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ARITHMETIC DIFFERENTIAL EQUATIONS AND
E-FUNCTIONS

SAID MANJRA

Abstract. Let K be a number field. We give an arithmetic characteri-
zation at infinity of the differential operator of K[x, d/dx] with minimal

degree in x annihilating a given E-function. Such an operator is called
an E-operator.

1. Introduction

Let K be a number field and let V0 be the set of all finite places v of K. For
each v ∈ V0 above a prime number p = p(v), we normalize the corresponding
v-adic absolute value so that |p|v = p−1 and we put πv = p−1/(p−1). We
denote by Kv the v-adic completion of K. We also fix an embedding K ↪→ C.
For a real number r > 0, and a differential operator φ ∈ K[x, d/dx], we
denote by Rv(φ, r) the generic radius of convergence, bounded above by r,
of a basis of solutions of φ in a neighborhood of a v-adic generic point of
absolute value r. Recall that the Fourier transform F is the K-automorphism
of K[x, d/dx] which satisfies F(x) = d/dx and F(d/dx) = −x. A power series
g =

∑
n≥0 anx

n ∈ K[[x]] (resp. F =
∑
n≥0 anx

n/n! ∈ K[[x]]) is said to be
a G-function (resp. an E-function) if there exists a positive constant C such
that for any index n, the coefficient an and its conjugates over Q do not exceed
Cn in absolute value, and if there exists a common denominator dm ≥ 1 for
a0, . . . , an which does not exceed Cn. Chudnovsky proved in [CC] that the
minimal differential operator of K[x, d/dx] annihilating a given G-function
satisfies the Galochkin condition. Such an operator is now called a G-operator
[A1, IV]. E. Bombieri proved in 1982 that the differential operator which
has G-function solutions near every regular singularity satisfies the condition∏
v∈V0

Rv(φ, 1) 6= 0 (called Bombieri’s condition) [Bo, 10]. The equivalence
between the condition of Galochkin and that of Bombieri was established in
1989 by Y. André [A1, IV]. In 2000, the latter showed that the differential
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operator of K[x, d/dx] with minimal degree in x annihilating an E-function
is the Fourier transform of a certain G-operator and he called such operators
E-operators [A2, 4]. Recently, in joint work with Remmal [MR], we gave
a local p-adic characterization of the E-operators in the neighborhood of 0,
which is a regular singularity. This result is given in term of the generic radius
of convergence and provides an answer to a conjecture of Y. André [A2, 4.7].
In the present paper, we propose a local arithmetic characterization of the E-
operators at infinity (Theorem 3.1), which is in general an irregular singularity
of such an operator. This result is the analogue of the local Bombieri property
for the G-operators [CD, 6]. In the proof of this result, we cannot avoid the
case of negative exponents as in [MR, 6]. This requires the standard Laplace
transform instead of the formal one used in [MR, 5].

The importance of E-operators comes from the fact that if y(x) is an arith-
metic Gevrey series of non-zero order s and is a solution of a linear differential
equation with coefficients in K(x), then y(x−s) is a solution of an E-operator
(cf. [A2, 6]).

This article is organized as follows:
In Section 2, we start by giving some preliminaries which will be needed

later. In Section 3, we state our main theorem (Theorem 3.1), we give some
key lemmas and we prove that the conditions of Theorem 3.1 are necessary.
Section 4 is devoted to the Laplace transform L; in §4.1, we summarize main
formal properties of L. In §4.2, we give some arithmetic properties of L. For
a given differential operator ψ ∈ K[x, d/dx], we see in Section 5 how we can
determine the nature of solutions of (d/dx)ψ at 0 from those of ψ∗ at the
same point. Using the results of Sections 3, 4 and 5, we prove, in Section 6,
that the conditions of Theorem 3.1 are sufficient.

2. Notations and preliminaries

2.1. Differential modules. Let K be a commutative field equipped with
a derivation ∂, let K be the constant field of ∂ in K and let µ be a positive
integer. A differential K-moduleM is a free module of rank µ over K equipped
with a K-endomorphism ∇ of M which satisfies the condition ∇(am) =
a∇(m) + ∂(a)m for any m ∈ M and a ∈ K. To each basis {ei} of M over K
corresponds a matrix G = (Gij) ∈ Mµ(K) satisfying

∇(ei) =
µ∑
j=1

Gijej ,

called the matrix of ∂ with respect to the basis {ei} (or simply the associated
matrix ofM), and a differential system ∂X = GX, where X denotes a column
vector µ×1 or µ×µ matrix. A change of bases inM results in the existence of
a matrix Y ∈ GLµ(K) such that Y [G] := Y GY −1 +∂(Y )Y −1 is the associated
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matrix of ∂ in the new basis. If

φ =
µ∑
i=0

ai∂
i ∈ K[∂]

is a differential operator such that aµ 6= 0, one can associates to it the differ-
ential K-moduleMφ = K[∂]/K[∂]φ of rank µ, which corresponds to a system

∂X = AφX,

where

Aφ :=


0
0
...
0
− a0
aµ

1
0
...
0
a1
aµ

0
1
...
0
− a2
aµ

. . .

. . .

. . .

. . .

0
0
...
1

−aµ−1
aµ


is called the companion matrix of φ. One associates to φ the adjoint oper-
ator φ∗ =

∑µ
i=0(−∂)iai. One verifies that −TAφ is associated to Mφ∗ =

K[∂]/K[∂]φ∗. More generally, G is associated to Mφ = K[∂]/K[∂]φ if and
only if −TG is associated to Mφ∗ . This comes from the fact that for any
Y ∈ GLµ(K) one has

−T (Y [Aφ]) =T Y −1(−TAφ)TY −T Y −1∂(TY )(2.1)

=T Y −1(−TAφ)TY + ∂(TY −1)TY = (TY −1)[−TAφ].

2.2. The Newton-Ramis polygon. Let

φ =
µ∑
i=0

ai(x)
( d
dx

)i
=

µ∑
i=0

ν∑
j=0

ai,jx
j
( d
dx

)i
∈ K[x,

d

dx
]

be a differential operator of rank µ. The Newton polygon in the sense of
Ramis of φ, which we shall denote by NR(φ), is the convex hull, in the plane
uv, of the horizontal half-lines {u ≤ i, v = j − i | ai,j 6= 0} (cf. [Ra]).

With this definition, it is easy to check that NR(φ) = NR(φ) (where φ
denotes the operator obtained from φ by the change of variable x → −x).
Also, NR(φ) has a non-vertical side if and only if aµ is a monomial, in which
case φ has no non-zero finite singularity.

The part of NR(φ) located in the half-plane v ≤ ordx(aµ) corresponds to
the classic Newton polygon N(φ) of φ. As for the part of NR(φ) located in
the half-plane v ≥ deg(aµ), it corresponds, by translation, to the transform,
by the symmetry (u, v) −→ (u,−v), of the Newton polygon N(φ∞) of the
operator φ∞ obtained from φ by the change of variable x → 1/x (cf. [Ma,
V]). The slopes of N(φ∞) are called the slopes of φ at infinity.

This implies that the non-vertical slopes of NR(φ) depend only of Mφ,
since N(φ) and N(φ∞) depend only of Mφ (cf. [VS, 3.3.3]).
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The polygon of F(φ) may be obtained from NR(φ) by applying to it the
transformation (u, v)→ (u+ v,−v) (cf. [Ma, V]). This implies, in particular,
the following: NR(φ) has no non-zero finite slopes if and only if all slopes of
NR(F(φ)) lie in {0,−1}.

If A1, . . . , A` are square matrices, we denote by ⊕1≤i≤`Ai the block diag-
onal matrix

⊕1≤i≤`Ai =


A1

A2
. . .

A`


with blocks A1, . . . , A` on the diagonal.

2.3. Radius of convergence in neighborhoods of singularities. Con-
sider the differential field K = K(x) equipped with the derivation ∂ = d/dx.
Let φ be a differential operator of rank µ such that the slopes of N(φ) lie in
{0, 1} and let G ∈ Mµ(K(x)) be an associated matrix of Mφ. The Turrittin-
Levelt decomposition states that there exist a finite extension K ′ of K, a
matrix Y0(x) ∈ GLµ(K ′((x))), called a reduction matrix of G (or simply of φ
if G = Aφ) at 0, an upper triangular matrix C0 ∈ Mµ(K ′) and a diagonal ma-
trix ∆0 ∈ Mµ(K ′) commuting with C0 such that Y0(x)[G(x)] = ∆0/x

2 +C0/x
[Le, 3]. By base change, we may assume that C0 is in Jordan form.

One observes that the matrix Y0(x)−1xC0 exp(−∆0/x) is a solution of the
system d

dxX = G(x)X. In the particular case where G = Aφ, the first line of
Y0(x)−1xC0 exp(−∆0/x) form a basis of solutions of φ at 0.

∆0 = 0 means that NR(φ) has non-positive slopes. In this case, Mφ and
φ are both called regular at 0, the solutions of φ at 0 are called logarithmic,
and one verifies that the eigenvalues of C0 modulo Z depend only onMφ and
are called exponents of Mφ and φ at 0. According to what precedes, if the
slopes of NR(φ) at infinity are in {0, 1}, there exist a finite extension K ′ of
K, a matrix Y∞(x) ∈ GLµ(K ′((x))), called a reduction matrix of Aφ (or of φ)
at infinity, an upper triangular matrix C∞ ∈ Mµ(K ′) and a diagonal matrix
∆∞ commuting with C∞ such that Y∞( 1

x )[Aφ(x)] = −∆∞ − 1
xC∞. In this

case, Y∞( 1
x )−1( 1

x )C∞ exp(−∆∞x) is a solution of the system d
dxX = Aφ(x)X

at infinity. The exponents of Mφ at infinity are those of Mφ∞ at 0.
By extension, we attribute to φ the properties that Mφ has. Then one

observes, from §2.1, that φ is regular at 0 (resp. infinity) if and only if φ∗ is
regular at the same point, in which case the exponents of φ∗ at 0 (resp. at
infinity) are those of φ but with the opposite sign.

