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REDUCIBILITY OF DUPIN SUBMANIFOLDS

MARCOS DAJCZER, LUIS A. FLORIT, AND RUY TOJEIRO

Abstract. We introduce the notion of weak reduciblity for Dupin sub-

manifolds with arbitrary codimension. We give a complete character-
ization of all weakly reducible Dupin submanifolds, as a consequence
of a general result on a broader class of Euclidean submanifolds. As a

main application, we derive an explicit recursive procedure to generate
all holonomic Dupin submanifolds in terms of solutions of completely

integrable systems of linear partial differential equations of first order.
We obtain several additional results on Dupin submanifolds.

1. Introduction

A hypersurface f : Mn → Q
n+1
c of a simply connected space form of sec-

tional curvature c is called proper Dupin if the number of principal curvatures
is constant and each one of them is constant along the corresponding eigen-
bundle. These conditions are invariant under conformal transformations of
the ambient space, which makes the theory of Dupin hypersurfaces essentially
the same whether it is considered in Euclidean space Rn+1, in the sphere Sn+1

or in hyperbolic space Hn+1. More generally, the class of proper Dupin hy-
persurfaces in Euclidean space Rn+1 is invariant under the Lie sphere group
generated by the subgroup of conformal (Moebius) transformations of Rn+1

together with the 1-parameter subgroup of parallel translations that trans-
form a hypersurface to its parallel ones at a fixed distance in the normal
direction. Two hypersurfaces that differ by a Lie transformation are said to
be Lie equivalent.

An important class of proper Dupin hypersurfaces in Rn+1 is that of stere-
ographic projections of isoparametric hypersurfaces in Sn+1. The latter are
abundant and have not yet been completely classified, although several in-
teresting results are known including strong restrictions on the numbers of
distinct principal curvatures and their multiplicities; see [Th1] for a nice re-
cent survey that also discusses Dupin hypersurfaces.
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It was observed by Pinkall [Pi] that further local examples of proper Dupin
hypersurfaces in Rn+1 having any given number of principal curvatures with
arbitrarily prescribed multiplicities can be constructed by means of one of
the following procedures, the last two of which yielding submanifolds that are
Lie equivalent. Start with a proper Dupin hypersurface Ln−s in Rn−s+1, the
latter regarded as a linear subspace Rn−s+1 × {0} of Rn+1, and let Mn be
defined as

(i) Mn is the cylinder Ln−s × Rs;
(ii) Mn is obtained by rotating Ln−s around an axis Rn−s ⊂ Rn−s+1;
(iii) Mn is the cylinder CV n−s×Rs−1, where CV n−s is the cone over the

inverse image V n−s ⊂ Sn−s+1 ⊂ Rn−s+2 of Ln−s by the stereographic
projection;

(iii′) Mn is a tube around Ln−s.

These constructions introduce a new principal curvature λ of multiplicity s
that is easily seen to be constant along its eigenbundle Eλ. The other principal
curvatures of Mn are determined from those of Ln−s, and they are constant
along the corresponding eigenbundles because Ln−s is Dupin. Moreover, the
conullity distribution E⊥λ of λ, that is, the orthogonal distribution to Eλ
in the tangent bundle TM , is always integrable. In fact, in the first three
constructions E⊥λ is spherical in Mn, that is, the leaves of E⊥λ are umbilical
submanifolds of Mn with parallel mean curvature vector.

It was pointed out in recent work due to Cecil and Jensen that there are
two natural settings for attempting to obtain classification results for proper
Dupin hypersurfaces. One can either assume compactness and look for global
results or work locally and search for hypersurfaces that are locally irreducible.
A Dupin hypersurface is reducible if it is Lie equivalent to a hypersurface
obtained by one of Pinkall’s constructions. Cecil and Jensen [CJ] showed that
a locally irreducible proper Dupin hypersurface with three distinct principal
curvatures must be Lie equivalent to an isoparametric hypersurface. On the
other hand, Pinkall and Thorbergsson [PT], and independently Miyaoka and
Ozawa [MO], produced compact proper Dupin hypersurfaces with 4 distinct
principal curvatures that are neither locally Lie equivalent to isoparametric
hypersurfaces nor locally reducible. Thus, classifying locally or globally proper
Dupin hypersurfaces with at least 4 distinct principal curvatures remains wide
open and seems to be a rather difficult problem.

The results in this article give strong support to our belief that a weaker
notion of reducibility is more appropriate for the local study of Dupin hy-
persurfaces with an arbitrary number of principal curvatures. We say that
a proper Dupin hypersurface f : Mn → R

n+1 is weakly reducible if it has a
principal curvature λ with integrable conullity E⊥λ , a property that is also in-
variant under Lie transformations. As observed before, every reducible Dupin
hypersurface is also weakly reducible, but we will show that the converse does
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not hold. Another important subclass of weakly reducible Dupin hypersur-
faces is that of the holonomic ones, that is, hypersurfaces that can be endowed
with principal coordinates. In fact, holonomicity can be characterized by the
fact that the submanifold is weakly reducible with respect to every principal
curvature. On the other hand, no isoparametric hypersurface of the sphere
with at least three principal curvatures nor any of the examples in [PT] and
[MO] is weakly reducible.

In this paper we give a complete local characterization of weakly reducible
Dupin hypersurfaces. In fact, we solve a more general problem with an interest
of its own in the theory of Euclidean submanifolds of arbitrary codimension.
Namely, we characterize the submanifolds that carry a Dupin principal normal
with integrable conullity.

Recall that a smooth normal vector field η of an isometric immersion
f : Mn → R

N is called a principal normal with multiplicity s ≥ 1 if the
tangent subspaces

Eη = ker(αf − 〈 , 〉η)

have constant dimension s, where αf : TM × TM → T⊥f M stands for the
second fundamental form of f with values in the normal bundle. This is a
natural generalization for submanifolds of higher codimension of the notion
of principal curvature of a hypersurface. We say that a principal normal η
of multiplicity s is Dupin if it is parallel in the normal connection of f along
the (conformal) nullity distribution Eη associated to η. This condition is
automatic for multiplicity s ≥ 2 (cf. [Re1] or [DFT1]). If η is nonvanishing,
it is well-known that Eη is an involutive distribution whose leaves are round
s-dimensional spheres in RN ; see [Re2] or [DFT1] for details. When η vanishes
identically, the distribution Eη = E0 is known as the relative nullity distribu-
tion, in which case the leaves are open subsets of affine subspaces of RN .

If one of the first three constructions due to Pinkall is applied to an ar-
bitrary submanifold Ln−s in RN−s with any codimension N − n, then the
process introduces a Dupin principal normal η with multiplicity s, which has
the additional property that the conullity E⊥η is a spherical distribution on
Mn. It was proved in [DFT1] (see also Theorem 4.7 below) that this last
property characterizes these examples up to conformal transformations of the
ambient space.

A simple way to construct submanifolds carrying a relative nullity distribu-
tion with integrable conullity is as follows. Let g : Ln−s → Q

N
ε , ε = 0, 1,−1,

be an isometric immersion with a parallel flat normal subbundle V of rank s.
Then the n-dimensional generalized cylinder in QNε over g determined by V
is the submanifold parametrized by means of the exponential map of QNε as

γ ∈ V 7→ expεg(π(γ))(γ).
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Any such submanifold carries a relative nullity distribution of dimension s,
whose leaves are the fibers of V. Moreover, the conullity distribution is in-
tegrable, its leaves being given by the parallel sections of V. Our first result
concerning generalized cylinders is that these are the only submanifolds hav-
ing a relative nullity distribution with integrable conullity.

The property of having a Dupin principal normal with integrable conullity is
invariant under L-transformations. By an L-transformation of an Euclidean
submanifold we mean a diffeomorphism that is a composition of conformal
transformations of the ambient space and parallel translations, the latter be-
ing translations of the submanifold by parallel normal vector fields. Of course,
in the case of hypersurfaces L-transformations are the usual transformations
of Lie sphere geometry. We call two submanifolds L-equivalent if they dif-
fer by an L-transformation. Therefore, a class of submanifolds carrying a
Dupin principal normal with integrable conullity is obtained by applying L-
transformations to the family of (stereographic projections of) generalized
cylinders. In the hypersurface case, this class properly contains those sub-
manifolds obtained by Pinkall’s constructions. However, they are far from
exhausting the whole family of submanifolds carrying a Dupin principal nor-
mal with integrable conullity, as will be made clear below.

The key observation in the characterization of submanifolds carrying a
Dupin principal normal with integrable conullity is that the leaves of the
conullity distribution of such a submanifold are always Ribaucour transforms
of each other. This is in the sense of the extended notion of Ribaucour trans-
formation for submanifolds of arbitrary dimension and codimension developed
in [DT1] and [DT2] from the classical notion for surfaces in three dimensional
Euclidean space. This observation can be seen as a generalization of the classi-
cal fact (see [Bi]) that the orthogonal surfaces of a cyclic system are Ribaucour
transforms of each other. It has also been made recently by Corro [Co] in the
particular case of holonomic Dupin hypersurfaces with a principal curvature
of constant multiplicity one.

In order to turn the above observation into an explicit description of all
such submanifolds, it was convenient to introduce the notion of N–Ribaucour
transform of a submanifold h : Ln−s → R

N carrying a parallel flat normal
subbundle N of rank s. This is an explicitly parametrized n-dimensional
submanifold foliated by Ribaucour transforms of h, each corresponding to a
parallel section of N . The distribution orthogonal to this foliation is precisely
the nullity distribution of a Dupin principal normal. One of the main results
of this paper is that any submanifold that carries a Dupin principal normal
with integrable conullity arises locally this way.

Each N -Ribaucour transform of h : Ln−s → R
N is essentially determined

by a Codazzi tensor on Ln−s that commutes with the second fundamental form
of h. We show that submanifolds that are L-equivalent to (stereographic pro-
jections of) generalized cylinders are precisely those N–Ribaucour transforms
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of h that are determined by commuting Codazzi tensors on Ln−s that can be
expressed as linear combinations of the identity tensor and shape operators
with respect to parallel normal vector fields.

The results discussed in the preceding paragraphs are then applied to the
class of k–Dupin submanifolds, that is, Euclidean submanifolds with flat nor-
mal bundle that have exactly k principal normals all of which are Dupin. Our
main result is that any k–Dupin submanifold that is weakly reducible carrying
a principal normal with integrable conullity, is the N -Ribaucour transform of
a (k−1)–Dupin submanifold determined by a commuting Codazzi tensor of
Dupin type. As an important application of this result, we obtain an explicit
recursive procedure to generate all such submanifolds in terms of solutions of
completely integrable systems of linear partial differential equations of first
order.

