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ON THE EXTENSION PROBLEM FOR CONTINUOUS
POSITIVE DEFINITE GENERALIZED TOEPLITZ KERNELS

M. BEKKER

Abstract. The extension problem for positive definite generalized Toe-
plitz Kernels defined on the positive semi-axis is discussed, and criteria

for the uniqueness of the extension are given. These results are applied
to the generalized Nehari problem.

1. Introduction

Let K(t, s) be a matrix-valued kernel of the form

K(t, s) =
[
T1(t− s) Γ∗(t+ s)
Γ(t+ s) T2(t− s)

]
,(1.1)

where Ti, i = 1, 2, are matrix functions of orders m×m and n×n, respectively,
and Γ is a matrix function of order n×m, and the arguments t, s belong to a
set ∆. The set ∆ can be the set Z+

N (N ≤ ∞) (discrete kernels) or an interval
[0, l) (l ≤ ∞) of the real axis (continuous kernels). Such kernels are called
generalized Toeplitz kernels (GTKs). It is easy to see that a kernel K(t, s) is
a GTK if and only if it satisfies (in the sense of distributions) the identity

J
∂K(t, s)
∂t

+
∂K(t, s)
∂s

J = 0,(1.2)

where

J =
[
Im 0
0 −In

]
.(1.3)

The study of GTKs was initiated by M. Cotlar, and numerous papers by
M. Cotlar and his collaborators, especially C. Sadosky and R. Arocena, are
devoted to the study of GTKs and their applications; see, e.g., [CS1], [CS2],
[CS3], [Ar1], [Ar2], [Sa], and the references in these papers.

In this paper we consider continuous positive definite GTKs, defined on
the nonnegative semi-axis, so that the arguments t, s are in R+. A kernel
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1316 M. BEKKER

K is called positive definite if it satisfies, for any tν ∈ R+, ν = 1, 2, . . . ,M ,
M = 1, 2, . . . , and any set of vectors ξν , ν = 1, 2, . . . ,M , of the appropriate
dimension

M∑
µ,ν=1

ξ∗µK(tµ, tν)ξν ≥ 0.(1.4)

For continuous kernels, this condition is equivalent to the following condi-
tion: For any smooth vector function f(t) of the appropriate dimension with
compact support, one has

(1.4′)
∫ ∞

0

∫ ∞
0

f∗(t)K(t, s)f(s)dtds ≥ 0.

Positive definite GTKs arise naturally in problems of harmonic analysis (in
connection with the Hilbert transform and the Theorem of Helson and Szege),
in scattering theory, and in the theory of generalized stationary stochastic
processes. Also, many classical interpolation problems can be reduced to the
study of positive definite GTKs.

V. M. Adamjan, D. Z. Arov, and M. G. Krein, in their remarkable papers
[AAK1][AAK2] on the Nehari problem and its generalization, studied a special
class of discrete GTKs. In [AAK2] these authors remarked that some of the
results and methods can also be applied to the case of continuous GTKs. Krein
and F. E. Melik-Adamjan [KM-A1][KM-A2] considered the special class of
continuous GTKs defined on the semi-axis. The author [Bek2] obtained some
results on positive definite GTKs defined on semi-axis. Positive definite GTKs
defined on a finite interval of the real axis were studied by the author [Bek3]
and, via a different method, by R. Bruzual [Br]. Interesting results for kernels
of this type were also obtained by L. A. Sakhnovich [Sak].

In Section 2 we prove that positive definite GTKs admit integral repre-
sentations similar to the Bochner-Krein representation for positive definite
matrix functions. In Section 3 we consider conditions which guarantee the
uniqueness of the integral representation, and in Section 4 we give a param-
eterization of the set of integral representations. In Section 5 we apply these
results to the generalized Nehari Problem, which can be formulated as follows:

Given an m×m matrix function ϕ(t) from L1(R)∩L∞(R) find an m×m
matrix function h(t) from H1(R) ∩H∞(R) such that ‖ϕ(t) − h(t)‖ ≤ ‖ψ(t)‖
for almost all t ∈ R, where ψ(t) ≥ 0 is another given m×m matrix function
from L1(R) ∩ L∞(R).

