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ON AN EXTENSION OF CALDERON-ZYGMUND
OPERATORS

LESLIE C. CHENG AND YIBIAO PAN

ABSTRACT. We establish the LP boundedness for a class of singular
integral operators under the H' kernel condition. These operators were
introduced by Duoandikoetxea and Rubio de Francia as an extension of
the classical Calderén-Zygmund operators.

1. Introduction

In their well-known paper [1] Calderén and Zygmund treated the L? bound-
edness problem of singular integral operators on R™ given by

Qy') 4

ly|™

(1.1) To: f—pv. flz—y)
R”

where y' = y/|y| for y # 0, Q € L*(S"1) and satisfies
(1.2) / Oy )don(y) =0.
S7L7

The measure do,, in (1.2) is the normalized Lebesgue measure on S™~1.

It was shown in [1] that the LP? boundedness of T holds for 1 < p < oo
if O € LlogL(S™ 1) and that the space Llog L(S"!) cannot be replaced
by any Orlicz space L?(S"™!) with a monotonically increasing function ¢
satisfying ¢(t) = o(tlogt), t — oo (e.g., L(log L)*=¢(S"1), 0 < & < 1).
Using the method of rotations invented by Calderén and Zygmund, Connet
and Ricci-Weiss obtained the following result independently:

b

THEOREM A ([4], [10]). IfQ € HY(S"™1Y), then Tq is bounded on LP(R™)
for 1 <p < oco.

Here H'(S™1) represents the Hardy space over the unit sphere. Theo-
rem A is an improvement over the result of Calderén and Zygmund because
H'(S"1') D Llog L(S™1). The condition Q € H*(S"~!) is a natural one in
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light of the general principle in harmonic analysis that H' is a natural sub-
stitute for L' (e.g., the Hilbert transform is bounded on LP for p > 1 and on
H', but not on L'). In [5] Duoandikoetxea and Rubio de Francia introduced
the following extension of the operators Tq:

Let m,n € N, m < n —1, and M be a compact, smooth, m-dimensional
manifold in R™. Suppose that MN{rv : r > 0} contains at most one point for
any v € S"~ 1. Let C(M) denote the cone {rf : r > 0, § € M} equipped with
the measure ds(rf) = r™drdo(6), where do represents the induced Lebesgue
measure on M. For a locally integrable function in C(M) of the form

(1.3) K(r) = r~™ " h(r)Q(6),

where () satisfies
(1.4) / Q(0)do(0) = 0,
M

we define the corresponding singular integral operator T, on R™ by

(15)  (Tmaf)(@) =pv. /C S VE G

~ lim / /M F(z — r0)QO)h(r)r—do(0)dr,

e—0+t

initially for f € S(R™).

Clearly the operators in (1.1) correspond to the case m =n —1 and M =
S*Lie., Tgn-1q = To when h = 1.

Concerning the L” boundedness of T o, the following was obtained in [5]:

THEOREM B ([5]). Let Thm.q be given as in (1.3)—(1.5). Suppose that
(i) Q € LY(M,do) for some ¢ > 1;
(ii) supgso (% fOR |h(r)|2dr> < 005
(iii) M has a contact of finite order with every hyperplane.
Then Taq,q extends to a bounded operator on LP(R™) for 1 < p < oco.

The factor h(-) in K had been introduced earlier by R. Fefferman [9]. In
light of Theorems A and B, the following question arises naturally:

QUESTION.  Is Ty ,q still bounded on LP spaces if condition (i) in Theorem
B is replaced by the weaker condition Q € H'(M)?

For a general M, the only previously known case is p = 2, where one can
establish the L? boundedness of T\ ¢ for Q € H'(M) by using the results in
[7]. The main purpose of this article is to show that the L? boundedness of
T'rm,o holds for the entire range 1 < p < co. Namely, we have the following
result:
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THEOREM C. Let Th,q be given as in Theorem B, and let h and M
satisfy (ii) and (iii), respectively. If Q@ € HY(M), then Ty o extends to a
bounded operator on LP(R™) for 1 < p < oo.

REMARKS. (a) The LP boundedness of T can be established for a
limited range of p if the exponent 2 in condition (ii) is replaced by a smaller
v > 1 (see Theorem 4.1). The LP boundedness for p outside this range is not
known.

