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BESOV FUNCTIONS AND VANISHING EXPONENTIAL
INTEGRABILITY

DAVID R. ADAMS AND RITVA HURRI-SYRJANEN

ABSTRACT. We prove a general vanishing exponential integrability re-
sult for Besov functions. In a basic case, this allows us to improve the
known O(1) estimate to a o(1) estimate. It also leads to improvements
of differentiability results for Besov functions.

1. Introduction

A non-negative function v(z),x € R™, is said to satisfy the vanishing ex-
ponential integrability condition if there is a constant 3 > 0, independent of
v and the radius r of the Euclidean n-ball B™(xq, ), such that

(1.1) lim (eﬁv@) - 1) dz =0
=0/ pn (zo,r)

for all xg € R™\E, where E is an exceptional set for some universal set
function o strictly stronger than Lebesgue measure on R™. The set function
o might be a Hausdorff capacity (content) or an LP-capacity. In (1.1), the bar
on the integral sign denotes the integral average over B"™(zg,r). In our basic
case, Theorem 1.3, v(z) will be |u(z) — u(zo)|? 9=, where u € ARI(R"),
the standard class of Besov functions on R™. The set function o is given
by 0 = [Hpq.h,Aapgl, the Neugebauer bracket of the two capacities (see
Definition 2.7), where A, , 4 is the Besov capacity associated with the space
AP9(R™), ap = n, and H, 4, is a certain Hausdorft capacity with the measure
function h(t) = (log1/t)1 79,

HY g <p,

1.2 H =
( ) pah (Hh)p/q ) lfp S q,

1 < p,q < oo. For the definitions of these capacities see Definition 2.3 and
Remark 2.8. We now state our main theorem.
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1.3. THEOREM. Let u € ARY(R™) and ap = n. Then there exists a
constant 3 > 0 independent of u and r > 0 such that

][Bn(m , (exp(mu(x) — u(x)|?/ 1) — 1) dz = o(1)

asr — 0 for [Hp g n, Aa,pql-a-e. To € R"™, where the Hausdorff capacity Hy 4.1,
with the measure function h(t) = (log1/t)1=% is defined in (1.2).

In our general case, Theorem 6.1, v(z) is (r~™|u(z)— P (z)])% 4~Y, where
P} is the mth order Taylor polynomial for u centered at x. Here m € [1, a)
and ¢ = [Hp g.ny Aa—m,p,q], (& —m)p = n. It is remarkable that the integral
average in (1.1) of the exponential function is o(1) as r — 0 when v(x) =
lu(x) — u(zo)|?/9=1. Previously, C. J. Neugebauer [8, Proof of Theorem
2] showed that the integral in (1.1) over the exponential function with this
function v(z) was merely O(1) as r — 0. Even in the paper [2, Theorem
2] by the first author the result is O(1). As an application of Theorem 6.1
some earlier differentiability results by J. R. Dorronsoro [7] for functions in
the Besov space A%, 1 < p < o0, 1< g < o0, (¢ —m)p =n, are improved;
see Section 7.

The definitions and previously known results which we need are recalled
in Section 2. A capacitary average result is shown in Section 3 and lower
bounds for the Besov capacity are proved in Section 4. The proof for Theorem
1.3 is presented in Section 5. The result for the general case, when v(z) =
(r~™|u(z) — P (x)|)?/(@=Y, is proved in Section 6. Differentiability results
for Besov functions are briefly considered in Section 7.

2. Preliminaries

Let @ > 0,1 <p< oo, and 1 < ¢ < oo throughout the paper. Recall that
a function sequence f = {fi}&° is in [9(LP) if

oo 1/q
£ liaey = (Z ||fk|qm<w>> < 0.

k=0

Let n € C5°(R™). Set ni(x) = 2"*n(2Fx) for k =0,1,2,.... A representation
theorem for Besov spaces, [4, Theorem 4.1.7], states that a function u belongs
to a Besov space AR? if and only if there is a function sequence f = {fx}5° €
[9(LP) such that

(2.1) u=Hof = 2" fp.

k=0
Further,
[f1la ey ~ Hafllaze

where the norm || [[sz.« is the Besov norm (see [4, Chapter 4]).
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2.2. REMARK. The notation ~ means ‘is comparable to’.

