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LOWERING THE ASSOUAD DIMENSION BY
QUASISYMMETRIC MAPPINGS

JEREMY T. TYSON

Abstract. We study the relationship between the Assouad dimension
and quasisymmetric mappings, showing that spaces of dimension strictly

less than one can be quasisymmetrically deformed onto spaces of arbi-
trarily small dimension. We conjecture that this fact holds also for
the Hausdorff dimension, and our results yield several corollaries which
provide partial support for this conjecture. The proofs make use of
connections between Assouad dimension, porosity, and ultrametrics.

1. Introduction

It is well-known that quasiconformal maps can distort Hausdorff dimension.
Gehring and Väisälä [10] gave K-dependent estimates for the maximal distor-
tion of the dimension of a subset of Rn by a K-quasiconformal map. Recently,
dilatation-independent results have been obtained for the Hausdorff dimension
for quasiconformal maps in Rn and quasisymmetric maps in metric spaces;
see, e.g., [2], [3], [5], [4], [23]. These results show that nontrivial dilatation-
independent lower bounds can be given for some sets of dimension greater
than or equal to one, while nontrivial dilatation-independent upper bounds
do not exist in general. However, none of these papers address the question
of lowering dimension for sets with dimension strictly less than one. The au-
thor conjectured in [23] that nontrivial dilatation-independent lower bounds
do not exist in this case, more precisely, that every set with Hausdorff di-
mension strictly less than one can always be mapped quasisymmetrically onto
sets of arbitrarily small dimension. This conjecture can be formulated in two
ways, first, for subsets of the Euclidean space Rn (with global quasiconformal
self-maps of Rn) and second, for general metric spaces (with quasisymmetric
maps to other metric spaces).
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This paper presents some results in the spirit of these conjectures. We es-
tablish the Euclidean conjecture for bounded sets in all dimensions n ≥ 1 and
the metric space conjecture in general, but for a different notion of dimension
(not the Hausdorff dimension). This notion was first used substantively by
Assouad [1], for which reason we use the term Assouad dimension. In Section
3 we prove that subsets of Euclidean spaces with Assouad dimension strictly
less than one can be mapped by global quasisymmetric maps onto sets of arbi-
trarily small dimension and in Section 4 we discuss the case of abstract metric
spaces and arbitrary quasisymmetric maps. The case n = 1 in Section 3 can
be treated by a slightly simpler construction, a variation on a well-known con-
struction used by Kahane [12] which I learned about in a paper of Sjödin [19,
pp. 182-183]. While we do not address the case of the Hausdorff dimension in
full generality, our results do provide as corollaries some partial answers for
the Hausdorff dimension; see Corollary 3.8 and Remark 3.10.

We collect in an appendix a few other elementary observations on the
relationship between Assouad dimension and quasisymmetric maps.

For other interesting results regarding the distortion of sets in the real
line by quasisymmetric mappings see the papers of Staples and Ward [20]
and Buckley, Hanson and MacManus [6]. In contrast with the results of the
current paper, these references consider the question of determining when a
given set on the real line of positive length (and hence of Hausdorff dimension
one) has the property that all of its quasisymmetric images also have positive
length. Wu [27] studies the question of which subsets of the real line have the
property that every quasisymmetric image has zero length.

I wish to acknowledge Bruce Hanson for some helpful comments regarding
the construction in Section 3.

Notation 1.1. We denote the distance function in any metric space by
|x − y|. We write B(x, r) for the closed ball in the metric space X with
center x and radius r. For Y, Z ⊂ X, we write diamY for the diameter of Y
and dist(Y, Z) for the distance between Y and Z (with the convention that
dist(Y, ∅) = ∞). For 0 < ε < 1, we denote by dε the snowflaked metric
dε(x, y) = d(x, y)ε. We denote by dimH X the Hausdorff dimension of X (see,
e.g., [16, Chapter 4]).

An embedding f : X → Y of metric spaces is called (L-)bi-Lipschitz if
there exists L ≥ 1 so that

|x− y|/L ≤ |fx− fy| ≤ L|x− y|

for all x, y ∈ X and f is called (η-)quasisymmetric if there exists an increasing
homeomorphism η : [0,∞)→ [0,∞) so that

|fx− fy|
|fx− fz|

≤ η
(
|x− y|
|x− z|

)
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for all x, y, z ∈ X, x 6= z. Every L-bi-Lipschitz map is η-quasisymmetric
with η(t) = L2t. The identity map id : X → (X, dε), 0 < ε < 1, is η-
quasisymmetric with η(t) = tε. A homeomorphism f : Rn → R

n, n ≥ 2, is
quasisymmetric if and only if it is quasiconformal.

Following Pansu [17], we define the conformal dimension C dimX of a
metric space X to be the infimum of the values dim f(X) as f ranges over all
quasisymmetric maps of X into another metric space. Here dim can be any
notion of dimension; in this paper, we are most interested in the Hausdorff
and Assouad dimensions. Similarly, we define the global conformal dimension
GC dimE of a subset E ⊂ Rn to be the infimum of the values dim f(E) as f
ranges over all quasiconformal self-maps of Rn (quasisymmetric if n = 1).