In the sequel, we assume K is sufficiently large so that we can take K ′ =
K. Also, for any matrix Y of Mµ(K((x))) and any finite place v of V0, we
denote by rv(Y ) the upper bound of the reals r > 0 for which all entries
of Y are analytic in the punctured open disc D(0, r−) \ {0} of Kv. If Y ∈
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GLµ(K((x))), we put Rv(Y ) = min(rv(Y ), rv(Y −1)). We end this subsection
with the following result due to F. Baldassarri (See Theorem 2 of [Ba, III]):

Proposition 2.1. If Y (x) is a reduction matrix of a K(x)-module M at
0 or at infinity, then Rv(Y ) is non-zero for each finite place v of V0.

2.4. E-functions. A formal power series f =
∑
n≥0 anx

n ∈ K[[x]] is said
to be an E-function if the power series

∑
n≥0

an
n! x

n is a G-function.
This definition is motivated by the fact that all power series occurring

in the solutions of the E-operators at infinity are E-functions (see Theo-
rem 2.3 below). A simple example of these power series is the Euler series∑
n≥0(−1)nn!xn.
We suppose in the sequel that K contains all the coefficients of G-functions,

E-functions and E-functions that we shall meet thereafter.
The Pochhammer symbol (α)n stands for (α)n = α(α + 1) · · · (α + n − 1).

With this notation, Theorem 2 of [Cl] shows that for any finite place v of K
above a prime number p, if α is either an integer ≥ 1 or a non-integer rational
number of denominator prime to p, then

(2.2) lim
n→∞

|(α)n|1/nv = πv = p−1/(p−1).

For the special case α = 1, we get

(2.3) lim
n→∞

|n!|1/nn = πv

Combining this equality with the remark below, we find that any E-function
f satisfies

(2.4)
∏
v∈V0

min(rv(f)πv, 1) 6= 0.

Remark 2.2 ([A1, p. 126]). If g is a G-function, then
∏
v∈V0

min(rv(g), 1)
6= 0.

2.5. G-operators and E-operators. We will give here an equivalent
definition of the G-operators, called the local Bombieri property [A1], which
will be useful for the proof of our main theorem.

Definitions.

(1) An operator φ of K[x, d/dx] of rank ν is said to be a G-operator if
the differential system dX/dx = AφX (where Aφ is the companion
matrix of φ defined in §2.1) has a solution at 0 of the form Y (x)xC ,
where Y (x) is a ν × ν invertible matrix with entries in K((x)) such
that

∏
v∈V0

min(Rv(Yφ), 1) 6= 0, and where C is a ν × ν matrix with
entries in K and with eigenvalues in Q.

(2) An operator ψ ∈ K[x, d/dx] is said to be E-operator if it is the Fourier
transform of a G-operator.
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Combining the condition of Bombieri, mentioned in the Introduction, with
the properties of the functions of generic radius of convergence, we obtain
that if φ ∈ K[x, d/dx] is a G-operator, then:

(1) φ and φ∗ are also G-operators.
(2) φ has only regular singularities with rational exponents.

From the fact that F(φ∗) =
(
F(φ)

)∗
(cf. [Ma, V.3.6]), the first statement

implies that if ψ is an E-operator then ψ and ψ∗ are also E-operators. The
second statement means that the Newton-Ramis polygon of any G-operator
has no slope other than 0 and ∞, and hence, from §2.2, that the slopes of
Newton-Ramis polygon of any E-operator are in {0,−1}.

The following theorem, due to André, describes the nature of solutions of
the E-operators at 0 and at infinity:

Theorem 2.3 ([A2]). Let ψ be an E-operator of rank µ. Then:
(1) The slopes of NR(ψ) lie in {−1, 0}.
(2) ψ admits a basis of solutions at 0 of the form

(F1, . . . , Fµ)xΓ0 ,

where the Fi are E-functions, where Γ0 is a µ × µ upper triangular
matrix with elements in Q.

(3) ψ admits a basis of solutions at infinity of the form(
f1

( 1
x

)
, . . . , fµ

( 1
x

))( 1
x

)Γ

exp(−∆x),

where the fi are E-functions, where Γ is a µ × µ upper triangular
matrix with elements in Q, and where ∆ is a µ × µ diagonal matrix
with elements in K which commutes with Γ.

3. The main theorem

Before stating the main theorem, we recall that for a given differential
operator ψ, Aψ denotes its companion matrix (see §2.1).

Theorem 3.1. Let ψ be a differential operator of K[x, d/dx]. Then ψ is
an E-operator if and only if ψ satisfies the following conditions:

(1) The coefficients of ψ are not all in K.
(2) The slopes of NR(ψ) lie in {−1, 0}.
(3) The differential system dZ/dx = AψZ has a solution of the from

Y
( 1
x

)( 1
x

)Γ

exp(−∆x),

where Y (x) is a µ×µ invertible matrix with entries in K((x)) such that∏
v∈V0

min(Rv(Y )πv, 1) 6= 0, where Γ is a µ×µ matrix with entries in
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K and with eigenvalues in Q, and where ∆ is a µ×µ diagonal matrix
with entries in K which commutes with Γ.

The first condition of this theorem is necessary by the definition of the
E-operators. Theorem 2.3 above shows that the second one is also necessary.
In §3.2 we will prove that the third one is also necessary. The fact that these
conditions are sufficient is postponed to Section 6. In the following subsection,
we give some preliminary results which will be useful in the rest of this paper.

3.1. Preliminary results. Throughout this subsection, φ = aµ(d/dx)µ+
· · ·+a0 denotes a differential operator ofK[x, d/dx] of rank µ ∈ Z>0, φ denotes
the differential operator obtained from φ by the change of variable x → −x,
Γ1 and Γ2 denote two µ × µ matrices with entries in K, ∆1 and ∆2 denote
two µ × µ diagonal matrices with entries in K such that Γ1∆1 = ∆1Γ1 and
Γ2∆2 = ∆2Γ2, and y1, . . . , yµ, z1, . . . , zµ denote power series of K((x)).

Lemma 3.2. Let G be a µ×µ matrix with entries in K, and let Y1 and Y2 be
two matrices of GLµ(K((x))) such that Y1[G] = ∆1

x2 + Γ1
x and Y2[G] = ∆2

x2 + Γ2
x .

Then:
(1) The matrices ∆1 and ∆2 are similar.
(2) Y1Y

−1
2 [Γ2

x ] = Γ1
x and Y1Y

−1
2 ∈ GLµ(K[x, 1/x]).

(3) The eigenvalues of Γ1 coincide, modulo Z, with those of Γ2.

Proof. Let a = (a1, . . . , aµ) ∈ Kµ. Put, for i = 1, 2,

Ei(a) = {v ∈ Kµ | ∆iv = ajv, 1 ≤ j ≤ µ},
and

Σi = {a ∈ Kµ | Ei(a) 6= 0}.
Then

Kµ =
⊕
a∈Σi

Ei(a).

Moreover, Γi commutes with the projection Kµ −→ Ei(a). Thus, Γi can be
written as

Γi =
⊕
a∈Σi

Γi(a),

where
Γi(a) ∈ MdimK(Ei(a))(K).

In addition, by hypothesis, we have

Y1Y
−1
2

[
∆2

x2
+

Γ2

x

]
=

∆1

x2
+

Γ1

x
.

According to Proposition 6.4 of [BV] we have:
(1) The matrices ∆1 and ∆2 are similar.
(2) Σ := Σ1 = Σ2, dimK(E1(a)) = dimK(E2(a)) for any a ∈ Σ.
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(3) Y := Y1Y
−1
2 =

⊕
a∈
∑ Y (a), such that Y (a) ∈ MdimK(E1(a))(K((x)))

and Y (a)[Γ2(a)/x] = Γ1(a)/x for any a ∈ Σ.
Thus, Y [Γ2/x] = Γ1/x, and hence the eigenvalues of Γ1 coincide, modulo

Z, with those of Γ2 (cf. [DGS, III.8]). Moreover, for any a ∈ Σ, we have

x
d

dx
Y (a) = Γ1(a)Y (a)− Y (a)Γ2(a).

Therefore, if we write
Y (a) =

∑
m∈Z

Y (a)mxm,

we obtain for any m ∈ Z \ {0},
mY (a)m = Γ1(a)Y (a)m − Y (a)mΓ2(a).

But the eigenvalues of the maps

Tm(a) : Mµ(Q) −→ Mµ(Q)

X 7−→ Γ1(a)X −XΓ2(a)−mX
are of the form λ(a)− γ(a)−m, where λ(a) and γ(a) are, respectively, eigen-
values of Γ1(a) and of Γ2(a). This means that Tm(a) is invertible, except
possibly for a finite set of integers m. Hence Y (a)m is zero except for a finite
set of integers m and the conclusion follows. �

Corollary 3.3. Let (y1, . . . , yµ)xΓ1 exp(∆1/x) be a basis of solutions of
φ at 0. Then φ has a basis of solutions at 0 of the form (ỹ1, . . . , ỹµ)xΓ̃ exp(∆̃/x)
= (ξ1, . . . , ξµ), where:

(1) ỹ1, . . . , ỹµ are formal power series of K((x)) and are K[x, 1/x]-linear
combinations of y1, . . . , yµ and of their derivatives.

(2) Γ̃ is a µ×µ matrix, in Jordan form, whose entries lie in K and whose
eigenvalues coincide, modulo Z, with those of Γ1.