The potential representation can be used to define the Besov capacity
Aapq(*)-

2.3. DEFINITION ([4, Definition 4.4.2 and Remark]). Let 1 < p < oo,
1< g<oo,and 0 < a < 0o. Let E C R™ be arbitrary. Then

Aa,p,q(E) = inf{”f”fq(Lp) f> O,Haf(l‘) > 1 on E} .

Let B"(xg,r) be a ball in R™ with a center z( and radius » > 0. The Besov
capacity for a ball B™(zg,r) is given in the following lemma whenever the
radius is sufficiently small.

2.4. LEMMA ([3, Theorem 3.5]). Let 1 < p < o0, 1 < ¢ < o0, and
0 < a < 00. For sufficiently small r, and any o € R",

1\PU-a)/a
Aap,q(B" (20,1)) ~ (10g ;) )
whenever ap = n.

We use the following notation:

(25) oo Jap, ifp=q
) 1, if p>q.

The strong type estimates for the Besov capacity are also needed.

2.6. THEOREM ([5, Theoreml]). Let u € ARY(R"), 1 < p,q < oo, and
0 < a < oo. There is a constant ¢ = c¢(a, p,q,n) such that

o0
[ Gapalia € B u@)] = 61)" de < cluly.
0
where s is defined in (2.5).
Next, we introduce Neugebauer’s bracket of two capacities.

2.7. DEFINITION (]9, p. 304], [1, V.4]). Let E C R™. Given two capacities
cap; and capy, set

[capy, capy|(E) = inf{cap, (E1) + cap,y(F2)},
where the infimum is over all disjoint partitions E;, Fs of E = F1 U Es.

2.8. REMARK. The Hausdorff capacity is denoted by H”. Here h = h(t)
is a monotone increasing function of ¢t > 0, and

HM"EK) = infi h(r;),
j=0
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where the infimum is over all countable coverings of K by balls and r; denotes
the radius of the jth ball of such a cover.

2.9. REMARK ([6, Chapter 4, Definition 4.1, Proposition 4.2]). We recall
the equivalent norm for the Lorentz spaces L(p, q):

[o%¢) d 1/q
([T 151> a7 %) " ~ Ul < .

Note that || f||(p,p) = || fllz» and L(p,p) = L? is the classical Lebesgue space.
One always has L(p,q1) C L(p, q2) if ¢1 < go.

Throughout the paper, the letter ¢ will denote various constants which may
differ from one formula to the next even within a single string of estimates.
3. Capacitary averages

Let ap = n throughout this section. We define s as in (2.5). For a Besov
function v € A22(R™) we consider the maximal function

(3.1) Mqs(v)(z0)

= 59 A g (B (00:7) ™ [ (Aap(B0,) 0 o > )" e
r> 0

where v = H, f with f > 0. The set {x : v(z) > t} is abbreviated by [v > ¢].
For a function u € AR4(R™) we write

(3.2) Ei(r) = B™(zg,r) N {z : [u(z) — u(xo)| > t}.
To show (in Theorem 3.8 below) that the capacity average satisfies
Aa,p,q(Bn(aanT))is/ (Aa,p,q(Et(T)))s dt** — 0
0
when r goes to zero, we need the following lemma.
3.3. LEMMA. Let ap =n. Then
c
[(Hh)p/qvAa,p.,q} ({:L’ : Moz,q/p(Hsz)(m) > tq}) S t_p”foq(Lp) ) 1 < p S q,
and
pr/q C
(Y, A ) (12 Mo (Ha £)(@) > 1) < 1 fy gy 0 <D
where h(t) = (log1/t)179.
Proof. We write f" = {fi}, where fi' = fr - XB(zo,2r) and g = {gr},

gk = fx — f}; here X p(qy,2r) is the characteristic function of a ball B(xo,2r).
Then