We show that this problem is equivalent to the extension problem for the
corresponding positive definite GTKs.
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2. Integral representations of positive definite GTKs

1. The following theorem was announced by V. Katznelson [Ka] and was
proved by the author [Bek1] as a particular case of a more general statement.
Its proof is particularly adapted to the study of positive definite GTKs, defined
on the semi-axis.

Theorem 1. In order that a matrix-valued kernel K(t, s), t, s ≥ 0, admits
an integral representation

K(t, s) =
∫ ∞
−∞

exp(−iJλt)dΣ(λ) exp(iJλs),(2.1)

where Σ(λ) is a monotone non-decreasing and bounded matrix function, it is
necessary and sufficient that K(t, s) be a continuous positive definite general-
ized Toeplitz kernel.

Proof. The necessity of the given condition can be proved easily. Indeed,
from (2.1) it follows that K(t, s) has the structure of a GTK. The continuity
of K(t, s) follows from the boundedness of the function Σ(λ). For any smooth
vector function f(t) = {fν(t)}m+n

ν=1 , t ≥ 0, with compact support we obtain
from (2.1)∫ ∞

0

∫ ∞
0

f∗(t)K(t, s)f(s)dtds

=
∫ ∞
−∞

[∫ ∞
0

exp(iJλt)f(t)dt
]∗
dΣ(λ)

[∫ ∞
0

exp(iJλs)f(s)ds
]
≥ 0,

using the monotonicity of Σ(λ). Therefore, by (1.4′), the kernel K is positive
definite.

In order to prove the sufficiency of the condition, we use Krein’s method
of directing functionals [Kr1][Kr2][Kr3].

Let L be the set of all vector functions f(t) = {fν(t)}m+n
ν=1 ∈ C∞, t ≥ 0,

with compact support. We introduce in L a (possibly degenerate) scalar
product (·, ·)− by putting

(f, g)− =
∫ ∞

0

∫ ∞
0

g∗(t)K(t, s)f(s)w(t)w(s)dtds,(2.2)

where w(t) = (1 + t2)−1. From the positive definiteness of the kernel K it
follows that

(f, f)− ≥ 0.
We define a linear operator A in L by

(2.3) (Af)(t) = iJ
1

w(t)
d

dt
(w(t)f(t)).

The domain D(A) of this operator consists of the functions f(t) ∈ L satisfying
f(0) = 0. It is obvious that the set D(A) is dense in L in the following
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sense: For any function f ∈ L there exists a sequence fn, n = 1, 2, . . . , with
fn ∈ D(A), such that

(f − fn, f − fn)− → 0.
Using (1.2) it is easy to verify that the operator A is Hermitian, that is,

(2.4) (Af, g)− = (f,Ag)−, f, g ∈ D(A).

Consider the map Φ : (f, λ)→ Φ(f ;λ) from L × R to Cm+n, defined by

(2.5) Φ(f ;λ) =
∫ ∞

0

exp(iJλt)f(t)w(t)dt.

This map has the following properties:
(i) For any λ ∈ R the map f → Φ(f ;λ) is linear.
(ii) For any f ∈ L the map λ→ Φ(f ;λ) is holomorphic on R. (Actually,

Φ(f ;λ) is an entire function for any f ∈ L.)
(iii) For λ = 0 the range of Φ(·; 0) is the whole space Cm+n.
(iv) The equality Φ(g;λ) = 0 holds if and only if there exists a vector

f ∈ D(A) such that

(2.6) Af − λf = g.

These properties mean that Φ(f ;λ) is a directing functional for the opera-
tor A (see [Kr1], [Kr2], [Kr3]). By Krein’s theorem it follows that there exists
a non-decreasing left continuous matrix function Σ(λ), with Σ(0) = 0, such
that for any f, g ∈ L

(2.7a) (f, g)− =
∫ ∞
−∞

Φ∗(g;λ)dΣ(λ)Φ(f ;λ).