(3) ∆̃ is a µ× µ diagonal matrix similar to ∆1.
Moreover, if γ1, . . . , γµ denote the eigenvalues of Γ1 and δ1, . . . , δµ denote the
diagonal terms of ∆1, then ξ1, . . . , ξµ lie in〈

ỹi x
γj (lnx)k−1 exp(δ`/x), 1 ≤ i, j, k, ` ≤ µ

〉
K[x,1/x]

.

Proof. LetW1 be the Wronskian matrix of (y1, . . . , yµ)xΓ1 exp(∆1/x). Thus,
W1 is a solution of the system dX/dx = AφX. Moreover, W1 can be written
in the form Y1x

Γ1 exp(∆1/x), where Y1 is a matrix in GLµ(K((x))) whose
entries are K[x, 1/x]-linear combinations of y1, . . . , yµ and of their deriva-
tives. Therefore, Y −1

1 [Aφ] = −∆1/x
2 + Γ1/x. The Turrittin-Levelt de-

composition states, in this case, that there exists a µ × µ invertible matrix
Ỹ = (ỹij) ∈ GLµ(K((x))), a µ × µ matrix Γ̃ in Jordan form with entries in
K, and a µ× µ diagonal matrix ∆̃ = (δ̃ij) with entries in K commuting with
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Γ̃ such that Ỹ −1[Aφ] = −∆̃/x2 + Γ̃/x. Hence, by the previous lemma, the
matrices ∆1 and ∆̃ are similar, the eigenvalues of Γ̃ coincide, modulo Z, with
those of Γ1, and there exists L ∈ GLµ(K[x, 1/x]) such that Ỹ = LY1. In par-
ticular, the entries (ỹij) of Ỹ are K[x, 1/x]-linear combinations of y1, . . . , yµ

and of their derivatives. In addition, since the matrix Ỹ xΓ̃ exp(∆̃/x) is a so-
lution of the system dX/dx = AφX, it is the Wronskian matrix of the µ-tuple
(ỹ11, . . . , ỹ1µ)xΓ̃ exp(∆̃/x). Thus, the coefficients of (ỹ11, . . . , ỹ1µ)xΓ̃ exp(∆̃/x)
form a basis of solutions of φ at 0. Hence, by putting ỹi = ỹ1i for i = 1, . . . , µ,
we find that (ỹ1, . . . , ỹµ)xΓ̃ exp(∆̃/x) is a basis of solutions of φ at 0 which
meets the conditions (1), (2) and (3) of Corollary 3.3. On the other hand, by
hypothesis, Γ̃ = (γ̃ij) is of the form D+N , where D is a diagonal matrix and
N is a nilpotent upper triangular matrix such that DN = ND and Nµ = 0.
Thus,

xΓ̃ = xD+N = xD
∑

0≤k≤µ−1

Nk

k!
(lnx)k = xD + xD

∑
1≤k≤µ−1

Nk

k!
(lnx)k.

Therefore, ξ1 = ỹ1x
γ̃11 exp(δ̃11/x), and for all 2 ≤ i ≤ µ,

ξi =
(
ỹix

γ̃ii +
i−1∑
j=1

ỹjx
γ̃jj

∑
1≤k≤µ−1

(Nk)ji
k!

(lnx)k
)

exp(δ̃ii/x),

since (Nk)ji = 0 for all k ≥ 1 and all 1 ≤ i ≤ j ≤ µ. Hence the last statement
of the corollary results from the fact that ∆1 and ∆̃ are similar and that Γ̃
and Γ1 have the same eigenvalues modulo Z. �

Corollary 3.4. Let (y1, . . . , yµ)xΓ1 exp(∆1/x) (respectively
(z1, . . . , zµ)xΓ2 exp(∆2/x)) be bases of solutions of φ (resp. φ∗) at 0. Then
the differential system dX/dx = AφX has a solution of the form
Y (x)xΓ1 exp(∆1/x), where Y is a µ×µ invertible matrix such that the entries
of Y (resp. of Y −1) are K[x, 1/x]-linear combinations of y1, . . . , yµ (resp. of
z1, . . . , zµ) and of their derivatives. Moreover, the matrices ∆1 and −∆2 are
similar, and the eigenvalues of Γ1 are those of −Γ2 modulo Z.

Proof. Let φ = aµ(d/dx)µ + · · · + a0. Since (y1, . . . , yµ)xΓ1 exp(∆1/x)
is a basis of solutions of φ at 0, the Wronskian matrix W of the µ-tuple
(y1, . . . , yµ)xΓ1 exp(∆1/x) is then a solution of the system dX/dx = AφX.
Moreover, W can be written in the form Y xΓ1 exp(∆1/x), where Y is a matrix
of GLµ(K((x))) whose entries are K[x, 1/x]-linear combinations of y1, . . . , yµ
and of their derivatives. Then we have, Y −1[Aφ] = −∆1/x

2 + Γ1/x, which
means that Y −1 is a reduction matrix of φ at 0, or also

TY [−TAφ] =T ∆1
1
x2
−T Γ1

1
x
.(3.1)
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In addition, the µ-tuple aµ(x)(z1, . . . , zµ)xΓ2 exp(∆2/x) is a basis of solutions
of φ∗a−1

µ = (a−1
µ φ)∗ at 0. Therefore, the matrix U whose rows u1, . . . , uµ are

defined recursively by

uµ = aµ(x)(z1, . . . , zµ)xΓ2 exp(∆2/x),

uµ−i =
aµ−i(x)
aµ(x)

uµ −
d

dx
uµ−i+1 (1 ≤ i ≤ µ− 1),

is a solution of the system dX/dx = −TAφX. Moreover, U may be written of
the form ZxΓ2 exp(∆2/x), where Z is an invertible matrix µ×µ whose entries
are K[x, 1/x]-linear combinations of z1, . . . , zµ and of their derivatives. Thus,
we have

Z−1[−TAφ] = − 1
x2

∆2 +
1
x

Γ2.(3.2)

Thus, by formulae (3.1), (3.2) and Lemma 3.2, the matrices T∆1(= ∆1) and
−∆2 are similar, the eigenvalues of TΓ1(which are also those of Γ1) are those
of −Γ2 modulo Z, and there exists L ∈ GLµ(K[x, 1/x]) such that TY =
LZ−1. Consequently, the entries of Y −1 are K[x, 1/x]-linear combinations of
z1, . . . , zµ and of their derivatives. The conclusion follows. �

Lemma 3.5. Let (y1(x), . . . , yµ(x))xΓ1 exp(∆1/x) be a basis of solutions
of φ at 0. Then (y1(−x), . . . , yµ(−x))xΓ1 exp(−∆1/x) is a basis of solutions
of φ at 0.

Proof. Let W be the Wronskian matrix of (y1(x), . . . , yµ(x))xΓ1 exp(∆1/x).
Thus W can be written in the form Y (x)xΓ1 exp(∆1/x), where Y (x) is a µ×µ
invertible matrix with entries in K((x)). Thus Y −1(x)[Aφ] = −∆1/x

2 +Γ1/x.
By the change of variable x→ −x, we find

Y −1(−x)Aφ(−x)Y (−x) + Y −1(−x)
d

dx
(Y (−x)) = −∆1

x2
− Γ1

x
.

Thus Y (−x)xΓ1 exp(−∆1/x) is solution of the system d
dxX = −Aφ(−x)X.

Consequently, the µ-tuple (y1(−x), . . . , yµ(−x))xΓ1 exp(−∆1/x) is a basis of
solutions of φ at 0. �

Lemma 3.6. Let φ = aµ(d/dx)µ + · · · + a0 ∈ K[x, d/dx]. Let W be a
µ × µ invertible matrix with entries in some Picard-Vessiot extension of K.
If W is a solution of dX/dx = AφX at 0, then the elements of µ−th row of
a−1
µ (TW−1) form a basis of solutions of φ∗ at 0.

Proof. Let W1, . . . ,Wµ denote the rows of TW−1. Since W is a solution of
dX/dx = AφX at 0, these rows are then related by

Wµ−i =
aµ−i
aµ

Wµ −
d

dx
Wµ−i+1, (1 ≤ i ≤ µ− 1),
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and the elements of Wµ are solutions of φ∗a−1
µ = (a−1

µ φ)∗ at 0. We get
therefore, by induction on the index i,

Wi ∈
〈
Wµ, . . . ,

( d
dx

)µ
(Wµ)

〉
K[x,a−1

µ ]
(1 ≤ i ≤ µ− 1).

In addition, since W is an invertible matrix, the elements of Wµ are then
linearly independent over K, and hence they form a basis of solutions of
φ∗a−1

µ at 0, and the conclusion follows. �

Lemma 3.7. Let Y (x)xΓ1 exp(∆1/x) be a solution of dX/dx = Aφ(x)X at
0, where Y (x) = (yij(x)) ∈ GLµ(K((x))). Assume that the leading coefficient
aµ of φ is a monomial. Then there exists Ỹ (x) ∈ GLµ(K((x))) such that
Ỹ (x)x−

TΓ1 exp(∆1/x) is a solution of dX/dx = Aφ∗(x)X at 0, and Rv(Ỹ ) ≥
Rv(Y ) for all v ∈ V0.

Proof. First, it is easy to check that Y (x)xΓ1 exp(∆1/x) is the Wronskian
matrix of the elements of (y11(x), . . . , y1µ(x))xΓ1 exp(∆1/x) and that the el-
ements of (y11(x), . . . , y1µ(x))xΓ1 exp(∆1/x) is a basis of φ at 0.

