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THE SCHUR-HORN THEOREM FOR OPERATORS AND
FRAMES WITH PRESCRIBED NORMS AND FRAME
OPERATOR

J. ANTEZANA, P. MASSEY, M. RUIZ, AND D. STOJANOFF

ABSTRACT. Let H be a Hilbert space. Given a bounded positive definite
operator S on H, and a bounded sequence ¢ = {¢j }xen of nonnegative
real numbers, the pair (5, c) is frame admissible, if there exists a frame
{fx}ren on H with frame operator S, such that ||fx]|2 = cx, k € N.
We relate the existence of such frames with the Schur-Horn theorem
of majorization, and give a reformulation of the extended version of
Schur-Horn theorem, due to A. Neumann. We use this to get necessary
conditions (and to generalize known sufficient conditions) for a pair
(S, c) to be frame admissible.

1. Introduction

Let 'H be a separable Hilbert space and let .S be a bounded selfadjoint op-
erator on H. In the first part of this note, we give a complete characterization
of the closure in ¢>°(N) of the set of possible “diagonals” of S, i.e., the set
C[Up/(S)] of real sequences ¢ = (¢, )nen such that

(1) (Sen,en) =cn, mneN,

for some orthonormal basis B = {e,, }nen of H. Note that, if dimH = m < oo,
this can be made in terms of majorization theory. More precisely, the Schur-
Horn theorem ensures that ¢ € R™ satisfies Eq. (1) for some orthonormal
basis if and only if ¢ is majorized by the vector of eigenvalues of S (see
Theorem 2.2 for a precise formulation). In the general case, we define an
analogous form of “the sum of the greatest k eigenvalues” in the following
way: given S, a selfadjoint operator on H, and k € N, we denote

Ui(S) =sup{tr SP : P € L(H) is an orthogonal projection with tr P = k},
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and Ly(S) = —Uk(—S). We prove, based on the results obtained by A.
Neumann in [17], that ¢ belongs to the £>°(N)-closure of C[Uy/(S)] if and only
if

(2) Ue(c) <Up(S) and  Ly(S) < Ly(c), k€N,

where
and

Similarly, if S is a trace class operator, we show that ¢ belongs to the £*(N)-
closure of C[Uy(S)] if and only if c satisfies formulas (2) and ) ¢, = trS.
On the other hand, a somewhat technical characterization of the maps Uy and
Ly, is obtained (see Proposition 3.5), which is used to compute these quantities
and to prove their basic properties. Related results can be found in R. Kadison
[14], [15], and Arveson and Kadison [2] (which appeared during the revision
process of this work).

In the second part of this note, these extended Schur-Horn theorems are
used to give conditions for the existence of frames with prescribed norms
and frame operator. First we recall some basic definitions. Let M = N or
M={1,2,...,m} =1, for some m € N. A sequence {f;}rem in H is called
a frame for 'H if there exist constants A, B > 0 such that

Allel? < 57 (o fi)2 < Bllal?,  for every  a € M.
kEM
For complete descriptions of frame theory and its applications, the reader is
referred to [8], [11], [12], [3], or the books by Young [20] and Christensen [7].
Let F = {fx}rem, be a frame for H. The operator

(3) S:H—H, givenby S(z)= Z(w,fk)fk, r€eH,

keM
is called the frame operator of F. It is always bounded, positive and invertible
(we use the notation S € GI(H)™).

In recent papers by Casazza and Leon [5], [6], Casazza, Fickus, Leon and
Tremain [4], Dykema, Freeman, Korleson, Larson, Ordower and Weber [10],
Kornelson and Larson [16], and Tropp, Dhillon, Heath Jr. and Strohmer
[19], the problem of existence and (algorithmic) construction of frames with
prescribed norms and frame operator has been considered. Following [5], [6],
we say that the pair (S,¢) € GI(H)T x £>°(M)* is frame admissible if there
exists a frame F = {fx}rem on H such that

(1) F has frame operator S, and
(2) |Ifxl* = cx for every k € M.
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In this case, we say that F is a (S, ¢)-frame. We denote by F(S, ¢) the set of all
(S, ¢)-frames on ‘H. Hence the pair (S, ¢) is frame admissible if F'(S,c) # 0.

It is known (see [5], [19]) that, in the finite dimensional case, there is a
connection between frame admissibility and the theory of majorization, in
particular, the Schur-Horn theorem. We make this connection explicit both
in the finite and infinite dimensional context. We use the classical Schur-Horn
theorem in the finite dimensional case and its extension, developed in the first
part of the paper, for the infinite dimensional case.

This presentation of the problem allows us to get equivalent conditions for
the frame admissibility of a pair (S,c) € G1,,(C)* x £>°(N)*, and necessary
conditions for the frame admissibility of a pair (S,c) € GI(H)T x £°(N)*.
We show that, if the pair (5, c) is frame admissible, then ), . cx = oo, and
Ui(c) < U(S) for every k € N. In particular, limsupc < ||S||., the essential
norm of S (see Theorem 5.1). Then, by strengthening these conditions we
get sufficient conditions for the frame admissibility of pairs (S,c) € GI(H)™T x
(>°(N)* (Theorem 5.4). These conditions are less restrictive than those found
by Kornelson and Larson in [16].

We briefly describe the contents of the paper. In Section 2 we fix our
notation, and we state the classical Schur-Horn theorem. In Section 3 we prove
the extension of the Schur-Horn theorem for general selfadjoint operators. In
Section 4 we give some reformulations of the notion of frame admissibility
which allow us to apply majorization theory to this problem, and we show
equivalent conditions for frame admissibility in the finite dimensional case
(both for finite or infinite sequences ¢). In Section 5 we study the infinite
dimensional case, showing separately necessary and sufficient conditions for
frame admissibility. In Section 6 we give several examples for the boundary
cases of the conditions studied before. These examples show that, in general,
the conditions can not be relaxed further. We also study different types of
frames in F(S,c), in terms of their excesses.