Thorbergsson [Th1] raised the question whether the number of principal
curvatures of an irreducible proper Dupin hypersurface must be 1, 2, 3, 4 or
6, as shown by himself in the case of compact Dupin hypersurfaces [Th2].
We produce counterexamples (see (5.5) and Proposition 5.12), which are,
nonetheless, weakly reducible. Therefore, the problem remains open under
the assumption of weak irreducibility. This is another indication that the
appropriate assumption in questions of such a local nature should be weak
irreducibility.

We obtain several additional results on k–Dupin submanifolds. We show
that the maximal possible value for the conformal codimension is k−1. More-
over, the submanifold is necessarily holonomic if its conformal codimension is
k− 1, and it is necessarily weakly reducible if its conformal codimension is at
least (2/3)k − 1, the latter estimate being sharp. Finally, we give a complete
description of the weakly reducible 4–Dupin submanifolds. We show that the
submanifold is either holonomic or is L-equivalent to (the stereographic pro-
jection of) a generalized cylinder over a submanifold that is Lie equivalent to
an isoparametric hypersurface.

To conclude this introduction, we point out that our description of sub-
manifolds that carry a Dupin principal normal with integrable conullity as
N–Ribaucour transforms of submanifolds carrying a parallel flat normal sub-
bundle has been recently used in [Fl] in order to characterize doubly (confor-
mally) ruled submanifolds in space forms. On the other hand, the problem
of locally describing submanifolds that carry a parallel flat normal subbun-
dle, the starting point for the N–Ribaucour transformation to be applied, is
addressed in a forthcoming paper [DFT2].

We are very grateful to T. Cecil and C. Olmos for several helpful comments.
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2. Preliminaries

In this section, we first recall the notions of Combescure and Ribaucour
transformations of an Euclidean submanifold. Then, we discuss several basic
facts about them that are used throughout the paper. We refer to [DT1] and
[DT2] for further details and results on the subject.

A smooth map F : Mn → R
n+p is said to be a Combescure transform of

a given isometric immersion f : Mn → R
n+p when there exists a symmetric

endomorphism Φ of TM such that

F∗ = f∗ ◦ Φ.

This condition implies that Φ belongs to the real vector space of (symmetric)
Codazzi tensors on Mn that are commuting in the sense that

αf (X,ΦY ) = αf (ΦX,Y ) for all X,Y ∈ TM.

Conversely, any commuting Codazzi tensor Φ on a simply connected Mn gives
rise to a Combescure transform F of f . Moreover, Φ and F can be given as

Φ = Hessϕ−Afβ and F = f∗∇ϕ+ β,

where ϕ ∈ C∞(M) and β ∈ T⊥f M satisfy

(2.1) αf (∇ϕ,X) +∇⊥Xβ = 0 for all X ∈ TM,

Afβ denotes the shape operator of f with respect to β and ∇⊥ stands for the
induced connection on the normal bundle.

Definition. An immersion f̃ : Mn → R
n+p is called a Ribaucour trans-

form of a given immersion f : Mn → R
n+p if f̃ 6= f everywhere, and there

are a vector bundle isometry P : f∗TRn+p → f̃∗TRn+p with P TfM = Tf̃M ,
and a nowhere vanishing smooth map δ : Mn → R

n+p such that:

(a) PZ − Z = 〈δ, Z〉(f − f̃) for all Z ∈ f∗TRn+p;
(b) D = f−1

∗ P−1f̃∗ : TM → TM is self adjoint in the metric induced
by f .

Condition (a) says that for any Z ∈ Tf(x)R
n+p the straight lines in Rn+p

through f(x) and f̃(x) tangent to Z and PZ, respectively, are either parallel
or intersect at a point equidistant to f(x) and f̃(x).

The following statement contains the basic facts on the Ribaucour trans-
formation that will be used throughout this paper without further reference.
We denote by S(f) the set of pairs (ϕ, β) satisfying (2.1) such that ϕF 6= 0
everywhere. Then S0 = S0(f) stands for the corresponding real projective
set, that is, (ϕ, β) ∼ (ϕ′, β′) if and only if ϕ′ = λϕ and β′ = λβ for some
0 6= λ ∈ R.
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Theorem 2.1 ([DT2]). Let f : Mn → R
n+p be an isometric immersion of

a simply connected Riemannian manifold and let f̃ be a Ribaucour transform
of f . Then there exists a unique [(ϕ, β)] ∈ S0 such that

(2.2) f̃ = f − 2ϕνF ,

where F = f∗∇ϕ+ β and ν = ‖F‖−2. Moreover, we have that

P = I − 2νFF∗, δ = −ϕ−1F and D = I − 2ϕνΦ,

where F∗(Z) = 〈F , Z〉 for any Z ∈ f∗TRn+p. Conversely, given [(ϕ, β)] ∈ S0,
let P, δ and D be defined by the preceding expressions on an open subset
U ⊂ Mn where D is invertible. Then f̃ |U given by (2.2) is a Ribaucour
transform of f |U for P, δ and D. Moreover:

(i) The second fundamental forms of f and f̃ are related by

Af̃Pξ = D−1(Afξ + 2ν〈β, ξ〉Φ).

(ii) The restriction P|T⊥f M : T⊥f M → T⊥
f̃
M is parallel.

We denote byRw(f) the Ribaucour transform f̃ of f determined by w ∈ S0.
Since w determines P, δ and D completely and F and Φ up to constants, when
convenient we will use it as a subscript for these maps.

We see next that inversions and parallel translations are special cases of
Ribaucour transformations. In the following and elsewhere writing a vector
subspace as a subscript of a vector indicates taking the orthogonal projection
of the vector onto that subspace.

Examples 2.2.

(i) Given a point P0 ∈ Rn+p and r > 0, set w = [(ϕ1, β1)] where 2ϕ1 =
‖f −P0‖2− r2 and β1 = (f −P0)T⊥f M . Then F = f −P0, Φ = I, and

f̃ = Rw(f) = P0 + r2‖f − P0‖−2(f − P0)

is obtained from f by an inversion with respect to the sphere of radius
r centered at P0. Moreover, P = I − 2‖f − P0‖−2(f − P0)∗(f − P0)
and

(2.3) r2Af̃Pµ = ‖f − P0‖2Afµ + 2〈f − P0, µ〉I for all µ ∈ T⊥f M.

(ii) Given a parallel normal vector field ξ, set w = [(ϕ2, β2)] where 2ϕ2 =
‖ξ‖2 and β2 = −ξ. Then F = −ξ, Φ = Afξ , and

f̃ = Rw(f) = f + ξ

is the parallel translation Lξ of f . Moreover, P = I − 2‖ξ‖−2ξ∗ξ and

(2.4) Af̃µ = (I −Afξ )−1Afµ for all µ ∈ T⊥f M.
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The Ribaucour transformation has the following invariance property under
L- transformations (see Proposition 33 in [DT2]). By an L-transformation of
an Euclidean submanifold we mean a diffeomorphism that is a composition of
conformal transformations of the ambient space and parallel translations, the
latter being translations of the submanifold by parallel normal vector fields.
To each L-transformation T of f we associate an L-transformation T̃ of a
given Ribaucour transform Rw(f) as follows:

(i) T̃ = T when T is a conformal map of Rn+p.
(ii) T̃ = LPξ when T = Lξ.

Then, there is a correspondence T 7−→ wT ∈ S0(T (f)) such that

(2.5) T̃ (Rw(f)) = RwT (T (f)).

For later use we describe this correspondence explicitly for each of the follow-
ing types of transformations. We omit the computations, which are straight-
forward with the exception of case (iv). For the latter we refer to Proposi-
tion 31 in [DT2].

(i) Euclidean translation: Tu(f) = f + u, where u ∈ Rn+p. Then,

FTu = F and ϕTu = ϕ.

(ii) Orthogonal transformation: O(f) = O ◦ f, where O ∈ O(n + p).
Then,

FO = O(F) and ϕO = ϕ.

(iii) Homothety: Hk(f) = kf, where k ∈ R. Then,

FHk = F and ϕHk = kϕ.

(iv) Inversion: i(f) = f/‖f‖2. Then,

F i = Pi(F − 2ϕ‖f‖−2f) = F − 2(〈F , f〉 − ϕ)‖f‖−2f and ϕi = ϕ‖f‖−2.

(v) Parallel translation: Lξ(f) = f + ξ, where ξ ∈ T⊥f M is parallel.
Then,

FLξ = F and ϕLξ = ϕ+ 〈F , ξ〉.
The conformal codimension of a submanifold g : Mn → R

n+p is the number
c(g) such that n+ c(g) is the least dimension of a sphere or an affine subspace
in Rn+p that contains the submanifold. If c(g) = p, then g is said to be
conformally substantial .

Proposition 2.3. The conformal codimension is invariant under L-trans-
formations.

Proof. The invariance under conformal transformations is clear. Thus it
suffices to check that a submanifold g : Mn → R

n+p and a parallel translate
Lξ(g) have the same conformal codimension. Since the immersions have the
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same normal spaces at every point, it suffices to argue that Lξ(g)(M) is con-
tained in a sphere whenever g(M) is contained in a sphere centered, say, at
the origin. We can write ξ = ag + bη, where a, b ∈ R and η is a parallel
normal vector field tangent to the sphere. Hence g + ξ = (1 + a)g + bη has
also constant norm. �

On a submanifold f : Mn → R
n+p consider a commuting Codazzi tensor

(2.6) Φ = aI −Afδ , a ∈ R,
where δ ∈ T⊥f M is a parallel vector field in the normal connection. Then, a
Combescure transform F of f determined by Φ, that is, F∗ = f∗ ◦ Φ, can be
written as

(2.7) F = af + v + δ, v ∈ Rn+p.

Proposition 2.4. The decomposition (2.7) is unique if f is conformally
substantial.

Proof. If F = ãh+ ṽ+ δ̃, set a′ = ã−a, v′ = ṽ−v and δ′ = δ̃−δ. We obtain
by differentiating a′h+ v′ + δ′ = 0 that Ahδ′ = a′I. Since ‖δ′‖ is constant and
h is conformally substantial, we conclude that δ′ = 0 = a′ = v′. �

If w = [(ϕ, β)] ∈ S0(f) is such that F = Fw = f∗∇ϕ+β is as in (2.7), then

(2.8) 2ϕ = a‖f‖2 + 2〈f, v〉+ c, c ∈ R.

Definitions. We say that w,Φ or F are L-trivial when they are given
by (2.6), (2.7) and (2.8). They are conformally trivial if they can be given by
those expressions with δ = 0.

If w ∈ S0(f) is L-trivial, then the corresponding Ribaucour transform is

(2.9) f̃ = f −
(
a‖f‖2 + 2〈f, v〉+ c

) af + v + δ

‖af + v + δ‖2
.