Fix integers n ≥ 1 and b ≥ 2. For each m ∈ Z, the b-adic cubes at level m
in Rn are the closed cubes in Rn of the form

Q(j1, . . . , jn;m) = {(x1, . . . , xn) ∈ Rn :
jk
bm
≤ xk ≤

jk + 1
bm

, k = 1, . . . , n}

for j1, . . . , jn ∈ Z. We write Cnm for the collection of cubes Q(j1, . . . , jn;m),
j1, . . . , jn ∈ Z, and we write Cn =

⋃
m∈Z Cnm. For each Q ∈ Cnm, there exist

exactly bn cubes Q′ ∈ Cnm+1 with Q′ ⊂ Q which we call the children of Q. In
the case n = 1, we have b-adic intervals I = [c, d], each of which has b children
which we label I1, . . . , Ib, where Ik = [c+ j(d− c)/b, c+ (j + 1)(d− c)/b]. We
call I1 the first and Ib the last child .

2. Assouad dimension: definition and basic properties

In this section, we define and review basic properties of the Assouad di-
mension of a metric space. Our basic reference is Luukkainen’s paper [14],
which contains a comprehensive discussion.

Definition 2.1. Let X be a metric space and let s ≥ 0. We call X s-
homogeneous if there exists a finite constant C so that whenever 0 < α ≤ β <
∞, the cardinality of any α-discrete set F with diameter at most β is no more
than C(β/α)s. The constant C is called a constant of s-homogeneity for X.
Here a subset Y ⊂ X is said to be ε-discrete, ε > 0, if |x − y| ≥ ε whenever
x, y ∈ Y , x 6= y.

The Assouad dimension of X is defined to be the infimum of the values
s ≥ 0 for which X is s-homogeneous (with the convention that dimAX =∞
if no such values exist).

Remarks 2.2. (1) A metric space has finite Assouad dimension if and
only if it is a doubling space, that is, there exists a finite constant C so that
every ball of radius r can be covered by no more than C balls of radius r/2.

(2) David and Semmes [7, Definition 5.17] call a metric space semi-regular
of dimension s if it is s-homogeneous. The concept of homogeneity of a metric
space was previously studied by Vol´berg and Konyagin [26] under the name
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uniform metric dimension; they showed that a metric space X has finite
uniform metric dimension if and only if there exists a doubling measure on
X. A simpler proof of this fact was later given by Wu [28].

We review some basic properties of this notion of dimension. For proofs, see
Theorem A.5, Theorem 5.2 and Theorem A.13 of [14]. Proposition 2.3(viii) is
Assouad’s original result [1] and provides one of the most important reasons
for the study of this notion of dimension; it characterizes the metric spaces of
finite Assouad dimension as precisely the metric spaces all of whose snowflakes
embed bi-Lipschitzly into a Euclidean space.1

Proposition 2.3. Let X = (X, d) be a metric space.
(i) s-homogeneity and the Assouad dimension of X are bi-Lipschitz in-

variants;
(ii) dimA Y ≤ dimAX whenever Y ⊂ X; equality holds if Y is dense in

X;
(iii) for 0 < ε ≤ 1 the Assouad dimension of (X, dε) is equal to dimAX/ε;
(iv) dimH X ≤ dimAX;
(v) dimA ∪ni=1Ei = maxni=1 dimAEi for any finite collection of sets E1,

. . . , En ⊂ X;
(vi) every subset of Rn, n ≥ 1, with nonempty interior has Assouad di-

mension n;
(vii) for n ≥ 1, a set E ⊂ Rn has dimAE < n if and only if E is porous

in Rn (see below);
(viii) X has finite Assouad dimension if and only if for each 0 < ε < 1,

there exists a bi-Lipschitz embedding of the snowflaked space (X, dε)
into a Euclidean space RN , where N = N(ε) <∞.

The inequality in 2.3(iv) can be strict. For example, the space X = {0} ∪
{ 1
n : n ∈ N} ⊂ R has 0 = dimH X < dimAX = 1. Also, 2.3(v) can fail

for countably infinite collections; e.g., the Assouad dimension of the set Q of
rational numbers is equal to one by 2.3(ii) and (vi).

In this paper, we will primarily make use of Proposition 2.3(vii) (and related
results which we will prove later). Recall that a subset E ⊂ Rn, n ≥ 1, is said
to be c-porous, c > 0, if for every ball B(x, r) in Rn there exists z ∈ B(x, r)
with B(z, cr) ∩ E = ∅. Porous sets are quasisymmetrically invariant: if E ⊂
R
n, n ≥ 1, is c-porous and f : Rn → R

n is η-quasisymmetric, then f(E) is
c′-porous with c′ = c′(c, η) (cf. [25]).