Writing out explicitly the left and right hand sides of this relation, we obtain

(2.7b)
∫ ∞

0

∫ ∞
0

g∗(t)K(t, s)f(s)w(t)w(s)dtds

=
∫ ∞
−∞

[∫ ∞
0

exp(iJλt)g(t)w(t)dt
]∗
dΣ(λ)

[∫ ∞
0

exp(iJλs)f(s)w(s)ds
]
.

From the second relation it is not hard to derive (2.1). Since

K(0, 0) =
∫ ∞
−∞

dΣ(λ)

and K is a continuous kernel, the last integral is finite, which means that Σ(λ)
is a bounded matrix function. This completes the proof of Theorem 1. �

Remark. The right-hand side of (2.1) defines a positive definite GTK
which coincides with K on nonnegative values of the arguments. Therefore,
from Theorem 1 it follows that a positive definite GTK, defined on R+, can be
extended to the entire real axis, while preserving its structure and the positive
definiteness.
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3. Conditions guaranteeing uniqueness of integral representations
of GTKs

Let v(K) denote the set of all matrix functions Σ(λ) of order (m + n) ×
(m + n) that have the integral representation (2.1). In the previous section
we have shown that the set v(K) is not empty. In this section we will obtain
conditions under which the set v(K) contains only one element, that is, con-
ditions guaranteeing the uniqueness of the integral representation (2.1). In
Section 4, a parameterization of the set v(K) will be obtained, in the case
these conditions are not fulfilled.

In our proofs we will use the techniques of equipped Hilbert spaces. Here
we briefly state, without proofs, the facts we shall need; details can be found
in the book by Yu. M. Berezansky [Ber, Chapters I and VIII].

1. Let h0 denote the Hilbert space consisting of vector functions f(t) =
{fν(t)}m+n

ν=1 , defined on the positive semi-axis, for which

‖f‖20 =
m+n∑
ν=1

∫ ∞
0

|fν(t)|2w(t)dt <∞.(3.1)

The scalar product in h0 is

(f, g)0 =
∫ ∞

0

(f(t), g(t))w(t)dt =
m+n∑
ν=1

∫ ∞
0

fν(t)gν(t)w(t)dt,(3.2)

where (·, ·) denotes the scalar product in the Cm+n.
The kernel K(t, s) generates a positive operator K in H0 via the formula

(3.3) Kf(t) =
∫ ∞

0

K(t, s)f(s)w(s)ds.

Because the diagonal elements of the kernels K(t, t) take constant values and∫ ∞
0

tr[K(t, t)]w(t)dt <∞,

the operator K is nuclear (belongs to the trace class) (see [GK, Chapter 3]),
that is, K is a compact operator and its eigenvalues ρk(≥ 0) satisfy∑

k

ρk <∞.

We will suppose that for any vector f ∈ H0, f 6= 0, the condition

0 < (Kf, f)0 ≤ ‖f‖20

holds, i.e., that the operator K does not annihilate a non-zero vector.
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The negative space H− is obtained by completing the space H0 with respect
to the norm generated by the scalar product

(f, g)− = (Kf, g)0 =
∫ ∞

0

∫ ∞
0

g∗(t)K(t, s)f(s)w(t)w(s)dtds.(3.4)

The positive space H+ is defined by completing the lineal R(K) (the range of
the operator K) with respect to the norm generated by the scalar product

(u, v)+ = (K−1u, v)0, (u, v ∈ R(K)).(3.5)

These three spaces satisfy
H+ ⊂ H0 ⊂ H−;

H+ is dense in H0 with respect to the norm ‖ · ‖0, and H0 is dense in H− with
respect to the norm ‖ · ‖−.

Since K is a compact operator, its eigenvectors hj , j = 1, 2, . . ., form an
orthonormal basis in the space H0. The system {ρ−1/2

j hj} forms an orthonor-

mal basis in the space H−, and the system {ρ1/2
j hj} forms an orthonormal

basis in the space H+.
The operator K̂ is defined as the continuous extension of the operator K to

the space H−. Its range is the whole space H+. Any vector ω ∈ H− satisfies

‖K̂ω‖+ = ‖ω‖−,

and for any vector ω ∈ H− and any function f ∈ H0 we have

(ω, f)− = (K̂ω, f)0 = (K̂ω, K̂f)+.(3.6)

The space H− contains δ-functions δν(t), ν = 1, . . . , p+ q, such that

(3.7) (δν(s), δµ(t))− = Kµν(t, s),

and for any continuous vector function f(s) a bilinear form is defined by

(3.8) (f, δν(t))0 = fν(t).

