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RECOGNIZING THE 3-SPHERE

S. V. IVANOV

ABSTRACT. A modification of the Rubinstein-Thompson criterion for a
3-manifold to be the 3-sphere is proposed. Special cell decompositions,
called @-triangulations and irreducible @Q-triangulations, for closed com-
pact orientable 3-manifolds are introduced. It is shown that if a closed
compact orientable 3-manifold M2 is given by a triangulation (or by
a Q-triangulation) then one can effectively decompose M? into a con-
nected sum of finitely many 3-manifolds some of which are given by
irreducible Q-triangulations and others are 2-sphere bundles over a cir-
cle. Furthermore, it is shown that the problem whether a 3-manifold
given by an irreducible Q-triangulation is homeomorphic to the 3-sphere
is in NP, and the problem whether a Q-triangulation of a 3-manifold is
irreducible is in coNP.

0. Introduction

In 1992, Rubinstein [R92] (see also [R95], [R97]) proposed an elegant al-
gorithm that detects whether a triangulated 3-manifold is the 3-sphere’. A
proof that Rubinstein’s algorithm works was given by Thompson [T94] and
later by Matveev [Ma95] (note that in [Ma95] handle decompositions instead
of triangulations were used). We note that for 3-manifolds given by Heegaard
splittings of genus two the recognition problem for the 3-sphere had been
solved by Birman and Hilden [BH73] and by Homma, Ochiai and Takahashi
[HOT80].

The first aim of this article is to present a modification of the Rubinstein—
Thompson criterion for a 3-manifold to be the 3-sphere. This modification
deals with irreducible cell decompositions of 3-manifolds (which are compact
and orientable throughout this article) that contain a single 0-cell and whose
2-cells are biangles or triangles (Theorem 1). Such cell decompositions whose
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3-cells are tetrahedra and degenerate tetrahedra, called here Q-triangulations,
seem to be very convenient for algorithmic problems. In particular, we will
use @-triangulations to investigate the complexity of the recognition prob-
lem for the 3-sphere and show that this problem for 3-manifolds given by
irreducible Q-triangulations is in NP (Theorem 3). The problem whether a
given Q-triangulation is irreducible is shown to be in coNP (Theorem 4). We
will also give an effective procedure that decomposes a triangulated closed
3-manifold into a connected sum of finitely many 3-manifolds some of which
are given by irreducible Q-triangulations and others are 2-sphere bundles over
a circle (Theorem 2). This procedure together with the above results provides
another solution to the recognition problem for the 3-sphere in the class of all
triangulated 3-manifolds.

Recall that Rubinstein also announced in [R95], [R97] that every closed
irreducible orientable triangulated 3-manifold, up to Dehn twistings about
embedded incompressible tori, has finitely many isotopy classes of strongly
irreducible Heegaard splittings of given genus all of which can be effectively
constructed as almost normal surfaces. (Some comments on the status of
Rubinstein’s program [R97] to prove this statement can be found in [Ma99]
and some related results are obtained in [S00].)

We hope that the new concepts of irreducible ()-triangulations and almost
normal surfaces introduced here, as well as the techniques developed in this
article, will have broader applications, and, in particular, will be useful in
implementing Rubinstein’s program for atoroidal 3-manifolds.

Before stating the main results, we introduce the basic notation and defi-
nitions that are used throughout this article.

Let

M3 = M3
be a connected closed (compact and orientable) 3-manifold, equipped with a
finite cell decomposition 2 that contains r; > 0 open i-cells whose union we
denote by
g, i=0,1,2,3.
By
F=FQ)
we denote a set of r3 pairwise disjoint closed polyhedra (that is, closed 3-balls
with given cell decompositions of their boundaries §F3) which enable us to
define a cellular continuous map

a: F3— M3

such that a preserves dimension (that is, i-cells of 2 are sent by a to i-cells of
Q) and a(F3) = M3. For example, if all polyhedra in F? are tetrahedra and
for every tetrahedron T3 in F? its a-image a(T?) is nonsingular (that is, the
restriction a|7s of @ on T® is an embedding), then () is called a triangulation.
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Recall that the existence of triangulations for compact 3-manifolds was first
established by Moise [Mo052] (see also [B59]). The closures of 0-, 1-, and 2-
cells of F? (or, less formally, closed 0-, 1-, and 2-cells of F?) will be called,
respectively, vertices, edges, and faces.

Consider the following two properties of a cell decomposition 2 = Q(F?).

(A1) There is a single O-cell E° in M3, that is, ro = 1 (and ry, 2, 73 are

all positive).

(A2) If e is an edge of F? then e is nonsingular, that is, e is not a loop.

If a cell decomposition 2 does not have properties (Al) and (A2) then
certain reductions (as described in Section 2) apply to € and produce finitely
many 3-manifolds

M13,917"'7MI§,Qk7 kZO;
such that M is the connected sum of M7, ,..., M} and cell decomposi-
tions €y, . .., Q have properties (A1) and (A2). (The case k = 0 here means

that M3 is the 3-sphere.)
By M3(j), j =0,1,2, we denote the j-spine of M3, i.e.,

M) =&+ -+ €.

Similarly, F2(j), j = 0, 1,2, denotes the j-spine of F?.

We now give the key definitions of normal and Al-normal disks and surfaces
(cf. [Ha61], [Ha68], [JRS9], [Hn92], [R95], [R7], [T94], [S00]).

A disk d? properly embedded in 72 (and its image a(d?) C M) is called
normal if the curve dd? is in general position with respect to the 1-spine F3(1)
(that is, 0d? is disjoint from F3(0) and intersects edges of F? in finitely many
piercing points), the intersection dd? N F2(1) is nonempty and dd? intersects
each edge of F? in at most one point. A curve in 82 which bounds a normal
disk in F? is also termed normal. A normal disk d? C F3 is called simple if
Od? is the link of a vertex of F3.

A disk d* properly embedded in 73 (as well as its image a(d?) C M3
and the curve dd? C 8F?) is called Al-normal if the curve Od? is in general
position with respect to the 1-spine F3(1), d? intersects each edge of F° in
at most two points, and the following holds. If

{gl,""gkg}

is the set of all edges of 72 that are crossed by 0d? twice then k, > 0 and
there is a partition of this set into two nonempty subsets

{61,...,6ke}, {fla---;fkf}

such that for every
ie{l,...,ke} and je{l,...,ks}

the points f;NAd? lie in distinct connected components of 8d? — g;; see Fig. 1.
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FIGURE 1

A compact closed surface U? (not necessarily connected) embedded in M3
is called normal if U? is in general position with respect to M3(2) and all
connected components of o~ !(U?) are normal disks.

A compact closed surface U? (not necessarily connected) embedded in M3
is called Al-normal if U? is in general position with respect to Mg (2), there is
exactly one Al-normal disk in a~!(U?), and all other connected components
of a=1(U?) are normal disks.

As an example, we observe that property (A2) holds if and only if the link
Link E° of every 0-cell E® of M3 is a normal 2-sphere in MJ.

Two normal (resp. Al-normal) surfaces UZ,UZ in Mg are called normally
parallel if there is an isotopy which turns U7 into UZ so that the normal (resp.
Al-normal) structure of U never changes during the isotopy.

We say that a cell decomposition Q of Mg is irreducible if 2 has properties
(A1)—(A2) and every normal 2-sphere in M3 is normally parallel to the link
Link E° of the vertex E® of Mg.

A cell decomposition Q of M§ is called a Q-triangulation if it has properties
(A1)—(A2) and, in addition, one of the following properties holds:

(a) F3 consists of a single polyhedron with two vertices, two edges and
two faces (and so M is the real projective 3-space).

(b) Every polyhedron F? in F? is either a tetrahedron (that is, there
are 4 vertices and 3 nonsingular triangle faces in F3; see Fig. 2(a))
or a degenerate tetrahedron, by which we mean a polyhedron with 3
vertices, 2 nonsingular triangle faces and b(F3) > 0 biangle faces; see
Fig. 2(b).



RECOGNIZING THE 3-SPHERE 1077

FIGURE 2

We now state the main results of this article.

THEOREM 1. Suppose that a closed compact orientable 8-manifold Mg is
given by an irreducible cell decomposition Q and every face in F3 = F3(Q) is
a biangle or triangle. Then Mg is homeomorphic to the 3-sphere if and only
if there is an Al-normal 2-sphere in M.

The proof of Theorem 1 occupies Section 1 and is based on the Rubinstein—
Thompson idea [R95], [R97], [T94] of using efficient sweepouts or thin posi-
tions in order to construct Al-normal surfaces in 3-manifolds. (The original
idea of thin positions is due to Gabai [G87].) More applications of this fruitful
idea are described in [R95], [R97], and details can be found in [S00].

Note that Theorem 1 applies only to 3-manifolds given by irreducible cell
decompositions whose 2-cells are biangles and triangles. For this reason, we
will describe in Section 2 an effective procedure which, given a triangulated
3-manifold M§$, decomposes M$ into a connected sum of finitely many 3-
manifolds some of which are given by irreducible @-triangulations and the
others are 2-sphere bundles over a circle. The first step of this procedure is
to construct 3-manifolds

Mig.,...;.M}o,, k>0,
given by Q-triangulations Q,...,Qy (where the case k = 0 means that Mg
is the 3-sphere) such that Mg is the connected sum of Mg ..., Mpg .
(This first step is polynomially fast in terms of the size of the input which
is ©2.) Then, similarly to [K29], [R97], [T94], we consider a maximal system
of nonparallel normal 2-spheres in each MfQ, 1 =1,...,k, and, using these
systems for all i =1,...,k, construct a decomposition for M as required.



1078 S. V. IVANOV

Define a parameter N (Q2) of a triangulation (or a Q-triangulation) Q of M3
as TNt + 3Np, where N7 is the number of tetrahedra in 72 = F2(Q) and
Np is the number of degenerate tetrahedra in 2. Summarizing, we have the
following result.

THEOREM 2. Let M3 be a closed compact orientable 3-manifold given by a
triangulation (or by a Q-triangulation) Q. Then one can effectively construct
a decomposition of M into the connected sum of ki > 0 2-sphere bundles
over a circle and ky > 0 3-manifolds M13,S217 eee, Mlgz,ka given by irreducible
Q-triangulations Qq, ..., Q, so that

N(Q) + -+ N(Qs,) < N(Q).

(As before, the case ki1 + k2 = 0 means that M3 is homeomorphic to the
3-sphere.)

Theorem 2 effectively reduces the problem whether a triangulated 3-mani-
fold is homeomorphic to the 3-sphere to the corresponding problem for a
3-manifold given by an irreducible @-triangulation. To investigate the com-
plexity of the latter problem we will use Theorem 1, the Haken theory of
normal surfaces and a recent technical result of Hass, Lagarias and Pippenger
[HLP99] (see Lemma 2.1 in Section 2; recall that, by [HLP99], the unknotting
problem is known to be in NP) and establish that this problem is also in NP,
that is, decidable in nondeterministic polynomial time in terms of the size of
Q.