Luukkainen’s result in Proposition 2.3(vii) sharpens an earlier result of
Sarvas [18], who showed that porous sets in Rn have Hausdorff dimension

1The question of characterizing the metric spaces which themselves embed bi-Lipschitzly
in a Euclidean space is extremely difficult and still unsolved. Finiteness of the Assouad
dimension is insufficient; the first Heisenberg group provides an example of a space of finite
Assouad dimension which fails to admit such an embedding. See Remark A.15 of [14].
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strictly less than n. Martio and Vuorinen [15] had already shown that porous
sets have Minkowski dimension strictly less than n and their proof applies
also to the Assouad dimension. (The Minkowski dimension is a notion of
dimension intermediate between Hausdorff and Assouad dimension.) Koskela
and Rohde [13] prove that the Minkowski dimension is strictly less than n
for a more general class of weakly porous sets. Some other results relating
dimension and porosity for sets and measures in Euclidean spaces can be
found in the work of Eckmann and E. and M. Järvenpää [8], [11].

When n = 1, 2.3(vii) characterizes the subsets of the line with Assouad
dimension strictly less than one as precisely the porous sets. This makes the
proof of our main result somewhat simpler and is the reason we begin with
that case.

An elementary consequence of 2.3(vii) is a dilatation-dependent upper
bound for Assouad dimension which implies that sets of Assouad dimension
n in Rn are preserved under quasiconformal maps. We discuss this in greater
detail in the appendix. For now, we merely note that the corresponding re-
sult for the Hausdorff dimension is a well-known theorem of Gehring and
Väisälä [9], [10], which relies on the higher integrability of the Jacobian of a
quasiconformal map. It does not appear that the Assouad dimension can be
treated by this method. On the other hand, in contrast with the situation for
the Hausdorff dimension, the preservation of sets of dimension n for Assouad
dimension is valid even when n = 1.

3. Lowering the Assouad dimension of sets in Euclidean space

In this section, we study the question of lowering the Assouad dimension
of a fixed set E in Rn by quasisymmetric homeomorphisms f : Rn → R

n.
Our first remark is that in the case dimAE ≥ 1, results of this type for

the Assouad dimension are weaker than the corresponding results for the
Hausdorff dimension which appear in [17] and [23]: for each α ∈ [1, n], there
exist compact sets E in Rn with GC dimH E = dimH E = α. Since the example
given in [23] has dimH E = dimAE, it follows that GC dimAE = dimAE = α
as well. We thus restrict ourselves to the case 0 ≤ dimAE < 1.

The results of this section imply that no similar example exists in the case
0 < dimAE < 1 for bounded sets.2 As mentioned in the introduction, it is not
known whether the corresponding results hold for the Hausdorff dimension in
any dimension.

For the question of raising the dimension, Bishop [3] has shown that if
E ⊂ Rn, n ≥ 1, is a compact set with dimH E > 0, then the supremum of the

2The restriction to bounded sets is necessary because the Assouad dimension is only
finitely stable and not countably stable; see 2.3(v) and the remarks at the end of this

section. I do not know how to treat the unbounded case. However, Corollary 3.8 holds for
all porous sets, bounded or unbounded.
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values dimH f(E) over all quasisymmetric self-maps f of Rn is equal to n. I
do not know if this result also holds for the Assouad dimension.

We now state the main theorem of this section.

Theorem 3.1. Let n ≥ 1 and let E ⊂ R
n be a bounded set. Then

GC dimAE is either equal to zero or greater than or equal to one.

The proof of Theorem 3.1 is slightly different in the case n = 1 than in the
case n ≥ 2 and so will be given in two parts. In the case n = 1, Theorem 3.1
reads as follows: if dimAE = 1 then dimA f(E) = 1 for all quasisymmetric
maps f : R → R, while if dimAE < 1 then there exist quasisymmetric maps
f : R→ R for which dimA f(E) is arbitrarily close to zero. The first of these
facts was mentioned in the previous section and its proof will be deferred to the
appendix. Thus Theorem 3.1 will follow once we have proved the following:
if E ⊂ Rn, n ≥ 1, is a bounded set with dimAE < 1 and ε > 0, then there
exists a quasisymmetric map f : Rn → R

n for which dimA f(E) < ε.
Our proof of the n = 1 part of Theorem 3.1 will actually show something

extra, namely, that the quasisymmetric maps which reduce the dimension of
E can be taken to be the identity map on the complement of any interval
which contains E. This feature will be important in our proof of Corollary
3.8.

Suppose then that n ≥ 1 and that E ⊂ Rn has Assouad dimension strictly
less than one. Then by Proposition 2.3(vii), the set E is porous in Rn, i.e.,
every cube contains a subcube of comparable size which avoids E. To prove
Theorem 3.1, it will be helpful to reformulate the porosity condition in a
manner that gives greater control over the location of the omitted subcube.

