has type 1 if v → x and type
2 if x → v. Define the weight of x, w(x), as the number of vertices y such
that y → x and y has the same type as x. Then reorder the vertices in the
following way: vertex v, vertices of type 1 in increasing order of weight and
vertices of type 2 in increasing order of weight. Using Proposition 5 it is easy
to see that this method produces the incidence matrix of T in stair–shaped
form.

For example, consider the 8–tournament corresponding to the incidence
matrix 

0 −1 −1 1 −1 −1 1 −1
1 0 1 −1 −1 1 −1 −1
1 −1 0 1 −1 −1 1 −1
−1 1 −1 0 1 −1 −1 1

1 1 1 −1 0 1 −1 −1
1 −1 1 1 −1 0 1 −1
−1 1 −1 1 1 −1 0 1

1 1 1 −1 1 1 −1 0


,
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and suppose that the vertices of this tournament are labelled so that vertex i
corresponds to row i. We choose vertex 1 in order to apply the method above.
Then we have the following types of vertices:

type 1: 2, 3, 5, 6, 8
type 2: 4, 7

The corresponding weights are w(1) = 0, w(2) = 2, w(3) = 4, w(5) = 1,
w(6) = 3, w(8) = 0, w(4) = 1 and w(7) = 0. Reordering the vertices using our
method we obtain the stair–shaped matrix of the tournament

0 1 1 1 1 1 −1 −1
−1 0 1 1 1 1 −1 −1
−1 −1 0 1 1 1 −1 −1
−1 −1 −1 0 1 1 −1 −1
−1 −1 −1 −1 0 1 1 1
−1 −1 −1 −1 −1 0 1 1

1 1 1 1 −1 −1 0 1
1 1 1 1 −1 −1 −1 0


.

Clearly, this method to obtain the stair–shaped form of the incidence ma-
trix is simpler than the method used by Cohen, Negreiros and San Martin,
which was described in the definition of stair–shaped tournaments. In fact, our
method yields the largest transitive subtournament contained in the tourna-
ment, and we call the matrix obtained by this method maximal stair–shaped.

3. Almost complex structures and metrics on F (n)

The natural action of the unitary group U(n) on F (n) is transitive and
provides the following representation of F (n) as a homogeneous space:

(4) F (n) =
U(n)
T

=
U(n)

U(1)× · · · × U(1)
,

where T = U(1) × · · · × U(1) is a maximal torus of U(n). Using this rep-
resentation it is easy to see that the tangent space of F (n) at the origin is
the subspace p ⊂ u(n) of zero–diagonal matrices, where u(n) is the Lie alge-
bra of skew–symetric matrices. Let Eij be the canonical basis matrix. Then
p = ⊕i 6=jpij , where pij = (CEij + CEji) ∩ u(n).

Since the action of U(n) on F (n) is transitive, to define any tensor on
F (n) it is sufficient to specify it on p. An invariant almost complex struc-
ture on F (n) is determined by a linear map J : p → p satisfying J2 = −I
that commutes with the adjoint representation of the torus T on p. Then
J(pij) = pji, for all i 6= j. Thus we have J(A) = A′, A = (aij), A′ = (a′ij),
with a′ij = εij

√
−1aij , such that εij = ±1 and εij = −εji. In other words,

an invariant almost complex structure is completely determined by a skew–
symetric matrix (εij) with off–diagonal entries in {±1}. This establishes a
one–to–one correspondence between invariant almost complex structures on
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F (n) and n–tournaments through the incidence matrix. Given an almost
complex structure J , we denote by T (J) the associated tournament.

The complexification V of p is the subspace of complex matrices with zero–
diagonal entries. It decomposes as V = ⊕i 6=jVij , where Vij = span

C
{Eij}.

An almost complex structure J extends to a C–linear operator on V , which
we also denote by J . The eigenvalues of this operator are ±

√
−1 and the

corresponding eigenspaces are

V 10 =
⊕
{Vij : εij = 1}, V 01 =

⊕
{Vij : εij = −1},

for
√
−1 and −

√
−1, respectively, where (εij) is the incidence matrix of T (J).