2. In Section 2 an operator A was defined in order to prove Theorem 1.
Let A− be the Hermitian operator obtained by taking the closure of this
operator in the space H−, and let A0 be the closure of A in the space gH0. By
Krein’s theorem the integral representation (2.1) is unique if and only if A−
is a maximal (and, in particular, selfadjoint) operator. Therefore, we have to
determine the defect numbers of the operator A−.

Lemma 1. Suppose that the following conditions hold:
(i) m = n;
(ii) T1(s) = T2(−s);
(iii) Γτ (s) = Γ(s), where Γτ denotes the transpose matrix.

Then the defect numbers of the operator A− are equal.
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Proof. Consider the map I: H− → H−, defined on the dense lineal H0 by
the formula

I
(
f1(s)
f2(s)

)
=
(
f̄2(s)
f̄1(s)

)
,

where f1 and f2 are m-dimensional components of the vector f ∈ H0 and the
bar denotes complex conjugation. Evidently, we have I(λf+µg) = λ̄If+ µ̄Ig,
(If, Ig)− = (f, g)−, and I(If) = f . Thus, I is an involution and can be
extended to the space H−.

Since the domain D(A) of the operator A is invariant under the involution
I, and I(Af) = A(If), the operator A is real with respect to this involution.
Therefore, the defect numbers of the operator A− are equal. �

In order to determine the defect numbers of the operator A−, consider the
equation

A∗−ω(t; z)− zω(t; z) = 0, =z 6= 0.(3.9)

The defect number n− is equal to the number of linearly independent solutions
of this equation in the space H− for z belonging to the upper half-plane
C+. Analogously, the defect number n+ is equal to the number of linearly
independent solutions of the equation (3.9) in the space H− for z belonging
to the lower half-plane C−.

The operator A∗− is given by

A∗− = K̂−1A∗0K̂.

The domain D(A∗0) of the operator A∗0 consists of all vector functions g(s)
which are absolutely continuous and satisfy g′ ∈ H0. The operator A∗0 acts
via the formula

A∗0g(s) = iJg′(s).

Therefore, equation (3.9) takes the form

iJ
du

dt
− zu = 0,(3.10)

where u = K̂ω. Equation (3.9) has a solution ω in the space H− if and only
if equation (3.10) has a solution in the space H+.

The linearly independent solutions of equation (3.10) are proportional to
the columns of the matrix function
(3.11)

U(t; z) = exp(−iztJ) =
[
e−iztIm 0

0 eiztIn

]
= [u1(t; z), . . . , um+n(t; z)].

If a vector uν(t; z) belongs to the space H+, then there exists a vector ων ∈ H−
such that K̂ων = uν(t; z), and the corresponding defect number is not equal
to zero.
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For z ∈ C+ and ν = 1, . . . ,m,∫ ∞
0

(uν(t; z), uν(t; z))w(t)dt =∞.

Hence, uν(t; z) is not in the space H0, and therefore not in the space H+.
Thus, the defect number n− satisfies n− ≤ n. Similarly, for z ∈ C− and
ν = m+ 1, . . . , n, the vector uν(t; z) does not belong to the space H+ and we
therefore have n+ ≤ m.

The map Φ from L × R to Cm+n was defined by (2.5). We extend the
definition of this map to L × C by setting

Φ(f ; z) =
∫ ∞

0

exp(iJzt)f(t)w(t)dt, f ∈ L.

For any vector f ∈ L, the function Φ(f ; z) = {Φν(f ; z)}m+n
ν=1 is an entire vector

function. (Recall that L consists of functions with compact support.)