Definition 3.2. Fix integers n ≥ 1, b ≥ 2 and k ∈ {0, 1, . . . , bn − 1}. Let
E ⊂ Rn. We call E (b, k)-sparse if no more than k of the children of any
b-adic cube Q meet E. We call the remaining bn−k cubes (which are disjoint
from E) the omitted cubes of Q. We call E sparse if it is (b, k)-sparse for some
b and k.

Note that if E is (b, k)-sparse for some b and k, then E is also (bj , kj)-sparse
for each j ∈ N.

Proposition 3.3. Let E ⊂ Rn. Then there exists an integer b ≥ 2 so that
E is (b, k)-sparse for some k < b if and only if E is s-homogeneous for some
s < 1. In the case n = 1 a third equivalent condition is that E is c-porous for
some c > 0.

Note that the second sentence of Proposition 3.3 is a consequence of Propo-
sition 2.3(vii).

Proof. First, suppose that E is (b, k)-sparse with k < b; we show that E
is s-homogeneous with s = log k/ log b. Choose 0 < α ≤ β < ∞ and let F
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be a finite subset of E which is α-discrete and has diameter at most β. We
estimate the cardinality of F . Choose integers l and m so that bm−1

√
n ≤

β < bm
√
n and bl < α ≤ bl+1. Then F is contained in at most 2n b-adic cubes

Q0, Q1, . . . , Q2n of size bm. Furthermore, any two distinct points of F lie in
different b-adic cubes of size bl−1. Thus the cardinality of F is no more than
2nkm−l+1. By our choice of l and m,

m− l ≤ 2 +
log(β/α)− log

√
n

log b
≤ 2 +

log(β/α)
log b

.

Hence
2nkm−l+1 ≤ 2nk3+log(β/α)/ log b = 2nk3(β/α)s

which shows that E is s-homogeneous with homogeneity constant C = 2nk3.
Thus

(3.4) dimAE ≤
log k
log b

.

Now, assume that E ⊂ Rn is s-homogeneous for some s < 1 with homo-
geneity constant C(s). To make things easier in our proof of Theorem 3.1, we
will now break the proof into two different tracks according whether n = 1 or
n ≥ 2. (It would be possible to give a single proof which covers both of these
cases, but our subsequent proof of Theorem 3.1 is more easily explained if we
use slightly different arguments in each of these two cases.)
n = 1: In this case, we let b ≥ 3 be a large odd integer, whose exact

value will be determined later in the proof. Let I be a b-adic interval with
children I1, . . . , Ib and consider the children I2, I4, . . . , Ib−3, Ib−1. Suppose
that E meets all of these sets. Then E contains a finite set F of cardinality
(b − 1)/2 which is α-discrete, α = |I|/b, and has diameter at most β = |I|.
By the s-homogeneity,

(b− 1)/2 ≤ C(β/α)s = Cbs

which leads to a contradiction if b is chosen so large that Cbs < (b− 1)/2. If
this is the case, then one of the children I2, I4, . . . , Ib−3, Ib−1 of I is disjoint
from E, i.e., E is (b, b− 1)-sparse.
n ≥ 2: In this case, we let b ≥ 2 be a large even integer whose exact

value will again be determined momentarily. Let Q be a b-adic cube in Rn

with children Q1, . . . , Qbn . These children can be divided into 2n subfamilies
F1, . . . ,F2n , each of which contains (b/2)n cubes, in such a way that the
distance between any two of the cubes in a family Fi is at least s(Q)/b, where
s(Q) denotes the side length of Q. Then arguing as above we see that the
number of cubes in Fi, i = 1, 2, . . . , 2n, which can meet the set E is at most

C(s)
(

diam(Q)
s(Q)/b

)s
= C(s)(b

√
n)s
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and so the number of children ofQ which can meet E is at most C(s)2n(b
√
n)s.

This shows that E is (b, C ′bs)-sparse, where C ′ = C(s)2nns/2, and establishes
the result if b is chosen so large that C ′bs < b. �

Remark 3.5. The same argument can be used to relate sparseness to any
upper bound for the Assouad dimension. More precisely, one can show that
if E ⊂ Rn, n ≥ 1, and s0 ∈ (0, n], then there exists an integer b ≥ 2 so that
E is (b, k)-sparse for some k < bs0 if and only if E is s-homogeneous for some
s < s0. However, in what follows we only use this with s0 = 1.

Proof of Theorem 3.1 when n = 1. Let E ⊂ R be a bounded set satisfying
dimAE < 1. By a preliminary bi-Lipschitz map, we may assume that E
lies in the unit interval [0, 1] and has diameter equal to one. By Proposition
3.3, E is (b, b− 1)-sparse for some sufficiently large odd integer b. Moreover,
the proof of Proposition 3.3 shows something extra, namely, that the omitted
subinterval of each b-adic interval I can always be chosen not to be either the
first or last child of I. For each b-adic interval I in [0, 1], denote this omitted
subinterval by I ′.