2. Notations and preliminaries

Let H be a separable Hilbert space, and L(H) be the algebra of bounded
linear operators on H. We denote Lo(H) the ideal of compact operators,
GI(H) the group of invertible operators, L(H ), the set of hermitian operators,
L(H)™T the set of nonnegative definite operators, U(H) the group of unitary
operators, and GI(H)T the set of invertible positive definite operators. We
denote by L(H) the ideal of trace class operators in L(H). We set L'(H); =
LY(H)NL(H)p and LY (H) T = LY(H)NL(H)". We denote by ¢*(N) the Banach
space of complex absolutely summable sequences. By ¢(N) (resp. ¢*(N)T)
we denote the subsets of real (resp. nonnegative) sequences. Similarly, we use
the notations £>°(N), £2°(N) and £*°(N)* for bounded sequences.
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Given an operator A € L(H), R(A) denotes the range of A, ker A the
nullspace of A, o(A) the spectrum of A, A* the adjoint of A, p(A) the spectral
radius of A, and ||A|| the spectral norm of A. We say that A is an isometry
(resp. coisometry) if A*A =1 (resp. AA* =1).

We also consider the quotient A(H) = L(H)/Lo(H), which is a unital C*-
algebra, known as the Calkin algebra. Given T € L(H), the essential spectrum
of T, denoted by c.(T), is the spectrum of the class T+ Ly(H) in the algebra
A(H). The essential norm ||T||. = inf{||T + K| : K € Lo(H)} of T is the
(quotient) norm of T'+ Lo(H), also in A(H). Given S € L(H), , we define

(4) a®(S) =maxo.(S) =Sl and a_(S)=mino.(S).

Ifs = fa(s)t dE(t) is the spectral representation of S with respect to the
spectral measure F, we shall often consider the following compact operators:

St = / (t—at(9))dE(t), and

(5) [t (5). 1IS1]

S_ = / (t —a_(9))dE(t).
(=181l (5)]

Note that S_ <0< ST.

Given a subset M of a Banach space (X, ||-|)), its closure is denoted by M
or cl (M), and the convex hull of M is denoted by conv(M). Also, given
a closed subspace S of H, we denote by Ps the orthogonal (i.e., selfadjoint)
projection onto S. If B € L(H) satisfies PsBPs = B, in some cases we shall
use the compression of B to S, (i.e., the restriction of B to S as a linear
transformation from S to S), and we say that we consider B as acting on S.

Finally, when dimH = n < oo, we shall identify H with C", L(H) with
M., (C), and we use the following notations: M., (C);, for L(H)p, M, (C)T
for L(H)™*, U(n) for U(H), and G1,,(C) for GI(H).

Majorization. In this subsection we present some basic aspects of ma-
jorization theory. For a more detailed treatment of this notion see [13]. Given
b = (b1,...,b,) € R", denote by bl € R" the vector obtained by rearranging
the coordinates of b in nonincreasing order. If b, ¢ € R™ then we say that c
is majorized by b, and write ¢ < b, if

k k
Zb%ch} k=1,...,n—1, and ibi:ici‘
i=1 i=1 i=1 i=1

Majorization is a preorder relation in R™ that occurs naturally in matrix
analysis.

DEFINITION 2.1. Let M =NorM ={1,2,...,m} :=1,,, for some m € N.
Let K be a Hilbert space with dim/X = [M| and let B = {e,}nem be an
orthonormal basis of K.
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(1) For any a = (an)nem € £°°(M), denote by Mp . € L(K) the diagonal
operator given by Mpgae, = ape,, n € M. When it is clear which
basis we are using, we abbreviate Mg o = M,.

(2) In particular, for a € C", we denote by M, € M, (C) the diagonal
matrix (with respect to the canonical basis of C™) which has the
entries of a on its diagonal.

(3) The diagonal pinching Cg : L(K) — L(K) associated to the basis B,
is defined by Cg(T') = Mp.a, where a = ((T'ey,, €5) )nem-

THEOREM 2.2 (Schur-Horn). Let b, ¢ € R". Then c < b if and only if
there exists U € U(n) such that

Ce(U*MpU) = M.,

where & is the canonical basis of C™.

3. Schur-Horn theorem for selfadjoint operators

In this section we present a different version of the “infinite dimensional
Schur-Horn theorem” given by A. Neumann in [17]. Our approach avoids the
somewhat technical distinction between the diagonalizable and nondiagonal-
izable case. On the other hand, this version can be applied more easily to
the problem of frame admissibility in the infinite dimensional case. The main
tools we use are the Weyl-von Neumann theorem and the known properties
of approximately unitarily equivalent operators.

Given a sequence a € £2°(N), Neumann [17] defines

= ; d L = inf ;-
Uk(a) sup Za an (@)= in i Za

This generalizes the partial sums which appear in the definition of majoriza-
tion. In the first part of this section we shall extend this definition to arbitrary
selfadjoint operators on a Hilbert space H. Denote by Py the set of orthogonal
projections onto k-dimensional subspaces of H.

DEFINITION 3.1. Given S € L(H)j, we define, for any k € N,
Ur(S) = sup tr(SP) and Li(S)= inf tr(SP)=—Ui(-S5).
PePy PePy,

REMARK 3.2. It is easy to see that Uy and Ly satisfy the following prop-
erties:
(1) For every k € N, Uy, is a convex map, and Ly, is a concave map.
(2) The maps Uy and Ly are unitarily invariant, for every k € N, i.e.,

Ur(S) = U (U*SU), for every U € U(H) and S € L(H)p, -

The following result asserts that Definition 3.1 extends the natural extrap-
olation of Neumann’s definition for diagonalizable operators.
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PROPOSITION 3.3.  Let B = {e, }nen be an orthonormal basis of a Hilbert
space H. If a € £2°(N), then, for every k € N,

Uk(MB,a) = Uk(a).
In order to prove this proposition we need the following technical results.

LEMMA 3.4. Let S € Lo(H)", and denote by Ay > Ao > -+ > X, > -+
the positive eigenvalues of S, counted with multiplicity (if dim R(S) < oo, we
complete this sequence with zeros). Then, for every k € N,

k
Uk(S) =Y\
=1

Moreover, if P € Py is the projection onto the subspace spanned by an or-
thonormal set of eigenvectors of A1,..., A\, then Ug(S) = tr(SP).

Proof. Fix k € N. It suffices to show that tr(SQ) < tr(SP) = Zle A; for
every () € Pi. This follows from Schur’s theorem (the diagonal is majorized
by the sequence of eigenvalues), which also holds in this setting (see Chapter
1 of Simon’s book [18]). O

In [17], Neumann proved the following result (Lemma 2.17): if a € £2°(N),

(6) af =max{a;—limsup a, 0}, a; =min{a; —liminfa, 0}, i€N,
then, for every k € N,
(7) Up(a) = Ug(a™) +k limsup a and Lp(a) = Lyp(a”) + & liminf a.