Hof(z) = Hof"(z) + Hag(x) .
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So

(3.4) Mas(Haf)(2) < cMas(Haf") (@) + cMa,s(Hag)(z)
where s is defined in (2.5). By Lemma 2.4 and Theorem 2.6,

Aa,p,q(B"(xoaT))_s/o (Aap.g(B"(xo,7) N [Haf" > 1]))" dt™®

ps(qa—1)/q
c(log > |1 H e fTHqu

S| =

1\Psa=1/a [ ps/a
¢ (102 > 1 le
o q/p ps/q
( 1\Psta—1)/a i ey
=c|( log —) / kY)"ay
r k=0 B (z¢,2r)
Now set, for t > 0,
1\Psla=D/q | a/p]P*
K, =<z :sup <log —) Z / fe(@)P dy > P
r>0 r 5—0 B (z,r)

For each x € K, there exists a ball B, centered at x and of radius r, such

that
1 pS(lfq)/q
log — ) d
( og Tx) tsp / fe(y)? dy

By a standard covering argument there exists a sequence of disjoint balls { B, }
with radius r; such that {5B;} covers K;:

e 1 ps(l—q)/q 1 > e a/p
(35 > (log 7,,) <m2 > ( / fe(y)" dy)
J j=0 | k=0 \YBi

Jj=0

a/p] P/

ps/q

When s = ¢/p in (3.5), then ¢/p > 1 and hence

oo 1 17q 1 0o o a/p
Z (log ) — Z Z/ fe(y)" dy

- Tj e — - B

7=0 k=0 \j=0 J

This then gives the estimate

hq c
H (Kt) t_HfH?q(Lp)a
which means

(3.6) (H" (K0P < t—pl\flllq (Lv) >
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for p < q, hi(t) = (log1/t)}~1.
When s =1 in (3.5), we have

by the generalized Minkowski inequality, [10, p. 271]. This gives

(37) Hh2 (Kt) Hf”lq (LP)>

where hs(t) = (log 1/t)P(1*Q)/q.
On the other hand,

Ma,s(Hag)(xO) S CHaf(mO)sp
Hence, by (3.4) we have
{z: Mas(Haf)(@) >t} C Ko U{a s (Haf(2)) > ™},

where K; is estimated in terms of H"¢ i = 1,2, as in (3.6) and (3.7). The set
{z : (Haf(z))®® > t°P} can be estimated in terms of A, , , via a weak-type
capacity estimate by the definition, Definition 2.3. We have from Definition
2.7 the estimates

[(H")P/?, Aapg) ({2 : Magpp(Haf) (@) > t9}) < Hflllq(Lp s 1<p<q

and
H"" Aapl ({2 : Man(Haf)(@) > 7)) < SIS0y 4 <P,
where h(t) = (log1/t)}79. O
We are now in a position to prove a key result.

3.8. THEOREM. Let u € APY(R™) with ap = n. Let h(t) = (log1/t)174
If Ey(r) = B™(xo,7) N{z : Ju(z) — u(xo)| > t}, then

(89)  lim Aap(B"(z0,)”" /OOO (Aapa(Ee(r)))* dt" =0

or [(HMP/4_ A, -a.e. xg whenever s = andp <gq. If s=1 and p >
for [(H")P/, Aq pg 0 q/p andp < q p>q,
(3.9) holds for [th/q,Aa,p,q}—a.e. 0.
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Proof. We consider only the case s = q/p > 1; the case s = 1 is similar.
Denote C = [(H")P/4, Aq p g for convenience. By the triangle inequality,

/OOO C (B (w0,7) N {a : Jule) — ulwo)] > £})° dtP®
/ C(B"(z0,7) N {@ : [u(@)] + [ulzo)| > t})" dt¥*
s/ C (B (wo,r) N ({2 : Ju(@)] > t/2) U {z : |uzo)] > t/2}))° diP®
<c</ C (B™(wo,r) N {a : |u(z)] > £/2})° di?®