For each N = 1, 2, . . ., we will construct a quasisymmetric map f : R→ R

which is equal to the identity map on R \ [0, 1] and takes E onto a weakly
(bN (b − 1), b − 1)-sparse set f(E). By Proposition 3.3, specifically (3.4), it
follows that

(3.6) dimA f(E) ≤ log(b− 1)
log(b− 1) +N log b

which can be made less than any prescribed ε > 0 by choosing N sufficiently
large.

It remains to construct the map f . We modify an example of Sjödin [19,
Theorem 6].

It is well-known that a homeomorphism f : R → R is quasisymmetric if
and only if the following condition holds for some (equivalently, all) integers
b ≥ 2: there exists a constant λ <∞ so that

(3.7) |f(I)| ≤ λ|f(J)|

whenever I and J are adjacent b-adic intervals of equal length. Furthermore,
the statement is quantitative: if f is η-quasisymmetric then it satisfies (3.7)
for all b with λ = η(1), while if f satisfies (3.7) for some λ and b, then it is
η-quasisymmetric with η(t) depending only on λ and b.

We construct piecewise linear, increasing functions fi, i = 0, 1, . . ., on R
which will converge uniformly to the desired function f . Define values m <
1 < M as follows:

m =
1

bN−1(b− 1)
, M = b− 1

bN−1
.
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Note that 1
bM + (1− 1

b )m = 1. We proceed inductively to define a sequence
of piecewise constant maps φi. The map φi will be constant on each b-adic
interval of length b−i. (Note that there is some ambiguity here since two
adjacent b-adic intervals overlap at a single point on their common boundary.
However, the total number of such points is countable and we will eventually
be integrating the functions φi so the choice of what value to assign to these
boundary points is irrelevant.)

Put φ0(t) ≡ 1. Assume that φ0, φ1, . . . , φi−1 have been defined and consider
all of the b-adic intervals of length b−i+1 which lie in the unit interval [0, 1]. For
t ∈ [0, 1], let φi(t) = M ·φi−1(t) if t lies in the omitted subinterval I ′ of one of
these b-adic intervals I and let φi(t) = m · φi−1(t) otherwise.3 We next define
φi on the 2i−2 b-adic intervals of lenth b−i which are immediately adjacent to
[0, 1]. For j = 1, 2, . . . , i− 1, let φi(t) = m−i+j if t ∈ (1 + (j − 1)b−i, 1 + jb−i)
or t ∈ (−jb−i,−(j − 1)b−i). Finally, let φi(t) = 1 for all other t ∈ R, i.e., for
t ∈ [1 + (i− 1)b−i,∞) or t ∈ (−∞,−(i− 1)b−i].

Next, for t ∈ R, define

fi(t) =
∫ t

0

φi(s) ds.

Then fi is a continuous and increasing function on R which is equal to the
identity map on (−∞,−(i − 1)b−i) ∪ (1 + (i − 1)b−i,∞). One easily checks
that |fi(I)| ≤ λ|fi(J)| for each i and adjacent b-adic intervals I and J of equal
length, where

λ = max{1/m,M/m} = M/m = (b− 1)(bN − 1).

(The fact that the omitted subintervals are never first or last is crucial here.)
Now f0, f1, . . . is a sequence of self-maps of R which are all uniformly qua-
sisymmetric. For fixed choices of η and a compact set K ⊂ R, the collection
F , consisting of all η-quasisymmetric homeomorphisms f from R to R which
are equal to the identity off of K, is compact in the compact-open topology.
Hence there exists a subsequence of the given sequence f0, f1, . . . which con-
verges uniformly to an increasing η-quasisymmetric function f on R. It is
straightforward to verify that the image set f(E) is (bN (b− 1), (b− 1))-sparse
which, as we have already noted, implies (3.6). Furthermore, f is equal to the
identity on (−∞,−1) ∪ (1,∞). �

As a corollary, we deduce that porous sets have global conformal Hausdorff
dimension zero.

Corollary 3.8. Let E ⊂ R be a porous set. Then GC dimH E = 0.

3Note that we must modify the map on every b-adic interval, even those which have been
identified as omitted subintervals at an earlier stage. Of course, if I is such an interval,

then all of its children are also omitted and so we may choose I′ to be any child which is
not the first or last.
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To prove this corollary, note that E can be written as the disjoint union
of an ordered collection of bounded porous sets Eν , ν ∈ Z, so that L ≤
diamEν ≤ 3L and L/C ≤ dist(Eν , Eν+1) ≤ L for some fixed C < ∞ and
L > 0. To see this, fix any value L > 0 and apply the porosity condition to the
intervals [2νL, (2ν + 1)L], ν ∈ Z. Now by Theorem 3.1 quasisymmetric maps
fν can be found which make the dimensions of the sets Eν arbitrarily small,
and by Lemma 3.9 these maps can be “glued together” to make a map f :
R→ R which makes the dimension of the entire set E arbitrarily small. (This
is the point at which the argument breaks down for the Assouad dimension,
since it makes use of the countable stability of the Hausdorff dimension.) Note
that this proof shows that Corollary 3.8 holds more generally for sets which
satisfy the porosity condition uniformly locally, that is, for all intervals I with
length at most δ for some fixed δ > 0.