The next result extends Eq. (7) to selfadjoint operators. This fact is necessary
for the proof of Proposition 3.3, but it is also a basic tool in order to deal
with the maps Uy and Ly .

PROPOSITION 3.5. Let S € L(H)y. Then, for every k € N,
1. Uk(S) = Uk(S+) + k a+(S),
2. Lp(S) = Le(S-) + k a_(9).
where a*(S), a_(S), ST, S_ are defined in (4) and (5). In particular,
() i Ui (5) Ly (5)

— at(9) — ; _
Jm —— =o S)=1|Slle and klirxgo ’ =a_(9).

Proof. Denote a™ = a™(S), and
(9) Py = Py(S) = E[||Sle. [IS] = E[a™, S]],

where F is the spectral measure of S. Recall that

St = / (t—at) dE(t) = (S — a™)P,.
[, 11S11]
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Then S — ST = S(I — P,) + a™P, < atI. Therefore, for every k € N and
Q € P,

(1) (SQ) = tr(STQ) + tx((S — ST)Q) < Un(ST) + ka,

which shows that Uy (S) < U(ST) + ka™ for every k € N.
To see the converse inequality, suppose first that tr P, = +o00. Denote by
A > Xy > - > )\, > - the eigenvalues of ST, chosen as in Lemma 3.4.
Let Qx € Pj, be the projection onto the subspace spanned by an orthonor-
mal set of eigenvectors of A1,..., \x. Then Qr < P>. By Lemma 3.4,

k
tr(SQk) = tr(STQk) +tr((S — ST)Qk) = > _ Ai + ka™ = Ug(S) + ka™ .

i=1
Hence, U (S) = Up(ST) + kat. Now, assume that tr P, = r < co. If k < r,
the same argument as before shows that Ug(S) = U,(ST) + ka™. So, let
k > r and take € > 0. Since P. = E[at —e, a) has infinite rank (otherwise
[IS]le < a™—¢), we can take @ < P., a projection of rank k—r. If Q) = Q+Ps,
then
Uk(S) > tr(SQk) = tr(SPz) +tI‘(SQ)

=tr(ST) + rat + tr(SP-Q)

> tr(StT) +rat + (k—r)(at —¢)

=Ur(ST) + ka®™ —e(k —1).
Since ¢ is arbitrary, Ug(S) = Ur(S™) + ka™. The formula for Ly (S) follows

by applying item 1 to —S. Finally, as ST € Lo(H)™, its eigenvalues converge
to zero. Hence, by Lemma 3.4, we get that

+
im 20
k— o0 k
and similarly for Ly(S_). Therefore, Eq. (8) follows. O

Proof of Proposition 3.3. The result follows using Lemma 3.4, Proposition
3.5, Eq. (7) and the following obvious identities: if S = Mg a, then

(1) at(S) =limsup a, and a_(S) =liminf a,
(2) S+ = MB,a+ and S_ = MB,a_ s
where a* and a~ are defined as in Eq. (6). O

DEFINITION 3.6. Let H be a Hilbert space, S € L(H) and B an orthonor-
mal basis of H. Then:
(1) Un(S) ={U*SU : U e U(H)}.
(2) C[UH(S)] = {C € fOO(N) : MB’ c € CB(UH(S))}
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REMARK 3.7. Given S € L(H), the definition of C[Ux(S)] does not de-
pend on the orthonormal basis B. In fact, if B’ is another orthonormal basis
of H, U € U(H) maps B onto B', and ¢ € (*°(N)" satisfies M . = Cp(T) for
some T € Uy (S), then

]\43/7 c = U]WB7 U = UCB(T>U* = CB/(UTU*) S CB/(UH(S)).
Therefore {c € (>°(N) : Mg/ ¢ € Cg (Un(S))} = ClUh(5)].

Given a diagonal operator M, € L(H)p, Neumann showed that, if ¢ €
£2°(N), the following statements are equivalent (Corollary 2.18 and Theorem
3.13 of [17]):

(1) ¢ € ClthdMy)]

(2) Ug(a) > Uk(c) and Li(a) < Li(c), k € N.
Now, our objective is to generalize this equivalence to every operator S €
L(H)y, (via areduction to the diagonalizable case). We need first the following
result about approximately unitarily equivalent operators.

LEMMA 3.8.  Let S,T € L(H)p. Then S € cl, (Un(T)) if and only if
CIH.” (Z/IH(S)) = CIH.H (UH(T)) .
In this case Ug(S) = Up(T) and Li(S) = Li(T) for every k € N.

Proof. If {V,,}nen is a sequence in U(H) such that |V, TV, — S| —— 0,

n—oo
then

Vi SVi =T = [V (S = VATV )Vall = VATV, = S|l —— 0.
Hence cl | (Un(S)) = cl, , Un(T)). By Remark 3.2, Up(V,TV,7) = Ux(T)
and Ly (V,TV}) = Li(T), for n, k € N. Fix k € N and take P € P;. Then

tr SP = lim trV, TV P < lim Up(V,TV) = Uy(T).

Hence Ug(S) < Up(T). Similarly Ly(S) > Li(T). The reverse inequalities
follow from the fact that V,)SV,, —— T. O

REMARK 3.9. Two operators S,T € L(H); satisfying the conditions of
Lemma 3.8 are called approzimately unitarily equivalent. This equivalence
relation has been extensively studied in the theory of operator algebras. For
example, as a consequence of the Weyl von Neuman theorem, it is proved in
Davidson’s book [9] (II.4.4) that S,T € L(H), are approximately unitarily
equivalent if and only if 0.(5) = 0.(T') and dim ker(S—AI) = dim ker(T'—\I)
for every A ¢ 0.(S). From this fact it can be deduced (see the proof of I1.4.4
in [9]) that, for every S € L(H)p, there exists a diagonalizable D € L(H)
which is approximately unitarily equivalent to S.
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THEOREM 3.10. Let S € L(H), and ¢ € (°(N). Then the following
conditions are equivalent:

(1) ¢ € Clth(S)].

(2) Ug(S) > Uk(c) and Li(S) < Li(c) for every k € N.
If one of these conditions holds, then maxo.(S) > limsupc and mino.(S) <
liminfc.