A U(n)–invariant Riemannian metric on F (n) is completely determined by
an inner product (·, ·) in p invariant under T . In order to describe these inner
products we start with the Cartan–Killing form on p,

(5) 〈X,Y 〉 = tr(adj(X) ◦ Y ) , X, Y ∈ p ,

which is an inner product invariant under T . Any invariant metric on F (n)
has the form

(6) ds2
Λ(X,Y ) = −〈Λ(X), Y 〉 ,

where Λ: p→ p is positive–definite with respect to 〈·, ·〉. Furthermore, ds2
Λ(·, ·)

is invariant under T if and only if the elements of the standard basis
√
−1(Eij+

Eji), Eij − Eji are eigenvectors of Λ. Then, Λ(Eij) = λijEij with λij > 0
and λij = λji. It is easy to see that these metrics are Hermitian with respect
to J .

The metric ds2
Λ(X,Y ) admits a natural extension to a symetric bilinear

form on the complexification V of p, which is also denoted by ds2
Λ(X,Y ). Here

the two–dimensional real eigenspace pij of Λ, whose basis is
√
−1(Eij +Eji),

Eij − Eji, extends to a complex space having basis Eij .
We define the Kähler form by

(7) ΩJ,Λ = ds2
Λ(X, J(Y )) = −〈Λ(X), J(Y )〉 = −tr (adj(Λ(X)) ◦ J(Y )) ,

for each X,Y ∈ p. ΩJ,Λ is a differential 2–form, so its exterior differential
dΩJ,Λ is a differential 3–form and

(8) dΩJ,Λ = (dΩJ,Λ)(3,0) + (dΩJ,Λ)(2,1) + (dΩJ,Λ)(1,2) + (dΩJ,Λ)(0,3) ,

where (dΩJ,Λ)(i,j) is a differential form of type (i, j). It can be verified that(
(dΩJ,Λ)(3,0)

)∗= −(dΩJ,Λ)(0,3) and
(
(dΩJ,Λ)(2,1)

)∗= −(dΩJ,Λ)(1,2).
(F (n), J, ds2

Λ) is said to be almost Kähler if dΩJ,Λ = 0 and it is called Kähler
if furthermore J is integrable. (F (n), J, ds2

Λ) is said to be (1, 2)–symplectic if
(dΩJ,Λ)(1,2) = 0.

The following proposition was proved in [3] and was also studied in [10].
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Proposition 7. (F (n), J, ds2
Λ) is (1, 2)–symplectic if and only if for all

transitive 3–subtournaments {i, j, k} of T (J) we have

λik = λij + λjk,

where i→ j → k.

4. Results

In this section we present a new proof of the classification, due to Cohen,
Negreiros and San Martin (see [3, Theorem 1.1]), of the (1, 2)–symplectic
metrics on F (n). Using properties of locally transitive tournaments we obtain
this classification in a more direct way.

Theorem 8. Let (F (n), J, ds2
Λ) be the maximal flag manifold. The metric

ds2
Λ is (1, 2)–symplectic if and only if the associated tournament T (J) is locally

transitive.

Proof. The necessity of the condition for T (J) to be a cone–free tournament
or a locally transitive tournament was proved in [7]. In fact, there it was shown
that if the metric ds2

Λ is (1, 2)–symplectic then the associated tournament
T (J) is cone–free.

To prove the sufficiency we suppose that T (J) is a locally transitive tourna-
ment. Given a vertex s in T (J), the subtournaments T (J)−(s) and T (J)+(s)
are transitive. We can enumerate the vertices of T (J) so that

T (J)+(s) = {1, 2, . . . , s− 1} and T (J)−(s) = {s+ 1, s+ 2, . . . , n}.