Theorem 2. In order that the set V (K) contain more than one element
it is necessary that there exist numbers ν− (m+1 ≤ ν− ≤ m+n) and ν+ (1 ≤
ν+ ≤ m) and numbers C−z and C+

z depending only on z such that, for any
z ∈ C− or z ∈ C+, and any function f ∈ H0, the following inequalities hold:

(3.12a) |Φν−(f ; z)| ≤ C−z ‖f‖−, z ∈ C−,

and

(3.12b) |Φν+(f ; z)| ≤ C+
z ‖f‖−, z ∈ C+.

In order that the set V (K) contain more than one element it is sufficient that
the inequalities (3.12a) and (3.12b) hold for some z− ∈ C− and z+ ∈ C+,
respectively.

Proof. Suppose, for instance, that n− 6= 0. Then for any z ∈ C− there
exists ν− (m+1 ≤ ν− ≤ m+n) such that uν−(t; z̄) ∈ H+ and the corresponding
vector ων− = K̂−1uν− belongs to the space H−. By (2.5), Φν−(f ; z) can be
written in the form

Φν−(f ; z) = (f, ων−)−,

which means that Φν−(·; z) is a continuous linear functional on the space H−.
Thus (3.12a) holds. Similarly we see that if n+ 6= 0 then (3.12b) holds.

To obtain the other direction, we reverse these arguments. �

Corollary 1. In order that the set V (K) contain only one element it is
necessary that, for any z ∈ C− (or z ∈ C+),

(3.13)
∞∑
j=1

1
ρj
|Φν(hj ; z)|2 =∞,



GENERALIZED TOEPLITZ KERNELS 1323

where ν = m+ 1, . . . ,m+ n if z ∈ C− (or ν = 1, . . . ,m, if z ∈ C+), {hj}∞j=1

is the complete system of eigenvectors of the operator K in the space H0, and
ρj are the corresponding eigenvalues. Conversely, if these conditions hold for
some z ∈ C− (or some z ∈ C+), then V (K) contain only one element.

4. Description of the set V(K)

1. We will later consider the case when the integral representation (2.1)
is not unique. Here we concentrate on the case m = n which is the most
important case for applications. In other words, we assume that T1, T2, and
Γ are square matrix functions of order m, and that the defect index of the
operator A− is (m,m). By the results of the previous section this implies
that the vectors uν(t; z), ν = m+ 1, . . . , 2m for z ∈ C+ and ν = 1, . . . ,m for
z ∈ C−, belong to the space H+. (We will consider the general case in another
paper.)

By Krein’s theorem [Kr3] there is a one-to-one correspondence between the
set V (K) and the set of spectral functions F (λ) of the operator A−, given by
the formula

(R(z)f, f)− =
∫ ∞
−∞

Φ(f ; z)∗dΣ(λ)Φ(f ; z)
λ− z

,(4.1)

where R(z) is the resolvent of the operator A− corresponding to the spectral
function F (λ). Thus, we need to describe the resolvents of the operator A−.

Since we assume that the defect numbers of the operator A− are equal, A−
admits selfadjoint extensions in the space H−. Let Â− be such an extension,
and let R̂(z) = (Â− − zI)−1 (=z 6= 0) be the resolvent.

The set of generalized resolvents R(z) of the operator A− for z in the upper
half-plane C+ (=z > 0) is described by the Krein-Saakjan formula [Saa]

(4.2) R(z) = R̂(z)− Ûiz(IN − w+(z))×

× [2iIN + (z − i)PNÛ−iz(IN − w+(z))]−1PNÛ−iz.

Here N = Ni = [(A− + iI)D(A−)]⊥ is the defect subspace of the operator
A−; PN is the orthogonal projector onto this subspace; Ûζz is given by

Ûζz = (Â− ζI)(Â− zI)−1 = I + (z − ζ)R̂(z);

w+(z) is a holomorphic in the upper half-plane satisfying |w+(z)| ≤ 1, z ∈ C+,
i.e., w+(z) belongs to the unit ball of the space H∞ in the upper half-plane.
A short proof of this formula was given and partially published by the author
[Bek3].