Proof. The diagonalizable case was proved by Neumann as mentioned be-
fore. Note that, in order to deduce our formulation from Neumann’s result, we
need Proposition 3.3. If S is not diagonalizable, by Remark 3.9, there exists
a diagonalizable operator D € cl | (Un(5)). By Lemma 3.8, Uy (D) = U(95)
and Ly (D) = Lg(S) for every k € N, and cl, | (Un(D)) = cl,  (Up(S)). This
implies that

clj.y . (CUn(D)]) =l (ClUn(S)]),
because the map T — Cp(T) is continuous for every orthonormal basis B.
Hence, the general case reduces to the diagonalizable case. The final remark
follows from the fact that

L
(11) limsupc = lim M and liminfc = lim M,
k—oo Kk koo k

and Eq. (8). O

A similar result can be stated for hermitian operators in L!(H) and se-
quences in ¢!(N). In this case our result is a slight generalization, using our
maps Uy and Ly, of some results due to Neumann.

DEFINITION 3.11. Let II be the set of all bijective maps on N and, for any
k € N, denote by II, C II the set of permutations ¢ such that o(n) = n for
every n > k. Given a € ¢*°(N) and o € II, we define:
(1) Ay = (ag(l), A (2)y - - )
(2) II-a={a,, o €1II}, the orbit of a, under the action of II.
(3) conv(II - a), the convex hull of the orbit of a.

3.12. If b,a are sequences in ¢! (N), Neumann [17] proved that the follow-
ing statements are equivalent:
(1) beclyy, (conv(Il - a)).
(2) 22021 by, = 2;021 ar, and Ug(a) > Uk(b), Lr(a) < Li(b), k € N.

PROPOSITION 3.13.  Let S € L'(H)p, and b € €1(N). Then the following
statements are equivalent:
(1) be CIH‘HI ClUn(9)]).
(2) Uk(S) > Ug(b), Ly(S) < Li(b) for every k € N, and > po | by =
trS.
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Proof. 1 = 2. Note that cl., (C[Ux/(5)]) C clj._ (ClUp(S)]). Hence, by
Proposition 3.10, U,(S) > Uk(b) and Ly (S) < Li(b) for every k € N. The
equality > 7, by = trS clearly holds if b € C[Uy(S)]. The general case
follows from the ¢! (N)-continuity of the map b — > ;7 | by.

2= 1. Let a € £}(N) and B = {ej }ren an orthonormal basis of H such that
S = Mp . By 3.12 and Prop. 3.3, it suffices to show that cl)., (conv(Il - a)) C
el (CL(S)]).

CLAIM. CIHH1 (CODV(H . a)) = CIHHI (COHV(HO ~a)), where 11y = UkEN 11 .

Indeed, it is sufficient to prove that Il -a C clj., (conv(Ily - a)). Given
o c€ll,a, € II-a, and ¢ > 0, take N € N such that 7, lax| < €/2
and Nyg € N such that 0= !(Iy) C Iy,. There exists o9 € I, such that
o(k) = o¢(k) for every k € I, such that o(k) € Iy. Therefore,

las = ag i = Y lac) — Goyw)

(k)¢ 1IN
< Z o (k)] + Z |aoq (k)| <&
o(k)¢In oo(k)¢In

Consider b € conv(Ilp-a). Then there exists n € N such that b € conv(Il,a).
This means that the first n entries of b form a convex combination of per-
mutations of the first n entries of a, and by = aj for every k > n. Hence
(b1,...,bn) < (a1,...,ay). Denote B,, = {ex : k < n} and H,, = span{B,}.
Then, by the Schur-Horn Theorem 2.2, there exists a unitary Uy € L(H,,)
such that

Mppln, =Cs, (UsMp.aln, Vo).

Letting
_(Us 0\ H,
U= (0 I> HL cU(H),
we get that Mpp, = Cp(U*Mp U), and b € ClUp/(S)]. Therefore
CIH.”1 (COHV(H . a)) = CIH.”1 (COHV(HO . a)) - CIH.H1 (C[Z/[H(S)]),

which completes the proof. O

REMARK 3.14. Comparing 3.12 with Proposition 3.13, it follows that, if
S = Mg 4 for some a € ¢}(N) and some orthonormal basis B of H, then

CIH'Hl (COIIV(H . a)) = Cl”'”l (C[L{ (S)]) .

In particular, clj., (C[Un(S)]) is a convex set. On the other hand, since
the maps U}, are convex and the maps L; are concave for all £ € N, it can
be deduced from Theorem 3.10 that clj._ (C[Uy(S)]) is convex, for every
S € L(H)p. Actually, this fact is known, and can also be deduced from the
following results of Neumann [17]:
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1. If S = Mp 4 for some a € £2°(N) and some orthonormal basis B, then
CIH'HQQ (CODV(H . a)) = CIH‘HM (C[UH(S)])
2. If S is not diagonalizable, then

(12) Clth(9)] = Clttn(SF)] + [a—(S), a™ (S)]" + Clttn(S-)],

where a™(S), a_(S), ST, S_ are defined in (4) and (5).
Note that formula (12), which holds also for diagonalizable operators, gives
another complete characterization of C[Uy (S)]. It can be used to give an alter-

native proof of Theorem 3.10, but it can also be deduced from the statement
of this theorem, and Proposition 3.5.

4. Frames with prescribed norms and frame operator

Preliminaries on frames. We introduce some basic facts about frames
in Hilbert spaces. For a complete description of frame theory and its ap-
plications, the reader is referred to Daubechies, Grossmann and Meyer [§],
Aldroubi [1], the review by Heil and Walnut [11] or the books by Young [20]
and Christensen [7].

DEFINITION 4.1. Let F = {f,}nen a sequence in a Hilbert space H.
1. F is called a frame if there exist numbers A, B > 0 such that
(13) AlFIP < DI ) P < BIFIP, forevery  fe™M.
neN

2. The optimal constants A, B for Eq. (13) are called the frame bounds
for . The frame F is called tight if A = B, and Parseval if A= B =
1. Parseval frames are also called normalized tight frames.

DEFINITION 4.2. Let F = {f,}nen be a frame in H. Let IC be a separable
Hilbert space. Let B = {p,, : n € N} be an orthonormal basis of K. From Eq.
(13), it follows that there exists a unique T' € L(/C, H) such that

T(on) = fn, neN

We shall say that the triple (7', IC, B) is a synthesis (or preframe) operator for
F. Another consequence of Eq. (13) is that T is surjective.