THEOREM 3. The problem whether a 3-manifold M3 given by an irre-
ducible Q-triangulation Q is homeomorphic to the 3-sphere is in NP.

We will also estimate the complexity of the problem whether a Q-trian-
gulation Q of a 3-manifold MJ is irreducible (which is of interest in view of
Theorems 2 and 3).

THEOREM 4. The problem whether a Q-triangulation Q0 of a 3-manifold
M$ is irreducible is in coNP.

The author is very grateful to Wolfgang Haken for many useful conversa-
tions and helpful comments on an earlier version of this article.

1. Proof of Theorem 1

If X C M3 then a~'(X) denotes the full preimage of X in F3. The
boundary, closure, interior, and the number of connected components of X
will be denoted by 0X, Cls X, Int X, and |X]|, respectively. The cardinality
of a finite set Y will also be denoted by |Y|. The union of two sets X,Y will
be denoted by X + Y (rather than by X UY). The notation X — Y means
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the closure of the set-theoretical difference X \ Y. A regular neighborhood of
X in Y is denoted by Ny (X).

Recall that a cell decomposition 2 of a 3-manifold M§ is called irreducible
if 2 has properties (A1)-(A2) and every normal 2-sphere in M§ is trivial, that
is, normally parallel to the link of the O-cell of M.

LEMMA 1.1.  Suppose that a cell decomposition Q of a 3-manifold M is
irreducible. Then the 3-manifold M is irreducible. In particular, every 2-
sphere in Mg 15 separating.

Proof. Arguing on the contrary, assume that Mg is reducible. That is, M$
contains a 2-sphere U2 which does not bound a 3-ball in M3. Without loss of
generality we can suppose that U? is in general position with respect to the
2-spine M3(2) of M3. Applying the standard process of normalization to U?
(for details see [JR89], [Hn92]), at the end of the process we obtain a normal
2-sphere UZ which does not bound a 3-ball either. Clearly, such a 2-sphere
U¢ is nontrivial, contrary to the assumption that  is irreducible. O

LEMMA 1.2. Suppose that a cell decomposition Q of a 3-manifold M3
is irreducible and there is an Al-normal 2-sphere A® in M3. Then M3 is
homeomorphic to the 3-sphere.

Proof. By Lemma 1.1, we can write
M3 - A = Mo+ M3,

where MJ , contains the O-cell E°. Let Aj (resp. A7) be an Al-normal 2-
sphere in M , (resp. M§ ;) that is normally parallel to 9M§ , (resp. OMS ;).

We apply the standard process of normalization to A? inside Ms?i,l- It is
easy to see that this process will result in a system B2 of pairwise disjoint
2-spheres such that if B? € B? then either B? sits in a 3-cell of M$ (that
is, B? is disjoint from MZ(2)) or for every 3-cell E® € £3 the intersection
E2 N B? consists of finitely many open disks the boundaries of whose closures
intersect M3(1) (and no further normalization of B? is possible). Let us show
that the second case is actually impossible. Arguing on the contrary, let B2
be a 2-sphere of the second case. Since Mg,l contains no normal 2-spheres,
B? is not normal and so there is a disk

b’ € o }(B?)

which is not normal. That is, the curve b' = Ob? intersects an edge e of
F? at least twice. Let o1, oo be consecutive along e points in b' N e and
e12 be the connected component of e — (0; + 02) that connects o; and o,.
If a(e;s) is disjoint from the Al-normal 2-sphere A2 then the normalization
process is incomplete and one more compression is possible (which eliminates
the points a(01), a(02)). This remark shows that e is crossed by curves in
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a"1(A?) N OF>. Since the curve b! is disjoint from a~!(A42) and bounds a
disk d?> C 9F2 with e C 0d?, it follows from the definition of an Al-normal
surface that e is crossed only by the boundary ¢} = 8cZ of the Al-normal
disk ¢ of a=1(A?).
Let
co C F? = 0F?,
where F3 is a polyhedron of F3, and
F? —¢f =G* + G},
where de C G3; see Fig. 3.

FIGURE 3

We also let
G?-e=G?+G2
It follows from the definition of an Al-normal disk that there is an edge f of
F3 with one vertex of 0f in G and the other one in G3; see Fig. 3. Let

fﬂc(1)=03+04

and let f34 be the connected component of f — (03 + 04) that connects the
points 03, o4. Note that Int f34 is disjoint from a_l(A2) and Int f34 is crossed
by the curve b! at least twice. Observe that since A2 is Al-normal, Int f34 is
disjoint from a~!(A42%) and b! crosses f34 at least twice. Now we can conclude
as above that one more compression of B? is possible (which eliminates two
points in a(b! N f34)), that is, the normalization process is incomplete. This
contradiction proves that all 2-spheres in B? are in 3-cells of M3, as required.
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Consider the following propositions for a finite system B? of pairwise dis-
joint 2-spheres embedded in M§

(B1) For every B* € B} the connected component of Mg ; — B* that con-

tains no Mg ; (this connected component exists by Lemma 1.1) is a
3-ball.

It is easy to observe that the truth value of proposition (B1) does not
change in the process of normalization of the 2-sphere A7 inside M ,. Since
at the end of the normalization process proposition (B1) is obviously true, it
must also be true in the beginning. This means that Mg ; is a 3-ball.

Analogously, we normalize the 2-sphere A% inside Ms?i,o and prove that this
normalization process results in a collection of 2-spheres disjoint from M3 (2)
and finitely many trivial normal 2-spheres. Letting (B0) denote proposition
(B1) with Mg , replaced by M§ ,, we observe as before that the truth value
of proposition (B0) does not change during the normalization process. Since
proposition (BQ) is true at the end of the process, it is also true at the be-
ginning. Therefore, Mg’o is also a 3-ball, whence Mg is a 3-sphere. This
completes the proof of Lemma 1.2. a

We now begin the proof of the converse of Lemma 1.2, which will be com-
pleted in Lemma 1.9.

From now on, assume that M3 is the 3-sphere and (2 is its irreducible cell
decomposition all of whose 2-cells are biangles or triangles (that is, all faces
in 72 are biangles or triangles).

Consider a singular foliation of M3 by S2(t), 0 < t < 1, where S2(t) is a
2-sphere if t € (0,1), S?(0) = E° and S?(1) = P are points, E° is the 0-cell
of M3 and P is a point in a 3-cell of M§3.

Without loss of generality, we can assume that the 2-spine Mg(2) of Mg is
in general position with respect to the foliation S%(t), t € (0,1). In addition,
applying isotopic deformations to M3(2) that fix a regular neighborhood of
E°, one can assume that the following properties hold (cf. [G87], [T94]).

(C1) For every t € (0, 1), the intersection
S%(t) N M(1)
consists of finitely many points at which 1-cells of M3 pierce S?(t)
and at most one tangency point at which a 1-cell of Mg is tangent to
S2(t).
(C2) There are finitely many levels
.- -otp €(0,1), #] <--- <t
called critical, at which S?(t}) does have a tangency point
PO(t) € S%(t5) N M(1).

For convenience, set 5 = 0 and #j. ., = 1.
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(C3) Let N(tF) denote the number of points in
M) N S*((t +1741)/2),

i =0,...,¢;. Then the number £; of critical levels is minimal (over all
isotopy deformations of M3(2) as specified above) and, if this number
¢; is fixed, then the sum

N(tg) + -+ N(t)
is minimal.

As an example, we note that N(t3) = 2r; = 2|€| (for S?(¢) with suffi-
ciently small £ > 0 is a trivial normal 2-sphere) and N (¢}.) = 0 (for S?2(1—¢)
is inside a 3-cell of M3).

Applying more isotopy deformations to M3(2), as specified above, that
now, in addition, fix MZ(1), we obtain the following additional properties:

(C4) For every critical level ¢F, i =1,...,¢;, the following is true. Let n =

n(t;) be the number of connected components in N3, (PO(7)) N €2
Q
Consider a union UP of n half planes

T ye, 2>0, i€{l,...,n},

z = tan(; 5

in the Euclidian 3-space E3. Also, consider a surface
=@ +y?) +o(t—t]), &€ {1},

in E3. Then there is a sufficiently small neighborhood ! = ¢!(t}) of
t¥ in (0,1) such that for ¢ € t! the intersection

Nigg (PO(£)) N M§(2) N S*(2)

looks like the intersection of UP (which corresponds to Mg(2)) with
the surface z = — (22 +y?) + (¢t — t7) (which corresponds to S2(t)) in
a small neighborhood of the origin (which corresponds to P°(}); see
Fig. 4, where the case § = 1 is depicted).

(C5) For every level t, t € (0,1), that is not critical, the intersection £2 N
S2(t) consists of finitely many isolated double (open) arcs and curves
at which S2(t) transversally intersects £2 and at most one exceptional
connected component that is either a single point at which S?(t) is
tangent to £2. (Locally this looks like the intersection of the surface
2z = 22 + y? and zy-plane at the origin) or which contains one simple
saddle point (this locally looks like the intersection of the surface
z = 22 — y? and zy-plane at the origin.)

(C6) For every i € {0,1,...,¢;} there are finitely many levels

tiy <tio < <tipuwp
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in (tf,t5,,), called secondary critical levels, at which S?(tf ;) does
have a tangency or saddle point

PO(t7;) € £2 N S*(t; ).

» X
t>tr
- t=tr
t <t
FIGURE 4
A critical level ¥, i € {1,...,£;}, is called an ¢-level if the number

|ME(1) NS> (¢, +¢)/2)| = N(t;_y)
is less than N(¢}) (by two). If
N(t7) = N(ti_y) -2

2

then ¢} is a u-level. We say that ¢ € (0,1) is a noneritical level if ¢ is not a
critical level and not a secondary critical level.

We now define upper and lower disks at a level ¢, t € (0,1), or for a level
surface S2(t). Note that this definition is quite similar to the corresponding
definition of Thompson [T94].

Let D? be a disk embedded in MJ so that

dD? = A' + B!,

where A' is a closed arc of a 1-cell of M3, B' is a closed arc in S?(t) with
OB' = 9A' = A' N B!, and Int D? + Int B! be disjoint from MZ(1). Denote
the connected components of M3 — S?(t) by

Mg(sz(t)a_)a Mg(sz(t)a"')a
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where E° € M3(S%(t),—). If a regular neighborhood N3,(B!) of B! in D?
has the property that

Npa(BY) € ME(S*(t),+)

then the disk D? with 0D? = Al + B! is called an upper disk at level ¢ (or for
the level 2-sphere S?(t)) and A! is the upper arc of D?, B! is the projection
arc of D?. Analogously, if

Np=(B') € M§(S*(t),-)
then the disk D? with D% = A! + B! is called a lower disk at level ¢, A® is
the lower arc of D2, and B! is the projection arc of D2.
For example, if ¢} is an /-level then it is easy to show that there is a lower
disk D3 (t) at any level t € (t},t;,,) and if ¢} is a u-level then there is an
upper disk D%(t) at any level t € (t;_;,t}); see Fig. 5(a)—(b).