+/ C (B™(zo,r) N{z : |u(zo)| > t/2})° dtps> .
0

We introduce the notation

(3.10) avC(u,r)(zg) = (o, T / C(Ey(r))® dtP®,

where E(r) is defined as in (3.2). Hence, for u = H, [, assuming, without
loss of generality, f > 0, u > 0, we have

avC(u,r)(z0) < c(Ma,s(Haf)(w0) + (Ha f(20))"*) .
Thus,
lim avC(u,7)(20) < ¢(Ma,s(Haf)(20) + (Haf(20))"") -

‘We have to show that

C({zo : hn(1)av(,’(u r)(zg) > AP*}) =0
for any A > 0. By the above estimate and the previous lemma
C({xo : lim avC(u,r)(zo) > )\ps})
> )\p ”f”lq(LP) +C ({fo : (Haf(xo))Ps > ()\/2);)5}) :
By Definition 2.3 the weak type estimate

C({wo - (Haf(x0))” > (A/2)7}) < /\pllfllzq L?)

holds. We use the standard argument. Sequences of C§° functions are dense
in 19(LP). Let f = f — 4 + 1, where f = {fx}§° € 19(LP) and ¢ = {9} }5°
with ¢, € C§°, and fi a sequence {7} with || fx — ¥} |z»r — 0 as j — oo.
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Then, for any A > 0,
C({xo : lim avC(Ha f,r)(z0) > AP}
<C({x0 hm avC(H f=Hath,r)(z0) > AP°})
— Ap Hf w”m([})) < C)\

where € > 0 can be taken arbitrary small. Hence,
C({=o : hm avC(Haf,r)(z0) > AP'}) =0

for all A > 0, and thus
C({zo : hm avC(Haf,r)(z9) > 0}) =0,

and the claim follows. O

4. Lower bounds for A, , ,-capacity

When ap = n, by [2, Theorem 4] there exist constants ¢ > 0 and ¢ < o0
independent of a ball B; and a function u such that

]l exp(alu(z)|¥ T V) dz < ¢
B
with |lu|[yze < 1. See [8, Theorem 2].

4.1. LEMMA. Let ap = n. There are constants a and ¢ > 0 independent
of the set E such that

c p(1—q)/q
A@7P7Q(E) (10g E|> )

for all E € By, where By is some fixed ball in R™ and |E| is small enough.

Proof. We use the estimate (27) in [2, Theorem 4] for a function v =
9/llgllaza. Let g(x) > 1 on E,so E C {a: € By :|g(x)| > 1}, and hence

-1

CZ/ exp a(lg(m))q/(q : dx

Bl gl az:a

1 q/(g—1)

Z/ exp a(> dx

(e€B1:lg(2)|>1} gl e
§ E'exp<n s ”)

AP‘I

C
lollaze > (alog )
]

Thus
p(l1—q)/q
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and

p(1-9)/q
Appq(E) > (a log |E|> .
4.2. REMARK. According to (3.10) we can write briefly

(43) 00 0.7)(00) = e a(B 00, [ A Ber) e
(Recall the definition of s from (2.5).)

4.4. LEMMA. Let u € ARY(R™) with ap = n. Then there exists a number
ro > 0 and a constant ¢ = c(n,r9,z0) > 0, such that for [Hp g n, Aa,pql-a-e.
xg and all v < ro, when v and t are related by

(4.5) avAg pq(u,r)(20) P < t,

we have

)

n(po p(1—q)/q
(4.6) Appqa(E(r)) >c (log %)

where Hy, 4 1, is defined in (1.2).