REMARK 4.3. Let F = {fn}nen be a frame in H and (7, K, B) a synthesis
operator for F, with B = {¢,, : n € N}.

1. The adjoint T* € L(H,K) of T is given by
T*(il') = Z<xa fn>§0na z€H.
neN

It is called an analysis operator for F.
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2. By the previous remarks, the operator S = TT* € L(H)™, called the
frame operator of F, satisfies

(14) Sf = (ffu) fus forevery feMH.
neN

It follows from (13) that AT < S < BI. So that S € GI(H)". Note
that, by formula (14), the frame operator of F does not depend on
the chosen synthesis operator.

DEFINITION 4.4. Let F = {f,}nen be a frame in H. The cardinal number
e(F) = dim {(n)ner € B(N): Y cafu =0},
neN
is called the excess of the frame. Holub [12] and Balan, Casazza, Heil and
Landau [3] proved that
e(F)=sup{ [I|: I CN and {f,}ngs is still a frame on H}.

This characterization justifies the name “excess of F”. It is easy to see that,
for every synthesis operator (T, K, B) of F, e(F) = dimkerT. The frame F
is called a Riesz basis if e(F) = 0, i.e., if the synthesis operators of F are
invertible.

Reformulation of frame admissibility. Recall that, given a sequence
¢ = (ck)rem € L°(M)" and S € GI(H)T, we denote by F(S,c) the set of
(S, c)-frames, i.e., those frames F = {fy }rem for H, with frame operator S,
such that ||fx||* = cx, for every k € M, and we say that the pair (5, c) is
frame admissible if F/(S,c) # (). We shall consider the following equivalent
formulation of frame admissibility, which makes clear its relationship with the
Schur-Horn theorem of majorization theory.

PROPOSITION 4.5. Let ¢ € (*°(M)" and let S € GI(H)T. Then the fol-
lowing conditions are equivalent:

1. The pair (S, c) is frame admissible.
2. There exists a sequence of unit vectors {yitrem in H such that
S=>" cryk ® yr,
keM
where, if M = N, the sum converges in the strong operator topology.
3. There exists an extension K = H @& Hq of H such that, if we denote

(15) 51:<‘§ 8) 77; € L(K)",

then ¢ € C [Ux(S1)].
In this case, there exists a frame F € F(S,c) with e(F) = dimH, .
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Proof. The equivalence between conditions 1 and 2 is well known (see, for
example, [10]). Hence we shall prove 1 < 3. Assume that F = {fi}rem €
F(S,c) . Let (Tp, Ko, Bo) be a synthesis operator for F. Consider the polar
decomposition Ty = U|Ty|, where U : Ky — H is a coisometry with initial
space (ker Tp)* and range H. Note that U* maps isometrically H onto ker Tj-.
Denote Hy = kerTy, and K = H® Hy . Let V : K — Ky be the unitary
operator given by

V(€1,82) =U"1 + &2, for  (&1,&) e HO®Hy =K.

Consider the orthonormal basis B = V*(By) of K, and T' = T,V € L(K, H).
Then (T, K, B) is another synthesis operator for F, with ker T' = H,.

Let Ty € L(K) given by Tié = T€ ® Oy, € € K. Then T7T; = T*T,
|Ty| = |T|, and

. (TT* 0\ H _ (S 0\
I < 0 0> Ha (0 0)51'
If Ty = Uy|Th| = Uy|T] is the polar decomposition of 77, then U; acts on
H = (ker T1)* as a unitary operator. Hence W = U; + Py, € U(K). Since
T, = WIT|,
Sy =TT =W|TPW* =W (T*T)YW* = W*S$W =T*T.

On the other hand, if B = {ex }ren, then (T*Tey, er) = (Tex, Tex) = || fx]|*> =
¢k, for every k € M. Therefore,

Cp (W*51W) = CB(T*T) = MB,c = celC [UK(Sl)] .
Conversely, suppose that there exists an extension K = H & Hy of H and
V € U(K) such that M. = Cg(V*S1V), for some orthonormal basis B =
{ex}ren of K. Let T = S11/2V. Since S is invertible, we have R(T) = H
and dimker T' = dim Hy. Thus F = {Teg }rem is a frame for H, with frame
operator TT*|H = Sl}ﬂ =S. Since T*T = V*S1V and Cg(V*S1V) = Mp ,
we have ||Teg||? = (T*Tey,ex) = cx, for every k € M. Hence F € F(S,c)
with e(F) = dimHg . O

The finite-dimensional case. In this section we assume that H is finite
dimensional. We shall consider separately the cases of frames of finite or
infinite length. Suppose that S € M, (C)T and |M| = m < oco. In this
case, the classical Schur-Horn Theorem 2.2 gives a complete characterization
of frame admissibility for (.5, c).

THEOREM 4.6. Let ¢ € R7 and let S € Gl,,(C)T, with eigenvalues by >

by > - > b, > 0. Then, the pair (S,c) is frame admissible if and only if
k

k n m
ZbiZZci for 1<k<n-—1, and Zbi:ZCi‘
i=1 i=1 i=1

i=1



550 J. ANTEZANA, P. MASSEY, M. RUIZ, AND D. STOJANOFF
In other words, if ¢ < (by,...,bs,0,...,0) € R™. O

This result was obtained in [5] and [16], from an operator theoretic point
of view. Actually the proofs given there can be adapted so as to obtain a
proof of the classical Schur-Horn theorem that is quite conceptual and simpler
than those in the literature. Now, we consider frame admissibility for infinite
sequences in finite dimensional Hilbert spaces. The case S = I of the next
result appeared in [4].

THEOREM 4.7. Let ¢ € {*(N)T. Let S € Gl,(C)T, with eigenvalues
by > by > --->b, >0. Then the following conditions are equivalent:

(1) The pair (S, c) is frame admissible.
(2) Zle bi > Ur(c), for every 1 <k <n—1, and 31" 1 bi=>nCi-

Proof. Let b= (by,...,b,,0,...,0,...) € (>*(N)*.
2 = 1. Let H be a infinite dimensional Hilbert space, and consider

S = <§ 8> € L(C" & H).