Notice that special cases of (2.9) are inversions and parallel translations.

Proposition 2.5. If w ∈ S0(f) is L-trivial (respectively, conformally
trivial), then the same holds for wT ∈ S0(T (f)) for any L-transformation T
of f . More precisely, if F and ϕ are given by (2.7) and (2.8), then FT and
ϕT are as follows:

(i)

{
FTu = aTuf + v − au+ δ,

2ϕTu = a‖Tuf‖2 + 2〈Tuf, v − au〉+ c− 2〈u, v〉+ a‖u‖2,

(ii) FO = aOf +Ov +Oδ, 2ϕO = a‖Of‖2 + 2〈Of,Ov〉+ c,

(iii) FHk = (a/k)kf + v + δ, 2ϕHk = (a/k)‖kf‖2 + 2〈kf, v〉+ ck,

(iv) F i = ci(f) + v + δ − 2〈δ, f〉i(f), 2ϕi = c‖i(f)‖2 + 2〈i(f), v〉+ a,
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(v)

{
FLξ = aLξf + v + δ − aξ,
2ϕLξ = a‖Lξf‖2 + 2〈Lξf, v〉+ c+ 2〈δ, ξ〉 − a‖ξ‖2.

Proof. It is straightforward using the expressions after (2.5). �

3. Dupin principal normals

Our goal in this section is to describe a procedure to generate all Euclidean
submanifolds carrying a Dupin principal normal with integrable conullity.

We start by observing that the property of carrying a Dupin principal
normal with integrable conullity is invariant under L-transformations. In fact,
let f : Mn → R

n+p be an isometric immersion and let f̃ be an L-transform of
f . Then, to each principal normal η of f there corresponds a principal normal
η̃ of f̃ such that Eη̃ = Eη, and thus η̃ has integrable conullity if and only if η
does. Moreover, η̃ is Dupin if and only if the same holds for η. Namely,

η̃ = r−2P(‖f − P0‖2η + 2(f − P0)T⊥f M ),

for an inversion as in Examples 2.2(i), whereas

η̃ = (1− 〈ξ, η〉)−1η = (1− 〈ξ, η〉)−1P(η − 2‖ξ‖−2〈η, ξ〉)
for a parallel translation Lξ as in Examples 2.2(ii), as one can easily check
using (2.3) and (2.4). That η̃ is Dupin if and only if the same is true for η
follows from (ii) in Theorem 2.1.

We now introduce the main tool of the paper, which is an extension of the
notion of Ribaucour transformation of an Euclidean submanifold. Fix a simply
connected submanifold h : Ln−s → R

n+p with a normal subbundle N of rank
s that is parallel and flat with respect to the normal connection. Flatness of
N means that the normal curvature tensor satisfies R⊥h |N = 0. We denote by
SN = SN (h) the set of equivalence classes of pairs (ϕ, β) ∈ S(h) under the
equivalence relation that identifies two pairs (ϕ, β) and (ϕ′, β′) whenever

ϕ′ = λϕ and β′ − λβ ∈ N
‖

for some 0 6= λ ∈ R. Here and elsewhere N ‖ stands for the s-dimensional real
vector space of parallel sections of N .

Definition. The N -Ribaucour transform RNw (h) of h : Ln−s → R
n+p

determined by w = [(ϕ, β)] ∈ SN is the n–dimensional immersed submanifold
parametrized, at regular points, by the map f : Ln−s ×N ‖ → R

n+p given by

(3.1) f(u, t) = ht(u),

where ht = R[(ϕ,β+t)](h) = h−2ϕν(h∗∇ϕ+β+ t) and ν = ‖h∗∇ϕ+β+ t‖−2.

Observe that h itself is the leaf “at infinity” of the foliation parametrized
by t in the sense that h = lim‖t‖→∞ ht. After choosing a parallel orthonormal
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frame ξ1, . . . , ξs of N , the map f can be rewritten as f : Ln−s × Rs → R
n+p

given by

f = h− 2ϕν

h∗∇ϕ+ β +
s∑
j=1

yjξj(u)

 .

Given (ϕ, β) ∈ S(h) and t ∈ N ‖ , we denote Ft = h∗∇ϕ+ β + t, νt = ‖Ft‖−2,
Φt = Hessϕ−Afβ+t, Pt = P[(ϕ,β+t)] and Dt = D[(ϕ,β+t)].

Proposition 3.1. Let RNw (h) : Mn = Ln−s × N ‖ → R
n+p be an N -

Ribaucour transform of h : Ln−s → R
n+p. Then the following facts hold:

(i) f = RNw (h) = RNw̄ (h) if and only if w = w̄.
(ii) The normal space of f at (u, t) ∈Mn is T⊥(u,t)M = Pt(N⊥(u)).
(iii) The normal connection of f is given by

∇⊥X δ̂ = Pt∇⊥Xδ and ∇⊥S δ̂ = 0

for all δ ∈ N⊥, X ∈ TL and S ∈ N ‖ , where δ̂(u, t) = δt(u) = Ptδ(u).
In particular, δ is a parallel normal vector field of h if and only if δ̂
is a parallel normal vector field of f , and hence, f has flat normal
bundle if and only if h does.

(iv) The second fundamental form of f at (u, t) ∈Mn for all S ∈ N ‖ and
Z ∈ T(u,t)M is given by

(3.2) αf (S,Z) = 〈S,Z〉Ptβ̄(u),

where β̄ = −ϕ−1βN⊥ , and by

(3.3) αf (X,Y ) = Pt((αh(DtX,Y ) + 2νt(u)〈DtX,ΦtY 〉β(u))N⊥)

for all X,Y ∈ TuL.
(v) For each point u0 ∈ Ln−s the map f(u0, · ) : N ‖ → R

n+p is a con-
formal parametrization of a sphere or an affine subspace, the latter
occurring if and only if Fϕ,β(u0) ∈ N .

Proof. The proof of (i) is straightforward. An easy computation at ( · , t)
yields

(3.4) f∗X = PtDtX and f∗S = −2ϕνtPtS

for all X ∈ TL and S ∈ N ‖ , and (ii) follows. The assertions in (iii) are
consequences of (ii) in Theorem 2.1 and the fact that ∇̃S δ̂ = −2νt〈β, δ〉PtS ∈
TM , where ∇̃ denotes the Euclidean connection. The proof of (iv) is similar
to that of Corollary 21 of [DT2]. Finally, (v) follows from (3.2) and (3.4). �

We show next that the N -Ribaucour transform RNw (h) of an isometric
immersion h : Ln−s → R

n+p with a parallel flat normal subbundle N of rank s
always carries a Dupin principal normal of multiplicity s if a certain regularity
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assumption is satisfied. For the precise statement we need to introduce some
terminology. For an isometric immersion h : Ln−s → R

N , a vector subbundle
V ⊂ T⊥h L and a vector field δ ∈ V, we define at x ∈ Ln−s the subspace

EVδ (x) = {Z ∈ TxL : αh(Z,X)V = 〈Z,X〉δ for all X ∈ TxL}.

Given w = [(ϕ, β)] ∈ SN (h), we denote β̄ = −ϕ−1βN⊥ and E(w) = EN⊥
β̄

.
The only purpose of the regularity condition E(w) = 0 in the following

result is to assure that the Dupin principal normal generated by the N -
Ribaucour transformation has the lowest possible multiplicity everywhere.

Proposition 3.2. Let h : Ln−s → R
n+p be a simply connected submani-

fold carrying a parallel flat normal subbundle N of rank s, and let

f = RNw (h) : Mn = Ln−s ×N
‖
→ R

n+p

be an N -Ribaucour transform of h determined by w ∈ SN with E(w) = 0.
Then the vector field η(u, t) = Ptβ̄(u) is a Dupin principal normal of f with
integrable conullity, the leaves being parametrized by ( · , t0) with t0 ∈ N

‖
.

Proof. It follows from (3.2) that N ‖ ⊂ Eη. To see that equality holds, take
X ∈ TL ∩ Eη and Y ∈ TL. Then

αf (X,Y ) = 〈DtX,DtY 〉Ptβ̄.
Using (3.3), we obtain that

αh(DtX,Y )N⊥ = 〈DtX,Y 〉β̄,
and hence X = 0 by the assumption that E(w) = 0. That η is Dupin follows
from Proposition 3.1(iii). Finally, by (3.4) we have that 〈f∗S, f∗X〉 = 0, and
we conclude that the conullity is integrable, the leaves being parametrized by
( · , t0) with t0 ∈ N

‖
. �

One of our main results is that, conversely, any submanifold carrying a
Dupin principal normal with integrable conullity arises locally this way.

Theorem 3.3. Let f : Mn → R
n+p be an isometric immersion carrying

a Dupin principal normal η of multiplicity s with integrable conullity. Then
N = Eη|L is a parallel flat normal subbundle of h = f |L for any given leaf
Ln−s of conullity, and f is an N -Ribaucour transform of h determined by a
unique w ∈ SN (h) with E(w) = 0.

Theorem 3.3 will be derived from Proposition 3.4, where the conullity is
only assumed to admit one maximal integral submanifold , that is, a subman-
ifold L satisfying that TxL = E⊥η (x) for any x ∈ L, and that each leaf of ∆f

intersects L exactly once. First we need some further terminology and nota-
tions. We refer to a vector bundle (E, π,M) with total space E and projection
π : E →M simply by E, and denote by Γ(E) the space of its smooth sections.
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The kernel of π∗t at t ∈ E(x) is the vertical subspace of TtE. Clearly, TtE
can be identified with E(x) itself, thus we can write E(x) ⊂ TtE without risk
of confusion. We call the vertical subbundle of TE the subbundle E ⊂ TE
formed by its vertical subspaces.

Proposition 3.4. Let h : Ln−s → R
n+p be a submanifold with a parallel

normal subbundle N of rank s and let µ : Ln−s → R
n+p be a smooth map

such that ηh = µN⊥ satisfies EN⊥ηh
= 0 and

(3.5) (µ∗X)N⊥ = 〈h∗X,µ〉ηh for all X ∈ TL.
Define f : N → R

n+p by

(3.6) f ◦ t = h+ 2‖µ+ t‖−2(µ+ t) for all t ∈ Γ(N ),

and η : N → R
n+p by

(3.7) η ◦ t = ηh − 2‖ηh‖2‖µ+ t‖−2(µ+ t).

Then f parametrizes, at regular points, a submanifold Mn with η as a Dupin
principal normal such that the nullity Eη is the vertical subbundle N ⊂ TN ,
and Ln−s is a maximal integral submanifold of the conullity.