PO(t;
S2(¢) W S(t7)

&

1

Dg(t) / —&
S(t) S(t)

i

(a) (b)

FIGURE 5

LEMMA 1.3. The first critical level t} is an £-level.

Proof. Arguing on the contrary, assume that ¢} is a u-level. Let the tan-
gency point PP(#;) (of the first critical level ¢7) belong to a 1-cell E' € &£!.
Then the closure Cls E* = E' + E° is unknotted in M3, that is, there is a
disk U? embedded in M3 such that OU? = E{ + E° and IntU? is disjoint
from M$(1). Taking a sufficiently small € > 0 (note that € can be chosen
arbitrarily small), we may assume that S2(¢) is a trivial normal 2-sphere and
the intersection

D? =U*n M3(S%(e),+)
is an upper disk at level ¢ with D2 = A' + B!, where A' C E' is the
upper arc of D? and B! C S2%(¢) is the projection arc of D2. Furthermore,
isotopically deforming D2, we can suppose that the intersection

D? N M3 (2)
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consists of A' and finitely many double arcs Hi,H3,... whose endpoints
are in Int B! and double curves in Int D? at which 2-cells of Mg transversally
intersect D?; see Fig. 6. Double curves in D?N M3 (2) can easily be eliminated
by using the standard innermost argument. More specifically, we pick an
innermost on a 2-cell E? of M$ curve C' in D? N M$(2) and compress D?
along the disk C? C E? bounded by C!'. By repeating such compressions
we can eliminate all double curves in D? N M3 (2) (without introducing new
double arcs in D? N M3 (2)).

Consider an outermost on D? arc, say H{, in D? N M3(2), that is, an arc
H} such that if K{ is the connected component of B! — §H;{ that connects
OH] then H] + K| bounds a disk K7 C D? with Int K7 disjoint from M3(2);
see Fig. 6.

Mg (2)
D? Q Bl
Hl
Hl 1 3
! ///\ (XYY H, S2(e)
Kt
Ki
EO
FIGURE 6

Switching to 72, let G® be the polyhedron in F? that contains the disk k?
with a(k?) = K?. Set 0k? = hi + ki, where

a(hi) = Hy, a(k;) = K,

and let G? be the face of G® that contains the arc hj.

First suppose that the points Oh{ lie on the same connected component of
G? Na~1(S?(g)), say on c'. Let ¢} be the connected component of ¢! — dhl
that connects points Ohi. By G C G? denote the disk bounded by h{ and ¢}
(note that Int h} and ¢} are disjoint for H} N S?(¢) = OH}; see Fig. 7).

If Int G3 is disjoint from a~!(D?) then we can compress the disk D? along
a(G%) to eliminate the arc Hf. That is, we push a regular neighborhood

22 (HY) along a(G%) to a(c}) and then slightly off a(c§) into ME(S%(e), —)
which results in splitting the disk D? C M3(S?(e), +) into two disks

D3, D3 C M3(5%(e), +)
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FIGURE 7

one of which, similar to D2, is an upper disk (with the same upper arc as that
of D?) and is called the result of compression of D? along a(G3).

Now suppose that the disk G} is not disjoint from a~'(D?), that is, Int G§
contains some double arcs in

a”'(D?* N M§(2)

(which are properly embedded in G with boundary points in Intc; see
Fig. 7). Choosing an outermost on G such arc, say hi with a(h}) = Hi,
denote by G2, C G¢ a disk bounded by h} and the connected component cg,,
of ¢} —Oh} that connects points Oh}. Now we can compress the disk D? along
the disk G, to eliminate the arc Hy (and possibly other, outer arcs on D?
relative to H1). Repeating such compressions will eliminate all arcs of

a ' (D* N M3(2))
in Int G2. If the arc HY is still in D? N MZ(2) (we keep the same notation for
new disks obtained by a series of compressions from D?) then we can compress
D? along G} to eliminate H{.
Thus, we can assume that either for every outermost on D? arc

H! € D> n M3(2)
the two points Ohl lie on distinct connected components
cl,c3 € GPna~t(S%(c))
or the intersection
Int D* N M§(2)
is empty.
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In the first case, we observe that cl, ¢} are arcs of the same curve

ct € 9GP Na~(S%(e))
because the points Ohi € (c + ¢}) are connected in G* by an arc in o 1(B?)
(which is k} in the notation of Fig. 7). Since G? is a biangle or triangle, it
follows that the arcs c}, ci have endpoints on the same edge of G2, whence
the curve ¢! crosses an edge of G? at least twice. This, however, contradicts
the normality of S?(g).

In the second case, there is a disk d*> C G® with a(d?) = D? and so,
remembering that S2(g) is a trivial normal 2-sphere, we have that the arc
a' of 8d? with a(a') = A! belongs to a singular edge of G® € F3. This
contradiction to property (A2) of  completes the proof of Lemma 1.3. O

LEMMA 1.4. Suppose that D? is an upper (resp. lower) disk at a noncrit-
ical level t, 9D? = A' + B, where A is the upper (resp. lower) arc of D?,
B! is the projection arc of D?. Then the arc A' contains precisely one of the
tangency points P°(t7) of critical levels t¥,i=1,...,0;.

Proof. Tt is obvious that A! contains some of tangency points PO(t}) of
critical levels ¥, i = 1,...,¢;, and we only have to show that A' contains at
most one such a point. Suppose, on the contrary, that A' contains at least
two such points. For definiteness, assume that D? is upper. Let us push the
arc A' C E', E' € &', (together with other parts of M$(2)) through the disk
D? into B! and then slightly isotope a regular neighborhood N 1{43 (1)(31) to
create a single tangency point in A 1}/[% (1)(31) at level ¢, thus turning ¢ into a
critical level; see Fig. 8.

1
- A
D? PO(t)
/ S*(t) S2(t)

Bl

FIGURE 8

As a result, the number £; of critical levels decreases. This contradiction
to property (C3) proves Lemma 1.4. d

LEMMA 1.5. Suppose that D? is an upper (resp. lower) disk at a noncrit-
ical level t,
oD? = A' + B,
where Al is the upper (resp. lower) arc of D? and B! is the projection arc of
D2, Then Int A is disjoint from S?(t).
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Proof. Observe that if C! C E', E! € £, is an arc properly embedded in
ME(S*(t),+)

(or in M3(S?(t),—)) then C' contains at least one tangency point P°(t}),
where ¢ > ¢ (or t} < t, respectively). Therefore, if Lemma 1.5 is false and
D? with 8D? = A' + B! is a counterexample to it then there are at least two
tangency points in A'. This, however, is impossible by Lemma 1.4. O

LEMMA 1.6. Suppose that D?, D3 are lower and upper disks at a noncriti-
cal level t, AL, A} are their lower and upper arcs, and B}, B} are their projec-
tion arcs. Then there is at least one point in the intersection Int B NInt Bi.

Proof. Suppose, on the contrary, that Int B}, Int B are disjoint. First
assume that B}, B} are not disjoint, that is, B} N B} is one point in 8B} NdB}.
Then we can push arcs A} and A} through disks D?, D2 into B} and Bj,
respectively, and then slightly isotope a regular neighborhood

NJ{Jg(U(B% + By)

to eliminate all tangency points in A ]{,[g (1)(Bi + B3); see Fig. 9(a). An ap-
plication of Lemma 1.3 shows that this isotopy decreases the number £} of
critical levels. A contradiction to property (C3) shows that the arcs Bf, Bl
must also be disjoint.

A
ﬁ / D3\ y
~ 52 (t)
\ A7 / \/\ Al
PO(tr)

FIGURE 9

By Lemma 1.3, we can write
PO(t;) € A1, POt;) € A3,
where iy < iy (recall that Al is lower and A} is upper). We push A}l through
D? into B] and then slightly deform a regular neighborhood N 1}/13 (1) (B}) to

create a critical f-level just above t, that is, at level t + ¢ with sufficiently
small € > 0; see Fig. 9(b). Similarly, we push A} through D2 into B} and
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then slightly deform a regular neighborhood N} 5 (1)(321) to create a critical

u-level just below ¢; see Fig. 9(b). By Lemma 1.3, this isotopy does not change
the number #;.
Let us determine what happens to the sum

4
Y N(#)
=0
under this isotopy. To simplify our computations, put o; = 2 if t}, ¢ €
{1,...,£4;}, is an #-level and o; = —2 if ¢} is a u-level. It is clear that oy, = 2
and o0, = —2. It is also clear that
ZN —2T1£* )+01-€f+02(€;§—1)+---+a¢;.

Let t € (t;‘,t;‘ 4+1)- Observe that the sequence
01,.--,04,-1,04, = 2,...,0’j,0j+1,...,0’,’2 = —2,0’1'24_1,...,0'[:
after the isotopy described above turns into
Olyees0ip—150iy 41502905, =2,2,0j41, -+, 0ig—1,Cigt1, - -5 0L} -

Now we can see that the numbers N(t}) are identical before and after the
isotopy, for any i € {0,...,41 — 1,i2,...,£;}. Consequently, the difference
between the parameters

&
> N()
i=0
before and after the isotopy equals the difference of the sums
ig—1

V() = N, -0)
1=
before and after the isotopy, which equals
[20in — i1) + (b2 — i1 — 1) - 0341 + - .-
+ (i2 =) 05 + (2 = (G + 1))oj1 + - + 0iy—1]
= [tz —i)oi 41+ (2 =i = )oj 42+ -+ (2 —j + 1) - 0;
24 (iz == 2) oja + o+ i ] =
=20 —i1)+2— (04 +---+05)+ 0541+ +04,-1.
Since o; = £2, this difference is at least
2(ig —i1) +2 —2(ip —41) > 2.

This, however, is impossible by property (C3), so the proof of Lemma 1.6 is
complete. 0
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LEMMA 1.7. Let t be a noncritical level such that there are both upper
and lower disks at t, let k* be a connected component of a~1(S?(t)) such that
there are two distinct connected components hi, hd in Ok* that both intersect
an edge e of F3 in points 01, 02, and let e1 denote the connected component
of e — (01 + 02) that connects 01, 0o. Then there is no disk d? in F3 such that

ad? = e1s + bl,

where b' is an arc properly embedded in k2.

Proof. Arguing on the contrary, assume the existence of such a disk d? with
0d? = ey + b'. Isotopically deforming d? (to eliminate saddle points of the
intersection d? N k% in Intb'), we can suppose that

bt = NE (b)) NE.
Now it is clear that a(d?) is an upper (resp. lower) disk at level ¢, a(e;2) is
its upper (resp. lower) arc and a(b') is its projection arc. For definiteness, let

a(d?) be upper. It follows from the hypothesis of the lemma that there is a
lower disk D? at level t with

oD? = A' + B',
where Al is its lower arc, B! is its projection arc.

Let G® be the polyhedron in F? that contains the surface k2, let h? be the
connected component of dG?® — hl that is disjoint from

IntN2 (612 N hi),

€12

and let u? be a disk which lies in a regular neighborhood N2;(hi) and has
the properties
u? C IntG3, 2,(0u?) N k* = Ou?;

see Fig. 10.