Then there exists an orthonormal basis B = {e }ren of £ = C* @ H such that
S1 = Mp, . Hence, by Proposition 3.3,

k
Ur(S1) = Zbi > Ug(c), for every k € N.
i=1

On the other hand, note that Lp(S;) = 0 < Lg(c) for every k € N and
b = > ienCi- Then, by Proposition 3.13, there exists a sequence
{Vin}men in U(K) such that

[ES

C (V3 S1Viy) —— M,
where |A||; = tr|A|. Therefore, by Proposition 4.5, there exists a norm
bounded sequence of epimorphisms 7, : K — C” such that 7,7, = S for

1
all m € N, and (||T,n(e:)]|?)ien L0 Then, by a standard diagonal

argument, we can ensure the existence of a subsequence, which we still call
{T'} men, such that

Tyn(ei) —— f; € C™, with ||f;||*> = ¢; for every i € N.
m—00

Let Tp : span {B} — C™ be the unique (densely defined) operator such that
Ty(e;) = f; for every i € N. Note that Tp is bounded because, if x = >\, o e;
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and C' =3, ¢ = trS, then

S aifil < Ml fil

=1 =1
. /2 , . 1/2

< (Z) (Zlaﬁ) < OV,
=1 =1

The bounded extension of Ty to K is denoted T'.

[To()[| =

Cram. ||T,, —T|| —— 0.

Indeed, let € > 0 and iy € N be such that Zf;o ¢; < €. Then there exists
my € N such that

(16) D I Tm(en)|* < e, for every m > my.
i=ig

)

= LO m—00

This is a consequence of the fact that (|| T, (e;)||?)s2

other hand, there exists mo > m; such that

(ci)i2;,- On the

io—1

(17) Z | T (ei) — fil|* < e, for every m > msy.

Let m > my and z = ) ._, ase; € span{B}. By equations (16) and (17),

(T — TP < (imz ) (Z Iz >||2)

i=1

< Jl=)? <Z (T = T)(ea)* + 2 Z 1T (€)1 + IIT(ez)H?)

’L’L()

< 5ellz]f?,
which proves the claim. Therefore

TT* = lim T,T =S.
m—0o0
We have proved that the frame F = {f;};en € F(S5, ).
1 = 2: This follows from Theorem 3.10, applied to S; and ¢, and Propo-
sition 4.5. O

REMARK 4.8. The statement of Theorem 4.7 can be reformulated in
terms of finite rank operators and sequences in ¢!(N) in the following way:
Let K be a separable, infinite dimensional Hilbert space. Let S; € L(K)™ be
such that dim R(S;) < oo. Then C[Uy(S1)] is closed, as a subset of ¢!(N).
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Indeed, suppose that S; # 0 (the case S; = 0 is trivial). Then there
exists a sequence b = (by,...,b,,0,...,0,...) € £*(N)*, with b,, > 0, and
an orthonormal basis B = {e,}nen of K such that S; = Mpyp. Let ¢ €
1(N)*. By Proposition 3.13, Condition 2 of Theorem 4.7 means that ¢ €
cly.y, (CUk(S1)]) - But, by Proposition 4.5, Condition 1 of Theorem 4.7 means
that ¢ € C[Ux (S1)]-

Note that, although cl|.|, (conv(II- b)) = cl., (CUx(S1)]) = CUx(S1)],
as shown in Remark 3.14, it is not true that conv(II - b) is closed, as a subset
of /1(N)*. For example, if b = (1,0,0,...), then, by Proposition 3.13,

° (21"> € clj, (Cliic(er ® ex)]) = el (conv(IT- b))
neN

Nevertheless, ¢ ¢ conv(Il - b), because every sequence in conv(Il - b) has
finite nonzero entries. In this case, ¢ = Cg(x @ z) € ClUx(e1 ® e1)], where

_n
T=)  cn2 26,
5. The infinite-dimensional case

Throughout this section H denotes a separable infinite dimensional Hilbert
space. The first result gives necessary conditions for frame admissibility:

THEOREM 5.1. Let S € GI(H)" and ¢ € (>(N)T. If the pair (S,c) is
frame admissible, then
Z c; = 00, and

ieN
Ui(S) > Uk(c), for every k € N. In particular, limsupc < ||S]|.

Proof. Suppose that there exists a frame F € F(S,c). Then, by Proposi-
tion 4.5, there exists an extension K = H @ Hg of H such that, if we denote
(S5 0\ H 4
Sl— (O 0) Hd ELUC) )
then ¢ € C Uk (S1)]. Hence, ), yci = trMe = trS; = oo. On the other
hand, by Proposition 3.5, Uy(S) = Ug(S1) for every k € N. Then, applying
Theorem 3.10, the statement follows. O

REMARK 5.2. Let S € GI(H)" and ¢ € £°°(N)*. Then, by Theorem 3.10
and Proposition 4.5, the following conditions are equivalent :
(1) Uk(S) > Ug(c) for every k € N.
(2) There exists a sequence Fr, = {fir}ien, k € N of frames on H, such
that S is the frame operator of every Fj and || firl| — \/C; uni-
formly for 7 € N.
Indeed, note that the inequalities involving the maps L, k € N, can always
be fulfilled if we consider a sufficiently large extension H & Hg of H. In this
case, limsup ¢ < ||5]fe-
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At this point we should note that the conditions of Theorem 5.1 are not
sufficient to ensure that the pair (S, c) is frame admissible, as Example 6.1
below shows. That is, we can not remove the closures in the equalities of
Theorem 3.10, as it was already mentioned in [17], for the diagonalizable
case.

In [16] (see also [4]) there is the following result which gives sufficient
conditions for a pair (5, c) in order to be frame admissible:

THEOREM 5.3 (Kornelson-Larson). Let S € GI(H)T and ¢ € [*(N)*.
Suppose that Y,y c; = 00 and ||c||oc < [|S|le. Then the pair (S,c) is frame
admissible. O

The following result, which generalizes Theorem 5.3, strengths slightly the
necessary conditions for frame admissibility given by Theorem 5.1, to get
sufficient conditions. A tight frame version of this result appeared in R.
Kadison [14] and [15]. Recall the notation P2(S) = E[||S|le, ||S||], where E is
the spectral measure of S € L(H)™.

THEOREM 5.4. Let S € GI(H)t and c € I®°(N)™T, such that y
Assume one of the following two conditions:
1. (a) tr Py(S) = oo,
(b) Ur(S) > Ux(c) for every k € N, and
(c) |IS|le > limsup(c).

ieN Cc; = Q.