Proof. By Lemma 2.4 and Lemma 4.1 we have for sufficiently small r

1 p(1-q)/q
Aamﬂ(Et(r)) log [E:(r)]
(4.7) - e B
Aa,p,q(B (zo,7))

1
108 15t T

|B™ (wo,r)] 1 p(1—q)/q
log 75,1 +1°g|B"<zo,r>\

=c
108 T lay T
n p(1-q)/q
og 551
(4.8) =c|14+ —
108 15t T
By (4.3),
Ap o o(Bi(1))*
(4.9) avAg pq(u,7)(T0) > palE(r)) £5P

Aapq(B™(wo,1))*
for all r,¢ > 0. For all r and ¢ satisfying avAq, 4 (u,7)(20)"/?P < t,

av wo ) ()12 Aap,q(Er(r))®
AD&JM]( ) )( 0) 2 A ,pq( (1’0,7”))5 .

Since by Theorem 3.8 for [Hp 4.1, Aa,pql-a-€. o we have avAq pq(u,7)(z0) —

0 as r tends to zero,
Aapal B0
Aap,q(B™(x0,7))°
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uniformly for ¢ > avA, 4 (u,7)(20)*/?*P . By (4.7) also

|B" (0,7)| sp(1—q)/q

log Tz,

1+ —0Qasr—0.

1
108 T ag.m]
Hence, for [H}, ¢ n, Aa,p,ql-a.e. zo there is rg > 0 such that for all r < ry and

all t > avAq pq(u, r)(xo)l/zsp,

|B™ (wo,r)] p(l1—q)/q

log BT
Aapa(Ee(r) > ¢Aa (B (w0,7)) | ——220L

1
108 1B tag T

and by Lemma 2.4 there is 71 > 0 such that for all » < r; < rg and all
t > aUAa,p,q(u,r)(xo)l/QSP,

B" p(1—q)/q
o)) -

Appq(E(r)) >c (log B ()]

5. Vanishing exponential integrability

We are ready to prove our main result.

Proof of Theorem 1.3. We take o := avAq pq(u,7)(z0)'/*P as in (4.3). Us-
ing the elementary inequality logt < kt'/*, for all t and k > 0, we can estimate

(4.6) below by
|B™ (w0, )|\ "
(CEer) ]

B p(1-9)/q
(5.1) (log M) >
Let p > g. Thus using (4.3), Lemma 2.4, (4.6) and (5.1) we have

p(l1—q)/q

|Ex(r)] -

1 p(g—1)/kq oo
P > ckP(1—a)/q <log _) | B" (o T)‘p(lfq)/kq/ | By (r)|Pla=1)/ka ggsp,
- r ? -

Here,

. ) oo p(g—1)/kq dt
/ L, (r)Pa—1)/a gy :/ (tkq/(q_l)\Et(r)D -
o1/2 ol/2

If the integration were extended to [0,00), then the above integral would be
the classical L(gk/(q¢—1), p)-Lorentz norm of |u—u(xg)| over the ball B™(z,r)
to the power p. Recall that L(qk/(¢ — 1),p) C L(qk/(¢ — 1),qk/(q — 1)) as
soon as p < gk/(q — 1), which is equivalent to k > p(¢ — 1)/g; see [6, Chapter
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4, Proposition 4.2]. Hence for E,(r) (see (3.2)),

/ [E(r) P00 e 2 lu = al@o)IF g g1 005, ()

> [l = w(@0) 17 (kg /(g—1).ka/ (a-1))(Eo ()

= [lu = w(@o)Fkas a1 (i, (1))

p(a—1)/kq
= (/ lu(z) — u(zo)|Fe/ (4D dx) .
EG(T)

Hence, for p > g and s =1,

-1
1
|B"(x0,r)\_1/ . |U(£C) _ u(xO)VW/(Q—l) dr <c (log ;) kko_spkq/P(Q—l) .
Es(r

We use this to estimate the terms of the series expansion of the exponentials.
Thus we write

R oo (3 —ateo)00) 1) e

e L S I e S
=1 J: B™(zq,r)

We now break up this integral into two parts, corresponding to the sets E,(r)
and B™(zg,r)\E,(r). In the latter case, (5.2) does not exceed

o ﬁj ] -
(5.3) Z ﬁgjq/(q DN
j=1
In the former case with k = j, we obtain for the series the bound
B eyl
(5.4) > ﬁjj (co)? /M
i=[p(q—1)/4]

for all » < rg. The case j < p(q — 1)/q is handled by the Hélder inequality.
Thus, since (5.3) and (5.4) tend to zero with o, the vanishing exponential
integrability results are valid when p > q.