We can also assume that the intersection a~!(D?) N u? consists of finitely
many double curves and arcs. Applying standard innermost and outermost
arguments, we compress D? to get u? disjoint from a~!(D?).

By Lemma 1.6, the intersection

Int a(b') N Int B
is nonempty. Let b° € b' be a point such that
a(b®) € Int a(b") N Int B

and if b} is the connected component of b! — b° which connects points 0; and
b0 then Int b] is disjoint from a~!(D?); see Fig. 10.

Note that, by Lemma 1.5, Int e5 is disjoint from a~!(S?(t)). Without loss
of generality, we can assume that the intersection u? Nb! is a single point u%;
see Fig. 10.
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\ a—l(Bl)

FIGURE 10

Now we push a regular neighborhood a(N2% (u?)) along a(b}) towards the
point a(b°) and then merge the resulting deformed disk a(u?) with a(D?).
Doing this results in changing the lower disk D? (but not its lower arc A') and
in elimination of the point b° € Int a(b')NInt B!. By repeating this operation
we can eliminate all points in Int c(b') NInt B. This contradicts Lemma 1.6
and completes the proof of Lemma 1.7. O

Before stating and proving our next lemma we give a few more definitions.

Let D? be an upper (resp. lower) disk at level ¢, 0D? = A! + B!, where A'
is its upper (resp. lower) arc and B! is its projection arc. We call D? simple
if

D*n ME(2) = AL

We say that D? is simplest if D? is a part of M3(2). Note that if D? is a
simplest upper (resp. lower) disk then there is a simple upper (resp. lower) disk
D? in a regular neighborhood N3 ; (D?) with the same upper (resp. lower)

Q

arc (to get D? it suffices to push D? into a 3-cell of M3 keeping its upper
(resp. lower) arc fixed). Also, note that D? is simple if and only if there
are a polyhedron G? in F? and a disk d> C G® such that a(d?) = D? and
a(d®* N dG3) = A'. Clearly, we can write d* = a' +b', where a(a') = A',
a(bt) = B, and we denote d?, a!, and b by a~1(D?), a~1(A!), and a1 (B'),
respectively (whenever this notation is not ambiguous).

Let ¢! be a curve in 8F2 which is in general position with respect to the 1-
spine F3(1) of F? (that is, ¢! intersects 73(1) in finitely many piercing points
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(if any) which are not vertices of F3). Such a curve ¢! is called quasinormal

if either ¢! is disjoint from edges of F2 (in which case ¢! is called trivial) or
any two consecutive along ¢! points o; and oo in ¢! N F3(1) do not belong to
the same edge of F3.

By Lemma 1.3, ¢t} is an {-level and t}‘? is obviously a u-level. Therefore,
thereis a j € {1,...,£; {} such that ¢} is an {-level and ¢}, is a u-level.

LEMMA 1.8. Let t be an {-level and t7,, be a u-level. Then there is a

noncritical level T, t € (t3,t5,1), such that the intersection
a 1(S% () nor?

consists of quasinormal curves.

Proof. Consider the secondary critical levels

65 <tja < <ty <tin
between the primary critical levels ¢; and 7, (see property (C6)). Let

1 € (t;:t;':,l)a t; € (t;,i—lat;,i)a
i=2,...,k(j,t), and

tr(i+1 € (G pgays ta)-

It follows from property (C4) that there is a simplest lower disk at level ¢4
and that there is a simplest upper disk at level #3(; +)y1. By Lemma 1.6, at
any level ¢ there cannot exist both a simplest lower disk and a simplest upper
disk. Therefore, there is an i’ € {1,...,k(j,t)} such that one of the following
cases holds.

(D1) There is no simplest lower disk and no simplest upper disk at level

tir.

(D2) There is a simplest lower disk at level ¢;; and there is a simplest upper

disk at level t;41.
If (D1) holds then the intersection
a1 (S?%(ty)) NOF3
consists of quasinormal curves, and Lemma 1.8 is proved.

In case (D2), there must be a saddle point P°(t} ) at the secondary critical
level t% ;1 € (tir, tir11). Let E* be the 2-cell of MJ that contains P(t} ;). Then
Cls E? contains a simplest lower disk D% at level t; which disappears when
passing through t;,z" in positive direction. Also, Cls E? contains a simplest
upper disk D%, at level ;41 which disappears when passing through 5y in
negative direction; see Fig. 11.

Now we can see that there are upper and lower disks at any level

t e (ty,tig1)
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P(t ) PO(t5 ) by
E? E
e S
D? —_—
L 5’2 (t)
S%(t)
t=ty t=tip1
FIiGURE 11

whose projection arcs Bi, Bi have the property that
Bl N Bj C 0B NOB;.

A contradiction to Lemma 1.6 shows that case (D2) is impossible and the
proof of Lemma 1.8 is complete. |

We say that a compact surface U? embedded in M3 is quasinormal if U?
is in general position with respect to M3 (2), the intersection U2 N M3(1) is
nonempty, and connected components of a~!(U?) are disks whose boundaries
are quasinormal curves in 8F3.

Let us investigate the 2-sphere S2(#) of Lemma 1.8 in more detail. First
we observe that S?(f) can be described as follows.

(E1) There are finitely many pairwise disjoint 2-spheres UZ,...,U; = em-
bedded in Mg each of which is either quasinormal or disjoint from
ME(2).

(E2) There are pairwise disjoint annuli 77, which could be thought of as
‘thin tubes’, and pairwise disjoint disks d?(T?), d3(T?) in UZ +--- +
U?,,i=1,...,kr, such that

8di(T7) + 0d5(T}) = OT7 .
In addition, for every 4, ¢ = 1,..., kr, the surface
d{(T?) + d3(T}) + T

is a nonsingular 2-sphere which bounds a 3-ball T} disjoint from

M3(1), and the intersection T7 N Mg (2) consists of disks properly

embedded in T} whose boundaries are essential curves in Int T7.
(E3) In the notation of parts (E1)—(E2),

kr

S2(f) = ZU2 > (dH(T}) + d5(T +ZT2

Jj=1
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Note that the tubes T¢,..., T2 can run through 2-cells of Mg, thus pro-
ducing a-images of trivial quasinormal curves in

a H(S*()) N OF?;
they can also run through each other, be knotted, linked, etc.

LEMMA 1.9. Precisely one of the quasinormal 2-spheres Uf,...,U,fU 18
Al-normal (and each of the others is either normal or disjoint from Mg (2)).

Proof. Since t € (t7,t541), t; is an £Llevel and t7,, is a u-level, it follows

that for any ¢ € (¢},%7,,) there are both upper and lower disks at level t.
Consider an upper disk D, at level { with

0D} = A} + By,
where A}, is the upper arc of D? and B}, is the projection arc of D?. Iso-

topically deforming and compressing D, we can assume that the intersection
D? N M3 (2) consists of finitely many double arcs Hi, Hy,... with

O(H} + Hy +...) C Int B,.

Let H{ be such an outermost arc on D7, let K{ be the connected component
of BY, — 0H{ that contains 0H{, and let K2 C D% be a disk bounded by H{,
K}. Then Int K? is disjoint from Mg(2).

Let E? be the 2-cell of MJ that contains the arc Hi. If the points OH{
lie on the same connected component of E? N S%(#) then we can compress
the disk D? (along a disk in E?) to eliminate the arc Hi as in the proof of
Lemma 1.3. Hence, we can assume that the two points OH; lie on distinct
connected components of E? N S?(#), say, on C}, C3.

Suppose that one of Ci, C} is a curve in E2. Then we push a regular
neighborhood Nz, (H7) through the disk K7 to K{ and then slightly off K{
(to the other side of S2(%)). As a result, the connected components C}, C3 of
E? N S%(t) merge into a single open arc or curve and the double arc

H} C Di; N E?
gets eliminated. Observe that this isotopy of E? C M3(2) does not affect
properties (C1)—(C4) of the foliation of Mg by 2-spheres S%(t), t € (0,1).
To restore properties (C5)—(C6), we adjust the deformed part of M3(2) by
arbitrarily small isotopic deformations. Properties (E1)—(E3) of S(f) are
also retained. In order to see this, we note that after the deformations the
intersection
a 1(S%(H) nor?

still consists of quasinormal curves (we just lose one trivial curve), and so we
can look at S?(t) as before to get properties (E1)—(E3).

In view of the above argument, we can assume that the connected compo-
nents Cl, C} of E? N S2(f) that contain points OH; are distinct open arcs.
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Let G® be the polyhedron in 72 that contains the disk d? with a(d?) = K?
and dd3 = hl + &k}, where a(hl) = Hi, a(k}) = Ki. Let G? be the face of G*
that contains the arc h}. Also, let ¢}, ¢ denote the connected components of
a~1(S%(#)) N G? that contain points dh! so that

a(lntc}) = CF, a(Intcl) = Cj.

Since G? is a biangle or triangle and curves in o~ (S?(t)) N 8F? are quasi-
normal, it follows that the arcs c}l, ¢l originate from the same edge e of G2.
Now we can see the existence of a simple upper disk at level ¢ of the form
a(d?), where d> C G® is a disk such that d? = ejs + b}, where e;n C e,
deis C 9(c} + cb), and b} C o (S?(%)); see Fig. 12.

€12
—0G®
GZ

FIGURE 12

In view of Lemma 1.7, the existence of this disk a/(d?) proves that the arcs
cl, ¢} belong to the same curve ¢! in a~!(S2(f)) N 8G®.

Referring to the structure of the 2-sphere S2(#) described in properties
(E1)—(E2), we pick the 2-sphere among

1 2
Uiy oy Upys

say U2, that contains the curve a(c'). It is clear that there is also a simple
upper disk R, at level ¢ whose upper arc is a(e12) and whose projection arc
belongs to the quasinormal disk P§ of U2 whose boundary is a(c').

In a completely analogous manner, we establish the existence of a simple
lower disk R2 at level £ whose projection arc belongs to a quasinormal disk
P2 of a 2-sphere U? . It follows from Lemma 1.6 that U2 = U? and P2 = P}.
In addition, we observe that if ¢} is a curve in a=*(U2?) N &F3 which crosses
an edge g of F° at least twice then there is a simple upper (or lower) disk
whose upper (lower) arc is a part of a(g) and whose projection arc belongs
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to the quasinormal disk of U2 bounded by a(c§). This observation together
with Lemma 1.6 implies that every curve in

o (U +---+ U, )NOF?

different from c¢' bounds a normal disk and that ¢' bounds an Al-normal
disk. Now we can conclude that U, 122 is an Al-normal 2-sphere and every other
2-sphere in

Ug,..., Uz,
is either normal (and hence trivial) or disjoint from MZ(2). This completes
the proof of Lemma 1.9. |

Theorem 1 is now immediate from Lemmas 1.2 and 1.9.

2. Proof of Theorem 2

We continue to use the basic notation and definitions introduced in Sec-
tions 0 and 1.

