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VECTOR MEASURES AND NUCLEAR OPERATORS

M.A. SOFI

Abstract. Among other results we prove that for a Banach space X

and 1 < p <∞, all p-unconditionally Cauchy sequences in X lie inside
the range of a Y -valued measure of bounded variation for some Banach
space Y containing X if and only if each `1-valued 2-summing map on

X induces a nuclear map on X valued in `q , q being conjugate to p. We
also characterise Banach spaces X with the property that all `2-valued

absolutely summing maps on X are already nuclear as those for which
X∗ has the (GT) and (GL) properties.

1. Introduction

The study of nuclear operators—which generalises trace class operators
to the Banach space setting—has come in as a handy tool in the study of
the geometry of Banach spaces. The fact that a Banach space X has the
Radon-Nikodym property precisely when X-valued absolutely summing maps
on C[0, 1] are nuclear is a typical example of this phenomenon. In the theory of
vector measures, it is known (see, e.g., [16]) that `1-valued absolutely summing
maps on X coincide with nuclear maps exactly when null sequences in X are
included inside the range of an X-valued measure. In the same work, it
is also proved that assuming the vector measures involved to have bounded
variation results in the class of finite dimensional Banach spaces. In light of
these extreme cases, it is natural to address the question of describing those
Banach spaces X such that every null sequence in X is included inside the
range of a vector measure of bounded variation which takes its values inside
a (larger) space containing X isometrically. In [13], Pineiro shows that such
spaces are isomorphic copies of Hilbert spaces.

One of our main aims in the present paper is to provide alternative proofs,
which are short and more transparent, of these and some other results of
Pineiro by exploiting a by-now famous theorem of Johnson, König, Maurey
and Retherford [9] on the characterisation of a Hilbert space X in terms of
the eigenvalue distribution of nuclear operators on X.
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Theorem 1.1 ([9]). A Banach space X is isomorphic to a Hilbert space
if and only if nuclear operators on X have absolutely summing eigenvalues.

For further applications and ramifications of this theorem, see also the
survey article [18].

We shall also use this occasion to prove some new results on the character-
isation of Banach spaces in terms of `2-valued nuclear operators on X and use
this result to show that in the presence of the Gordon-Lewis property finite
dimensional spaces are the only Banach spaces X such that every set in X
included inside the range of an X-valued measure is already included inside
the range of an X∗∗-valued measure of bounded variation. This is done in
Section 4. Section 3 deals with the question of describing those Banach spaces
X that have the property that p-unconditionally Cauchy sequences in X are
included inside the range of a vector measure of bounded variation taking its
values inside a Banach space containing X. This result, which is subsequently
used in Section 4, is of independent interest and refines certain results already
known in the literature.

2. Notations and definitions

We shall follow [5] for the theory of vector measures and [4] for various
concepts pertaining to Banach spaces and the theory surrounding nuclear
and absolutely summing maps as used in this paper. In what follows, X shall
denote a Banach space with BX and X∗ denoting its closed unit ball and
the dual, respectively, whereas µ will stand for an X-valued vector measure
µ : (Ω,Σ) → X defined on a measure space (Ω,Σ) such that µ is countably
additive (c.a.).

Definition 2.1. Given a bounded linear map T : X → Y between Banach
spaces X and Y , we shall say that T is

(a) nuclear (T ∈ N(X,Y )) if there exist bounded sequences {fn}∞n=1 ⊂
BX∗ , {yn}∞n=1 ⊂ BY and {λn}∞n=1 ∈ `1 such that

T (x) =
∞∑
n=1

λn〈x, fn〉yn, x ∈ X.

Equivalently, T : X → Y is nuclear if and only if T can be factorised
as T = T2 ◦ D ◦ T1, where T1 : X → `∞, T2 : `1 → Y are bounded
linear maps and D = Dξ̄ : `∞ → `1 is a diagonal map induced by
ξ̄ = (ξn) ∈ `1 : Dξ(ᾱ) = (αnξn)∞n=1, ᾱ = (αn) ∈ `∞.

(b) p-absolutely summing (1 ≤ p < ∞) (T ∈ Πp(X,Y )) if there exists
c > 0 such that(

n∑
i=1

‖Txi‖p
)1/p

≤ c sup
f∈BX∗

(
n∑
i=1

|〈xi, f〉|p
)1/p
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for all xi ∈ X, 1 ≤ i ≤ n, n ≥ 1.