In addition, if we write Y −1(x) = (ỹij(x)), we find, by Lemma 3.6, that
a−1
µ (x)((ỹ1µ(x), . . . , ỹµµ(x))x−

TΓ1 exp(−∆1/x) is a basis of solutions φ∗ at 0.
According to Lemma 3.5, the µ-tuples (y11(−x), . . . , y1µ(−x))xΓ1 exp(−∆1/x)
and a−1

µ (−x)((ỹ1µ(−x), . . . , ỹµµ(−x))x−
TΓ1 exp(∆1/x) are, respectively, bases

of solutions of φ = (φ∗)∗ and φ∗ at 0. Finally, since a−1
µ is a monomial,

Lemma 3.4 states that dX/dx = Aφ∗(x)X has a solution at 0 in the form

Ỹ (x)x−
TΓ1 exp(∆1/x), where Ỹ (x) is a µ × µ invertible matrix such that

the entries of Ỹ (x) (resp. of Ỹ −1(x)) are K[x, 1/x]-linear combinations of
ỹ1µ(−x), . . . , ỹµµ(−x) (resp. of y11(−x), . . . , y1µ(−x)) and of their derivatives.
Hence, for all v ∈ V0, we have Rv(Ỹ ) = min1≤i,j≤µ{rv(y1i), rv(ỹjµ)} ≥ Rv(Y ).
The conclusion follows. �

3.2. Necessary conditions. We conclude this section by proving that
the second condition of Theorem 3.1 is necessary:

Theorem 3.8. Let ψ be an E-operator of K[x, d/dx] of rank µ. Then,
the differential system d/dxZ = AψZ has a solution of the from

Y
( 1
x

)( 1
x

)Γ

exp(−∆x),

where Y (x) is a µ × µ invertible matrix with entries in K((x)) such that∏
v∈V0

min(Rv(Y )πv, 1) 6= 0, where Γ is a µ× µ upper triangular matrix with
entries in Q, and where ∆ is a µ×µ diagonal matrix with entries in K which
commutes with Γ.
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Proof. According to §2.5, the operator ψ∗ is also an E-operator. Combining
this with Theorem 3.1 and Corollary 3.4 (applied at infinity), we observe that
the differential system d/dxZ = AψZ has a solution of the from

Y
( 1
x

)( 1
x

)Γ

exp(−∆x),

where Y (x) is a µ× µ invertible matrix such that the entries of Y (x) = (yij)
and those of Y (x)−1 = (ỹkl) are K[x, 1/x]-linear combinations of E-functions
and of their derivatives, where Γ is a µ × µ upper triangular matrix with
entries in Q, and where ∆ is a µ×µ diagonal matrix with entries in K which
commutes with Γ. Thus, by (2.4), we have∏
v∈V0

min(Rv(Yψ)πv, 1) =
∏
v∈V0

(
min(min

i,j
(rv(yij)πv),min

k,l
(rv(ỹkl)πv), 1)

)
≥
∏
v∈V0

(∏
ij

min(rv(yij)πv, 1)
∏
kl

min(rv(ỹkl)πv, 1)
)

≥
∏
ij

∏
v∈V0

min(rv(yij)πv, 1)

×
∏
kl

∏
v∈V0

min(rv(ỹkl)πv, 1) 6= 0. �

In the sequel, we fix an embedding of K into C.

4. The Laplace transform

4.1. The Laplace transform L. In this subsection, we summarize the
main properties of the formal Laplace transform due in part to Y. André.

Let α be an element of K with real part > −1, let k and n be two nonnega-
tive integers, and let hα,k denote the function defined by hα,k(x) = xα(lnx)k;
x > 0. The standard Laplace transform of hα,0, denoted by L(hα,0), is given
by (cf. [DB, 2.30])

L(hα,0)(z) =
∫ ∞

0

e−zxxαdx = Γ(α+ 1)z−α−1.(4.1)

This implies, in particular,( d

dα

)k(
Γ(α+ 1)z−α−1

)
=
∫ ∞

0

e−zxxα(lnx)kdx = L(hα,k)(z).

The Leibniz formula gives( d

dα

)k(
Γ(α+ 1)z−α−1

)
=

k∑
j=0

(
k

j

)
Γ(j)(α+ 1)z−α−1(−1)k−j(ln z)k−j .
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Thus,

L(hα,k)(z) =
k∑
j=0

(
k

j

)
Γ(j)(α+ 1)z−α−1(−1)k−j(ln z)k−j .(4.2)

From the fact that Γ(α + 1) = αΓ(α), we obtain, by induction on j ≥ 1, the
relations

Γ′(α+ 1) = Γ(α) + αΓ′(α) and Γ(j+1)(α+ 1) = jΓ(j)(α) + αΓ(j+1)(α),

which implies

L(hα,k)(z) ∈ z−α−1〈Γ(α), . . . ,Γ(k)(α)〉Q[α,ln z],(4.3)

and, in the case where α is a non-zero positive integer, gives

Γ′(α) = α!.(4.4)

On the other hand, the function hα,k satisfies the following equalities (cf. [DB,
2.21, 2.40]):

d

dz
L(hα,k)(z) = L(−xhα,k)(z),(4.5)

L
( d
dx
hα,k

)
(z) = zL(hα,k)(z) + lim

x−→0+
hα,k(x)(4.6)

= zL(hα,k)(z) if <e(α) > 0.

To extend the Laplace transform L of hα,k to any α, we have to introduce the
finite parts of hα,k in the following manner: Putting

Φ(x, α, k) =
∫
hα,k(x)dx,

we find therefore

Φ(x, α, k) =
xα+1

α+ 1

k∑
`=0

(−1)k−`k!
(α+ 1)k−``!

(lnx)` if α 6= −1,

Φ(x,−1, k) =
(lnx)k+1

k + 1
.

The finite part of the integral∫ x

0

∑
α,k

λα,khα,k(t)dt,

where the λα,k are complex numbers, is defined, for x > 0, by

p.f.
∫ x

0

∑
α,k

λα,khα,k(t)dt =
∑
α,k

λα,k lim
ε−→0+

(
Φ(ε, α, k) +

∫ x

ε

hα,k(t)dt
)

=
∑
α,k

λα,kΦ(x, α, k).
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With this definition, we get

(4.7) h0
α,k :=

hα,k − p.f.
∫ x

0

( d
dt
hα,k(t)

)
dt = 0 if (α, k) 6= (0, 0),

h0,0 otherwise.

Now, fix α ∈ C, k ∈ Z≥0 and put for n ∈ Z≥0

Fn(x) = p.f.
∫ x

0

(x− t)n

n!
hα,k(t)dt.

Then,

(4.8) Fn(x) =



n∑
m=0

(−1)m

m!(n−m)!
xα+n+1

m+ α+ 1

k∑
`=0

k!(−1)k−`

`!(m+ α+ 1)k−`
(lnx)`,

if (−α− 1) 6= 0, 1, . . . , n,
n∑

m=0
m6=−α−1

(−1)m

m!(n−m)!
xα+n+1

m+ α+ 1

k∑
`=0

k!(−1)k−`

`!(m+ α+ 1)k−`
(lnx)`

+
(−1)α+1

(−α− 1)!(n+ α+ 1)!
xα+n+1 (lnx)k+1

k + 1
,

otherwise.

Moreover, these functions satisfy, for any integer n ≥ 1, the equality (cf. [DB,
5.35])

d

dx
Fn = Fn−1.

This means, by (4.6), that the function zn+1L(Fn) is independent of the choice
of n for n ≥ −<e(α)−1. By this remark we can extend the Laplace transform
to any α by putting

L(hα,k)(z) = zn+1L(Fn)(z), for n ≥ −<e(α)− 1.(4.9)

For simplicity, we write L(.) instead of L(.)(z). Then, using formula (4.5) and
the linearity of L, it follows that for any α, k and n ≥ −<e(α)− 1,
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d

dz
(L(hα,k)) = (n+ 1)znL(Fn) + zn+1 d

dz
(L(Fn)

(4.10)

= (n+ 1)znL(Fn) + zn+1L(−xFn)

= (n+ 1)znL(Fn)− zn+1L
(

(n+ 1)p.f.
∫ x

0

(x− t)n+1

(n+ 1)!
hα,k(t)dt

− p.f.
∫ x

0

(x− t)n

n!
(−t)hα,k(t)dt

)
= (n+ 1)znL(Fn)− (n+ 1)zn+1L(Fn+1) + L(−xhα,k)

= L(−xhα,k).

On the other hand, for n ≥ −<e(α),

L
( d
dx
hα,k

)
= zn+1L

(
p.f.
∫ x

0

(x− t)n

n!

( d
dt
hα,k(t)

)
dt
)

= zn+1L
(

p.f.
∫ x

0

d

dt

( (x− t)n

n!
hα,k(t)

)
dt

+ p.f.
∫ x

0

(x− t)n−1

(n− 1)!
hα,k(t)dt

)
= zn+1L

(
p.f.
∫ x

0

d

dt

( (x− t)n

n!
hα,k(t)

)
dt
)

+ zL(hα,k),

where the last line results from (4.9). But

p.f.
∫ x

0

d

dt

( (x− t)n

n!
hα,k(t)

)
dt =

n∑
m=0

(−1)mxn−m

(n−m)!m!
p.f.
∫ x

0

d

dt

(
tmhα,k(t)

)
dt.

We get therefore, by (4.7),

p.f.
∫ x

0

d

dt

( (x− t)n

n!
hα,k(t)

)
dt =

n∑
m=0

(−1)mxn−m

(n−m)!m!
(h0
α+m,k − xmhα,k)

=
n∑

m=0

(−1)mxn−m

(n−m)!m!
(xn−mh0

α+m,k − xnhα,k)

=
n∑

m=0

(−1)mxn−m

(n−m)!m!
h0
α+m,k.

The last line results from the fact that∑
0≤m≤n

(−1)m

(n−m)!m!
= 0.



1076 SAID MANJRA

Hence, by (4.7), we obtain

p.f.
∫ x

0

d

dt

( (x− t)n

n!
hα,k(t)

)
dt =

0 if α 6= 0,−1, . . . ,−n or k 6= 0,
(−1)−αxn+α

(n+ α)!(−α)!
otherwise.