Let M be a connected compact closed orientable 3-manifold given by an
arbitrary finite cell decomposition Q = Q(F?) with ro,r1, 72,73 > 0. We first
show how to obtain properties (A1)—(A2).

If property (A1) fails, that is, if ro = |£°| > 1, then, one by one, we can
eliminate by contraction those 1-cells in £! that connect two distinct 0-cells
in £, merging these two 0-cells into one.

Now suppose that property (Al) holds and property (A2) fails; that is,
there is an edge e in F3 with Je a single vertex. Consider a 1-complex

K'(e) C F4(1)

which consists of all edges f of F? with a(f) = a(e). Suppose that p is a
shortest closed path in 8F2 (if there is one) which consists of edges in K (e).
Clearly, p represents a nonsingular curve in F3.

If p does not bound a face of F2 then we draw a disk p? properly embedded
in F3 with 0p? = p and cut the polyhedron G3 which contains p? into two
halves along p®. Repeating such cuts we can assume that every shortest
closed path in F2 which consists of edges in K'(e) bounds a face. Now
we contract all edges in K!(e) into vertices. We also contract all faces on
O0F2 whose boundaries consist of edges in K'(e) into points and eliminate
those (possible) connected components of F2 which turn into vertices after
this series of contractions. B

As a result, we obtain a new collection F° which may be empty (in which
case Mg is obviously the 3-sphere) or may split into several subcollections

F3,..F, £0>1,
which define 3-manifolds

ar3 3
Ml,Ql’ . Me',m,
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so that M3 is the connected sum of Mfﬁ ""’MZ 5. - Note that the total
&1 ERLYA
- in M3~ 13 . isr —
number of 1-cells in Ml,Ql’ .. "MZ',QZI isry — 1.
It can be shown that M 13 G M é’, & have property (Al). Alternatively,
sne1 snegl

we can just restore property (Al) as above by further decreasing the number
of 1-cells.

Repeating the above reductions (which decrease each time the total number
of 1-cells) yields a finite collection of 3-manifolds

3 3
Mig,s--s Mg,

such that M§ is the connected sum of M7, ,..., M and cell decomposi-
tions €1, ..., have properties (A1)-(A2) (where the case £ = 0 means, as
above, that M3 is the 3-sphere). Clearly, the number £ of such manifolds and
the total number of their 1-cells is at most ;.

Consider the following additional property of 2.

(A3) If G? is a biangle face in 72 and 0G? = e; + ea, where ej, ey are
edges, then a(e;) = a(ez) in MJ (recall that e, ez are not oriented).

Suppose that a cell decomposition 2 of M3 has properties (A1)—(A2) and
property (A3) fails for a biangle face G with

0G? = e1 + ea,

so afe1) # alez) in M§. Then we can just eliminate the 2-cell E? € £2 with
a(Int G?) = E? by pushing a(Inte;) through E? to a(Intez) and attaching
a(Inte;) to a(Intez). We also make a corresponding change to 72 (which
is to close out two biangle faces in F2). As a result, we still have properties
(A1)—(A2), but a fewer number 7, of 1-cells. Hence, more such reductions will
yield property (A3).

Now suppose that a 3-manifold M3 is given by a triangulation Q (that
is, all polyhedra in 2 are tetrahedra and the restriction a|ps of @ on each
F3 € F3? is an embedding). Let us consider what happens to F2 when the
reductions used above to obtain properties (A1)—(A3) are applied to €.

First, after obtaining property (A1), every polyhedron G® in the new JF3
either is a standard tetrahedron T or can be obtained from a standard tetra-
hedron T by collapsing 1, 2, or 3 edges of T into vertices. Specifically, if one
edge of T? is collapsed then we have a 1-degenerate tetrahedron with 3 ver-
tices, 2 triangle faces and 2 biangle faces; see Fig. 13(a). If 2 edges of T2 are
collapsed then we obtain a 2-degenerate tetrahedron which has 2 vertices and
either 1 triangle face, 2 biangle faces and 1 monoangle face (see Fig. 13(b1))
or 4 biangle faces (see Fig. 13(b2)). Finally, if 3 edges of T are collapsed
then we have a 3-degenerate tetrahedron with a single vertex, 2 biangle and
2 monoangle faces, Fig. 13(c). It is easy to see that we need to collapse at
most 3 edges of T in order to obtain property (Al).
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NGO e

(a) (b1) (b2) (c)
FIGURE 13

Next, when making reductions to obtain property (A2), we can get new
polyhedra that result from cuts along disks properly embedded in 72, bounded
by shortest closed paths that bound no faces on F3. Such cuts can add
polyhedra which look quite similar to j-degenerate tetrahedra, j = 1,2, 3, but
have a fewer number of biangle faces (namely, one less). (Alternatively, these
polyhedra can be obtained from j-degenerate tetrahedra by collapsing some
of their biangle faces.) Contractions that are made after the cuts enable us to
conclude that polyhedra of the type shown in Fig. 13(b1) and Fig. 13(c) will
disappear, and so the final collection will consist of tetrahedra, 1-degenerate
tetrahedra with 3 vertices, 2 triangle faces and several (1 or 2) biangle faces,
and 2-degenerate tetrahedra which have two vertices and several (3 or 4)
biangle faces.

Finally, making reductions to get property (A3) can only decrease the num-
ber of biangle faces in polyhedra of F3.

Henceforth, a 1-degenerate tetrahedron G® is defined to be a polyhedron
with 3 vertices, 2 triangle faces and ¢; (G®) > 0 biangle faces. A 2-degenerate
tetrahedron G® is defined to be a polyhedron with 2 vertices and £5(G?) > 1
biangle faces.

Suppose that M13’Ql is a 3-manifold whose cell decomposition £2; has prop-
erties (A1)—(A3) and polyhedra in F} are tetrahedra and j-degenerate tetra-
hedra, j =1, 2.

Let G be a 2-degenerate tetrahedron in 73 and suppose there is a face
G? of G? such that oy (G?) = a1 (F?), where F? is a face of a polyhedron F?
different from G3. Then we can eliminate G2 by attaching it to F® without
changing the type of F3. Therefore, a 2-degenerate tetrahedron G® can be
eliminated unless for every face G? in OG? there is another face, F2, in G3
such that a;(G?) = a;(F?). In the latter case, G® is the only polyhedron in
F} (for M} is connected). Furthermore, it follows from property (A3) that
M} contains a single 1-cell. Hence, the link Link EY contains 2 vertices



RECOGNIZING THE 3-SPHERE 1099

and, obviously, 2 faces. Since Link E? is a normal 2-sphere, it follows from
the Euler formula
v—e+ f=2
for Link EY, where v, e and f denote the numbers of vertices, edges, and faces,
respectively, in Link E9, and from the relation v = f = 2 that e = 2. This
means that there are two edges and two faces in G°. In particular, 2 is a
@-triangulation and M13,S21 is the real projective 3-space.
The above argument enables us to ‘fix’ cell decompositions

Q1.

of 3-manifolds
Mf,ﬂla e 5MZQN ¢ Z 07

that have properties (A1)—(A3) and are obtained from the original triangu-
lated 3-manifold M3 and assume that every €, is a Q-triangulation. It is
clear that these cell decompositions €, ..., can be constructed from M3
in polynomial time (of size of ().

Therefore, we can now assume that Mg is given by a @-triangulation
(which also has property (A3)). In particular, Link E° is a normal 2-sphere
which, as before, is called a trivial normal 2-sphere.

Consider a system V2 of pairwise disjoint, pairwise normally nonparallel,
normal 2-spheres

Vi,V

in M3 that is maximal with respect to these properties; that is, if Vi is
a normal 2-sphere disjoint from V? then Vi is normally parallel to one of
the 2-spheres in V2. Such a system V2 will be called a mazimal system of
nonparallel normal 2-spheres in M. The existence of such a maximal system
is well known (see [He76] and the estimate (2.3) below). Let us give an upper
bound for ky = |V2|.

Let V3¢ be a maximal subset in V? such that

Mg — Vs

is connected (so V% is a maximal subsystem of nonseparating 2-spheres in
V?) and let V% contain £y 2-spheres. Then M3 — V? consists of

(ky —ty) +1

connected components. Each of these connected components contains either
the 0-cell E° or, otherwise, one of at most two pieces of E*> — V2, where E>
is a 3-cell of M3, which does not sit between two normal disks of the same
isotopy type in V2N Cls E3. (If a connected component of M3 — V? contains
no E° and no such pieces then it sits between two normally parallel 2-spheres
of V? which is impossible.)
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Hence,
(2.1) (kv —ly)+1<2r;+1,

where r; = [£7], j =0,1,2,3.
Since each 2-sphere in V% gives rise to a free infinite cyclic factor in
w1 (M3), and the group w1 (M3) has r1 generators, it follows that

by <.
Now we have from inequality (2.1) that
(2.2) ky <ry+2r3 =2ry — 71 + 2.

(The last equality follows from the Euler formula ro —rq +7r2 —r3 = 0 for Mg
and from ro = 1.)

Such a maximal system V2 of nonparallel 2-spheres can be effectively con-
structed using the Haken theory of normal surfaces. We refer the reader for
more details to [Hn92], [JT95], [JR89], [HLP99] and give here only a brief
outline in order to introduce the notation and definitions needed for proofs of
Theorems 2—4.

For every polyhedron G® in F? we consider unknowns which correspond to
all isotopy types of normal disks in G3. For example, if G2 is a tetrahedron
then we have 7 unknowns (corresponding to 4 types of normal triangles and
3 types of normal quadrangles), and if G® is a degenerate tetrahedron then
we have 3 unknowns (which correspond to 3 types of simple normal disks in
G?). Hence, the total number of unknowns is

(2.3) N(Q) =T7Nt + 3Np,

where Nr is the number of tetrahedra in F2 and Np is the number of degen-
erate tetrahedra in J3.

Let us recall how to write down matching equations in the unknowns in-
troduced above.

For every pair of distinct edges p = p(G?) of a face G*> C 0G?, G® in F3,
let z1(p), z2(p) denote the unknowns that correspond to normal disks of G*
whose boundaries contain an arc which connects points on edges in p. Note
that if G® is a tetrahedron then there are indeed two unknowns z1(p), x2(p)
associated with every pair p of edges of every face of G®. (One of z1(p), z2(p)
corresponds to a normal triangle and the other one to a normal quadrangle
in G3.) If G? is a biangle of a degenerate tetrahedron then there are also two
unknowns 1 (p), T2(p) associated with the pair of edges of 0G?. However,
if G? is a triangle of a degenerate tetrahedron G2, then there is only one
unknown z;(p) associated with every pair p of edges in G? (so x2(p) may
actually be missing in the original definition).

Let p = p(G?) be a pair of distinct edges of G2, where G2 is a face of
0G? and G2 is in F3, and let a' be an arc properly embedded in G? which
connects the edges in p. Then there is another arc b' properly embedded in
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another face F? of 72 such that a(a') = a(b') in M3. Clearly, b' connects
distinct edges in OF? and we can consider the pair q of these edges. Let z1(p),
x2(p) (resp. z1(q), z2(q)) denote the unknowns which are associated with p
(resp. ¢). (One or both of z2(p) and z2(g) may be missing, as pointed out
above.)