Conversely, let f : Mn → R
n+p be a submanifold carrying a Dupin prin-

cipal normal η of multiplicity s ≥ 1 such that the conullity has a maximal
integral submanifold Ln−s. Then N = Eη|L is normal and parallel along
h = f |L, and there exists a smooth map µ : Ln−s → R

n+p orthogonal to N
such that f and η can be locally parametrized by (3.6) and (3.7) on an open
neighborhood of Ln−s.

Before proving Proposition 3.4 we make the following useful observation.

Lemma 3.5. Let h : Ln−s → R
n+p be a submanifold with a parallel normal

subbundle N of rank s ≥ 0 and let η ∈ N⊥ be a nowhere vanishing vector
field. Then the subspace {T ∈ EN⊥η (x) : ∇⊥T η = 0} coincides with

{T ∈ TxM : (h+‖η‖−2η)∗T = 0; ∇̃T ξ ∈ {η}⊥∩N⊥ for all ξ ∈ {η}⊥∩N⊥}.

Proof. We have that T ∈ EN⊥η (x) and ∇⊥T η = 0 if and only if the right
hand sides of the following equations vanish for any ξ ∈ {η}⊥ ∩N⊥:

(h+ ‖η‖−2η)∗T = h∗(T − ‖η‖−2AηT ) +∇⊥T ‖η‖−2η;

〈∇̃T ξ, η〉 = −〈∇⊥T η, ξ〉;

〈∇̃T ξ, h∗X〉 = −〈αh(T,X), ξ〉. �

Proof of Proposition 3.4. We start the proof of the direct statement by
determining the normal bundle of f . Differentiating (3.6) along X ∈ TL, we
obtain that

(3.8) (f ◦ t)∗X = h∗X + 2X(‖µ+ t‖−2)(µ+ t) + 2‖µ+ t‖−2(µ∗X + ∇̃Xt).
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It follows from (3.5), (3.8) and the parallelism of N that N⊥∩{ηh}⊥ is normal
to f . Moreover, (3.5) and (3.8) also imply that

〈(f ◦ t)∗X, η ◦ t〉 = 2‖µ+ t‖−2
(
〈µ∗X, ηh〉 − ‖ηh‖2〈h∗X,µ〉

)
= 0.

Using that ‖η ◦ t‖ = ‖ηh‖, we obtain the orthogonal splitting

(3.9) T⊥f M(t(x)) =
(
N⊥ ∩ {ηh}⊥

)
(x)⊕ span{η(t(x)},

which shows that η⊥ is constant along N ⊂ TN . For a point x ∈ Ln−s where
ηh(x) = 0, we conclude from (3.9) that

(3.10) T⊥f M(t(x)) = N⊥(x),

and thus N (x) ⊂ E0(t(x)). On the open subset where ηh 6= 0, we have that

(3.11) f ◦ t+ ‖η ◦ t‖−2η ◦ t = h+ ‖ηh‖−2ηh,

and hence the left hand side is constant along the leaves of N ⊂ TN . We
conclude from Lemma 3.5 that N ⊂ Eη and that η is parallel along N .

It remains to show that N = Eη under our regularity assumption. This
holds by (3.10) at the points of Ln−s where ηh = 0. Hence, we may assume
that ηh(x) 6= 0, and then the same holds for η on N (x). Any transversal
tangent vector to the leaves of N ⊂ TN can be written as t∗X for some
X ∈ TxL and t ∈ Γ(N ). Assume that t∗X ∈ Eη(t(x)). Then, we have from
Lemma 3.5 that(

(f + ‖η‖−2η)∗(t∗X)
)
TfM

= 0 = (∇̃t∗Xξ)TfM

for any normal vector field ξ ∈ {η}⊥ ⊂ T⊥f M . By (3.9), any normal vector
field ξ̂ ∈ N⊥ ∩ {ηh}⊥ to h gives rise to a normal vector field ξ ∈ {η}⊥ to f
along t by setting ξ◦t = ξ̂. Therefore, (∇̃X ξ̂)ThL = 0 for any ξ̂ ∈ N⊥∩{ηh}⊥.
Moreover, by (3.11) we obtain that

(
(h+ ‖ηh‖−2ηh)∗(X)

)
ThL

= 0. From our
assumption on ηh and Lemma 3.5, we conclude that X = 0, and thus t∗X = 0
as we wanted.

We first prove the converse under the assumption that η is nowhere van-
ishing. Let σ(x) be the leaf of Eη through x ∈ Ln−s. Then f(σ(x)) is an open
subset of a round sphere Ss(x) through f(x). Now let µ : Ln−s → R

n+p be
the vector field defined so that h(x) + ‖µ(x)‖−2µ(x) is the center of Ss(x).
Then µ(x) is orthogonal to the tangent space N (x) = Eη(x) of Ss(x) at h(x),
and the inversion with respect to the sphere of radius

√
2 centered at the ori-

gin followed by translation by h(x) maps the affine hyperplane µ(x) +N (x)
onto Ss(x) minus the point h(x). Since L is a maximal integral submanifold
of the conullity, f is parametrized by (3.6) on an open neighborhood of the
zero section of N along h. Moreover, since η is a Dupin principal normal,
it follows from Lemma 3.5 that f + ‖η‖−2η is constant along Eη. Therefore
(3.11) holds and η is given by (3.7). Finally, the proof of the direct statement
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shows that η being normal to f and the normal subspace {η}⊥ being constant
along Eη imply that µ satisfies (3.5) and that N is parallel.

For the general case, we may compose f with a translation, if necessary,
and an inversion i so that the corresponding principal normal ηi of i(f) is
nowhere vanishing. Thus, we have a submanifold h, a subbundle N and a
map µ as before, and we can describe i(f) by (3.6) as

i(f) = h+ 2‖µ+ t‖−2(µ+ t),

with µ satisfying (3.5). Applying the inversion i to i(f), it is easy to see that

f = i(h) + 2‖µ̄+ t̄‖−2(µ̄+ t̄),

where µ̄ = Pi(2h + ‖h‖2µ), t̄ = Pi ‖h‖2t, and Pi = I − 2〈h, ·〉i(h) is the
vector bundle isometry associated to i seen as a Ribaucour transformation of
i(h). In particular, we have that N̄⊥ = PiN⊥. It is also easy to check that
(µ̄∗X)N̄⊥ = 〈i(h)∗X, µ̄〉µ̄N̄⊥ , and this completes the proof. �

Proof of Theorem 3.3. By Proposition 3.4, we have that N = Eη|L is par-
allel along h = f |L for any given leaf Ln−s of the conullity, and that f and
η can be parametrized by (3.6) and (3.7), respectively, for some smooth map
µ : Ln−s → R

n+p everywhere orthogonal to N satisfying (3.5). Since the
conullity is integrable, for any T ∈ N (x0) there is a section t ∈ Γ(N ) with
t(x0) = T everywhere orthogonal to the vertical subbundle of TN with respect
to the metric induced by f . We have that

f∗S = 2‖µ+ t‖−2(S − 2‖µ+ t‖−2〈t, S〉(µ+ t))

for any section S of N ⊂ TN along t. A straightforward computation using
(3.8) shows that 〈(f ◦ t)∗X, f∗S〉 = 0 if and only if

〈µ∗X + ∇̃Xt, S〉 − 〈t, S〉〈h∗X,µ〉 = 0.

Since N is parallel, this is equivalent to

(3.12) ∇⊥Xt = −(µ∗X)N + 〈h∗X,µ〉t.
Given t0 ∈ N (x0), take t1, t2 ∈ Γ(N ) orthogonal to the vertical subbundle
of TN such that (t1 − t2)(x0) = t0. It follows from (3.12) that t = t1 − t2
satisfies t(x0) = t0 and

(3.13) ∇⊥Xt = ω(X)t, where ω(X) = 〈h∗X,µ〉.
Set τ = log(‖t‖/‖t0‖). Then τ(x0) = 0 and dτ = ω. It follows from (3.13)
and the closeness of ω that R⊥(X,Y )t = 0 for all X,Y ∈ TL. In particular,
we have that N is flat. Moreover, (3.5) and (3.12) yield

(3.14) (µ∗X)T⊥h L = X(τ)(t+ µN⊥)− (∇̃Xt)N .

Set t = eτ tT + t̄, where tT is the parallel section of N with tT (x0) = T = t0.
Then (3.14) can be written as

((µ+ t̄)∗X)T⊥h L = X(τ)(µ+ t̄)T⊥h L,
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or equivalently,

(e−τ (µ+ t̄))∗X ∈ ThL for all X ∈ TL.

Setting ϕ = −e−τ and β = e−τ (ηh+t̄), we obtain that e−τ (µ+t̄) = h∗∇ϕ+β =
F is a Combescure transform of h. Moreover, µ+ t = −ϕ−1(F + tT ). Thus

f ◦ t = h− 2ϕ‖F + tT ‖−2(F + tT ).

Finally, the uniqueness of [(ϕ, β)] was observed in Proposition 3.1(i). �

Remark. In view of Theorem 3.3, the invariance under L-transformations
of the property of admitting a Dupin principal normal with integrable conullity
can also be derived from the invariance of the N -Ribaucour transformation
under L-transformations. The latter is as follows. To each L-transformation
T of h we associate an L-transformation T̃ for f = RNw (h) given by

(i) T̃ = T when T is a conformal map of Rn+p.
(ii) T̃ = Lξ̂ when T = Lξ for ξ ∈ N⊥, where ξ̂ = Ptξ.

Then, the correspondence T 7→ wT ∈ SN (T (h)) given in (2.5) is such that

(3.15) T̃ f = RN
T

wT (Th),

where N T = TN if T ∈ O(n+p), N T = PiN in the case of an inversion, and
N T = N if T is either an Euclidean translation, an homothety or a parallel
translation.

We conclude this section by showing that the N -Ribaucour transformation
for holonomic submanifolds admits a simple coordinate description in terms
of solutions of completely integrable first order systems of partial differential
equations.

Let g : Ln−s → R
n+p be a holonomic submanifold endowed with prin-

cipal coordinates (u1, . . . , un−s), let N be a parallel flat normal subbun-
dle, and let ξ1, . . . , ξp+s be a parallel orthonormal normal frame such that
N = span{ξp+1, . . . ξp+s}. Set ds2 =

∑n−s
j=1 v

2
jdu

2
j , define hij ∈ C∞(M) by

vihij = ∂vj/∂ui, 1 ≤ i, j ≤ n − s, and V rj ∈ C∞(M) by vjA
g
ξr
Xj = V rj Xj ,

1 ≤ r ≤ s + p, where Xj = v−1
j ∂/∂uj . It follows from the Gauss, Codazzi

and Ricci equations for g that the triple (v, h, V ) satisfies the completely in-
tegrable system of partial differential equations

(3.16)


(i)

∂vi
∂uj

= hjivj , (ii)
∂hij
∂ui

+
∂hji
∂uj

+
∑
k

hkihkj+
∑
r

V ri V
r
j = 0,

(iii)
∂hik
∂uj

= hijhjk, (iv)
∂V ri
∂uj

= hjiV
r
j ,
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where always i 6= j 6= k 6= i. Now consider the linear system of partial
differential equations of first order

(3.17)


∂ϕ/∂ui = viγi,

∂γj/∂ui = hjiγi, i 6= j,

∂βr/∂ui = −V ri γi.