2. Let us introduce some notation. We will often write a vector function
f with 2m components in the form

f =
(
f (1)

f (2)

)
,
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where f (1) and f (2) are vector functions with m components. For any vector
function f with m components and any complex number z, we define

(4.3) F±(f ; z) =
∫ ∞

0

exp (±izt)f(t)w(t)dt,

provided that the integral makes sense.
Let Ω+ be a 2m × m matrix whose columns form a basis for the defect

subspace Ni in the space H−. By (3.11) the matrix Ω+ can be chosen such
that

K̂Ω+ =
(

0
exp (−t)Im

)
.

Analogously, we define a matrix Ω−, whose columns form a basis of the defect
subspace N−i, and which is of the form

K̂Ω− =
(

exp (−t)Im
0

)
.

Using an orthogonal basis {ρ−1/2
j hj(t)} of the space H− and the above nota-

tions, we can write

Ω+ =

(
Ω(1)

+

Ω(2)
+

)
,

where

(4.4) Ω(k)
+ =

∑
j

1
ρj
h

(k)
j (F+(h(2)

j ; i))∗, k = 1, 2.

In the same way, we have

Ω− =

(
Ω(1)
−

Ω(2)
−

)
,

where

(4.5) Ω(k)
− =

∑
j

1
ρj
h

(k)
j (F−(h(1)

j ;−i))∗, k = 1, 2.

3. We suppose that for µ = 1, 2, . . . ,m the µ-th columns of the matrices
Ω+ and Ω− have equal norms in the space H−. (If this assumption is not
satisfied, an additional constant factor is needed in the formulas below.)

We use the selfadjoint extension Â of the operator A defined as follows.
The domain D(Â) consists of those vectors f̂ which can be represented in the
form f̂ = f + (Ω+ + Ω−)X, where f ∈ D(A) and X is a column vector with
m fixed components. The operator Â is given by

Âf̂ = Af + i(Ω+ − Ω−).
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Now, for f ∈ H0 the resolvent R̂(z) = (Â− Iz)−1 is given by

(4.6) R̂(z)f(t) = − iJ

w(t)
exp (−iJzt)

∫ t

0

exp (iJzτ)f(τ)w(τ)dt

− iJ

w(t)
exp (−iJzt)

∫ t

0

exp (iJzτ)×

× [(z − i)Ω+ + (z + i)Ω−]w(τ)dτX

+ (Ω+ + Ω−)X.

The vector X is defined as

(4.7a) X = −[(z − i)F+(Ω(1)
+ ; z) + (z + i)F+(Ω(1)

− ; z)]−1F+(f (1); z)

for z ∈ C+, and

(4.7b) X = −[(z − i)F−(Ω(2)
+ ; z) + (z + i)F−(Ω(2)

− ; z)]−1F−(f (2); z)

for z ∈ C−, where the matrix F+(Ω(1)
+ ; z) is defined by term by term integra-

tion of (4.4), that is,

(4.8) F+(Ω(1)
+ ; z) =

∑
j

1
ρj
F+(h(1)

j ; z)(F+(h(2)
j ; i))∗,

and the other matrices F±(Ω(k)
± ; z) are defined similarly. From the assump-

tion about defect numbers and Corollary 1 it follows that the infinite series
converge for the corresponding non-real values of z. Moreover, since for any
j the vector function hj(t)w(t) belongs to the space L2(R+) ∩ L1(R+), the
functions F+(h(k)

j (t); z), k = 1, 2, are analytic in the upper half-plane C+ and
belong to H2(C+) ∩ (W+), where H2(C+) is the Hardy space in the upper
half-plane and (W+) is the Wiener class in the upper half-plane. Similarly,
the functions F−(h(k)

j (t); z), k = 1, 2, are analytic in the lower half-plane C−
and belong to H2(C−)∩(W−). (As usual, we identify a function from Hp(C±)
with its boundary function on the real axis.)

4. Let Σ(λ) = (Σlj(λ)l,j=1,2) be a matrix function from the set V (K) cor-
responding to the resolvent R(z), and let Σ̂(λ) = (Σ̂lj(λ)l,j=1,2) be the matrix
function from the set V (K) corresponding to the “standard” resolvent R̂(z).
By Bochner’s theorem the blocks Σ11(λ) and Σ22(λ) are defined uniquely.
Moreover, it follows from (2.1) that the blocks Σ21(λ) and Σ̂21(λ) satisfy∫ ∞

−∞
exp (iλt)d[Σ21(λ)− Σ̂21(λ)] = 0, λ ≥ 0.