Lemma 3.9. Let Eν , ν ∈ Z, be an ordered collection of compact sets in R
satisfying the conditions

L/C ≤ dist(Eν , Eν+1) ≤ L ≤ diamEν ≤ CL
for all ν, where L > 0 and 1 ≤ C < ∞ are fixed. Let {fν} be a collection of
η-quasisymmetric self-maps of R for which fν(x) = x whenever x /∈ [aν , bν ],
where [aν , bν ] is the smallest closed interval containing Eν . Then the map
f : R→ R defined by

f(x) =

{
fν(x), x ∈ [aν , bν ],
x, x ∈ R \ ∪∞ν=−∞[aν , bν ],

is η′-quasisymmetric for some η′ depending only on η and C.

For ease of exposition, we postpone the proof of this lemma and continue
with the proof of Theorem 3.1 in the case n ≥ 2. For x ∈ Rn and s > 0, we
denote by Q(x, s) the cube centered at x with side length s.

Proof of Theorem 3.1 when n ≥ 2. Let E be a bounded subset of Rn, n ≥
2, with dimAE < 1. As before, we may reduce by a preliminary bi-Lipschitz
mapping to the case E ⊂ [0, 1]n; furthermore, we may assume that E is closed
by 2.3(ii). We choose s < 1 so that E is s-homogeneous; by Proposition 3.3, E
is (b, C ′bs)-sparse, where C ′ = C(s)2nns/2 and b is an integer which is chosen
so large that C ′bs ≤ b/3 and bs ≥ (C ′)2.

We construct a quasiconformal self-map f of Rn for which dimA f(E) ≤ 3
4s;

this clearly suffices to establish the result. The basic construction will again
involve an induction on the level of b-adic subdivision of the unit cube [0, 1]n.
Let f0 : Rn → R

n denote the identity map.
Consider first the collection of level one b-adic subcubes of [0, 1]n. Suppose

that E meets some of these cubes, say Q1, . . . , Qν1 , where ν1 ≤ C ′bs. Fix
one of these cubes Qi and arrange the remaining cubes in Cn1 in “shells” Sj ,
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j = 1, 2, . . . (e.g., for each j, Sj consists of all cubes in Cn1 \ {Qi} which are
adjacent to cubes in Sj−1 but not contained in any of the collections Sk,
k ≤ j − 1). Since C ′bs is negligible in comparison with b, there must exist a
shell Sj(i), 1 ≤ j(i) ≤ b/2, consisting entirely of cubes which are disjoint from
E.

Consider the set A(1) = [0, 1]n \ ∪ν1
i=1Sj(i). By construction, A(1) can be

decomposed into subsets B(1, 1), . . . , B(1, p1), p1 ≤ ν1, where each set B(1, k)
consists of a union of level one b-adic cubes and any two subsets B(1, k) and
B(1, k′) are separated by a layer (of thickness at least one) of level one cubes.
The various sets B(1, k), k = 1, . . . , p1 have disjoint b/3-neighborhoods U(1, k)
and so there exists a quasiconformal mapping f1 : Rn → R

n with the following
properties:

(i) f1 is equal to f0 on Rn \ (U(1, 1) ∪ · · · ∪ U(1, p1));
(ii) on each B(1, k), k = 1, . . . , p1, f1 is a conformal scaling which shrinks

the set B(1, k) into one of its constituent subcubes (the exact choice
is irrelevant);

(iii) f1 is quasiconformal in ∪p1
k=1U(1, k) \B(1, k).

We repeat this construction inside all of the level one subcubes contained in
∪p1
k=1B(1, k), generating a set A(2) decomposed into sets B(2, 1), . . . , B(2, p2),

p2 ≤ ν2 ≤ (C ′bs)2, disjoint b2/3-neighborhoods U(2, 1) . . . , U(2, p2) of the sets
B(2, 1), . . . , B(2, p2), and a quasiconformal map f2. In a similar fashion, we
construct for each m ∈ N the data A(m), B(m, k), U(m, k), pm ≤ νm ≤
(C ′bs)m and fm. The maps fm are coherent in the sense that fm = fm−1 on
the set Rn \ (U(m, 1)∪ · · · ∪U(m, pm)). Furthermore, the dilatations of these
maps are uniformly bounded.