To determine (dΩJ,Λ)(1,2), we need to calculate dΩ(X,Y, Z), with X,Y ∈ V 10

and Z ∈ V 01 (see [5]). Suppose that X = Eij , Y = Ejk and Z = Eki, with
i < j < k. Then we have two cases:

1. The subtournament determined by i, j, k is contained in T (J)+(s) or
T (J)−(s). In this case we have i < j < k ≤ s or s ≤ i < j < k.

2. The subtournament determined by i, j, k is not contained in T (J)+(s)
or T (J)−(s). In this case we can suppose i < j < s < k.

We will prove that there exist λ1, λ2, . . . , λn such that for i < j,

(a) λij =
∑j−1
k=1 λk, if εij = 1;

(b) λij = λn +
∑i−1
k=1 λk +

∑n−1
k=j λk otherwise; or, equivalently, λij =

q −
∑j−1
k=i λk, where q =

∑n
k=1 λk.

We apply our method to put the incidence matrix in the maximal stair–
shaped form. It is easy to see that Case 1 above implies (a), because in this
case the 3–subtournament determined by i, j, k is transitive. Then we choose
λk = λk(k+1), for k = 1, . . . , n− 1.

In order to prove that Case 2 implies (b), we use induction over the number
t of −1’s on the top right side of the incidence matrix of T (J). We count these
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−1’s beginning with the first −1 in the first row toward the right side of the
incidence matrix and following in zigzag form.

If the incidence matrix has only one −1, then it is in position 1n and
choosing λn = λ1n we have λ1n = q −

∑n−1
k=1 λk.

By the maximal stair–shaped form of the incidence matrix we can suppose
that the m–th entry −1 is in a position jn, for some s < j < n. That
is, εjn = −1. Then ε(j−1)n = −1. This implies that the 3–subtournament
formed by the vertices j − 1, j and n is transitive. Then ε(j−1)j = 1 and
λjn = λ(j−1)n + λ(j−1)j . Now, we apply the induction hypothesis, that is, we
suppose that the theorem is true for all t < m. Then,

λjn = λ(j−1)n + λ(j−1)j

= q −
n−1∑
k=j−1

λk + λj−1

= q − λj−1 − λj − · · · − λn−1 + λj−1

= q − λj − · · · − λn−1

= q −
n−1∑
k=j

λk. �

The main theorem in Brouwer’s paper [1] says that the number of locally
transitive n–tournaments, up to permutations, is

(9)
∑
d|n

2d−1

d
odd

(n
d

)∑
e|nd

µ(e)
e

 ,

where µ is the Möbius function and odd(i) is equal to 1 if i is odd, and 0 if
i is even. Theorem 8 implies that (9) is also the number of invariant almost
complex structures which admit (1,2)–symplectic metrics on F (n). Using the
Euler function φ we derive the following simpler formula for (9).

Theorem 9. The number of invariant almost complex structures which
admit (1, 2)–symplectic metrics, up to permutations, on F (n) is

(10)
1
n

∑
q|n

2
n
q−1 odd(q) φ(q) .

Proof. In equation (9), we set S =
∑
e|nd

µ(e)
e . If we write q = n/d and

r = n/de, then we obtain

(11) S =
∑
q/r|q

µ(q/r)
q/r

=
1
q

∑
q/r|q

rµ(q/r) =
1
q

∑
r|q

rµ(q/r).



1414 NIR COHEN, MARLIO PAREDES, AND SOFÍA PINZÓN

Choose f(n) = n. It is known that f(n) =
∑
d|n φ(d). By Möbius inversion

we get
φ(n) =

∑
d|n

dµ(n/d).

With this, (11) can be rewritten as

S =
φ(q)
q
.

Hence, (9) can be written in the following way:

∑
d|n

2d−1

d
odd

(n
d

)∑
e|nd

µ(e)
e

 =
∑
d|n

2d−1

d
odd

(n
d

) φ(n/d)
n/d

=
1
n

∑
d|n

2d−1 odd
(n
d

)
φ
(n
d

)
=

1
n

∑
q|n

2
n
q−1 odd(q) φ(q). �
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