We conclude that for any α and k,

(4.11) L
( d
dx
hα,k

)
− zL(hα,k) =

0 if α /∈ Z<0 or k 6= 0,
(−1)−αz−α

(−α)!
otherwise.

To simplify the notations, we will denote in the sequel z by x. Finally, using
the formula

n∑
m=0

(−1)m

m!(n−m)!
1

X +m
=

1
X(X + 1) . . . (X + n)

,

we deduce from (4.2), (4.3), (4.4) and (4.9) (with n ≥ −<e(α)) that, if α is
not a negative integer, then

L(hα,k) = Γ(α+ 1)x−α−1
k∑
j=0

ρ
(k)
α,j(lnx)j ,(4.12)

with
ρ

(k)
α,k = (−1)k

and
ρ

(k)
α,j ∈ 〈Γ(α), . . . ,Γ(k)(α)〉Q[α] for j = 0, . . . , k − 1,

and, if α is a negative integer, then

L(hα,k) = x−α−1
k+1∑
j=0

ρ
(k)
α,j(lnx)j ,(4.13)

with

ρ
(k)
α,k+1 =

(−1)α+1

(k + 1)(−α− 1)!
,

ρ
(k)
α,k =

(−1)α+1+k(α+ n+ 2)
(−α− 1)!

+
n∑

m=0
m6=−α−1

(−1)m+k(α+ n+ 1)
m!(n−m)!(α+m+ 1)

,

and
ρ

(k)
α,j ∈ 〈Γ(α), . . . ,Γ(k)(α)〉Q[α] for j = 0, . . . , k − 1.

Combining (4.10) and (4.11), we get by x-adic completion the following lemma:
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Lemma 4.1. Let f be a finite sum∑
i

fix
αi(lnx)kix,

where αi ∈ K, ki ∈ Z≥0 and fi ∈ K((x)). If f is a solution of some operator
φ ∈ K[x, ddx ], then there exists a positive integer m such that ( d

dx )mF(φ)(L(f))
= 0. In other words, L(f) is a logarithmic solution of ( d

dx )mF(φ) at infinity.

4.2. Arithmetic properties of L. In this subsection, we shall investigate
the relations between the radius of convergence of a power series f ∈ K((x))
and those of the formal factors of L(fxα(lnx)k), where α ∈ Q \ Z≤0 and
k ∈ Z≥0.

Lemma 4.2. Let α ∈ Q \ Z≤0 and k ∈ Z≥0. Then, for each j = 0, . . . , k,

there exist sequences
(
r

(k,`)
α+n,j

)
n≥0

of elements of Q(α), with ` = j, . . . , k, such

that

ρ
(k)
α+n,j =

k∑
`=j

ρ
(k)
α,` r

(k,`)
α+n,j (n ≥ 0),

where the ρ(k)
α,` were defined in (4.12) and (4.13). Moreover, for any place v

of V0, these sequences satisfy

lim sup
n−→∞

∣∣∣r(k,`)
α+n,j

∣∣∣1/n
v
≤ 1.

Proof. We will prove this lemma by downward induction on the index j. In
the case j = k ≥ 0, by (4.12) and (4.13), it suffices to take r(k,k)

α+n,k = 1 for any
n ∈ N. Suppose now that the lemma is true for some index j with 1 ≤ j ≤ k.
From the formulas (4.12), (4.13) and (4.10), we obtain the recurrence relation

ρ
(k)
α+1,j−1 = −ρ(k)

α,j−1 +
j

α+ 1
ρ

(k)
α,j ,

and by iteration on n ≥ 1 we find

ρ
(k)
α+n,j−1 = (−1)nρ(k)

α,j−1 + j
n−1∑
i=0

(−1)n+i+1

α+ i+ 1
ρ

(k)
α+i,j .

= (−1)nρ(k)
α,j−1 + j

n−1∑
i=0

(−1)n+i+1

α+ i+ 1

k∑
`=j

ρ
(k)
α,` r

(k,`)
α+i,j

= (−1)nρ(k)
α,j−1 + j

k∑
`=j

ρ
(k)
α,`

n−1∑
i=0

(−1)n+i+1

α+ i+ 1
r

(k,`)
α+i,j .
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Thus,

r
(k,`)
α+n,j−1 = j

n−1∑
i=0

(−1)n+i+1

α+ i+ 1
r

(k,`)
α+i,j , ` = j, . . . , k, r

(k,j−1)
α+n,j−1 = (−1)n,(4.14)

and we get

ρ
(k)
α+n,j−1 =

k∑
`=j−1

ρ
(k)
α,` r

(k,`)
α+n,j−1,

where
r

(k,`)
α+n,j−1 ∈ Q(α).

Let v ∈ V0. By the induction hypothesis, we have

lim sup
n−→∞

∣∣∣r(k,`)
α+n,j

∣∣∣1/n
v
≤ 1

for ` = j, . . . , k. Since α is an element of K, hence algebraic over Q, it is
non-Liouville for p(v) and consequently we have

lim sup
n−→∞

∣∣∣ 1
α+ n

∣∣∣1/n
v

= 1

(cf. [DGS, VI.1.1]). We deduce that

lim sup
n−→∞

(
max

0≤m≤n−1
|r(k,`)
α+m,j

∣∣∣1/n
v

)
≤ 1, ` = j, . . . , k,

and

lim sup
n−→∞

(
max

0≤m≤n−1

∣∣∣ 1
α+m+ 1

∣∣∣1/n
v

)
≤ 1.

Combining these estimations with (4.14) we get for ` = j, . . . , k,

lim sup
n−→∞

∣∣∣r(k,`)
α+n,j−1

∣∣∣1/n
v
≤ 1.

The case ` = j − 1 is trivial. �

Notations. If Y ∈ GLµ(K((x))), we will denote, for s ∈ Z,

Rs(Y ) = {y ∈ K((x)) | rv(y) ≥ Rv(Y ) πsv, for almost all v ∈ V0},
R∞s (Y ) = {y(x) ∈ K((1/x)) | y(1/x) ∈ Rs(Y )}.

Here, “almost all” means with at most finitely many exceptions. It is clear
that Rs(Y ) (resp. R∞s (Y )) is a K-subalgebra of K((x)) (resp. of K((1/x))).
For instance, if f ∈ K((x)), then R0(f) denotes the K-algebra of the power
series y ∈ K((x)) such that rv(y) ≥ rv(f) for almost all v ∈ V0.
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Proposition 4.3. Let f ∈ K[[x]] with f 6= 0, α ∈ Q and k ∈ Z≥0. Then
there exist power series hα,k,j ∈ C⊗K R−1(f), j = 0, . . . , k, which satisfy the
conditions

L
(
fxα(lnx)k

)
=

 x−α−1Γ(α)
∑k
j=0 hα,k,j

(
1
x

)
(lnx)j if α ∈ Q \ Z<0,∑k+1

j=0 hα,k,j

(
1
x

)
(lnx)j if α ∈ Z<0.

with hα,k,k+1 ∈ K[x] \ {0} and hα,k,k ∈ K[[x]] \ {0} such that rv(hα,k,k) =

rv(f)π−1
v for almost all v ∈ V0. In particular, L

(
fxα(lnx)k

)
6= 0.

Proof. Suppose α ∈ Q \ Z<0. By (4.12), we may write

L
(
fxα(lnx)k

)
= x−α−1Γ(α)

k∑
j=0

hα,k,j

( 1
x

)
(lnx)j ;

where

hα,k,j =
∑
n≥0

an
Γ(α+ n+ 1)

Γ(α)
ρ

(k)
α+n,jx

n =
∑
n≥0

an(α)n+1ρ
(k)
α+n,jx

n.

For j = k, we have ρ(k)
α+n,j = (−1)k, Thus hα,k,k ∈ K[[x]], and since α ∈ Q,

we also have α ∈ Zp(v) for almost all v ∈ V0. Hence, using (2.2), we get

rv(hα,k,k)−1 = lim sup
n−→∞

|an(α)n+1|1/nv = rv(f)−1πv for almost all v ∈ V0.

For j = 0, . . . , k − 1, Lemma 4.2 gives

hα,k,j =
k∑
`=j

ρ
(k)
α,`h

(k,`)
k,j

with
h

(k,`)
α,k,j =

∑
n≥0

an(α)n+1r
(k,`)
α+n,jx

n ∈ K[[x]],

and
rv(h

(k,`)
α,k,j)

−1 ≤ lim sup
n−→∞

|an(α)n+1|1/nv = rv(f)−1πv

for almost all v ∈ V0. This ends the proof in the case α ∈ Q \ Z<0. Now,
suppose α ∈ Z<0, write

f =
∑
n≥0

anx
n

and put

fα =
∑
n≥−α

anx
n.
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Then, by (4.13),

L
(

(f − fα)xα(lnx)k
)

=
k+1∑
j=0

Pj

( 1
x

)
(lnx)j ,

with Pj ∈ C[x], and Pk+1, Pk ∈ K[x] \ {0}. On the other hand, the first asser-
tion, applied to fαxα(lnx)k, shows that there exist h0,k,j ∈ C⊗KR−1(f), j =
0, . . . , k, such that

L(fαxα(lnx)k) =
k∑
j=0

x−1h0,k,j

( 1
x

)
(lnx)j ,

where h0,k,k ∈ K[[x]] and rv(h0,k,k) = rv(f)πv for almost all v ∈ V0. Finally,
by the linearity of the Laplace transform, it suffices to take hα,k,j = xh0,k,j +
Pj for j = 0, . . . , k and hα,k,k+1 = Pk+1 to obtain the second part of the
proposition. �

5. Solutions of ψ∗ and solutions of d
dxψ

Let ψ be a differential operator of K[x, d/dx] such that all slopes of NR(ψ)
lie in {1, 0}, and v be a fixed finite place of V0. LetKv be the v-adic completion
of K and Ωp(v) be a v-adic complete field and algebraically closed containing
Cp(v) such that its value group is R≥0. We fix an embedding K ↪→ Kv ↪→
Cp(v) ↪→ Ωp(v). In this section, we see how we can determine the nature of
the solutions of (d/dx)ψ at 0 from those ψ∗ at the same point. For this, we
shall begin with the following key lemma.