Since E = ∩∞m=1A(m), we may pass to a limit map f : Rn → R
n which

is a homeomorphism and is K-quasiconformal (for some fixed K) on the set
R
n\E. Finally, E is removable for quasiconformal maps since the (Hausdorff)

dimension of E is strictly less than n− 1 [24, Theorem 35.1].
The only remaining thing to verify is that the Assouad dimension of E is

in fact decreased by the map f , but this is straightforward. Indeed, in each
b2-adic cube, f(E) is contained in at most C ′bs children, that is, f(E) is
(b2, C ′bs)-sparse. By (3.4),

dimA f(E) ≤ s log b+ logC ′

2 log b
≤ 3

4
s

since bs ≥ (C ′)2. The proof is complete. �

Remark 3.10. The preceding argument can clearly be applied to a wider
class of subsets of Rn than just the sets with Assouad dimension strictly
less than one, but it is difficult to formulate a precise statement. For ex-
ample, recall that for each α ≥ 1 and n ≥ 2 there are sets E ⊂ R

n with
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dimAE = GC dimAE = α. Thus we cannot give a more general statement
whose hypotheses involve only the value of the Assouad dimension.

As with the n = 1 case, the preceding proof also shows that certain sets
E ⊂ Rn have global conformal Hausdorff dimension zero. For example, any
set E which is (b, k)-sparse with k ≤ b/3 has this property.

Proof of Lemma 3.9. All of the maps fν satisfy condition (3.7) with λ =
η(1) for all adjacent intervals I = [x− t, x] and J = [x, x+ t] of equal length,
that is,

(3.11)
1
λ
≤ fν(x+ t)− fν(x)
fν(x)− fν(x− t)

≤ λ

for all x ∈ R and t > 0. It suffices to verify that (3.11) holds for all x and
t > 0 when fν is replaced by f and λ is replaced by a constant λ′ = λ′(λ,C).
This is immediate if {x − t, x, x + t} intersects at most one of the intervals
[aν , bν ], since in that case f(y) = fν(y) for y = x − t, x, x + t. Suppose that
x− t ∈ [aµ, bµ], x ∈ [aν , bν ], and x+ t ∈ [aξ, bξ] with µ < ν < ξ. Then

L

C
(ν − µ) ≤ L

C
(ν − µ) + L(ν − µ− 1) ≤ t(3.12)

≤ L(ν − µ) + CL(ν − µ+ 1) ≤ 3CL(ν − µ)

and a similar inequality holds with ν − µ replaced by ξ − ν. Then
f(x+ t)− f(x)
f(x)− f(x− t)

≤ bξ − aν
aν − bµ

≤ CL(ξ − ν + 1) + L(ξ − ν)
L(ν − µ− 1) + (L/C)(ν − µ)

≤ 3C2 ξ − ν
ν − µ

≤ 9C4

by (3.12). A similar argument shows that

f(x+ t)− f(x)
f(x)− f(x− t)

≥ 1
9C4

.

The case when {x−t, x, x+t} intersects exactly two of the intervals [aν , bν ]
is similar and will be left to the reader. �

4. Lowering the Assouad dimension of abstract metric spaces

When can the Assouad dimension of a given metric space be lowered by a
quasisymmetric map?

As in Section 3, the theory in the case dimAX ≥ 1 follows from the theory
for the Hausdorff dimension. In fact, by [17] and [23] exactly the same result
holds: for each α ≥ 1, there exist compact metric spaces X with C dimAX =
C dimH X = dimAX = dimH X = α.

Note also that the analog to Bishop’s result on raising dimension is trivial
in the metric space setting in light of the example of the snowflaked spaces
(X, dε), 0 < ε < 1.
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We are thus left to consider the case of lowering the dimension for spaces
X with dimAX < 1, and this case is covered by the following result:

Theorem 4.1. Let X be a metric space with dimAX < 1. Then C dimAX
= 0.

Recall that every space with Hausdorff dimension strictly less than one is
totally disconnected. Having Assouad dimension strictly less than one implies
the following quantitative version of total disconnectivity.

Definition 4.2 ([7], Section 15). Let X be a metric space. We call X
uniformly disconnected if there exists a constant C < ∞ so that every ball
B(x, r) in X contains a closed set A satisfying B(x, r/C) ⊂ A ⊂ B(x, r) and
dist(A,X \A) ≥ r/C.

In Lemma 15.2 of [7], David and Semmes prove that any metric space with
Assouad dimension strictly less than one is uniformly disconnected.4 This
result can be used to give an elementary proof of Theorem 4.1:

Proof of Theorem 4.1. Let X be a uniformly disconnected metric space. It
is well-known (see, for example, Proposition 15.13 of [7]) that the metric on
X is bi-Lipschitz equivalent to an ultrametric, e.g., a distance function d1

which satisfies the stronger inequality d1(x, y) ≤ max{d1(x, z), d1(z, y)} for
all x, y, z ∈ X. Indeed, let d1(x, y) be the infimum of the values γ > 0 for
which there exists a finite sequence of points x = x0, x1, . . . , xm = y with
d(xi−1, xi) < γ for each i. Then d1 is an ultrametric on X satisfying

d1(x, y) ≤ |x− y|
and the uniform disconnectivity of X implies that

d1(x, y) ≥ d(x, y)/L

for some L <∞.
By the bi-Lipschitz equivalence of Assouad dimension, dimA(X, d1) =

dimAX. Moreover, since d1 is an ultrametric, (X, dε1) is a metric space for all
0 < ε < ∞. Since dimA(X, dε1) = dimAX/ε, we see (by taking ε very large)
that C dimAX = 0. The proof is complete. �

5. Appendix

This appendix contains several miscellaneous facts relating Assouad dimen-
sion and quasisymmetric maps.