Therefore, by F. and M. Riesz’ Theorem, we have

dΣ21(λ)− dΣ̂21(λ) = H(λ)dλ,
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with an m×m matrix function H(λ) belonging to the Hardy space H1(C+)
in the upper half-plane C+. Thus we have

(4.9) dΣ(λ)− dΣ̂(λ) =
(

0 H∗(λ)
H(λ) 0

)
dλ.

Theorem 3. There is a one-to-one correspondence between the set of m×
m matrix functions H(λ) ∈ H1(C+) satisfying equation (4.9) and the set of
m ×m matrix functions w+(z) on the unit ball of the space H∞(C+), given
by

(4.10)

H(λ) = − 1
π

[
(λ+ i)F+(Ω(2)∗

+ ;λ) + (λ− i)F+(Ω(2)∗
− ;λ)

]−1

F−(Ω(2)
+ ;−i)×

× [I − w+(λ)]
[
(λ− i)F+(Ω(1)

+ ;λ)w+(λ) + (λ+ i)F+(Ω(1)
− ;λ)

]−1

.

Here w+(λ) are the boundary values of the function w+(z) on the real axis R.

Proof. The result follows by a straightforward calculation using (4.2). �

5. The generalized Nehari problem

In this section we consider the following problem:
Let ϕ(λ) be a given m×m matrix function from L1 ∩ L∞ on the real axis

R. Is it possible to approximate this function by an m ×m matrix function
h(λ) ∈ H1 ∩H∞, such that the pointwise difference satisfies

(5.1) |ϕ(λ)− h(λ)| ≤ ψ(λ)

almost everywhere, where ψ(λ) ≥ 0 is another given non-negative matrix func-
tion from L1 ∩ L∞?

This problem is called the generalized Nehari problem.
Condition (5.1) is equivalent to the following condition: For almost all

λ ∈ R the 2m× 2m matrix

(5.2) S(λ) =
[

ψ(λ) [ϕ(λ)− h(λ)]∗

ϕ(λ)− h(λ) ψ(λ)

]
is positive definite.

Consider the generalized Toeplitz kernel defined by (2.1) with dΣ(λ) =
S(λ)dλ, i.e.,

K(t, s) =
∫ ∞
−∞

exp (−iJλt)S(λ) exp (iJλs)dλ.

Since S(λ) ≥ 0, this kernel is positive definite. Since the elements of the
matrix S(λ) are bounded functions, it is easy to see that the kernel K(t, s)
generates a bounded operator in the Hilbert space L2

2m(R). If t, s are restricted
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to the positive semi-axis R+, then the kernel K generates a bounded operator
in the space L2

2m(R+).
Conversely, suppose that a positive definite GTK K(t, s) (see (1.1)) gen-

erates a bounded operator in the space L2
m+n(R+). From this assumption,

Parseval’s identity, and (2.1) it follows that for any function f ∈ L2
m+n(R+)

and any matrix function Σ(λ) ∈ V (K) one has

(5.3)
∫ ∞
−∞

f̃∗(λ)dΣ(λ)f̃(λ) ≤ K
∫ ∞
−∞
‖f̃(λ)‖2dλ,

where K is a positive constant and

f̃(λ) =
∫ ∞

0

exp (iJt)f(t)dt.

Lemma 2. Suppose the kernel K generates a bounded integral operator in
the Hilbert space L2

m+n(R+) with norm not exceeding K. Then any matrix
function Σ(λ) ∈ V (K) is absolutely continuous with respect to the Lebesgue
measure dΣ(λ) = S(λ)dλ, and its “density” S(λ) is a nonnegative matrix
function for almost all λ ∈ R and satisfies ‖S‖∞ ≤ K.

Remark. Since the matrix function Σ(λ) is bounded, it is obvious that
S(λ) ∈ L1.

Proof. Since Σ(λ) is a non-decreasing matrix function, its non-diagonal
elements are absolutely continuous with respect to the diagonal elements,
which are non-decreasing scalar functions. Therefore, it is enough to prove
that any diagonal element of the matrix function Σ(λ) is absolutely continuous
with respect to the Lebesgue measure.