2. (a) tr P(S)=r €N,
(b) Uk(S) = Ug(c) for 1 <k <r,
(¢) Ux(S) > Uk(c), for k > r, and
(d) |IS|le > limsup(c).

Then, the pair (S, c) is frame admissible.

Proof. By Proposition 4.5, it suffices to show that there exists a sequence
of unit vectors {zy }xen such that S =3, _cx 71 ® x). Assume that the first
condition holds. Then, since ||.S||. > limsup(c), there exist mo € N and € > 0
such that

em < ||S|le —¢  for m > myg
Let py > po -+ > py > -+ - be the sequence of eigenvalues of ST, chosen as in
Lemma 3.4. Let {4, }nen be an orthonormal system such that STy, = pnyn.

Denote A\, = pn+||S|le, n € N. Note that ||S]| > A > [|S|le, and Sy = Apyn,
n € N. By Proposition 3.5, for every k € N,

k k
S XNyi@yi <8, and  U(S) =) A

i=1 i=1
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Let ng be the first integer such that
no mo
Z c; > Z YR
i=1 i=1
Then ng > mg + 1, and

no mo
h=> ci=Y Ai<cny <[ISle < Amgr1-

=1 i=1

Let ¢g = (¢1,. .., Cny). Since

k
Z)\i = Ui(S) > Uk(c) > Uk(cy), 1<k <my,

i=1

we have ¢g < (A1,..., Mg, 1, 0,...,0) € R™. Denote

mo
S1=h Yno1 © Ymor1 + ) Ni 4i @ yi <5,
i=1

and So = S — S;. Then the pair (S1,¢q), acting on span{yi, ..., Yme+1}
satisfies the conditions of Theorem 4.6. Hence, there exists a set of unit
vectors {@1,...,Tn,} such that > 1% ¢; z; ® z; = S1. Note that Sy > 0,
R(S7) is closed (by Fredholm theory), and [|Sz|le = ||.S]|e. Then we can apply
Theorem 5.3 to the pair (Sz,{¢;}isn,), acting on R(S3). So, there exist unit
vectors x, for k > ng, such that

00
Sy = Z Ci Ty @ X4.

1=no+1

Therefore we obtain the rank-one decomposition S = ZieN Ci T; Qxy.
Assume Condition 2. Note that, by equations (8) and (11), the condition
[IS]le > limsup(c) implies that Uy, (S) — Uy (c) ——— oo. Therefore, by item
(¢), we can assume that there exists 6 > 0 such that
(1) Upsk(S) = 6 > Upyi(c), for every k € N.
(2) There exists mg > 1 such that ¢, < ||S||e — d for m > my.

Let m; = max{mg,r + 1}. Let u3 > --- > pu, be the greatest eigenvalues
of S*, and let {y1,...,y,} be an associated orthonormal set of eigenvectors.
Denote

)
)\7:,LL7+HS||€, ISZST, and )\Z:HSHef—, T+1§Z§m1+1
2m1
Then, by Proposition 3.5,

(1) Ug(S) = Zle Ai,for 1<k <r,and
(2) Up(c) SURS) =6 < ¥ N forr+1<k<my+1.
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On the other hand, since Q@ = E([||S|le — §/2ma, ||S]|e)) has infinite rank,

there exists an orthonormal set {y,41,-..,Ym,;+1} C R(Q). Therefore
mi+1
D Nviey<S
i=1

Let ng be the first integer such that > %, ¢; > > A;. Then ng > mq + 1
and

no ma
h:ZCz’_ZAi Scno < ||S||e_5§)\m1+1 .
=1 =1

Let co = (¢1,...,¢n,). Since

k
Z)‘i = Ur(S) > Uk(c) > Ur(co), 1<k<r, and
=1

k
> X = Uk(S) = 6 2 Up(c) > Uklco), r+1<k<m,
i=1

we have ¢g < (A1,...,A\my,7,0,...,0) € R™. So, by Corollary 4.6, there
exists a set of unit vectors {z1,...,Zn,} C H such that

mi no
S1=3 XN Ui ©Yi T h Yo t1 @ Y1 = Y ¢ 7 @ .
i=1

i=1

Since S; < Z;ilfrl Ai Yi @ yi, we have So = 5 — 51 > 0 and ||S2]le = [|S]|e-
As before, we apply Theorem 5.3 to the pair (S2,{¢;}isny), acting on R(S2),
and we obtain a decomposition

0o
SQ = E Ci Ti Q5.
1=no+1

Therefore we obtain the rank-one decomposition S = ZieN Ci T; Q4. O

Example 6.2 below shows that the Condition 2 (c) of Theorem 5.4 can not
be dropped in general.

COROLLARY 5.5. Let0 < A€ R andc € (> (N)T be such that 0 < ¢; < A,
i € N. Denote J ={i € N:¢; = A}. Assume that

Z C; = 00, and limsup ¢; < A (or, equivalently, sup ¢; < A).
Py igJ igJ

Then the pair (Al c) is admissible. This means that there exists a tight frame
with norms prescribed by ¢ and frame constant A. O
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6. Some examples

In the following example we shall see that

Up(S) > Ui(c), ke N, and |[S|.=Ilimsup(c) # F(S,c)#0.

EXAMPLE 6.1. Let S =TI € L(H) and a € (0,1). Let ¢ € ¢*°(N)* be
given by ¢; = p € (0,1) and

_ a® if £ # 1 is odd,
%=\ 1—d* ifkis even.
Then 0 < ¢ < 1forkeN, >, cp =00 =7 (1 —ck), and limsupc =1 =
|S]le - Suppose that there exists a frame F = {fi }ren € F(S,¢). Then
el = 3" V@ Sl for every = € 7.
keN
In particular, we get, for every j € N,
AP =D s Fd P = 0%+ D 1o Sl
keN k#j

Thus, if j # 1, we obtain the inequality
[ F01P = 1 PP < Y1 P = AP = 1651 = ei(1 =)

Py
Therefore,
(18) =A< AN+ e —c)
J#1
RDICIETOE DDA S
J#1 J#1 J#1
1 1
_ .2 _ _ .2
P l—a 1-a P 1—a?
Taking
1
P=73
and a € (0,1) such that
a < 1
1—a?2 4’

we get that
9 a
p>p+ a2
contradicting Eq. (18). Hence, in this case, F(S,¢) = 0. Note that the
pair (S, c) satisfies all of the necessary conditions of Theorem 5.1, because
Ui (S) = k = Uk(c) for every k € N.
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In the second example we see that, in general,
Up(S) 2 Uk(c), keN and ||| > limsup(c) # F(S,c)#0.