System (3.17) is also completely integrable, the compatibility conditions be-
ing satisfied by virtue of (3.16). Moreover, (ϕ, γ, β) = (ϕ, γ1, . . . , γn−s, β1,

. . . , βp+s) is a solution of (3.17) if and only if the pair (ϕ, β =
∑p+s
r=1 βrξr), sat-

isfies (2.1). Therefore, RNϕ,β(g) can be parametrized as f : Ln−s×Rs → R
n+p

given by

(3.18) f(u, y) = g − 2ϕν

n−s∑
j=1

γjg∗Xj +
p∑
r=1

βrξr +
s+p∑
`=p+1

(β` + y`−p)ξ`

 ,

where ν−1 =
∑
j γ

2
j +

∑
r β

2
r +

∑
`(β` + y`−p)2.

4. Generalized cylinders

This section is devoted to a characterization of the class of submanifolds
that are L-equivalent to the generalized cylinders within the class of subman-
ifolds that carry a Dupin principal normal with integrable conullity. Let us
first recall their precise definition.

Definition. Let g : Ln−s → Q
N
ε , ε = 0, 1,−1, be an isometric immersion

with a parallel flat normal subbundle V of rank s. The generalized cylinder
over g determined by V is the n-dimensional submanifold parametrized by
means of the exponential map of QNε as

γ ∈ V 7→ expεg(π(γ))(γ).

We start by showing that the generalized cylinders are the only submani-
folds that carry a relative nullity distribution with integrable conullity.

Proposition 4.1. Let h : Ln−s → Q
n+p
ε be a simply connected subman-

ifold with a parallel flat normal subbundle N of rank s such that EN⊥0 = 0.
Then the generalized cylinder over h determined by N has relative nullity of
constant dimension s and integrable conullity.

Conversely, any submanifold f : Mn → Q
n+p
ε with relative nullity of con-

stant dimension s and integrable conullity arises this way locally. That is,
N = E0|L is a parallel flat normal subbundle of h = f |L for any leaf Ln−s of
the conullity and f is an open neighborhood of h of the generalized cylinder
over h determined by N .
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Proof. We give the proof for the converse in the case where ε = 0, the proof
of the direct statement being straightforward. By Theorem 3.3, we have that
N = E0|L is a parallel flat subbundle of the normal bundle of h = f |L for any
given leaf Ln−s of the conullity, and that f is an N -Ribaucour transform of
h determined by a unique w ∈ SN (h). Since the leaves of relative nullity are
affine subspaces, then we must have that Fw ∈ N by Proposition 3.1(v), and
hence f is a generalized cylinder in Rn+p. The case ε = 1 can be easily reduced
to the Euclidean one by taking the cone in RN+1 over the submanifold; details
are left to the reader. The proof of the case ε = −1 can be done similarly. �

Now let f : Mn → R
n+p be an isometric immersion that carries a Dupin

principal normal η of multiplicity s and integrable conullity. By Theorem 3.3,
there exist a submanifold h : Ln−s → R

n+p, a parallel flat normal subbundle
N of rank s and an element w ∈ SN such that f = RNw (h). In the following
result, we characterize those w ∈ SN for which f is L-equivalent to (the
stereographic projection of) a generalized cylinder in Qn+p

ε .

Theorem 4.2. The following assertions are equivalent:
(a) f = RNw (h) for some L-trivial (respectively, conformally trivial) w ∈
SN .

(b) f is L-equivalent (resp., conformally equivalent ) to (the stereographic
projection if ε 6= 0 of ) a generalized cylinder in Qn+p

ε .
Moreover, if h is conformally substantial, then ε = ε(w) is uniquely deter-
mined.

Proof. First we give a parametric description of the generalized cylinders
in QNε as N -Ribaucour transforms. Consider RN = {0} × RN inside RN+1 if
ε = 1, or inside the Lorentzian space LN+1 = R

1,N if ε = −1, and then take
S
N ⊂ RN+1 and HN ⊂ LN+1. Then, the generalized cylinder in QNε over h

determined by V can be parametrized as

(4.1) γ ∈ V 7→ h(x)− (1 + ε2)
εh(x) + γ

ε+ ‖γ‖2
, x = π(γ).

On the other hand, if w ∈ SN is L-trivial, it follows from (2.8) and (2.9)
that f = RNw (h) can be parametrized as f(u, t) = ht(u), where

(4.2) ht = h−
(
a‖h‖2 + 2〈h, v〉+ c

) ah+ v + δ + t

‖ah+ v + δ + t‖2
.

Moreover, we can assume that δ ∈ N⊥ for δN can always be canceled by a
reparametrization in (4.2). If h is conformally substantial, then a, v, δ and c
are now completely determined up to a common multiplicative constant by
Proposition 2.4. In particular,

ε(w) = sign (ac− ‖v‖2 + ‖δ‖2)

is well defined.
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Lemma 4.3. If h is conformally substantial, then ε(w) is invariant by
conformal transformations and parallel translations Lξ for any ξ ∈ N⊥.

Proof. It follows easily from Proposition 2.5. �

To prove the equivalence part of the statement, we show that the paramet-
rizations (4.1) and (4.2) correspond by L-transformations (resp., conformal
transformations) and stereographic projections. We use Proposition 2.5 sev-
eral times without further reference. If a = 0 in (4.2), we can make a 6= 0 by
a conformal transformation. In fact, we may assume that c 6= 0. Otherwise,
v 6= 0 and a translation Tv gives c 6= 0. Now an inversion yields a 6= 0. By a
homothety Ha followed by a translation Tv of (4.2), we have that

(4.3) h′t = h′ −
(
‖h′‖2 + c1

) h′ + δ + t

‖h′ + δ + t‖2
,

where h′ = ah+ v, h′t = aht + v and c1 = ca− ‖v‖2.

Claim 4.4. We may assume that h′ + δ in (4.3) is an immersion.

The conformal map C = T−(c1+‖q‖2)−1q ◦ i ◦ Tq for q ∈ Rn+p takes (4.3)
into

h̄t = h̄− (‖h̄‖2 + c1(c1 + ‖q‖2)−2)
h̄+ (c1 + ‖q‖2)−1δ̄ + t

‖h̄+ (c1 + ‖q‖2)−1δ̄ + t‖2
,

where h̄ = C(h′) and δ̄ = PCδ = δ − 2〈δ, h′ + q〉i(h′ + q). At each point, we
obtain using (2.3) for P0 = −q that Ah̄

δ̄
= ‖h′ + q‖2Ah′δ + 2〈δ, h′ + q〉I. Thus,

I − (c1 + ‖q‖2)−1Ah̄δ̄ = −(c1 + ‖q‖2)−1‖h′ + q‖2(Ah
′

δ − σ(q)I),

where σ(q) = ‖h′+q‖−2(c1−2〈δ, h′+q〉+‖q‖2). The proof of the claim follows
from the fact that σ is a nonconstant continuous function of q. Otherwise,
we would have ‖h′‖2 + c1 = 0, which is in contradiction with (4.3) being a
parametrization.

A parallel translation Lδ̂(f) (see (3.15)) yields

(4.4) h′′t = h′′ −
(
‖h′′‖2 + c2

) h′′ + t

‖h′′ + t‖2
,

where h′′ = h′ + δ, h′′t = h′t + δt and c2 = c1 + ‖δ‖2. Now a homothety
H|c2|−1/2 , if necessary, and Lemma 4.3 yield

(4.5) gt = g −
(
‖g‖2 + ε

) g + t

‖g + t‖2
, ε = ε(w) = 0,±1,

where g = |c2|−1/2h′′ and gt = |c2|−1/2h′′t when c2 6= 0.
It remains to show that the stereographic projection

S = Tεe0H1+ε2 i T−ε2e0 : RN → Q
N
ε ,
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where e0 = (1, 0), takes the normal form (4.5) to a generalized cylinder in
Q
N
ε . Notice that S = i if ε = 0. For each t ∈ N ‖ , the corresponding parallel

normal vector field t̂ ∈ V ′′ of k = S(g) = εe0 + (1 + ε2)(‖g‖2 + ε)−1(g − ε2e0)
is t̂ = t− 2〈t, g̃〉i(g̃), where g̃ = g − ε2e0. Thus kt̂ = S(gt) is given by

kt̂ = εe0+(1+ε2)
‖g̃ + ε2e0 + t‖2g̃ − ‖g̃‖2(g̃ + ε2e0 + t)

ε+ ‖t̂‖2
= k−(1+ε2)

εk + t̂

ε+ ‖t̂‖2
,

which is, precisely, a generalized cylinder in QNε over k determined by V. �

Corollary 4.5. Let f : Mn → R
n+p be an isometric immersion carrying

a Dupin principal normal with integrable conullity. The following assertions
are equivalent:

(a) f is L-equivalent to (the stereographic projection of) a generalized
cylinder.

(b) There is a pair of immersed conullity leaves of f that are L-equivalent.
(c) Any pair of immersed conullity leaves of f are L-equivalent.

Remark. Theorems 3.3 and 4.2 were used in [Fl] to characterize doubly
(conformally) ruled submanifolds in space forms, that is, submanifolds that
have a pair of transversal umbilical foliations. It was shown that, if nontrivial,
the intersection of both foliations is itself an umbilical foliation and the normal
component of its mean curvature vector is always a Dupin principal normal of
the submanifold with integrable conullity. If the codimension is big enough,
it was also shown that the submanifold is then (conformally equivalent to) a
generalized cylinder.

The concepts of rotation submanifold and tube admit the following exten-
sions for an Euclidean submanifold g : S → R

N with a parallel flat normal
subbundle N .

(i) The generalized rotation submanifold ψ : N → R
N over g determined

by N and e ∈ RN is given by

ψ(γ) = g(x)− 2〈g(x), e〉 e+ γ

‖e+ γ‖2
, x = π(γ).

(ii) The generalized tube ψ : N1 → R
N over g determined by N and a ∈

R
∗ is given by

ψ(γ) = g(x) + aγ, x = π(γ),

where N1 ⊂ N denotes the unit sphere subbundle.