Noting that the Fourier transform of a function from L2(R+) is a function
in the Hardy space H2(C+), and using Parseval’s identity, we see that the
lemma is equivalent to the following statement:

Let σ(λ) be a non-decreasing and bounded function on the real axis, and
suppose there exists a positive constant K such that, for any function h(λ) ∈
H2(C+), the following inequality holds:

(∗)
∫ ∞
−∞
|h(λ)|2dσ(λ) ≤ K

∫ ∞
−∞
|h(λ)|2dλ.

Then dσ(λ) = s(λ)dλ, where the “density” s(λ) belongs to L1 ∩ L∞ and
satisfies ‖s‖∞ ≤ K.

Since any function h(λ) from H2 does not vanish on a set of positive
Lebesgue measure, this statement is not trivial.

For any function h(λ) ∈ H2 and for any real t the function exp (itλ)h(λ)
also belongs to the space H2. Applying inequality (∗) to a function of the
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form (
∑
ck exp (itkλ))h(λ), where ck are arbitrary complex numbers, tk are

real numbers, and the sum is finite, we obtain∑
ck c̄l

∫ ∞
−∞

ei(tk−tl)λ|h(λ)|2(Kdλ− dσ(λ)) ≥ 0.

Hence the function

γ(t) =
∫ ∞
−∞

eitλ|h(λ)|2(Kdλ− dσ(λ)), t ∈ R,

is a continuous positive definite function. By Bochner’s theorem, there exists
a non-decreasing and bounded function ρ(λ) on the real axis such that

γ(t) =
∫ ∞
−∞

eitλdρ(λ).

By the uniqueness theorem for Fourier transforms it follows that

K|h(λ)|2dλ = |h(λ)|2dσ(λ) + dρ(λ).

Since the measures |h(λ)|2dσ(λ) and dρ(λ) are both positive, the above state-
ment follows, and the proof of the lemma is complete. �

From the lemma we obtain the following corollary.

Corollary 2. Let K(t, s) be an (m + n) × (m + n) positive definite
generalized Toeplitz kernel which generates a bounded operator in the space
L2
m+n(R+). Then any extension of this kernel which preserves its struc-

ture and the positive definiteness generates a bounded operator in the space
L2
m+n(R) with the same norm.

Let

S(λ) =
[
ψ1(λ) ϕ∗(λ)
ϕ∗(λ) ψ2(λ)

]
≥ 0

be a “density” matrix. Then ψ1(λ) is the symbol of the Toeplitz operator Tψ1 ,
which is the integral operator acting on the space L2

m(R+) by the formula

(5.4) (Tψ1f)(t) =
∫ ∞

0

T1(t− s)f(s)ds.

Similarly, ψ̃2(λ) = ψ2(−λ) is the symbol of the Toeplitz operator Tψ̃2
, which

acts on the space L2
n(R+) and has kernel function T2. The function ϕ(λ) is

one of the possible symbols of the Hankel operator Γφ, which maps L2
m(R+)

to L2
n(R+) by the formula

(5.5) (Γφf)(t) =
∫ ∞

0

Γ(t+ s)f(s)ds.

The condition for the positive definiteness of the kernel K can be formulated
as follows:

(5.6) ‖Γφ‖2 ≤ ‖Tψ1‖‖Tψ2‖.
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This leads to the following theorem.

Theorem 4.

(1) The generalized Nehari problem is solvable if and only if the norm of
the Hankel operator Γφ with symbol φ is not greater than the norm of
the Toeplitz operator Tψ with symbol ψ, i.e., if ‖Γφ‖ ≤ ‖Tψ‖.

(2) The problem has a unique solution if and only if the corresponding
GTK K(t, s) possesses a unique extension to the real axis R.

(3) If the solution of the generalized Nehari problem is not unique, then
a description of the solution set is given by (4.10).

Remark. After submitting this article, the author learned that W. Helton
[Hel] solved the generalized Nehari problem for the case of rational functions
φ(λ) and ψ(λ).
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