(b) If the finite-type condition (iii) is dropped, then the LP boundedness
of Thy,o may fail even for Q € L* and p = 2, as evidenced by the con-
vex curve M = {(t,e”/*) : 0 < t < §} and surface of revolution M =
{(z1, 29, e/ @H23)) 1 0 < | (21, 22)| < 8}. See Section 4 for more details.

The paper is organized as follows. In Section 2 we recall the definition
and atomic decomposition of Hardy spaces on M. The main estimates are
established in Section 3. The proof of Theorem C will appear in Section
4, along with some further results. The authors thank the referee for some
helpful comments.

2. Hardy spaces over M
The Hardy spaces HP(M) can be defined by using the maximal operator

A:f— (Af)(2) :igglu(t,x)l,

where u(t, z) is the solution of the boundary value problem

(2.1) (5 —As)u=0, (t,x) e R x M,
u(0,z) = f(z), xr e M.

Here A, denotes the Laplace-Beltrami operator of M.
DEFINITION 2.1. We define
HY (M) ={f € &' (M) [|Af]lLrra) < 00}
For f € HP(M) we set || f[|rr 1) = [ASf Lo (m)-
From [2] it is known that
(2.2) HP(M) = LP(M) C H'(M) C LY(M)

when p > 1. The inclusions in (2.2) are proper.
Let By (z,7) ={y e R" : |y —z| < r}.
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DEFINITION 2.2. A function a(-) on M is called an H! atom if there are
p >0 and 0y € M such that
supp(a) C M N B, (6o, p),
(2.3) Sy a(0)do(8) =0,
lalloe < p™™.

The following can be established by using the arguments in [3]:

LEMMA 2.3. IfQ € HY(M) and satisfies (1.4), then there exist H' atoms
{a;} and complex numbers {c;} such that

Q= chaj
J

and

1901z gy = D lesl-
j

3. Main estimates

DEFINITION 3.1. A smooth mapping ¢ from an open set U in R™ into
R" is said to be of finite type at ug € U if, for every n € S*~1, there exists a
nonzero multi-index oo = () such that

Ou 7 0.

U=ug

For a continuous mapping ¢ from a neighborhood of B,,(0,1) to R™, an
integrable function b(-) on B,,(0,1), and a measurable function h on R¥, we
define the family of measures {ogpnr | k€ Z} on R” by

2k+1

(3.2) / i F(x)dogpni = /% /B o) F(ré(u))r= b(u)h(r)dudr.

LEMMA 3.2.  Suppose that h satisfies (ii) in Theorem B. Then, for 1 <
p < 0o, there exists a constant Cp, > 0 such that

1/2 1/2
(3.3) <Z |06,k * 9k|2> < Gyl (Z |gk|2>
p p

keZ kEZ

holds for all continuous mappings ¢ and measurable functions {gi} on R™.

Proof. For £ € R" we define the maximal operator M¢ on R" by

2k+1
(Mg f)(x) = sup [2’“/2 |f(x +r§)|dr1 .

keZ k
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It follows from the LP boundedness of the one-dimensional Hardy-Littlewood
maximal operator that

(3.4) [Me fllLrmrny < Apllfllze®n)
for 1 < p < oo, where A, is independent of &.

For {gi} € LP(R",[2), there exists a function w € L®/?"(R") such that
||w||(p/2)/ =1 and

1/2]|2
<Z|U¢,b,h,k*gk|2> / (Za¢bhk*gk| ) w(z)
P

keZ kEZ

Thus, by Holder’s inequality and (3.4),

1/2(|2
(Z |00,k * g;ﬁ)

kEZ
2k+1
<clp 2t [ f e = o) Plb(w @) dudr
kEZ 2"
2k+1
:C\|b||1/ [22_ / / |9k ()2 |w(z + ro( ))|d:cdr]
B7n(071) keZ
SCHblll/ l/ (Z |9k (2 ) (Myuyw)(z )dﬂf] [b(u)|du
Bm(0,1) keZ
1/2]|2
< C|p|2 (Z |gk|2> ;
keZ ,
which proves the lemma. O

LEMMA 3.3. Suppose that ¢ is smooth and of finite type at every point in

B,,(0,1) and h satisfies (ii) in Theorem B. Then there exists a § > 0 such
that

(3.5) 1665016 < C2%IE) )bl
holds for € € R™ and k € Z.