Proposition 4.6. The stereographic projection on RN of a generalized
cylinder in QNε over h determined by V for ε 6= 0 is L-equivalent to one of the
following submanifolds:

(a) A generalized tube if ε = 1 and V is not maximal.
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(b) A generalized rotation submanifold if ε = −1.
Conversely, any generalized tube or rotation submanifold is L-equivalent

to the stereographic projection of a generalized cylinder in QNε for ε = 1 or
ε = −1, respectively.

Proof. From the proof of Theorem 4.2, we know that the stereographic
projection of a generalized cylinder in QNε has the form (4.5), with t ∈ Ṽ =
S(V). If ε = −1, take e ∈ RN such that ‖e‖2 = 1. By a translation T−e in
(4.5) we have that

g′t = g′ −
(
‖g′‖2 + 2〈g′, e〉

) g′ + e+ t

‖g′ + e+ t‖2
,

where g′ = g − e and g′t = gt − e. Composing with an inversion i yields

i(g′t) = i(g′)− 2 (〈i(g′), e〉+ 1/2)
e+ t

‖e+ t‖2
.

After a translation Te/2, we obtain that ht = i(g′t) + e/2 is a generalized
rotation submanifold over h = i(g′) + e/2.

For ε = 1 we need an alternative description of a generalized tube. Take a
parallel ν ∈ N1 and set Ñ = N ∩ {ν}⊥. The generalized tube f : Ñ → R

N

over h determined by N is given by

f(γ′) = h− ν + 2
ν + γ′

‖ν + γ′‖2
.

Since V is not maximal, there is a unit parallel ξ′ ∈ Ṽ⊥. As in the proof of
Claim 4.4, we use the conformal map C for some q ∈ Rn+p to replace ε = 1
in (4.5) by (1 + ‖q‖2)−2 and to obtain that C(g) + ξ is an immersion, where
ξ = (1 + ‖q‖2)−1PCξ′. Then, the parallel translation Lξ̂ of (4.5) yields

g′t = g′ − ‖g′‖2 g′ − ξ + t

‖g′ − ξ + t‖2
,

where g′ = C(g) + ξ and g′t = C(gt) + ξt. We obtain a generalized tube by
composing with the inversion i. �

Remark. The three classes in part (b) of Theorem 4.2 for distinct ε do
not have to be disjoint if h is not conformally substantial. For example, tubes
may also be rotational submanifolds. In fact, one can see that an element
belonging to any two classes also belongs to the third.

As an application of Theorem 4.2, we are now able to give a short proof
of the main result in [DFT1] with the additional assumption that the sub-
manifold is locally conformally substantial, thus showing the advantage one
may have in working with a parametric description instead of the fundamental
equations of the submanifold.
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Theorem 4.7. Let f : Mn → R
N be a locally conformally substantial

submanifold with a Dupin principal normal of multiplicity k such that its
conullity is totally umbilical in Mn. If k = n − 1, assume further that the
integral curves of the conullity are circles in Mn. Then f(M) is conformally
congruent to an open subset of one of the following submanifolds:

(a) Mn = Ln−k × Rk, and f = (g, id) for a submanifold g : Ln−k →
R
N−k;

(b) Mn = CLn−k ×Rk−1, and f = (Cg, id), where Cg is the cone over a
spherical submanifold g : Ln−k → S

N−k ⊂ RN−k+1;
(c) Mn = Ln−k ×ρ Sk, and f = (g, ρ i) for a submanifold g : Ln−k →

R
N−k−1, the inclusion i : Sk → R

k+1 and a function ρ ∈ C∞+ (L).

Proof. We use the parametrization (3.1) and claim that w is conformally
trivial. Since the nullity distribution is U(ht(x)) = P[(ϕ,β+t)]N (x), the conul-
lity distribution is totally umbilical in the manifold if and only if for each
δ ∈ N there exists κδt ∈ R such that

〈AhtδtX,Y 〉 = κδt 〈X,Y 〉

for all X,Y ∈ U⊥(t) = ThtL. At the leaf parametrized by h (‖t‖ → ∞), we
have that Ahδ = κδI for all δ ∈ N . We obtain from Theorem 2.1(i) that

κδt (I − 2ϕνtΦt) = κδI + 2〈βt, δt〉νtΦt.
We easily conclude that Φ = aI for some a ∈ R, and the proof of the claim
follows using that F∗ = f∗ ◦ Φ.

Case κδ = 0 for all δ ∈ N : Observe that the conullity being totally um-
bilical in the manifold is a conformally invariant property. Since N is parallel
and totally geodesic by assumption, we conclude that h reduces codimension
to N − k. Thus, up to translation and homothety, we have an orthogonal
splitting RN = R

N−k ⊕Rk such that h ⊂ RN−k, N = R
k and (4.5) takes the

form

ht = (h, 0)−
(
‖h‖2 + ε

) (h, t)
‖(h, t)‖2

, e = 0,±1.

Choose e ∈ RN such that e = 0, eN , e1 for ε = 0, 1,−1, respectively. It is easy
to see, by composing with the conformal transformation T−e/2 i Te, that we
obtain cases (a), (b), (c) in the statement for ε = 0, 1,−1, respectively.

Case κ 6= 0: Now h is totally umbilical with respect to the subbundleN . It
is a standard fact (cf. [Ya]) that h(L) is contained in a sphere SN−k ⊂ RN−k+1,
which we may assume to be centered at the origin, and thatN = span{ξ}⊕N ′,
where ξ is the position vector of SN−k in RN−k+1 and N ′ = R

k−1 is the
orthogonal complement of RN−k+1 in RN . Now, an inversion with respect to
a sphere centered at a point in SN−k reduces this case to the first one.

Observe now that the three types cannot be glued together by the last part
of Theorem 4.2, since h is conformally substantial. �
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5. Weakly reducible Dupin submanifolds

Our main goal in this section is to describe how to construct locally all
weakly reducible k-Dupin submanifolds as defined below. As a consequence,
we obtain an explicit coordinate description of a recursive procedure to con-
struct all the holonomic k-Dupin submanifolds. Several related results on
k-Dupin submanifolds are also given.

It is a well-known fact (see [Re1]) that at each point x ∈Mn of an isometric
immersion f : Mn → R

n+p with flat normal bundle there exist an integer k(x)
and unique principal normals η1, . . . , ηk ∈ T⊥x M such that the tangent space
splits orthogonally as

(5.1) TxM = Eη1(x)⊕ · · · ⊕ Eηk(x).

We call f proper if k = k(x) is constant on Mn. In this case, each ηj is
smooth and the dimension of Eηj is constant. Hence, Ef = (Eη1 , . . . , Eηk) is an
orthogonal k–net on Mn, that is, an orthogonal decomposition of TM into k
integrable subbundles (cf. [RS]).

Definition. An isometric immersion f : Mn → R
n+p with flat normal

bundle is a k–Dupin submanifold if it is proper and any one of its principal
normals η1, . . . , ηk is Dupin.

We now introduce the main concept of this section.

Definition. A k–Dupin submanifold is weakly reducible if it has a prin-
cipal normal with integrable conullity.

Given a k–Dupin submanifold f : Mn → R
n+p, we call a Codazzi tensor Φ

on Mn a Dupin tensor adapted to Ef if there exist φ1, . . . , φk ∈ C∞(M) such
that each function φj is constant along Eηj and Φ =

∑k
j=1 φjPEηj , where PEηj

denotes the orthogonal projection of TM onto Eηj .

Definition. Given a parallel flat normal subbundle N on a k–Dupin
submanifold f : Mn → R

n+p, the N -Ribaucour transform RNw (f) of f deter-
mined by w ∈ SN is of Dupin type if Φw is a Dupin tensor adapted to Ef .

Finally, given w = [(ϕ, β)] ∈ SN , we call RNw (f) regular if N 6= 0 and
the vector fields β̄ = −ϕ−1βN⊥ , (η1)N⊥ , . . . , (ηk)N⊥ , are everywhere distinct.
Notice that regularity implies that E(w) = 0.

We are now in a position to prove the main result in this section. The
assumption of regularity in the direct statement is only needed to assure
that the number of principal normals of the submanifold generated by the
N -Ribaucour transformation of a (k−1)-Dupin submanifold is nowhere less
than k.
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Theorem 5.1. Let h : Ln−s → R
n+p be a simply connected (k−1)–Dupin

submanifold with a parallel flat normal subbundle N of rank s. Then any
regular N -Ribaucour transform of Dupin type of h is an n–dimensional weakly
reducible k–Dupin submanifold in an open neighborhood of h.

Conversely, let f : Mn → R
n+p be a weakly reducible k–Dupin submanifold.

Then there exists a (k−1)-Dupin submanifold h : Ln−s → R
n+p and a parallel

flat normal subbundle N of h with rank s such that f is locally a regular
N -Ribaucour transform of h of Dupin type.

Proof. Let f = RNw (h) be a regular N -Ribaucour transform of Dupin type
of h. By Proposition 3.1(iv), the principal normals of f are Ptβ̄ and

(5.2) η̄j = (λtj)
−1Pt(ηj − 2ϕνtρtj β̄)N⊥ ,

where w = [(ϕ, β)], η1, . . . , ηk−1 are the principal normals of h, the ρtj are
the eigenvalues of Φt and the λtj = 1 − 2ϕνtρtj are the ones of Dt. Since
limt→∞ η̄j = (ηj)N⊥ , we have from the regularity assumption that η̄1, . . . , η̄k−1

and Ptβ̄ are pairwise distinct on an open neighborhood U of the section at
infinity of N , and that Eη̄j = Eηj . A long but straightforward computation
shows that

(5.3) (λtj)
2∇⊥Xj η̄j = Pt(λtj∇⊥Xjηj − 2ϕνtXj(ρj)(β̄ − ηj)N⊥),

where Xj ∈ Eηj . We have that ∇⊥Xjηj = 0 because h is a (k−1)–Dupin
submanifold, and that Xj(ρj) = 0 because Φw is a Dupin tensor. It follows
from (5.3) that ∇⊥Xj η̄j = 0, and hence η̄j = 0 is a Dupin principal normal
for 1 ≤ j ≤ k − 1. Moreover, Ptβ̄ is also a Dupin principal normal and has
integrable conullity by Proposition 3.2. Therefore f |U is an n–dimensional
weakly reducible k–Dupin submanifold.

Conversely, let f : Mn → R
n+p be a k–Dupin submanifold and let ηk be a

principal normal of f such that E⊥ηk is integrable. For a leaf Ln−s of E⊥ηk , it
is easy to see that h = f |Ln−s has flat normal bundle with principal normals
η̄1, . . . , η̄k−1 given by η̄j = ηj +Hj , where Hj is the mean curvature vector of
Eηj . Since ηj is parallel in the normal connection of f , we have that

(5.4) ∇̃Xj η̄j = −‖ηj‖2Xj +∇XjHj + αf (Xj ,Hj).