Our first result gives dilatation-dependent bounds on the change in Assouad
dimension under a power quasisymmetric map. Recall that a quasisymmetric

4In fact, [7, Lemma 15.2] is stated with slightly stronger hypotheses, but an analysis of
the proof reveals that the only condition used is s-homogeneity for some s < 1.
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map f between metric spaces is called p-power quasisymmetric if the distortion
function η can be chosen to be of the form

η(t) = C0 max(tp, t1/p)

for some constant C0 <∞.

Proposition 5.1. Let f : X → Y be a p-power quasisymmetric homeo-
morphism between metric spaces, p ≥ 1. Then

(5.2) dimAX/p ≤ dimA Y ≤ pdimAX.

The corresponding result for the Hausdorff dimension is a well-known con-
sequence of the Hölder continuity of quasisymmetric maps on (uniformly per-
fect) metric spaces [22, Theorem 3.18]. Note that this approach cannot be
used to prove this result for the Assouad dimension which (in general) need
not be well-behaved under Hölder or even Lipschitz maps. (See Section A.6.2
in [14] for an example of a Lipschitz homeomorphism of a space of Assouad
dimension one onto a space of infinite Assouad dimension.)

Corollary 5.3. Let X be a metric space with dimAX = 0 and let
f : X → Y be a power quasisymmetric map onto a metric space Y . Then
dimA Y = 0.

Quasisymmetric homeomorphisms need not be power quasisymmetric; e.g.,
consider the unique increasing homeomorphism of X = {0}∪{e−n! : n ∈ N} ⊂
R onto Y = {0} ∪ {1/n! : n ∈ N} ⊂ R [22, Remark 3.16.1]. Väisälä and Trot-
senko [21] have characterized the metric spaces on which all quasisymmetric
maps are power quasisymmetric. It is an open problem to characterize the
spaces where Corollary 5.3 holds for all quasisymmetric maps; indeed, it may
hold for every metric space.

Proof of Proposition 5.1. Let f : X → Y be as in the theorem. It suffices
to prove that dimAX ≤ pdimA Y . If dimA Y = ∞ there is nothing to prove
so assume that dimA Y is finite. Fix s < ∞ so that Y is s-homogeneous; we
will show that X is ps-homogeneous.

Fix 0 < α ≤ β < ∞ and let F be an α-discrete set with diamF ≤ β. Set
F ′ = f(F ) ⊂ Y . Then F ′ is α′-discrete and has diameter at most β′ for some
constants 0 < α′ ≤ β′ < ∞. (For the second claim, see Theorem 2.5 of [22];
the first is similar and is left to the reader. Note that we are not concerned
with determining exact values for α′ and β′.) Since f is a homeomorphism,
the cardinalities of F and F ′ are equal.

Choose x0, y0, z0 ∈ F with |fx0 − fz0| ≤ 2α′ and |fx0 − fy0| ≥ 1
2β
′. Then

β′

α′
≤ 4
|fx0 − fy0|
|fx0 − fz0|

≤ 4η
(
|x0 − y0|
|x0 − z0|

)
≤ 4η

(
β

α

)
= 4C0

(
β

α

)p
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and s-homogeneity of Y implies that the cardinality of F is at most

C(s)(β′/α′)s ≤ C(s)(4C0)s(β/α)ps

which shows that X is ps-homogeneous. �

As mentioned in Section 2, the Euclidean analog of Proposition 5.1 follows
from 2.3(vii):

Proposition 5.4. Let f : Rn → R
n, n ≥ 1, be an η-quasisymmetric

homeomorphism and let E in Rn satisfy dimAE ∈ (0, n). Then

(5.5) 0 < α ≤ dimA f(E) ≤ β < n,

where the constants α and β depend only on n, η, dimAE, and an s-homo-
geneity constant C(s) for the set E for some s ∈ (dimAE,n).

The lower bound in (5.5) follows directly from Theorem 5.1 as quasisym-
metric maps in Euclidean spaces are always power quasisymmetric. The upper
bound in (5.5) follows by combining the quasisymmetric invariance of porosity
with Luukkainen’s result 2.3(vii). Note that we must include the homogeneity
constant C(s) in the data for the upper bound β. This follows from the exact
statement of 2.3(vii) given in [14, Theorem 5.2]: a subset of Rn is porous if
and only if it is s-homogeneous for some s < n, however, the porosity constant
c > 0 given depends on s, n, and a homogeneity constant C = C(s).5 I do
not know if the upper bound in (5.5) can be chosen to be independent of the
homogeneity constant.
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