In order to prove Lemma 3.3, we recall the following result from [7]:

LEMMA 3.4. Let U: R x R™ x [0,1]' — R be a smooth function and let
Y € C(R™). For A€ R and 6 € [0,1]" define the operator Sy \ by

(3.6) (Sonf)(®) = / MOyt y) f(y)dy.
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Suppose that for each (t,y) € supp(v)) and 6 € [0,1]' there are k € N and
a € (NU{0})™ with |a] > 1 such that 993V (t,y,0) # 0. Then there is a
o > 0 independent of A\ and 6 such that

1SSl L ry < Co(L 4 IAD =72 [ fll o e
forp e (1,2] and f € LP(R™). The constant C), is independent of A\,0 and f.

Proof of Lemma 3.3. By (3.2)
2k+l

/ (/ e_”g"b(“)b(u)du) L h(r)dr
2k B (0,1)

Let U(t,u,0) =t(0 - ¢(u)). By writing
r€ - p(u) = (2*[E) (27 r, u,€/I€])

and applying Lemma 3.4, there exists a ¢ > 0 such that

166,6,0,6(E)] =

2k+l
166.6.0,(8)] < 27F/2 (/
2k
< C(28[E) 0Bl
where 6 = /2 > 0. O

1/2
Ih(T)Ier> (1+2516) =72 ]1b]l2

By using the arguments in [7, pp. 140-142], we also have the following
result:

LEMMA 3.5. Let b(-) be a function satisfying supp(b) C B, (0,p) and
Iblloc < p~™ for some p < 1. Suppose that h satisfies (ii) in Theorem B.
Then there exists a constant C > 0 such that

</ o~ rIQUIHY 4 . d/euﬁ]b(u)du> rilh(r)dT
B (0,p)

—1/(4s)

2k+1

J.

(3.7)

<C (2% > ldgl
|B]=s

holds for all polynomials @ : R™ — R with deg(Q) < s and {dz} C R. The
constant C' is independent of p.

The following lemma is essentially Lemma 5.2 in [6], which has its roots in
[5] and [8]. While condition (iv) below is weaker than the corresponding one
in Lemma 5.2 of [6], the proofs are the same (see also [5, p. 544]).

LEMMA 3.6. Letl,n € N and {os1:0<s <! and k € Z} be a family of
measures on R™ with o9 =0 for every k € Z. Let {asj: 1 <s<1[ and 1<
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J<2tCRY, {ny 1 <s <P CRI\{1}, {M;:1<s<1} CN, and
L, : R" — RM: be linear transformations for 1 < s <. Suppose that

(1) [loskll <1 forkeZ and1 <s<lI;

(ii) 16568 < C(EILsE) 72 foré e R™M k€ Z and 1 < s <1;

(iil) |6sk(&) —Gs—1.6(E)| < C(MF|Ls&))¥ foré e RM k€ Z and 1 < s <;
(iv) for some pg > 2 there exists a C > 0 such that

1/2
(Z |os & * gk2> < Cllfllzromm)

kEZ Lro (R
for all {gx} € LP°(R™,1?) and 1 < s < 1.
Then for every p € (py,po), there exists a positive constant C), such that

(3.8) 1> ov * Flle@m) < Collfllr@en)
kez
and
1/2
(3.9) (Z o,k * f|2> < Gl fllpr@em)
keZ LP(R™)

hold for all f € LP(R™). The constant C), is independent of the linear trans-
formations {Ls}._.

The following is the main result of this section:

THEOREM 3.7. Let ¢ and h be given as in Lemma 8.3. Suppose that, for
some ug € B (0,1/2) and p < 1/2, b(-) satisfies the following:

supp(b)CB (uo, p),

(3.10) [blloc < p~™
me(uom) b(u)du =0.
Then, for 1 < p < oo, there exists a A, > 0 such that
(3.11) > osbnix fl < Al flly
keZ P

holds for f € LP(R™). The constant A, is independent of ug and p.
Proof. By Lemma 3.3, there exists a § > 0 such that
(3.12) 166,0,n,5(E)] < C2F[EN) ™2,
Let I = [m/(28)] + 1. We define a sequence of mappings {®°}._, by
' =¢=(¢1,...,6n)
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and

s 1 Z'W 1 UO 1 ({96 n uo
% (u) = Z q(;uﬂ —ug)”? Z q(‘;uﬁ (u — up)?
\5\<s |5|<q
for s=0,1,...,1 — 1. Let
Os,k = O3 b,hk
for 0 < s <1 and k € Z. By its definition and Lemma 3.2, the family of
measures {05 i } satisfies conditions (i) and (iv) in Lemma 3.6, for any py > 2.
For j=1,...,n, let
_ 1 9%9¢;(uo)