Now for every such (unordered) pair {p, ¢} (over all faces G of F3) we
write down a matching equation

z1(p) + 22(p) = 71(q) + 2(q)-

The set of all matching equations is called the system of matching equations

for M3 and is denoted by
SME(M).

A nontrivial solution v to SME(Mg) with nonnegative integer entries will be
called a natural solution to SME(MJ). It is well known (see [Ha61], [Hn92])
that natural solutions to SME(MJ) form a finitely generated additive semi-
group. A natural solution to SME(MJ3) is called fundamental if it cannot
be written as a sum of two other natural solutions. Clearly, the property of
being finitely generated for the semigroup of natural solutions is equivalent
to the finiteness of the set of fundamental solutions. Therefore, the fact that
the semigroup of natural solutions is finitely generated also follows from the
following result.

LEMMA 2.1.  Suppose that v is a fundamental solution to SME(M3). Then
every component of v is at most
N(Q) R 2N(Q)71’
where N (Q) is the number of unknowns in SME(M3); see also (2.3).

Proof. To prove this, we repeat the proof of Lemma 6.1 in [HLP99]. As
in [HLP99], we first use Hadamard’s inequality to show that if v is a vertex
solution to SME(M3) then each entry in v is at most 2V =1 (Note that the
square of the Euclidean length of rows in the matrix M is still bounded by
4.) Then we proceed as in [HLP99] to remove the restriction of being vertex
solution and obtain a weaker upper bound

for entries of a fundamental solution to SME(Mg). O

Let U? be a normal surface in M3. Then the normal vector v(U?) of U?
is defined to be an N(Q)-tuple

I/(U2) = (1/1, . '7VN(Q))7

where v; is the number of normal disks in o~ (U?) whose isotopy type corre-
sponds to the ith unknown z; of SME(M3). (As in Lemma 2.1, it is implied
that unknowns of SME(MJ3) are ordered.) It is easy to see that v(U?) is a
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natural solution to SME(MJ3). Moreover, this natural solution v(U?) satis-
fies, for each tetrahedron T2 in F3, the so-called admissibility condition which
states that if z;,, =;,, T;, are the unknowns of SME(M3) which correspond
to 3 normal quadrangles of T then at most one of numbers v;,, v;,, v;, is
positive. (This is because two quadrangles of different isotopy types in 7°
would have to intersect.)
Conversely, if
v= (Vla"'aVN(Q))

is a natural solution to SME(M3) which satisfies the admissibility condition
for every tetrahedron 7% in F? (recall that  is a Q-triangulation) then it is
not difficult to show that there is a normal surface U? (perhaps, not connected)
in M3 whose normal vector v(U?) is v and that U? is unique, in the sense
that if U2 is a normal surface such that

v(U?) =v(U?) =v

then U2 is normally parallel to U2.
Furthermore, if
v=v+ 1/2,
where v, v? are also natural solutions to SME(Mg), then v!, v? also satisfy
the admissibility condition. Hence there are normal surfaces U7, U3 with

v(U7) =v', w(U3) =77

and it can be shown that the surface U? can be geometrically constructed
from U2, U? as a Haken sum of surfaces U, U? by means of some surgery
called regular exchanges (along double curves in UZ NUZ; for more details see
[JT95], [JR89], [Hn92]).

Recall that a normal surface whose normal vector is a fundamental solu-
tion to SME(MQ) is called fundamental. Clearly, a fundamental surface is
connected.

More generally, let v be a natural solution to SME(MJ) which satisfies the
admissibility condition,

I/:I/1+---+I/k,

where v',..., ¥ are fundamental solutions, and let UZ, ..., U? be fundamen-
tal surfaces with

v(UR) =2, ..., v(UP) =v*.
Then U? can also be geometrically constructed from fundamental surfaces
UZ,...,U} by means of regular exchanges.

The first step in the construction of a maximal system V? of nonparallel
normal 2-spheres in M3 is given by the following result.

LEMMA 2.2. Suppose that there is a nontrivial normal 2-sphere in MJ.
Then there is also a nontrivial normal 2-sphere in M3 whose normal vector
is dov, where v is a fundamental solution to SME(M3) and 8o € {1,2}.
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Proof. Let U? be a nontrivial 2-sphere in M3. Suppose that U? is not
fundamental (otherwise, there is nothing to prove). Then we can write

v(U?) =vt 4+ 40,
where k > 1 and v!,...,v* are fundamental solutions to SME(M3). Let

2 2
Uz,... U

be fundamental surfaces whose normal vectors are, respectively, v!,...,v*.

Then

U2=U+---+U;
is a Haken sum of surfaces U7,...,U?. Recall that the Euler characteristic
is additive under the Haken sum. Since U? is connected and is a nontrivial

2-sphere, it follows that none of UZ, ..., U# is a trivial normal 2-sphere. Since
the Euler characteristic x(U?) is 2, it follows from the equality

2=x(U? =x(U?) +--- +x(Uy)
that there is an 4 such that x(U?) > 0. Note that U? is a connected surface
(for U? is fundamental). Hence x(U?) = 2 or x(U?) = 1. If x(U?) = 2
then U? is a normal 2-sphere which is nontrivial (otherwise, U? would be a
connected component of U?, contradicting the connectedness of U?), that is,
U? is a desired 2-sphere. If x(U2) = 1 then U? is a projective plane and we
consider a closed regular neighborhood

Nigg (U7)-
Since MJ is orientable, it follows that ON 1?43 (U?) is a normal 2-sphere with
W(ORS (U2)) = 2(U)

It remains to observe that ON 1?43 (U?) is not a trivial normal 2-sphere because
Q

its normal vector consists of even components (otherwise, F° would contain
a single polyhedron with 2 vertices and 2 faces and no normal nontrivial 2-
sphere would exist in M3). O

Using Lemmas 2.1-2.2, we can find the first nontrivial 2-sphere V2 in V?
(or show that there is none).
Arguing by induction on j > 1, assume that a system V2 of j pairwise dis-

joint normal 2-spheres V2,..., Vj2 (which are pairwise normally nonparallel)
has already been constructed. Consider a 3-manifold
M3 —V?

with boundary (M3 — V? need not be connected). This 3-manifold Mg — V2
has a natural cell decomposition Q(V2) which is defined by Q and V2, that is,
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the corresponding set J3(V2) of polyhedra for M3 — V? consists of connected
components of 2 — a~1(V?2). The restriction of o on

F3(V?) = MS - V?

will still be denoted by a.
Let E? be an i-cell of M3 —V?%,i =0,1,2,3. We will call E? outer if

E' Cc oM —V?)

and inner otherwise. Analogously, a closed i-cell G, i = 0,1,2, of F2(V?)
is outer if a(Int GY) is outer in M3 — V? and inner otherwise. As before,
closed 0-, 1-, and 2-cells of F2(V?) are also called vertices, edges, and faces,
respectively. In particular, outer faces of F2(V?) are a~!-images of normal
disks of V2.

Observe that every polyhedron G® in F2(V?) is of one of the following 4
basic types.

(F1) G? is a connected component of F° —a~1(V?) which contains a single
vertex o of F?® and a single outer face (whose boundary is the link of
o on OF?); see Fig. 14(a)—(b).

(F2) G?is a connected component of F2—a~1(V?) which contains precisely
two outer faces which are parallel normal disks in J3; see Fig. 14(a)—
(b).

(F3) G? is a truncated tetrahedron or a degenerate truncated tetrahedron,
that is, G® is obtained from a (degenerate) tetrahedron F® in 73 by
cutting off some of vertices of F'® by means of simple normal disks;
see Fig. 14(a).

(F4) G? is one of two ‘halves’ obtained from a truncated tetrahedron Tg
(constructed as in (F3) from a tetrahedron 7% € F?) by cutting T¢
along a normal quadrangle of T°%; see Fig. 14(b).

A disk @? properly embedded in F3(V2) (and its a-image a(d?) in M3—V?)
is called normal if the natural image of d? in F3 is normal in F3. Observe
that if G® € F3(V?) has type (F1)—(F2) then there is a unique isotopy type
of normal disks in G® (normally parallel in F2 to an outer face of G®). If
G? € F3(V?) has type (F3) then there are 7 isotopy types of normal disks in
G? if G® is a truncated tetrahedron and there are 3 isotopy types of normal
disks in G® if G? is a truncated degenerate tetrahedron. Finally, if G® has
type (F4) then there are also 3 isotopy types of normal disks in G3.

As before, with every isotopy type of normal disks in F3()V?) we associate
an unknown z. Analogously, for every pair p of distinct inner edges of an inner
face G? of F3(V?), let x1(p), z2(p) denote the unknowns that correspond to
normal disks of 73(V?) whose boundaries contain an arc which connects points
on edges in p (as before, z1(p) can actually be missing). Again, for every such
pair p there is a unique ‘matching’ pair ¢ and for every {p, q} we write down
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type (F1)
type (F2)

type (F1)

FIGURE 14

a matching equation

(2.4) z1(p) + z2(p) = z1(q) + z2(q)-

As above, the system of all such equations is called the system of matching

equations for M3 — V? and denoted by
SME' (Mg — V?).

Let G® € F3(V?) have type (F1)-(F2) and let = be the unknown corre-
sponding to the isotopy type of normal disks in G3. Observe that if z occurs
in the left (or right) part of any equation (2.4) then this part is simply z. This
observation enables us to delete all occurrences of z in SME'(MJ — V?). Re-
peating such deletions for all unknowns z associated with polyhedra of types
(F1)—(F2) in F2(V?), we obtain a new reduced system

SME(M$ — V?)

all of whose equations still look like (2.4).

Note that the number N(2,V?) of unknowns in SME(M$ — V?) does not
exceed N(Q). In fact, N(Q,V?) is less than N () by the number of tetrahedra
in F3 that contain quadrangle normal disks of a~'(V2) (because each such
tetrahedron contributes 7 to the number N () of unknowns in SME(Mg) and
6 to N(Q,V?)). Therefore, we can state the following analog of Lemma 2.1.

LEMMA 2.3. Suppose that v is a fundamental solution to SME(MJ —V?).
Then every component of v is at most

N(Q, V2) i 2]\7(9,\)2)—17
where N (Q,V?) is the number of unknowns in SME(M3 — V?).

Proof. This is proved in the same way as Lemma 2.1. |
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A surface U? embedded in M3 — V? is called normal if the intersection
FV)Hna ' (U?)
consists of finitely many connected components which are normal disks of
F3(V?).
The normal vector v(U?) of a normal surface U? in M3 — V? is defined to
be

(25) V(U2) = (Vla"'JVN(Q,Vz))J

where v; is the number of normal disks in F3(V2) N a~1(U?) whose isotopy
type corresponds to the ith unknown of the system

SME(M§ — V?).