Lemma 5.1. Assume y ∈ K((x)), α ∈ K ∩ Zp(v), δ ∈ K and k ∈ Z≥0.
Then the differential equation (d/dx)(z) = yxα(lnx)k exp(δ/x) has a solution
of the form

∑
0≤i≤k+1 yix

α(lnx)i exp(δ/x) at 0, where for i = 0, . . . , k + 1,
yi ∈ K((x)) is such that

rv(yi) ≥

{
rv(y) if δ = 0,
min(|δ|vπ−1

v , rv(y)) otherwise.

Proof. Let m = min(0, ordx(y)) and write y =
∑
n≥m anx

n ∈ K((x)). Let
us consider

z =
∑

0≤i≤k+1

∑
n≥m

ai,nx
n+α(lnx)i exp(δ/x),



ARITHMETIC DIFFERENTIAL EQUATIONS AND E-FUNCTIONS 1081

where ai,n ∈ K for all i = 0, . . . , k + 1 and all n ≥ m. Then

d

dx
z =

∑
0≤i≤k

∑
n≥m+1

(
(n− 1 + α)ai,n−1

+ (i+ 1)ai+1,n−1 − δai,n
)
xn+α−2(lnx)i exp(δ/x)

+
∑

n≥m+1

(
(n− 1 + α)ak+1,n−1 − δak+1,n

)
xn+α−2(lnx)k+1 exp(δ/x)

+
∑

0≤i≤k+1

−δai,mxm+α−2(lnx)i exp(δ/x).

z is then a solution of the differential equation (d/dx)(z) = yxα(lnx)k exp(δ/x)
if and only if, the coefficients ai,n satisfy the following relations for all n ≥ m:

δa0,m = δa1,m = · · · = δak+1,m = 0,(5.1)

(n+ α)ak+1,n − δak+1,n+1 = 0,(5.2)

(n+ α+ 1)ak,n+1 + (k + 1)ak+1,n+1 − δak,n+2 = an,(5.3)

(m+ α)ak,m + (k + 1)ak+1,m − δak,m+1 = 0,(5.4)

(n+ α)ai,n + (i+ 1)ai+1,n − δai,n+1 = 0, for 0 ≤ i < k.(5.5)

This means:

Case 1: If δ = 0, we have from (5.2) and (5.3),

∑
n≥m

ak+1,nx
n =

{
0 if α is a non-integer < −m,
ak+1,−αx

−α =
a−α−1

k + 1
x−α otherwise,

(5.6)

and therefore, for all n ≥ m + 1, and all 0 ≤ i ≤ k, we get from (5.3) and
(5.5),

(5.7)


a1,−α = . . . = ak,−α = 0 if α is an integer ≤ −m,
ak,n =

an−1

n+ α
for all n 6= −α,

ai,n = − (i+ 1)ai+1,n

n+ α
=

(−1)k−ik!an−1

i!(n+ α)k−i+1
for all n 6= −α.

Hence the finite sum ∑
0≤i≤k+1

yix
α(lnx)i,

where the coefficients of the power series yi =
∑
n≥m ai,nx

n are defined by
(5.6), (5.7), where a0,−α = 0 if α is an integer ≤ −m, and where a0,m = a1,m =
· · · = ak+1,m = 0, is a solution of the equation dz/dx = yxα(lnx)k at 0. In
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addition, since α ∈ K ∩Zp(v), it is non-Liouville for p(v) and consequently we
have

lim sup
n−→∞

∣∣∣ 1
α+ n

∣∣∣1/n
v

= 1

(cf. [DGS, VI.1.1]). Therefore, by (5.7), we find for i = 0, . . . , k + 1,

lim sup
n−→∞

|ai,n|1/nv ≤ lim sup
n−→∞

|an−1|1/nv = lim sup
n−→∞

|an|1/nv .

This implies that rv(yi) ≥ rv(y) for i = 0, . . . , k + 1, and hence the lemma is
proved in the case δ = 0.

Case 2: If δ 6= 0, we find, from (5.1) and (5.4), that a0,m = a1,m = · · · =
ak+1,m = ak,m+1 = 0, and therefore, by induction on n ≥ m and by (5.2),
that

∑
n≥m ak+1,nx

n = 0. In addition, from (5.3) and (5.5), we get for any
n ≥ m,

(5.8)


ak,n+2 =

(n+ α+ 1)
δ

ak,n+1 −
1
δ
an,

ai,n+1 =
(n+ α)

δ
ai,n +

i+ 1
δ

ai+1,n for any 0 ≤ i < k.

Hence the finite sum ∑
0≤i≤k+1

yix
α(lnx)i,

where the coefficients of the power series yi =
∑
n≥m ai,nx

n are defined recur-
sively by (5.8), and where a0,m = a1,m = · · · = ak,m =

∑
n≥m ak+1,nx

n = 0,
is a solution of the equation dz/dx = yxα(lnx)k at 0. It remains to prove
that the power series yi satisfy the condition of Lemma 5.1.

From (5.8) we find, for any n ≥ 3 and any 0 ≤ i < k, that

ak,n+2 =
(n+ α+ 1)(n+ α) . . . (2 + α)

δn
ak,2 −

1
δ
an −

(n+ α+ 1)
δ2

an−1

− (n+ α+ 1)(n+ α)
δ3

an−2 − · · · −
(n+ α+ 1)(n+ α) . . . (3 + α)

δn
a1,

ai,n+2 =
(n+ α+ 1)(n+ α) . . . (2 + α)

δn
ai,2 +

i+ 1
δ

ai+1,n+1

+
(i+ 1)(n+ α+ 1)

δ2
ai+1,n +

(i+ 1)(n+ α+ 1)(n+ α)
δ3

ai+1,n−1

+ · · ·+ (i+ 1)(n+ α+ 1)(n+ α) . . . (3 + α)
δn

ai+1,2.
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Consequently, if α is a non-integer ≤ −2, we have for any n ≥ 1 and any
0 ≤ i < k,

(5.9)


ak,n+2 =

(α+ 2)n
δn

ak,2 −
(α+ 2)n
δn+1

∑
1≤j≤n

δjaj
(α+ 2)j

,

ai,n+2 =
(α+ 2)n

δn
ai,2 +

(i+ 1)(α+ 2)n
δn+2

∑
2≤j≤n+1

δjai+1,j

(α+ 2)j−1
,

and, if α is an integer ≤ −2, we have for n ≥ −α and any 0 ≤ i < k,
(5.10)

ak,n+2 =
(n+ α+ 1)!

δn
ak,1−α −

(α+ 1 + n)!
δn+1

∑
−α≤j≤n

δjaj
(α+ 1 + j)!

,

ai,n+2 =
(n+ α+ 1)!

δn
ai,1−α +

(i+ 1)(α+ 1 + n)!
δn+2

∑
−α≤j≤n+1

δjai+1,j

(α+ j)!
.

Now, in the case where α is a non-integer≤ −2, we have to study two subcases:

Case 2.1.a: If α is a non-integer ≤ −2, and if rv(y) ≥ π−1
v |δ|v, or in other

words, lim supn→∞ |an|
1/n
v ≤ πv|δ|−1

v , we have

lim sup
n→∞

(∣∣∣ δnan
(α+ 2)n

∣∣∣1/n
v

)
≤ 1,

since limn→∞ |(α+ 2)n|1/nv = πv. Then

lim sup
n→∞

(
max

1≤i≤n

∣∣∣ δiai
(α+ 2)i

∣∣∣1/n
v

)
≤ 1.

This implies that the power series

∑
n≥2

 (α+ 2)n
δn+1

∑
1≤j≤n

δjaj
(α+ 2)j

xn

has a radius of convergence at least π−1
v |δ|v. Thus, by (5.9), we get rv(yk) ≥

π−1
v |δ|v. Using the same argument, we prove, by downward induction on the

index i and by (5.9), that r(yi) ≥ π−1
v |δ|v for any 0 ≤ i ≤ k. This concludes

the proof of Lemma 5.1 in Case 2.1.a.

Case 2.1.b: If α is a non-integer ≤ −2, and if rv(y) < π−1
v |δ|v. We will

prove the lemma in this case by downward induction on the index i. First,
let l be an element of Ωp(v) such that |l|v = π−1

v |δ|v lim supn→∞ |an|
1/n
v > 1.

Since limn→∞ |(α+ 2)n|1/nv = πv, we have

lim sup
n→∞

∣∣∣ δnan
ln(α+ 2)n

∣∣∣1/n
v

= 1,
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and hence

lim sup
n→∞

(
max

1≤i≤n

∣∣∣ δiai
li(α+ 2)i

∣∣∣1/n
v

)
≤ 1.

Since |l|v > 1, we obtain

lim sup
n→∞

(
max

1≤i≤n

∣∣∣ δiai
ln(α+ 2)i

∣∣∣1/n
v

)
≤ 1,

and

lim sup
n→∞

(
max

1≤i≤n

∣∣∣ δiai
(α+ 2)i

∣∣∣1/n
v

)
≤ |l|v = π−1

v |δ|v lim sup
n→∞

|an|1/nv .

This shows that the power series∑
n≥2

( (α+ 2)n
δn+1

∑
1≤j≤n

δjaj
(α+ 2)j

)
xn

has a radius of convergence at least rv(y). Thus, by (5.9), we get

rv(yk) ≥ min(π−1
v |δ|v, rv(y)) = rv(y).