BB guf

By (3.12) and Lemma 3.5, we have

|61,6(€)] < C(2Fp!1E)™°

and
" —1/(4s)
60k < C {257 D7 1> djpgl
|Bl=s Jj=1
for 1<s<[l—1,k€Zand &€ R" On the other hand, we have
|61.6(8) = 61-1.1(8)] < C2¥[¢] |p(u) — @' (w)|[b(w)|du
By (uo,p)
< C(2%(¢lp")
and

60k (E) — a1 4(6)] < C2F / € (@% () — 2 ()] |b(us) du

B, (UO 7/7)

<C2%° Y Y dil
[B|=s =1
for 1 < s<1l—1,k € Z and £ € R™. In addition, it follows from the
cancellation property in (3.10) that oo, = 0 for k¥ € Z. One then obtains
(3.11) by invoking Lemma 3.6. Theorem 3.7 is proved. O

4. Conclusion

Proof of Theorem C. By Theorem B and Lemma 2.3, it suffices to prove the
LP boundedness of T, when a is an atom satisfying (2.3) with a sufficiently
small p. By the smoothness and compactness of M we may assume that there
is a smooth mapping ¢ from a neighborhood of B,,(0,1) into R™ such that

(i) 6y € ¢(B,(0,1/2)) and M N By, (6o, p) C $(Bm(0,1)) C M;
(ii) the vectors d¢/0uy, ..., ¢ /0u,, are linearly independent for each u €
B (0,1);
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(ili) ¢ is of finite type at every point in B,,(0,1) (see [11, p. 350]).
Thus there is a smooth function J(u) such that

/ Fdo = / F(é(u))J(u)du
#(Bm (0,1)) B (0,1)

for any integrable function F' on M. We have
Trtaf =D Opbnk* f,
keZ
where b(u) = a(¢(u))J (u)xp,,0,1)- Let ug = ¢~ (6p). It follows from (i)-(iii)
that
Supp(b) - Bm(UOa Cp)a

bl < Cp™™,

Jrm b(u)du = 0.
By applying Theorem 3.7, we obtain the L” boundedness of T),, with a
bound independent of p for 1 < p < co. Theorem C is proved. O

Theorem C admits the following generalization.

THEREOM 4.1. Let T o be given as in (1.3)—(1.5). Suppose that
(i) Q€ HY(M,do);
(i) supgsg (% fOR |h(r)|7dr> < 0o for some y > 1;
(iii) M has a contact of finite order with every hyperplane.
Then Trmq extends to a bounded operator on LP(R™) for |1/p — 1/2| <
min{1/2,1/v'}.

As usual, the pointwise existence of Ty of for f in LP spaces can be
established by considering the following maximal truncated singular integral:

(4.1) (Thof)(x) =sup / / fx—r0)QO)h(r)r—tdo()dr|.

e>0

THEOREM 4.2. Let Q, M be given as in Theorem 4.1 and h € L=(R™).
Then the operator Tk, ¢ given in (4.1) is bounded on LP(R") for 1 < p < cc.

The proofs are omitted.
We conclude the paper by addressing the failure of L? boundedness of T ¢
in the absence of the finite-type assumption. By letting

M = {(z1, 22,V EF) 10 < |(21,22)| < 200}
for some dp > 0 and selecting a suitable €2 (which can be L* or better), the

L? unboundedness would follow if the following holds:

do
/ / cos(r -1/ sdsﬂ =

(4.2) lim sup

e—0, N—oo
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Since

b
/ Cozudu > —In(a) — 4

holds for 0 <a <1 < b, for N > e/2* we have

N o 2 dr
/ / cos(re /¥ ) sds— > In(1/e) — C(dp),
1 € r

which implies (4.2).
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