(As in Lemma 2.3, the unknowns of SME(ME — V?) are assumed to be or-
dered.)

A normal 2-sphere U? in M@ —V? is called trivial if U? is normally parallel
in M either to a 2-sphere in V? or to the link of the 0-cell E° of M§3.

LEMMA 2.4. Suppose that there is a nontrivial normal 2-sphere in M3 —
V2. Then there is also a nontrivial normal 2-sphere in M3 —V? whose normal
vector is ov, where v is a fundamental solution to SME(ME — V?) and & €

{1,2}.

Proof. Arguing exactly as in the proof of Lemma 2.2 and keeping the nota-
tion introduced there, we additionally have to explain why the normal 2-sphere
H? = 6/\_/'1?43(%2) (in the case when x(U?) = 1) is not trivial, that is, why H?
is not normally parallel to a 2-sphere in V2. (As before, by considering the
parity of components in v(H?) = 2v(U?) we see that H? is not the link of
)

Observe that the normal 2-sphere H? is separating in MJ3. Assuming that
H? is normally parallel to a 2-sphere V2 in V2, we have that V2, like H?,
is separating in Mg. Let V3 be the connected component of M — V2 that
contains H2 and U?. Since U? is connected and disjoint from V2, it follows
that all fundamental surfaces UZ, ..., U2 (which are also disjoint from V?) are
in V3. However, V3, like N/ ]?43 (U?), contains only fundamental surfaces which

are normally parallel to U2. Hence, U? = U? + U? and U? is normally parallel
to V2 € V2. This contradiction completes the proof of Lemma, 2.4. O

A trivial observation, which we will use implicitly in the arguments below,
is that there is a natural bijective correspondence between normal surfaces in
Mg disjoint from V? and normal surfaces in M3 — V2.

Recall that V2 consists of pairwise disjoint, pairwise normally nonparallel,
nontrivial normal 2-spheres V2, ..., Vf, j > 1. Using Lemmas 2.3-2.4, we can
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either extend the system V? to a new system

2 _ /2 2 2
V=V2 4+ VE+VE,

or show that this is impossible, that is, M3 —V? contains no nontrivial normal
2-spheres. By inequality (2.2), after at most 2ro —ry +1 similar steps we obtain
a final system (in the sense that Mg — V? contains no nontrivial normal 2-
spheres)
VZ :‘/12+"'+szv_1

of pairwise disjoint, pairwise normally nonparallel, nontrivial normal 2-spheres
Vs, V2 _y in M§. Adding a trivial normal 2-sphere V2 = of Mg (which is
taken in a regular neighborhood Nys (E®) and so is disjoint form V?) to V?
yields a maximal collection V? of nonparallel normal 2-spheres in Mg.

LEMMA 2.5. Suppose that V? is a mazimal collection of nonparallel normal
2-spheres in M3 and K* is a connected component of M3 — V2. Then K3
contains no nonseparating 2-spheres.

Proof. Assume, on the contrary, that U? is a nonseparating 2-sphere in K3.
Since V? consists of normal 2-spheres, it follows that U? can be normalized
inside K3. Applying a normalization process to U2, we get a collection B2
of 2-spheres each of which either sits in a 3-cell of MJ or is normal in M3 —
V2. Since at least one of them is also nonseparating, it follows that there
is a nonseparating normal 2-sphere in K3. However, the maximality of V2
means that every normal 2-sphere in K3 is normally parallel to a connected
component of 0K*® and so is separating. This contradiction proves Lemma, 2.5.

O

The following lemma is analogous to corresponding results in [R97], [T94].

LEMMA 2.6. Suppose that V? is a mazimal collection of nonparallel normal
2-spheres in M3 and K3 is a connected component of M3 —V? whose boundary
OK?® is not connected. Then K2 is a punctured 3-ball.

Proof. Let K3(1) and K3(2) denote
M) NK3, M3(2)nK?3,

respectively. Suppose that the set K3(1) + 0K?® is not connected and L is a
connected component of K2(1)+0K?3. Consider a closed regular neighborhood
N3 (L) and let

L? = ONgs(L) — OK3.
Then L? C Int K3, the orientable surface L? intersects K3(2) in finitely many
double curves and L? is separating in K3. Furthermore, both connected
components of K® — L? contain some connected components of K3(1) + dK?3.
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Using the standard innermost argument, we compress L? (along disks of
K3(2) bounded by innermost on K3(2) curves in K3(2) N L?). As a result,
we get an orientable surface disjoint from K3(2) one of whose connected com-
ponent, say L3, separates connected components of K3(1) + 0K?. However,
L2 sits in a 3-cell of M3 — V? and hence cannot separate connected compo-
nents of K3(1) + &K?3. This contradiction proves that the set K3(1) + 0K? is
connected.

Consider a subset U of connected components of K3(1) such that U'+9K?3
is connected and |U'| is minimal. Let N32;(U' + 0K?) be a closed regular
neighborhood and let U? denote

ONEs (U + 0K?) — 0K,

It follows from the minimality of U' that U? is a 2-sphere. Observe that
the question whether K3 is a punctured 3-ball is equivalent to the question
whether the connected component U3 of K3 — U? that contains no K3 is
a 3-ball. Therefore, it suffices to show that U3 is a 3-ball. To do this, we
apply a normalization process to U2. In view of the normality of 2-spheres in
V2, this process can be carried out in Int K3. As in the proof of Lemma 1.1,
we note that this process does not create new points in U2 N M3(1) (it can
only eliminate those). In particular, U will be disjoint from a collection B2
of 2-spheres obtained at the end of the normalization process. Note that if
B? € B? is a 2-sphere then either B? sits in a 3-cell of M3 or B? is normal
in M3. Let B? be normal. It follows from the maximality of V? that B>
is normally parallel to a 2-sphere of K®. Since U! + 8K? is connected, it
follows that B2 crosses some arcs of U'. This, however, is impossible since
U! is disjoint from U? and so from B2. Therefore, all 2-spheres in B? sit
in 3-cells of M3. As in the proof of Lemma 1.2, we consider the following
proposition for a finite system B3 of pairwise disjoint 2-spheres in K® (which
are separating by Lemma 2.5).

(B2) For every B2 € B2 the connected component of K — B2 that contains

no U! + 0K?3 is a 3-ball.

Recall that all 2-spheres obtained in the process of normalization of U?
are disjoint from U! + OK3. Hence, as before, we see that the truth value of
proposition (B2) does not change during the process. Since proposition (B2)
is true at the end of the process, it is true in the beginning, and Lemma 2.6
is proven. O

Let
c3,...,C3

be the connected components of M3 — V? that have connected boundary and
contain no O-cell E® of M3. Consider 3-balls

3 3
B3,...,B3
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such that every B? is equipped with a cell decomposition constructed as fol-
lows. There is a bijective cellular continuous map

B;: C? — 9B?,

that is, 3; identifies cell decompositions of C? and dB;. Next, there is a
single 0-cell EY in Int B} so that if

Bi(t), tel0,1],
is a singular foliation of B}, where BZ(t), t € (0,1], is a 2-sphere, B?(1) = 0B}

2
and B?(0) = E?, then every j-cell, j = 1,2, of B which is not in B} has
the form 47! x (0,1), where A9~ 1 is a (j — 1)-cell in 0B;.

Let us construct a closed 3-manifold
M3

2

by attaching the 3-ball B} to C? by means of the homeomorphism f;, i =
1,...,m. A cell decomposition for M} is obtained from those of C?, B3
by ‘forgetting’ about cells of B3 = 8C?; that is, we merge j-cells E!, EJ,
j =1,2,3, of B} and C?, respectively, provided that they are separated by a
(j —1)-cell EJ of B3 = 8C? by adding EJ " to E! + EJ. As a result, we get

a closed 3-manifold
3

i,
whose cell decomposition Q; contains a single O-cell EY, i =1,...,m. By

~ T3 3
a;: F; — Mi,ﬁi

denote a cellular map, where F3 = F3(€);) is a suitable collection of nonsingu-
lar polyhedra. Note that every polyhedron G2 in .7-'f consists of several parts
G® — @;1(8C?) exactly one of which, denoted by G2, and called the central
part of G3, has the property that

ai(Gy) C CF.
Clearly, G® is uniquely determined by its central part G which has one of
the types (F1)-(F4).

Specifically, if G¢, has type (F1)—(F2) then G® has 2 vertices and several (3
or 4) biangle faces. If G¥, has type (F3) then G® is a (degenerate) tetrahedron.
Finally, if G, has type (F4) then G? is a degenerate tetrahedron.

Note that the 2-sphere dC? is normally parallel to the link of the 0-cell

EY of M?5 and that any normal surface in M’ has a natural image in C7.

Hence, it follows from the maximality of V2 that any normal 2-sphere in M fﬁ
is normally parallel to the link of EY.

Now we can eliminate those polyhedra in 7} that have only two vertices by
using same reductions as those described in the beginning of this section. It is

not difficult to see that applying an elementary reduction (either attaching a
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polyhedron G® with two vertices to another one along a face of G® or closing
out a face of G*) does not change the set of normal surfaces in M3~ oa, (in the
sense that there is a natural bijection between normal surfaces Wlth respect
to cell decompositions of M} before and after an elementary reduction). As
before, after making all possible reductions to delete as many polyhedra in
JF? with two vertices as possible, we obtain a Q-triangulation ; for

By the above remark, there is a natural bijective correspondence between

normal surfaces in Mpq, and in C} C M —V? (which can also be established

by using normal vectors of normal surfaces in C; C M3 — V?, as defined by
equality (2.5), and normal vectors of normal surfaces in M2, ). Therefore,

by the maximality of V2, M M; Q contains no nontrivial normal 2 spheres, and
hence (2; is an irreducible @-triangulation for Mf, .- It follows from the
definitions and Lemma 2.6 that MJ is the connected sum of 3-manifolds

3 3
Mig,....M2q

m’ m

and finitely many 2-sphere bundles over a circle (their number is |V ¢[; see
(2.1)).

It remains to observe that each tetrahedron in 72 contributes a tetrahedron
to

F 4+ F

if the intersection 7% N a~!(V?) contains no normal quadrangles and, other-
wise, T contributes two degenerate tetrahedra to F3 + - -- + F2,. Similarly,
each degenerate tetrahedron D® of 72 contributes one degenerate tetrahedron
to F3 + - -+ F2,. Therefore, the difference

N() = (N(n) +---+ N(Dm))

is nonnegative and equal to the number of tetrahedra in 72 which contain a
normal quadrangle of a=!(V?) C F3. This completes the proof of Theorem 2.

3. Proofs of Theorems 3 and 4

We first prove Theorem 4. Keeping the notation of Sections 0-2, suppose
that M3 is a 3-manifold given by a Q-triangulation 2 and

v=(v1,...,Un(@))
is a natural solution to the system SME(MJ) of matching equations for M3.
Consider the following properties of v.
(G1) v satisfies the admissibility condition for every tetrahedron 7° in F?2,
that is, if v;,, v;,, Vs, are the components of v which correspond to

three isotopy types of normal quadrangles of T then at most one of
Vi,, Viy, Vig 1S positive.
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(G2) There is at least one negative entry in v — v(Link E°).
(G3) The Euler characteristic x(V?2) of a normal surface V? whose normal
vector v(V?2) is v is positive.