Suppose now that rv(yi+1) ≥ min(π−1
v |δ|v, rv(y)) for some index 1 ≤ i ≤ k−1.

If rv(yi+1) < π−1
v |δ|v, we find, with the same argument as above and by (5.9),

that
rv(yi) ≥ min(π−1

v |δ|v, rv(yi+1)) ≥ min(π−1
v |δ|v, rv(y)).

If rv(yi+1) ≥ π−1
v |δ|v, we get, with the same argument as in Case 2.1.a and

by (5.9),
rv(yi) ≥ π−1

v |δ|v = min(π−1
v |δ|v, rv(y)).

This shows that, for all 0 ≤ i ≤ k, rv(yi) ≥ π−1
v |δ|v. This ends the proof of

the lemma in Case 2.1.b.
Case 2.2: The case where α is an integer ≤ −2 can be proved with

the same arguments employed in Cases 2.1.a and 2.1.b, using (5.10), since
limn→∞ |n!|1/nv = πv. This concludes the proof of Lemma 5.1. �

Notations. Let y1, . . . , ys be elements of K((x)), and ∆ = (δij) be a
t × t diagonal matrix with entries in K. We denote by Rv(y1, . . . , ys,∆) the
K-subalgebra of K((x)) consisting of power series y ∈ K((x)) satisfying

rv(y) ≥

 min
1≤h≤s

{rv(yh)} if ∆ = 0,

min( min
1≤i≤t

{|δii|v | δii 6= 0}π−1
v , min

1≤h≤s
{rv(yh)}) otherwise.

Also, we denote by R(y1, . . . , ys,∆) the K-subalgebra of K((x)) consisting of
power series y ∈ K((x)) belonging to Rv(y1, . . . , ys,∆) for almost all v in V0.
Again here and in the sequel, “almost all” means with at most finitely many
exceptions.
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Proposition 5.2. Let ψ ∈ K[x, d/dx] be a differential operator of rank
µ such that all slopes of NR(ψ) lie in {0, 1}. Assume that ψ∗ has a basis of
solutions at 0 with elements in

Rv(y1, . . . , ys,∆)[lnx, xγ1 , . . . , xγs , exp(δ11/x), . . . , exp(δss/x)],

where y1, . . . , ys are elements of K((x)), where γ1, . . . , γs are elements of
Zp(v) ∩ K, and where ∆ = (δij) is a s × s diagonal matrix with entries in
K. Then d

dxψ and ( d
dxψ)∗ have bases of solutions at 0 with elements, respec-

tively, in

Rv(y1, . . . , ys,∆)[lnx, x±γ1 , . . . , x±γs , exp(±δ11/x), . . . , exp(±δss/x)]

and in

Rv(y1, . . . , ys,∆)[lnx, xγ1 , . . . , xγs , exp(δ11/x), . . . , exp(δss/x)].

Proof. Write

ψ = aµ(x)(d/dx)µ + aµ−1(x)(d/dx)µ−1 + · · ·+ a0(x) ∈ K[x, d/dx].

Since all slopes of NR(ψ) lie in {0, 1}, aµ is a monomial, say aµ = xν with
ν ∈ Z≥0, and ψ is regular at infinity. If we denote by ψ∞ the operator obtained
from ψ by the change of variable x→ 1/x, we find

ψ∞ = x−ν(−x2)µ(d/dx)µ +
µ(µ− 1)

2
(−2x)(−x2)µ−1(d/dx)µ−1

+ (−x2)µ−1aµ−1(1/x)(d/dx)µ−1

+ terms with lower degree in (d/dx),

because for all a ∈ K(x) and all integer h ≥ 1, we have

(a · (d/dx))h = ah(d/dx)h +
h(h− 1)

2
ah−1 · (d/dx)(a) · (d/dx)h−1

+ terms with lower degree in (d/dx).

The regularity of ψ∞ at 0 implies, in particular, that deg(aµ−1(x)) ≤ ν − 1.
In addition, it is easy to check that

((d/dx)ψ)∗ = ψ∗(d/dx)

(5.11)

= (−1)µxν(d/dx)µ+1 + ((−1)µνxν−1 + (−1)µ−1aµ−1(x))(d/dx)µ

+ terms with lower degree in (d/dx)

= (−1)µxν
[
(d/dx)µ+1 + (νx−1 − x−νaµ−1(x))(d/dx)µ

+ terms with lower degree in (d/dx)
]
,
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because

(d/dx)µ · xν = xν(d/dx)µ + νxν−1(d/dx)µ−1

+ terms with lower degree in (d/dx).

This shows that

(5.12) tr(A((d/dx)ψ)∗) = −(νx−1 − x−νaµ−1(x)) ∈ 1
x
K

[
1
x

]
.

On the other hand, by hypothesis, ψ∗ has a basis of solutions (u1, . . . , uµ) at
0 such that the ui are of the form

ui =
∑

finite sum on j

ŷijx
γij (lnx)kij exp(δij/x)

∈ Rv(y1, . . . , ys,∆)[lnx, xγ1 , . . . , xγs , exp(δ11/x), . . . , exp(δss/x)].

By Lemma 5.1, for i = 1, . . . , µ, the differential equation (d/dx)(z) = ui
has a solution of the form

zi =
∑

finite sum on j

( ∑
finite sum on `

ỹij` (lnx)kij`
)
xγij exp(δij/x)

∈ K((x))[lnx, xγ1 , . . . , xγs , exp(δ11/x), . . . , exp(δss/x)]

such that

rv(ỹij` ) ≥

{
{rv(ŷij )} if δij = 0,
(|δij |vπ−1

v , rv(ŷij )) otherwise.

Thus, the elements 1, z1, . . . , zµ form a basis of solutions of
(
d
dxψ

)∗
= ψ∗ ddx

at 0. Moreover, 1, z1, . . . , zµ lie in

Rv(y1, . . . , yµ,∆)[lnx, xγ11 , . . . , xγµµ , exp(δ11/x), . . . , exp(δµµ/x)].

Now, denote by W the Wronskian matrix of 1, z1, . . . , zµ. Thus, the matrix
W is solution of d

dxX = A( ddxψ)∗X, and all entries of W lie in

Rv(y1, . . . , yµ,∆)[lnx, xγ1 , . . . , xγµ , exp(δ11/x), . . . , exp(δµµ/x)].

On the other hand, det(W ) satisfies the differential equation (d/dx)(det(W )) =
tr(A((d/dx)ψ)∗) det(W ). By (5.12), det(W ) is of the form xα exp(P (1/x)),
where P ∈ K[x] and where α ∈ K. By definition of W , we find α ∈
〈1, γ1, . . . , γµ〉Z and P (x) = δx for some δ ∈ 〈δ11, . . . , δµµ〉Z. This implies
that all entries of W−1 lie in

Rv(y1, . . . , yµ,∆)[lnx, x±γ1 , . . . , x±γµ , exp(±δ11/x), . . . , exp(±δµµ/x)].

Hence, by Lemma 3.6 and the fact that leading coefficient of (d/dx)ψ)∗ is
monomial (see (5.11)), the differential operator d

dxψ has a basis of solutions
at 0, with elements in

Rv(y1, . . . , yµ,∆)[lnx, x±γ1 , . . . , x±γµ , exp(±δ11/x), . . . , exp(±δµµ/x)].
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This concludes the proof of Proposition 5.2. �

Corollary 5.3. Under hypotheses of Proposition 5.2, for all positive in-
tegers m ≥ 1, the differential operators ( d

dx )mψ and (( d
dx )mψ)∗ have bases of

solutions at 0 with elements, respectively, in

Rv(y1, . . . , yµ,∆)[lnx, x±γ1 , . . . , x±γµ , exp(±δ11/x), . . . , exp(±δµµ/x)]

and

Rv(y1, . . . , yµ,∆)[lnx, xγ1 , . . . , xγµ , exp(δ11/x), . . . , exp(δµµ/x)].

Proof. First, the differential operator ( d
dx )mψ has the same leading coeffi-

cient as ψ which is a monomial. In addition, the properties of Newton polygon
([Ma, III.1]) lead to

{slopes of N
(( d

dx

)m
ψ
)
} = {slopes of N

( d
dx

)
}

∪ {slopes of N(ψ)} ∈ {0, 1},

{slopes of N
((( d

dx

)m
ψ
)
∞

)
} = {slopes of N

(( d
dx

)
∞

)
}

∪ {slopes of N(ψ∞)}
= {0}.

Thus, the slopes of NR(( d
dx )mψ) lie in {0, 1} for all integer m ≥ 1. Hence the

corollary can be proved by induction on m, using Proposition 5.2. �

Let fE denote the Euler series
∑
n≥0(−1)nn!xn. With the notations of

§4.2, we obtain:

Corollary 5.4. Let ψ ∈ K[x, d/dx] be a differential operator of rank µ
such that all slopes of NR(ψ) lie in {0, 1}. Assume that the differential system
dX/dx = AψX has solution at 0 of the form Y (x)xΓ exp(∆/x), where Y (x)
is a µ×µ invertible matrix with entries in K((x)), where Γ is a µ×µ matrix
with entries in K and eigenvalues γ1, . . . , γµ in Q, and where ∆ = (δij) is a
µ×µ diagonal matrix with entries in K. Then, for all positive integers m ≥ 1,
the differential operators ( d

dx )mψ and (( d
dx )mψ)∗ have bases of solutions at 0

with elements, respectively, in(
R0(Y ) ∩R0(fE)

)
[lnx, x±γ1 , . . . , x±γµ , exp(±δ11/x), . . . , exp(±δµµ/x)]

and(
R0(Y ) ∩R0(fE)

)
[lnx, x−γ1 , . . . , x−γµ , exp(−δ11/x), . . . , exp(−δµµ/x)].