The right hand side of (5.4) has no E⊥ηj -component since the last term vanishes
and Eηj is spherical. Hence h is a (k−1)–Dupin submanifold. By Theorem 3.3,
we have that N = Eηk |Ln−s is a parallel flat normal subbundle of h and that
f(M) is locally an open neighborhood of a regular N -Ribaucour transform
of h. It follows from (5.3) that Xj(ρj) = 0, 1 ≤ j ≤ k − 1, that is, the
N -Ribaucour transform is of Dupin type. �

Given a k–Dupin submanifold f and [(ϕ, β)] ∈ S0(f), we say that a Ribau-
cour transform R[(ϕ,β)](f) is regular if λ−1

j (ηj− β̄), 1 ≤ j ≤ k, are everywhere
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nonzero and pairwise distinct, where the λj are the eigenvalues of D[(ϕ,β)] and
β̄ = −ϕ−1β. As a consequence of the proof of Theorem 5.1, we obtain the
following characterization of the Ribaucour transformations that preserve the
class of k–Dupin submanifolds.

Corollary 5.2. A regular Ribaucour transform of a k–Dupin submani-
fold is also a k–Dupin submanifold if and only if it is of Dupin type.

Proof. We have from (5.2) that η̄i− η̄j = P(λ−1
i (ηi− β̄)−λ−1

j (ηj − β̄)N⊥),
and the result follows. �

Corollary 5.2 generalizes Theorem 2.8 in [CFT], where it was proved for
holonomic Dupin hypersurfaces. In particular, it shows that the class of k-
Dupin submanifolds is invariant under L-transformations. In view of Theorem
4.2, we have also the following consequence of Theorem 5.1.

Corollary 5.3. A submanifold that is L-equivalent to (the stereographic
projection of) a generalized cylinder over a submanifold h : Ln−s → Q

n+p
ε is

a k–Dupin submanifold if and only if h is a (k−1)–Dupin submanifold and
the regularity condition is satisfied.

Definition. A k–Dupin submanifold is L-reducible if it is L-equivalent
to (the stereographic projection of) a generalized cylinder over a (k−1)–Dupin
submanifold in Qn+p

ε .

By Proposition 4.6, the class of L-reducible k–Dupin submanifolds includes
the ones that are L-equivalent to those obtained as in any one of Pinkall’s ex-
amples by starting with a (k−1)–Dupin submanifold of arbitrary codimension,
which we call reducible. Clearly, for Dupin hypersurfaces this coincides with
the usual notion of reducibility. Thus, we have the following implications for
k–Dupin submanifolds; the validity of their converses is discussed at the end
of this section:

(5.5) Reducible =⇒ L -reducible =⇒Weakly reducible.

One main application of Theorem 5.1 is for the class of holonomic k–Dupin
submanifolds. Observe that starting in Theorem 5.1 with a holonomic (k−1)–
Dupin submanifold yields a holonomic k–Dupin submanifold, for we have seen
that Eη̄j = Eηj . Conversely, holonomic k–Dupin submanifolds are constructed
from holonomic (k−1)–Dupin submanifolds. Therefore, Theorem 5.1 pro-
vides the inductive step for a recursive procedure to construct all holonomic
Dupin submanifolds. We derive next an explicit coordinate description of this
construction.

For our construction we have to use a principal system of coordinates on a
holonomic k–Dupin submanifold which we call a natural coordinate system. By
that we mean that the coordinates for each spherical leaf of Eηj for 1 ≤ j ≤ k
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are conformal. In fact, the recursive construction given by Theorem 5.1 yields
such coordinates. To see this, observe that the parametrization of the leaves of
Eηk for the generated principal normal ηk is conformal by Proposition 3.1(v).
Since Dt|Eηi = λtiI, 1 ≤ i ≤ k − 1, the parametrization of the spherical leaves
of Eηi remains conformal under the transformation.

Let h : Ln−s → R
n+p be a holonomic (k−1)–Dupin submanifold endowed

with a natural coordinate system (u1, . . . , un−s). For the statements of the
next results, we agree that 1 ≤ i, j, ` ≤ n− s, 1 ≤ m ≤ k − 1 and 1 ≤ r ≤ p.
For each index i, let i′ with 1 ≤ i′ ≤ k − 1 be such that ∂/∂ui ∈ Eηi′ . Set
vi′ = ‖∂/∂ui‖ and hjm = v−1

j′ ∂vm/∂uj . Given a parallel orthonormal normal
frame ξ1, . . . , ξs+p, we define V ri′ by

Aξr∂/∂ui = v−1
i′ V

r
i′ ∂/∂ui.

We call (v, h, V ), where v = (v1, . . . , vk−1), h = (him) and V = (V rm), the
triple associated to h with respect to the coordinates (u1, . . . , un−s) and the
normal frame ξ1, . . . , ξs+p. We first prove the following fact.

Lemma 5.4. The triple (v, h, V ) satisfies the completely integrable system
of partial differential equations

(I)


(i)

∂vm
∂uj

= hjmvj′ , (ii)
∂hij′

∂ui
+
∂hji′

∂uj
+
∑
`

h`i′h`j′ +
∑
r

V ri′V
r
j′ = 0,

(iii)
∂him
∂uj

= hij′hjm, (iv)
∂V rm
∂uj

= hjmV
r
j′ ,

where `′ 6= i′ 6= j′ 6= `′ in (ii) and i′ 6= m in (iii). Conversely, let (v, h, V ) be a
solution of (I) on a simply connected open subset U ⊂ Rn−s such that vm 6= 0
everywhere. Then there exists a (k− 1)–Dupin submanifold h : U → R

n+p

such that the standard coordinates (u1, . . . , un−s) are natural coordinates for
h and (v, h, V ) is the triple associated to h with respect to these coordinates
and some parallel orthonormal frame.

Proof. Equations (i) are merely the definition of hjm. From Lemma 1 in
[DT1] we have

(5.6) ∇∂/∂uiv
−1
j′ ∂/∂uj = v−1

i′ hji′∂/∂ui for all i 6= j.

Using this, the remaining equations, except for (iii) when j′ = m 6= i′ and
(iv) when m = j′, follow by computing the Gauss and Codazzi equations of h.
In order to prove that (iii) also holds for j′ = m 6= i′, let Hm be the mean
curvature vector of Eηm . Then we obtain using (5.6) that

〈∇∂/∂ujHm, ∂/∂ui〉 = vi′∂〈Hm, v
−1
i′ ∂/∂ui〉/∂uj = −vi′∂(v−1

m him)/∂uj

= −vi′v−1
m (∂him/∂uj − hij′hjm),
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and our claim follows from the fact that Eηm is spherical. Finally, (iv) for
m = j′ follows from 0 = ∂(V rj′v

−1
j′ )/∂uj = v−1

j′

(
∂V rj′/∂uj − V rj′hjj′

)
, where

we have used (i) for m = j′.
Conversely, we have from Proposition 3 in [DT1] that there exists a holo-

nomic submanifold h : U → R
n+p such that (v, h, V ) is the triple associated to

h with respect to the standard coordinates (u1, . . . , un−s) and some parallel
orthonormal frame. Since ∂(v−1

j′ V
r
j′)/∂uj = 0 from (iv), it follows that h is a

(k−1)–Dupin submanifold and that the standard coordinates are natural. �

For our coordinate description of the holonomic Dupin submanifolds we
also need the following fact.

Lemma 5.5. Let h : Ln−s → R
n+p be a holonomic (k− 1)–Dupin subman-

ifold, and let (v, h, V ) be the triple associated to h with respect to natural co-
ordinates (u1, . . . , un−s) and some parallel orthonormal normal frame. Then
the system of total partial differential equations

(5.7) ∂Bm/∂uj = hjmBj′

is completely integrable. Moreover, if (B1, . . . , Bk−1) is a solution of (5.7),
then the system of total partial differential equations

(5.8)


(i)

∂ϕ

∂ui
= vi′γi, (ii)

∂γj
∂ui

= hji′γi, i 6= j,

(iii)
∂γi
∂ui

= Bi′ −
∑
j,j′ 6=i′

hji′γi +
∑
r

βrV
r
i′ , (iv)

∂βr
∂ui

= −V ri′ γi,

is also completely integrable.

Proof. An easy computation shows that the compatibility conditions of
(5.7) follow from (I)(iii). The compatibility conditions of (5.8) can be verified
by a straightforward computation using (I) and (5.7). �

To simplify the statement of the next result, we call a solution (ϕ, γ, β)
of (5.8) generic if the vectors −

∑s+p
r=s+1 ϕ

−1βrξr and
∑s+p
r=s+1 v

−1
m V rmξr, 1 ≤

m ≤ k − 1, are everywhere pairwise distinct.

Theorem 5.6. Let h : Ln−s → R
n+p be a holonomic (k − 1)–Dupin sub-

manifold endowed with natural coordinates. If (ϕ, γ, β) is a generic solution
of (5.8), then the map f : Ln−s × Rs → R

n+p given by (3.18) is, at regular
points, a holonomic k–Dupin submanifold.

Conversely, if f : Mn → R
n+p is a holonomic k–Dupin submanifold and

η` is any of its principal normals, then h = f |L is a holonomic (k− 1)–Dupin
submanifold for any leaf Ln−s of its conullity, and there exists a solution
(ϕ, γ, β) of (5.8) such that f can be parametrized by (3.18).
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Proof. It is easily seen that (ϕ, γ, β) being a solution of (5.8) and B1,
. . ., Bk−1 a solution of (5.7) is equivalent to the tensor Φ = Hessϕ−Aβ being
a Dupin tensor adapted to Eh. Therefore, f parametrizes the N -Ribaucour
transform RNw (h) of Dupin type of h determined by w = [(ϕ, β)] ∈ SN , where
β =

∑
r βrξr and N is the parallel flat normal subbundle of h spanned by

ξ1, . . . , ξs. Moreover, the solution (ϕ, γ, β) of (5.8) being generic is equivalent
to the N -Ribaucour transform RNw (h) being regular. The result now follows
from Theorem 5.1. �

In order to derive a sufficient condition for a k–Dupin submanifold to be
holonomic, we define the local conformal codimension of an isometric immer-
sion f : Mn → R

n+p as

c`(f) = min{c(f |U ) : U ⊂Mn is open}.

Recall that f is called 1-regular if the first normal spaces

Nf
1 (x) = span{αf (X,Y ) : X,Y ∈ TxM}

have constant dimension.

Proposition 5.7. If f is a 1-regular k–Dupin submanifold, then c(f) ≤
k − 1. Moreover, if c`(f) = k − 1, then f is holonomic.

Proposition 5.7 is an easy consequence of the following results.