LEMMA 3.1. Let a 3-manifold M3 be given by a Q-triangulation Q). Then
Q is reducible if and only if there is a natural solution v to SME(M3) with
properties (G1)—(G3) all of whose components are at most N(Q) - 2N,

Proof. First suppose that  is reducible, that is, M3 contains a nontrivial
normal 2-sphere. Then it follows from Lemmas 2.1-2.2 that Mg also contains
anontrivial normal 2-sphere U2 whose normal vector v(U?) satisfies properties
(G1)~(G3) and has components at most N(£) - 2V,

Conversely, let v be a natural solution to SME(M$) with properties (G1)—
(G3) and let V2 be a normal surface on M3 whose normal vector v(V?) is v.
Without loss of generality, we can assume that V2 is connected (otherwise,
we could pick a connected component of V2 whose Euler characteristic is
positive). Since x(V2) > 0, V2 is a 2-sphere or a projective plane. In the
first case, V2 is a nontrivial normal 2-sphere by property (G2). In the second
case, O(N J?/Ig (V?)) is a nontrivial normal 2-sphere because all components in

V(0N (V?)) = 20(V?)
are even. This proves Lemma 3.1. a

To prove Theorem 4, we note that, given an N(2)-tuple v of nonnegative
integers which do not exceed N(€)-2V® (and written in, say, decimal form so
that their size is linear in N(f2)), we can check whether v is a natural solution
to SME(Mg) and verify properties (G1)—(G2) in a time that is polynomial in
N(€). Property (G3) can also be verified in polynomial time because x(V?2)
is a linear combination of

Viy..., UN(Q)
which can be written out explicitly (see [JT95], [HLP99]) and computed in

polynomial time. Hence, by Lemma 3.1, the property of being reducible for a
Q@-triangulation 2 is in NP. This completes the proof of Theorem 4 . |

Let us turn to Theorem 3.

LEMMA 3.2. Let G® be a (degenerate) tetrahedron and a® be an Al-normal
disk in G®. Then G® is a tetrahedron, a® is an octagon and 8a® on 8G® is as
depicted in Fig. 15.

Proof. Let the edges of G® that are crossed twice by the curve a! = da? be
split into two nonempty groups ey, ..., e, and fi,..., fr, (asin the definition
of an Al-normal disk in a polyhedron G?; see Fig. 1) so that the vertices de;
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da?

FIGURE 15

lie in distinct connected components of a' — f; for all i, j. This implies that
the vertices

Oer -+ +er,)
lie in one connected component of 0G? — a! while the vertices

Ofr 4+ fr;)

lie in the other connected component of 8G® — a!. In particular, the intersec-
tion
Oler +---+ex)NO(fr+-+ fr;)

is empty. Observe that if G® is a degenerate tetrahedron then any two edges
of G® have a common vertex. Therefore, G® must be a tetrahedron in which
case there are 3 potential pairs of disjoint edges to be crossed twice by a'.
Take such a pair e, f and denote by e?,e3 the triangles of G® that contain e
in their boundary, and by fZ, f2 the triangles of G® that contain f in their
boundary; see Fig. 16.

Then the edges e, f are crossed by a! exactly twice and any other edge of
G? is crossed by a' at most once. This means that the intersections

ef n al, eg Na'
consist of two arcs which connect two points ¢! Ne in e to two other sides of
e? and e3, respectively; see Fig. 16. Arguing similarly with the intersections
find, fina',
we have that a! crosses every edge of G® different from e, f exactly once and
a? is an octagon as required. O

Let Q be a Q-triangulation of a 3-manifold M3. Consider the following
property of Q.

(A4) If T? is a tetrahedron in F2 = F3(Q) then the only singularities of
a(T?) are vertices of T® (whose a-images are E; that is, the restric-
tion a|rs\1s(0) of & on T2, except for the set T3(0) of vertices of T2,
is an embedding).
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FIGURE 16

When proving Theorem 3, it will be convenient to assume that an irre-
ducible Q-triangulation of Mg has property (A4). This is not restrictive
because we can split every tetrahedron 7% € JF? into five polyhedra Tg,
TE,...,T{ such that their vertices are those of T3, T§ is a tetrahedron,
TE,..., T} are degenerate tetrahedra, each T7, i = 1,...,4, has three biangle
faces and two triangle faces of T} are those of T and 7. Therefore, making
a suitable subdivision of Q, without loss of generality, we can suppose that (2
has property (A4).

Consider the following property of a natural solution v to the system
SME(M3).

(H1) The admissibility condition is satisfied for all tetrahedra in 2, except

for one, denoted by G3,, and if v;,, v4,, v;, are the components in v
which correspond to the isotopy types of normal quadrangles in G,
then two of v;,, v;,, v;, are equal to 1 and the other one is zero.

Just like natural solutions to SME(M§3) satisfying the admissibility condi-
tion (G2) can be used to uniquely describe normal surfaces in M3, natural
solutions to SME(M) with property (H1) can be used to uniquely describe
Al-normal surfaces in M§ as follows.

Let U? be an Al-normal surface in M3. By Lemma 3.2, there is a tetra-
hedron G%; in F3 which contains an Al-normal octagon a®. Let {ej, f;},
j =1,2,3, be the 3 pairs of disjoint edges of G%, and suppose that da? crosses
edges ey, fi twice. Also, denote by qJQ-, j = 1,2,3, a normal quadrangle of
G3, that is disjoint from the pair {e;, f;} and let ¢, ¢3, and ¢3 correspond



1114 S. V. IVANOV

to unknowns z;,, Z;,, and z;,, respectively, of the system SME(M3). Then
the normal vector v(U?) of the Al-normal surface U? is defined to be

V(UZ) = (V17"'7VN(Q))7

where v; is the number of normal disks in a~!(U?) that have the ith isotopy
type (corresponding to the unknown z; of SME(MJ3)), provided that i ¢
{i1,12,i3}. Otherwise, we set

Vi, = 0, Viy = Vig = 1.

Observe that the isotopy types of 8 normal arcs in 8(g3 +¢3) are exactly the
same as those in da?. (Curiously, the curve da? can be obtained from curves
dq3, 8¢3 by some surgery which is reminiscent of regular exchange surgery;
see Fig. 17.) Therefore, the normal vector »(U?) is a natural solution to
SME(M3) which, obviously, has property (H1).

FIGURE 17

The converse is given by the following result:

LEMMA 3.3. Suppose that v is a natural solution to SME(M) with prop-
erty (H1). Then there is an Al-normal surface U? with v(U?) = v. Further-
more, U? is uniquely defined by v, that is, if U? is another Al-normal surface
with v(U?) = v then U? is normally parallel to UZ.

Proof. In view of the above observation (see Fig. 17), the existence and
uniqueness of an Al-normal surface U? with v(U?) = v can be proved in the
same way as the existence and uniqueness of a normal surface V2 with v(V2) =
V', where v/ is a natural solution to SME(MJ) satisfying the admissibility
condition. |

We introduce two further properties of a natural solution v to SME(MJ)
with property (H1).
(H2) There is at least one negative entry in v — v(Link E°).
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(H3) The Euler characteristic of an Al-normal surface V2 whose normal
vector v(V2) is v equals 2.
For example, note that if V2 is an Al-normal 2-sphere in Mg then its
normal vector has properties (H1)—(H3).

LEMMA 3.4. Let a 3-manifold M be given by an irreducible Q-triangu-
lation Q with property (A4). Then M3 is the 3-sphere if and only if there
is a natural solution to SME(MJ) with properties (H1)-(H3) all of whose
components are at most N(Q) - 2V(?),

Proof. Suppose that M3 is the 3-sphere. By Theorem 1, MJ contains an
Al-normal 2-sphere V2. If the normal vector v(V?2) is fundamental or is the
sum of two fundamental solutions to SME(MJ) then, by Lemma 2.1, every
component in »(V?) is at most N () -2V and so v(V?) is a solution of the
required form. Otherwise, by Lemma 3.2, we can write v(V?2) in the form

(3.1) v(V?) =v! + 07

where v!, v? are natural solutions to SME(M3), v! has property (H1) and
v? satisfies the admissibility condition. Choose a representation (3.1) so that
the sum of components in v! is minimal. Let V}? and Vi# be Al-normal and
normal surfaces with

v(VP) =v, w(Vy) =v2

It follows from the choice of v! that v! is either a fundamental solution or a

sum of two fundamental solutions and that the surface V2 is connected.

By property (A4) we can suppose that double arcs of the intersection V2N
V2 are disjoint from the a-image of any tetrahedron of F3. In particular,
in view of Lemma 3.2, the Al-normal disk of V;2 is disjoint from V;2. Then,
exactly as in the case of normal surfaces, one can show that the surface V? is
a Haken sum V2 + V2 of V2 and V2. In particular,

(3.2) 2=x(V?) = x("?) + x()

and so one of x(V2), x(V2) is positive. If x(Vi2) > 0 then we can argue
as in the proof of Lemma 3.1 to obtain the existence of a nontrivial normal
2-sphere in MJ. This contradiction shows that x (V) < 0. Hence, it follows
from the connectedness of V}* and equation (3.2) that x(V;?) = 2; that is, v!
is a solution as required.

Conversely, let v be a natural solution to SME(M3) with properties (H1)-
(H3) and let V2 be an Al-normal surface with v(V?) = v. Let

|
be connected components of V2. Then one of them, say V2, is Al-normal and
the others, V#,..., V2, are normal. Moreover,

v(V?) = v(V7) + v (V) + -+ v(Vy)
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and
2= x(V?) = x(V7") + x(V&)) + -+ + x (Vi)

Suppose that there is an ¢ > 2 such that x(V;?) > 0. If x(V;?) = 2 then
V?? is a normal 2-sphere which is nontrivial by property (H2). If x(V?) =1
then ON, M3 (V2) is a normal 2-sphere which is nontrivial because, by property
(H1), there is a tetrahedron in F? and all components in

V(0N 32y (VD)) = 20(V7)

are even. These contradictions prove that x(V;?) < 0 for all i > 2. Therefore,
x(Vi?) = 2 whence V2 is an Al-normal 2-sphere. An application of Theorem 1
completes the proof of Lemma 3.4. O

In view of Lemma 3.4, the proof of Theorem 3 is completely analogous to
the proof of Theorem 4. As in the latter proof, given an N(2)-tuple

v=(v1,...,Un@©))

of nonnegative integers not greater than N () - 29, we can verify in poly-

nomial time whether v is a solution to SME(Mg) and whether properties
(H1)-(H3) hold. If this is the case, Lemma 3.4 enables us to conclude that
M3 is indeed the 3-sphere. This means that the recognition problem for 3-
sphere in the class of irreducible Q-triangulations is in NP, and the proof of
Theorem 3 is complete.
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