The case p < ¢ is handled in a similar manner. O

6. Vanishing exponential integrability: the general case

The mth order Taylor polynomial of a function v € AP at x( is denoted
by P;7.
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6.1. THEOREM. Let u € ALY(R™), 0 < a < n. Let m € Z" be such that
1 < m < «, and suppose further that (¢ — m)p = n. Then there exists a
constant 3 > 0 independent of u and r > 0 such that

][ (eﬂ(r*m\u(y)—ng(y)\)"/(q’” _ 1) dy = o(1)
B™(zo,r)

as v — 0 for [Hp g h, Aa—mpgql-a.e. xog € R™, where Hy g1 is the Hausdorff
capacity with the measure function h(t) = (log1/t)1=% as in (1.2).

Proof. From Taylor’s formula for C™-functions u,

u@)zfﬂ’%@+ﬂl§::%{A%l—ﬂm”D%Aﬂ—tﬂo+n0ﬁ]@—x@f

Hu—HMWth!g;RWJMn

ot ) =25l <m 3 | [ 0= -+ ) ey — .

By (2.1), o
D" Haf ()] < Haem [ (y),

where the function 1 occurring in the representation of H,_,,, f is different
from the one used in the H, f-case. This is an abuse of notation, but it is
acceptable since the estimates we give depend only on f, and not on 7. Let
y € B"(xg,r). By the mean value theorem there is a point ¢y = to(y) € (0,1)
such that

Haof(y) — ngl(yﬂ < Ho—mf(zo +to(y — 0))r™ .

We may assume s = 1. Thus

Zdns By [l W = PTG T
[ (] )

r m

- “’/ooo Aampg (B (@0,) N [Hamf (20 +to(y)(y = 20)) > A)) dA?

§c/ Aampa (B (@0,7) N [Ha—mf > N]) dAP,
0

where |zg + to(y)(y — zo)| < to(y)|y — xo| < r. Write briefly
Ka(riHaf — Pie™t) = B™(zo, ) N {y = [Ha f(y) — Pro ' (y)] > A}
Taking the supremum over r > 0 we obtain
1

supr_ "P Aa_m K r;’]—{a 7P;nfl P
r>18 Aam,p,q(B"(g;Ow))/o pa(Ka( f ")

< Ma—7rz,1 (Hoz—mf)('TO)
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This reduces the general case to the basic one: We are able to apply Lemma
3.3 as in the proof of Theorem 3.8 to obtain

o0

iy A (B 30)) [ A (a7 Haf — PE)) 4N = 0.
- 0

This is used in the same way as Theorem 3.8 was used in the proof of Theorem

1.3 to obtain the claim. The case s = 1 is complete. The case s = ¢/p is proved

in a similar manner. O

7. Differentiability for Besov functions

The (s, m)-differentiability means
1/s
][ lu(y) — Py (y)|* dy =o(r™)asr — 0.
B™(zq,r)

Here, P, denotes the [m]th order Taylor polynomial of u at x9. We refer also
to [11, Section 3.5]. J. R. Dorronsoro [7] proved differentiability results for
functions in the Besov spaces; one of his theorems is as follows.

7.1. THEOREM ([7, Theorem 2]). Ifu € AR9, 1 < p < o0, ap < n,
1 <gqg<pandf with0 < B < « is given, v has an (np/(n — ap), B)-
differential [H" (=P A, 5., .]-a.c.

Theorems 1.3 and 6.1 imply the following result.

7.2. THEOREM. Letu € API(R™), 1<p<oo,l<g<oo, (a—m)p=n
with m € [0,«) given. Then for any s < oo, u has an (s, m)-differential
[Hp g.hs Aa—mpgl-a.e. © € R™, where Hy ,, 4 is defined as in (1.2).
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