Proof. Since all slopes of NR(ψ) lie in {0, 1}, the leading coefficient aµ
of ψ is a monomial. Let Ỹµ(x) = (ỹ1(x), . . . , ỹµ(x)) ∈ Mµ×1(K((x))) denote
the µ-th row of the matrix a−1

µ (TY (x)−1). By Lemma 3.7, the elements of
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Ỹµ(x)(x)(−TΓ) exp(−T∆/x) form a basis of solutions of ψ∗ at 0. According to
Corollary 3.3, the elements of this basis lie, for all v ∈ V0, in

Rv(ỹ1, . . . , ỹµ,∆)[lnx, x−γ1 , . . . , x−γµ , exp(−δ11/x), . . . , exp(−δµµ/x)].

In addition, for almost all v ∈ V0, the eigenvalues of Γ lie in Zp(v). Hence, by
Corollary 5.3, the differential operators ( d

dx )mψ and (( d
dx )mψ)∗ have bases of

solutions at 0 with elements, respectively, in

R(ỹ1, . . . , ỹµ,∆)[lnx, x±γ1 , . . . , x±γµ , exp(±δ11/x), . . . , exp(±δµµ/x)]

and

R(ỹ1, . . . , ỹµ,∆)[lnx, x−γ1 , . . . , x−γµ , exp(−δ11/x), . . . , exp(−δµµ/x)].

The corollary results therefore from the following observation:

R(ỹ1, . . . , ỹµ,∆) ⊆ R0(ỹ1) ∩ . . .R0(ỹµ) ∩R0(fE) ⊆ R0(Y ) ∩R0(fE). �

6. Sufficient conditions

Let F denote the inverse of F , that is the K-automorphism of K[x, d/dx]
satisfying F(x) = −d/dx and F(d/dx) = x. In this section, we will prove
that the conditions in Theorem 3.1 are sufficient:

Theorem 6.1. Let ψ ∈ K[x, d/dx] be an operator of rank µ satisfying the
following conditions:

(1) The coefficients of ψ are not all in K.
(2) The slopes of NR(ψ) lie in {−1, 0}.
(3) The differential system d/dxZ = AψZ has a solution of the from

Yψ

( 1
x

)( 1
x

)Γ

exp(−∆x),

where Yψ(x) is a µ× µ invertible matrix with entries in K((x)) such
that

∏
v∈V0

min(Rv(Yψ)πv, 1) 6= 0, where Γ is a µ × µ matrix with
entries in K and with eigenvalues γ1, . . . , γµ in Q, and where ∆ =
(δij) is a diagonal µ × µ matrix with entries in K which commutes
with Γ.

Then ψ is an E-operator.

Note that condition (1) means that the differential operator φ := F(ψ) is
not a polynomial.

Lemma 6.2. Under the hypotheses of Theorem 5.2, the differential opera-
tor φ := F(ψ) has a basis of solutions at 0 of the form (f1, . . . , fν)xC , where
f1, . . . , fν are power series of K[[x]] such that

∏
v∈V0

min(rv(fi), 1) 6= 0 for
i = 1, . . . , ν, and where C is a ν × ν upper triangular matrix with entries in
Q.
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Proof. By §2.2, φ is regular at 0 and admits a basis of solutions at 0 of the
form

(ζ1, ζ2, . . . , ζν) := (f1, f2, . . . , fν)xC

such that
(1) f1, . . . , fν ∈ K[[x]],
(2) C = D + N is an ν × ν matrix, where D is a diagonal matrix whose

diagonal entries Dii := αi ∈ K are the exponents of φ at 0, and
N = (Nij) is an upper triangular nilpotent matrix with entries in Q
such that DN = ND.

Since

xC = xD+N = xD
∑
k≥0

Nk

k!
(lnx)k = xD + xD

ν∑
k=1

Nk

k!
(lnx)k,

we obtain

ζ1 = f1x
α1 ,(6.1)

and for 1 < i ≤ ν

ζi = fix
αi +

i−1∑
j=1

fjx
αj

ν∑
k=1

(Nk)ji
k!

(lnx)k,(6.2)

since (Nk)ji = 0 for j ≥ i.
In addition, by Lemma 4.1, there exists a positive integer m such that(
d
dx

)m
ψ annihilates L(ζi) for i = 1, . . . , ν. We then define, Ψ =

(
d
dx

)m
ψ.

Applying Corollary 5.4 to ψ at infinity, we find that Ψ has a basis of solutions
ξ1, . . . , ξµ+m at infinity with elements in(
R∞0 (Yψ) ∩R∞0 (fE)

)
[lnx, x±γ1 , . . . , x±γµ , exp(±δ11x), . . . , exp(±δµµx)].

Now, let A0 denote the set

C⊗K
(
R∞0 (Yψ)∩R∞0 (fE)

)
[lnx, x±γ1 , . . . , x±γµ , exp(±δ11x), . . . , exp(±δµµx)].

Therefore, we have for all 1 ≤ i ≤ ν, L(ζi) ∈ A0. By induction on i, we
deduce from (6.1) and (6.2) that

L
(
fix

αi
)
∈ Ai−1 (i = 1, . . . , ν),(6.3)

where A1, . . . ,Aν−1 are the C[lnx]-modules of finite type defined recursively
by

Ai = Ai−1 +
〈
L(fixαi(lnx)j); 0 ≤ j ≤ ν

〉
C[ln x]

.
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This shows, by iteration on i and by (4.12) and (4.13), that the exponents
αi are rational numbers. Thus, by Proposition 4.3, the Laplace transform of
fix

αi(lnx)k (for i = 1, . . . , ν and k ∈ Z≥0) can be written as

(6.4) L
(
fix

αi(lnx)k
)

=



x−αi−1Γ(α)
k∑
j=0

hi,k,j

( 1
x

)
(lnx)j

if αi ∈ Q \ Z<0,
k+1∑
j=0

hi,k,j

( 1
x

)
(lnx)j

if αi ∈ Z<0,

where hi,k,j ∈ C⊗K R−1(fi), j = 0, . . . , k, hi,k,k+1 ∈ K[x] \ {0} and hi,k,k ∈
K[[x]] \ {0} are such that rv(hi,k,k) = rv(fi)π−1

v for almost all v ∈ V0. To
conclude, it suffices to prove, by induction on i, that

fi ∈ R1(Yψ) ∩R1(fE), (i = 1, . . . , ν).(6.5)

Combining (6.3) with (6.4) for i = 1 and k = 0, we find that α1 ∈ {±γj +
m | m ∈ Z, j = 1, . . . , µ} and that h1,0,0 ∈ R0(Yψ) ∩ R0(fE). Thus f1 ∈
R1(Yψ) ∩R1(fE) and for any 0 ≤ j ≤ k, we have

h1,k,j ∈ C⊗K (R0(Yψ) ∩R0(fE)),

and hence, for any k ≥ 0,

L
(
f1x

α1(lnx)k
)
∈ x−α1

C⊗K (R0(Yψ) ∩R0(fE))[lnx].

This implies
A1 ⊆ A0.

Suppose now that, for some integer τ with 1 ≤ τ − 1 < ν, we have fi ∈
R1(Yψ) ∩ R1(fE), and αi ∈ {±γj + m | m ∈ Z, j = 1, . . . , µ}, for i =
1, . . . , τ − 1. Then, by (6.4),

hi,k,j ∈ C⊗K R0(Yψ) ∩R0(fE)) for 1 ≤ i ≤ τ − 1, and 0 ≤ j ≤ k.

This implies Aτ−1 ⊆ A0. In particular, by (6.3), we get L
(
fτx

ατ
)
∈ A0.

Therefore, by (6.4), we find ατ ∈ {±γj + m | m ∈ Z, j = 1, . . . , µ} and
hτ,0,0 ∈ R0(Yψ) ∩ R0(fE), and consequently fτ ∈ R1(Yψ) ∩ R1(fE). This
proves that fi ∈ R1(Yψ) ∩R1(fE) and αi ∈ {±γj +m | m ∈ Z, j = 1, . . . , µ}
for i = 1, . . . , ν. On the other hand, by Corollary 3.4, the power series fi are
entries of the inverse of a reduction matrix of Aφ. Therefore, by Proposition
2.1, they satisfy rv(fi) 6= 0 for any v ∈ V0. Combining this with the fact that
fi ∈ R1(Yψ) ∩R1(fE) for i = 1, . . . , ν, we get∏

v∈V0

min(rv(fi), 1) 6= 0 for i = 1, . . . , n.
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The lemma follows therefore since α1, . . . , αν ∈ Q. �

Proof of Theorem 5.2. First, by §2.3, the differential operator φ∗ is regular
at 0. In addition, by Corollary 3.7, the differential system dX/dx = Aψ∗X

has a solution of the form Ỹ ( 1
x )( 1

x )−
TΓ exp(∆x), where Ỹ (x) ∈ GLµ(K((x)))

such that
∏
v∈V0

min(rv(Ỹ ), 1) 6= 0. Moreover, we have F(φ∗) = (Fφ)∗ = ψ∗

(cf. [Ma, V.3.6])). Then, by the same proof as in Lemma 6.2, we find that
φ∗ has also a basis of solutions at infinity of the form (z1, . . . , zν)xΛ, where
z1, . . . , zν are power series of K[[x]] such that

∏
v∈V0

min(rv(zi), 1) 6= 0 for
i = 1, . . . , ν, and where Λ is a ν × ν upper triangular matrix with entries
in Q. Combining this with Lemma 6.2 and Lemma 3.4, we find that the
differential system dX/dx = AφX has a solution at 0 of the form Yφ(x)xC ,
where Y (x) ∈ GLν(K((x))) such that

∏
v∈V0

min(rv(Yφ), 1) 6= 0, and where
C ∈Mν(Q) is an upper triangular matrix (see proof of Theorem 3.8). Hence
φ is a G-operator and consequently ψ is an E-operator. �
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