Lemma 5.8. Let f : Mn → R
n+p be a proper isometric immersion with

flat normal bundle and principal normals η1, . . . , ηk. Then η` has integrable
conullity if the vectors ηi−η` and ηj −η` are everywhere linearly independent
for any pair of indices 1 ≤ i 6= j ≤ k with i, j 6= `.

Proof. The Codazzi equation implies that

(5.9) 〈∇XiXj , X`〉(ηj − η`) = 〈∇XjXi, X`〉(ηi − η`)

for all unit vectors Xi ∈ Eηi , Xj ∈ Eηj and X` ∈ Eη` . �

Lemma 5.9. Let f : Mn → R
n+p be a proper isometric immersion with

flat normal bundle and principal normals η1, . . . , ηk. At x ∈Mn set

Sf (x) = span {ηi(x)− ηj(x) : 1 ≤ i, j ≤ k}.

Then dimSf (x) ≤ k − 1, and f is holonomic if equality holds everywhere.

Proof. The first assertion follows from Sf = span{ηj − η`, 1 ≤ j ≤ k} for
any fixed 1 ≤ ` ≤ k. If dimSf (x) = k−1 everywhere, then Lemma 5.8 implies
that the conullity E⊥η` is integrable for any 1 ≤ ` ≤ k, and the second assertion
is a consequence of Theorem 1 in [RS]. �
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Lemma 5.10. Let f : Mn → R
n+p be a 1-regular connected k–Dupin sub-

manifold with dim Nf
1 = s. Then f(M) is substantially contained in an affine

subspace Rn+s. If Sf (x) has constant dimension, then either Sf = Nf
1 every-

where or dimSf = s−1. Moreover, dimSf = s−1 ≥ 0 if and only if f(M) is
contained in a sphere Sn+s−1 ⊂ Rn+s. In particular, we have c(f) = dimSf .

Proof. The Codazzi equation yields

(5.10) ∇⊥Xjηi = 〈∇XiXi, Xj〉(ηi − ηj) if i 6= j,

where Xi ∈ Eηi and Xj ∈ Eηj are unit vectors fields. Since f is Dupin, the
normal vector subbundle Nf

1 is parallel in the normal connection, and the
first assertion follows.

At any point we have that

(5.11) dimNf
1 (x)− 1 ≤ dimSf (x) ≤ dimNf

1 (x).

Assume that dimSf = s− 1 ≥ 0. Our claim is trivial for s = 1, thus suppose
that s ≥ 2. The principal curvatures corresponding to a normal vector field
η are 〈η, ηj〉 for 1 ≤ j ≤ k. Hence, a smooth unit vector field ξ spanning the
orthogonal complement of Sf in Nf

1 is an umbilical vector field. For i 6= j we
have from (5.10) that

0 = 〈∇⊥Xjηi, ξ〉 = Xj〈ηi, ξ〉 − 〈ηi,∇⊥Xjξ〉 = Xj〈ηj , ξ〉 − 〈ηi,∇⊥Xjξ〉

= 〈ηj − ηi,∇⊥Xjξ〉.

Thus ∇⊥Xjξ ∈ N
f
1 is orthogonal to Sf , and hence must vanish. Therefore, ξ is

parallel in the normal connection, and the last assertion follows. �

Proof of Proposition 5.7. The first claim is an easy consequence of Lemma
5.10 because, if dimN1 = k, then (5.11) implies that dimSf = k − 1 every-
where. By Lemma 5.10 the hypothesis on c`(f) now forces Sf to have constant
dimension k − 1, and the second claim follows from Lemma 5.9. �

The next result shows that a k–Dupin submanifold must be weakly re-
ducible if its conformal codimension is sufficiently high.

Proposition 5.11. Let f : Mn → R
n+p be a locally weakly irreducible k-

Dupin submanifold. Then c(f) ≤ (2/3)k − 1 on each connected component of
an open dense subset of Mn.

Proof. On an open subset U ⊂Mn where f is 1-regular and Sf has constant
dimension, using Lemma 5.8 we have that for each 1 ≤ ` ≤ k there is an
(affine) line L` which contains η` and at least two more principal normals.
The estimate for c(f |U ) now follows easily from Lemma 5.10 since Sf is the
affine space generated by these lines. �

The following example shows that the estimate in the last result is sharp.
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Example. Take the product immersion of ` copies of an irreducible iso-
parametric hypersurface Mn ⊂ Sn+1 ⊂ Rn+2 with three distinct principal cur-
vatures. This is a conformally substantial weakly irreducible n`-dimensional
submanifold in a sphere of dimension (n+2) ` − 1 for which equality in the
estimate holds.

We now discuss whether the converses hold in (5.5). First we show that
the converse is false in the first implication, even for hypersurfaces.

Proposition 5.12. There exist k-Dupin hypersurfaces with k ≥ 4 that
are L-reducible but not reducible.

Proof. Equation (3.15) shows that if a k–Dupin hypersurface is weakly re-
ducible with respect to a principal curvature λ, and λ̃ is the corresponding
principal curvature of an L-transform of it, then the conullity leaves of λ
and λ̃ correspond under the L-transformation. Since the conformal codimen-
sion of the conullity leaves of a principal curvature generated by any one of
Pinkall’s examples is one and the conformal codimension is invariant under
L-transformations by Proposition 2.3, it follows that all the conullity leaves
of a principal curvature of a reducible Dupin hypersurface have conformal
codimension one. Thus, a tube over a weakly irreducible (k−1)–Dupin sub-
manifold h : Ln−s → R

n+1 with k ≥ 4 and c(h) ≥ 2 is an L-reducible k–Dupin
hypersurface that is not reducible. The following well-known fact shows that
any irreducible (as a Riemannian manifold) isoparametric submanifold with
conformal codimension at least two can be taken as such an h. �

Proposition 5.13. Any locally irreducible (as a Riemannian manifold)
isoparametric submanifold is weakly irreducible.

Proof. Let η1, . . . , ηk denote the principal normals of an isoparametric sub-
manifold. For any principal normal η`, the Codazzi equation (5.10) and the
fact that η` is parallel in the normal connection imply that Eη` is totally ge-
odesic. On the other hand, if E⊥η` is integrable, then the expressions under
parenthesis in (5.9) coincide. Since k ≥ 3 by the assumption, it follows that
both must vanish. Thus E⊥η` is also totally geodesic, and the de Rham Theorem
yields a contradiction. �

For 3–Dupin hypersurfaces, however, the three notions of reducibility do
coincide. In fact, a weakly reducible 3–Dupin hypersurface can not be Lie
equivalent to an isoparametric hypersurface in the sphere by Proposition 5.13,
hence the main result of Cecil and Jensen in [CJ] implies that it must be
reducible.

We do not have an explicit example showing that the converse is false also
in the second implication in (5.5). However, we prove the following result.
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Proposition 5.14. For any k ≥ 4 there exists a holonomic k–Dupin
submanifold (hence weakly reducible with respect to every principal normal)
that is not L-reducible with respect to some principal normal.

By Theorem 5.1, in order to prove Proposition 5.14 it suffices to show
that for any k ≥ 4 there exists a (k−1)–Dupin submanifold h : Mn → R

n+p

that carries a nontrivial Dupin tensor adapted to Eh. In fact, we prove that
any holonomic k–Dupin submanifold h that satisfies c(h) ≤ k − 2 has this
property. This is done by comparing the dimension of the vector space of
L-trivial tensors on Mn with that of Dupin tensors on Mn that are (locally)
adapted to Eh. The former is clearly equal to c(h) + 1 for any k–Dupin
submanifold h. The latter is computed next for holonomic submanifolds.

Proposition 5.15. Let f : Mn → R
n+p be a holonomic k–Dupin sub-

manifold. For any p0 ∈ Mn there exist an open neighborhood U of p0 and a
unique Dupin tensor Φ on U adapted to Ef such that Φ(p0) =∑k
m=1 φ

0
mPEηm (p0) for given (φ0

1, . . . , φ
0
k) ∈ Rk. In particular, the vector

space of Dupin tensors on U adapted to f has dimension k.

Proof. Let U ⊂ Mn be a simply connected neighborhood of p0 endowed
with natural coordinates and let φ1, . . . , φk be smooth functions on U . It is
easily checked that the tensor Φ =

∑k
m=1 φmPEηm is a Dupin tensor on U if

and only if the functions Bm = vmφm satisfy system (5.7). The result then
follows from the first assertion of Lemma 5.5. �

We conclude the paper with some consequences of our previous results for
3–Dupin and 4–Dupin submanifolds.

Proposition 5.16. Any nonholonomic 3–Dupin submanifold is Lie equiv-
alent to the stereographic projection of an isoparametric hypersurface in the
sphere.

Proof. Since any 2–Dupin submanifold is holonomic, it follows from The-
orem 5.1 that a nonholonomic 3–Dupin submanifold must be weakly irre-
ducible. Moreover, it must also have local conformal codimension one by
Proposition 5.7. Therefore, it is (locally) irreducible, and hence Lie equiva-
lent to the stereographic projection of an isoparametric hypersurface in the
sphere by the result of Cecil and Jensen [CJ]. �

For 4–Dupin submanifolds the situation is far more complex, even globally.
As mentioned in the introduction, there are examples of compact 4–Dupin
hypersurfaces that are neither weakly reducible nor Lie equivalent to isopara-
metric hypersurfaces. However, we have the following result for the weakly
reducible case.
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Theorem 5.17. Any weakly reducible nonholonomic 4–Dupin submanifold
is L-equivalent to the stereographic projection of a generalized cylinder over
a hypersurface that is Lie equivalent to an isoparametric hypersurface in the
sphere.

Proof. Let h : Ln−s → R
n+p be a 3–Dupin submanifold such that f =

RNw (h) is not holonomic. The Codazzi equation for the Dupin tensor Φw in
terms of its eigenvalues is

(5.12)

 (i) Xjφi + 〈∇XiXj , Xi〉(φi − φj) = 0,

(ii) 〈∇XiXj , Xk〉(φj − φk) = 〈∇XjXi, Xk〉(φi − φk),

where X` ∈ Eη` and 1 ≤ i 6= j 6= k 6= i ≤ 3. Since (5.12) also holds for
any shape operator A 6= 0 in the direction of a parallel normal vector field, it
follows easily from (5.12)(ii) and the fact that not all functions 〈∇XiXj , Xk〉
can vanish that Φw = aI + bA for some smooth functions a and b. We obtain
from (5.12)(i) that a, b ∈ R. Therefore f is L-equivalent to the stereographic
projection of a generalized cylinder over a 3–Dupin submanifold by Theorem
4.2. If such a submanifold were holonomic, the same would be true for f . The
conclusion now follows from Proposition 5.16. �
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