EXAMPLE 6.2. Let S = Mg be the diagonal operator, with respect to an
orthonormal basis of H, given by s = {1 — (i + 1) !};en, and let (¢;);en be
given by ¢; =1 and ¢; = 1/2 for every ¢ > 2. Note that

e 1 =S| >1/2=limsup(c),

e Ui(S) =Ui(c), and

o Up(S)=k>1+(k—1)/2 = Uy(c) for every k > 2.
Still, we have F'(S,c) = 0. Indeed, suppose that there exists F € F(S,c).
Then, by Proposition 4.5 there exists an extension K = H @ Hy of H such

that, if
(S 0\ H +
Sl_ (0 0) Hd ELUC) )
then ¢ € C[Ux(S1)]. Let V € U(K) be such that, in a orthonormal basis
B = {ek}ren, Mc = Cp(V*S1V). Take x = Py Ve;. We have that [|z| <1
and (Sz,x) = (Mcej,e1) = ¢; = 1, while ||S]| = 1. Then Sz = z, and 1
would be an eigenvalue of S, which is false. In this example, Condition 2 (c)
of Theorem 5.4 does not hold, because ||.S|| = ||S]|e, which implies that r =
tr P>(S) = 0; but U;(S) = 1 = Ui(c). Note that Y, ¢, =00 =, (1 —cp),

as in the previous example.

The excess of frames in F(S,c). Let S € GI(H)" and ¢ = (¢;)iem €
¢>°(M)* be such that the pair (S, c) is frame admissible. Then there can be
many different types of frames F € F(S,c). We consider the set

Null(S, ¢) = { e(F) : F € F(S,¢) }.

In the example below, we show that this set can be arbitrarily large. Moreover,
this example shows that there exists an admissible pair (S, a), satisfying just
the necessary conditions of Theorem 5.1, and in this case Uy (S) = Ug(a),
k €N, and limsupa = ||S]. .

EXAMPLE 6.3. Let H be a Hilbert space with an orthonormal basis B =
{ﬂfn}neN- Let
1 1 1 00 + +
32(571,5,1,§,>e€ (N) 5 and S:MB,aegl(H) .

Then the frame (Riesz basis) Fy = {af,l/ an}neN has frame operator S, so that
Fo € F(S,a). On the other hand, let

1 1 1 1
F; :{—x,m,—z , LGy, —= L1, T8, —= L3, T ,}
1 NG 2 4\@ 2 6\/§ 1 8\/§ 3,710
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It is easy to see that also F; € F(S,a), but e(F;) = 1. Analogously,
1 1 1 1 1
]—'z{—x,x,—x , L6y —= X8, £10, —= L8, T ,—x,...}EFS,a,
2TV I G T2 e o s T10, T T 12y T (S,a)

with e(F2) = 2. In a similar way, we can construct frames Fj € F(S,a) with
e(Fx) =k, for every k € NU {oo}. Note that

1 1 1 1 1 1
F. :{—J;,x,—x,x,—x,m , —=T3,%16, —= L6, T ,—x,...}.
0o NG 1 4\/5 2 8\/§ 2 12\/E 3 16\/5 6 20\/§ 6

In other words, . is the frame induced by the bounded operator T : £?(N) —
‘H given by

Ty if n =2k,
T(e ) . %1‘2]671 if n:6k—5,
no \% Thk—2 if n = 6k — 3,
% Tak—9 if n=06k—1.

Therefore Null(S,a) = NU {0,000} .

PROPOSITION 6.4. Let S € GI(H)T and ¢ € ¢>(N)*. Assume that the
pair (S, c) is frame admissible and liminf ¢ < min o.(5). Then Null(S,c) =
{oo}-

Proof. Let F = {fn}tnen € F(S,c), with e(F) = d. By Proposition 4.5
there exists an extension K = H @ Hy of ‘H such that, if we denote

(S 0\ H .
Sl—<0 0) H, EL(K),

then ¢ € C[Ux(S1)]. By Theorem 3.10, min o.(S;) < liminf ¢ . But, if
dimHy = e(F) < oo, then 0.(S1) = 0.(S5), which contradicts the fact that
liminf ¢ < min o.(S). O

REMARK 6.5. Let F = {f,}nen be a Parseval frame for H (i.e., it has
frame operator S = Ip). If liminf,cy||fn| < 1, then, by Proposition 6.4,
e(F) = oo . This results was proved in [3]

EXAMPLE 6.6. Let H be a Hilbert space with an orthonormal basis B =
{zi}ien. Let
272727
We shall show that also Null(S,c) = NU {0, c0}. Note that, in this case,

a=(1,2,1,2,...), S=Mga€GI(H)" and c:(3 3 3 )

3
a_(S)=1<liminfc = 5= limsupc < 2 = ||S]l..



THE SCHUR-HORN THEOREM FOR OPERATORS AND FRAMES 559

Indeed, take the Riesz basis Fo = {fn }nen given by

" e
NG + Tpi1 if n is odd,
fn =
—Tp—1 . .
NG + z, if n is even.

It is easy to see that Fy € F(S,c). Using that

3333
2222 2,2,2
(272’2’2><(?370)7

an arbitrary number of packs of four vectors with norm +/3/2 associated to
packs of three even places of the diagonal of S can be interlaced into the
previous construction. Each of these packs adds excess 1 to the whole system.
In this way, frames Fp € F(S,c) with e(Fx) = k can be found for every
ke NU{oo}.

REMARK 6.7. Let S € G1,,(C)" and ¢ € ¢*°(M)*. If the pair (S,c¢) is
frame admissible, then Null(S,c) = {|M| — n}. Nevertheless, if £ > n, ¢ =
(1,...,1) € C*and S = £I € M,,(C), then F(S, c) is the set of spherical tight
frames of k elements in C". Dykema, Freeman, Korleson, Larson, Ordower
and Weber [10] have shown that, in this case, F'(S,¢c) has a rich geometrical
structure, with several orbits of qualitatively different elements.
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