The infimum of
∑∞
n=1 |λn| taking over all representations of T as given in

(a) shall be denoted by ν(T ), the nuclear norm of T , whereas the p-summing
norm of T , denoted by πp(T ), is the infimum of all c > 0 appearing in (b).
Clearly

‖T‖ ≤ πp(T ) ≤ ν(T ),
as can be easily checked.

Grothendieck’s theorem (see [17, Theorem 5.12]) states that all bounded
linear maps from an L1 space into a Hilbert space are absolutely summing.

We collect below some important properties of these classes of operators
which shall be used in the sequel.

Proposition 2.2 ([10, Chapter 2], [13, Chapter 1]). Let X and Y be
Banach spaces and assume that 1 ≤ p, q < ∞. Then the following assertions
hold:

(a) N(X,Y ) ⊂ Πp(X,Y ) 3: πp(T ) ≤ ν(T ), ∀ T ∈ N(X,Y ).
(b) Πp(X,Y ) ⊂ Πq(X,Y ) 3: πq(T ) ≤ πp(T ), ∀ T ∈ Πp(X,Y ), (p ≤ q).
(c) Π(2)

2 (X,Y ) ⊂ N(X,Y ) 3: ν(TS) ≤ π2(T )π2(S), ∀ S ∈ Π2(X,Z),
∀ T ∈ Π2(Z, Y ).

(d) Πp(X) ⊂ Eq(X), q = max(p, 2).
(e) Πp ◦Πq(X) ⊂ Er(X), ( 1

r = 1
p + 1

q ).

Here we recall that for operator ideals A and B the symbol A ◦ B(X,Y )
has been used for the component of A ◦ B on the pair (X,Y ), defined by

A ◦ B(X,Y ) = {T : X → Y : ∃ Z and T1 ∈ A(X,Z), T2 ∈ B(Z, Y )

such that T = T2T1},

where Ep(X) stands for those operators on X which have p-summable eigen-
values.

Definition 2.3. For p ≥ 1, `p[X] shall denote the vector space of all
sequences (xn)∞n=1 in X such that

∑∞
n=1 |〈xn, x∗〉|p < ∞ for all x∗ ∈ X∗.

This turns into a Banach space when equipped with the norm

εp((xn)) = sup


( ∞∑
n=1

|〈xn, x∗〉|p
)1/p

;x∗ ∈ BX∗

 .

We shall be mainly concerned with the (closed) subspace `p(X) of `p[X] given
by

`p(X) = {x̂ = (xn) ∈ `p[X] : εp((0, . . . , 0, xn, xn+1, . . .))
n→ 0}.

The elements of `p[X] shall be called p-weakly summable sequences, whereas
those from `p(X) shall be referred to as p-unconditionally Cauchy sequences
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in X. An easy consequence of the uniform boundedness theorem shows that
`∞[X] coincides with the space of all bounded sequences in X, whereas
`∞(X) = c0(X), the Banach space of null sequences in X. It is also easy
to see that `∞[X] gets identified with L(`1, X), the space of bounded linear
operators, via the map `∞[X] 3 x̄ = (xn)→ Tx̄ ∈ L(`1, X), where

Tx̄(ᾱ) =
∞∑
n=1

αnxn, ᾱ = (αn) ∈ `1.

This identification can be used to describe a useful relationship between dif-
ferent types of vector measures and absolutely summing maps. To this end,
we introduce the following vector-valued sequence spaces in X:

R(X) = {x̄ = (xn) ∈ `∞[X] : ∃ vector measure µ : Σ→ X

such that (xn) ⊂ rg(µ)},
Rvbv(X) = {x̄ = (xn) ∈ `∞[X] : ∃ X0, a Banach space,

an isometry T : X → X0 and an X0-valued measure µ

of bounded variation such that Txn ∈ rg(µ), n ≥ 1},
R∗bv(X) = Rvbv(X) for X0 = X∗∗.

Clearly, R∗bv(X) ⊂ Rvbv(X), whereas Rvbv(X) ⊂ R(X) follows from a theorem
of Anantharaman and Diestel (see Remark 3.3). Here rg(µ) = {µ(A);A ∈ Σ}
denotes the range of µ in X0.

We shall also find it convenient—at the expense of abuse of notation—to
write A ⊂ R(X) to mean that the subset A of X lies inside the range of
an X-valued measure. The same shall apply to the other X-valued sequence
spaces Rvbv(X) and R∗bv(X) introduced above.

3. Main results

We start with the following theorem, giving necessary and sufficient con-
ditions for the containment of sequences in X from `p(X) inside the range of
a vector measure of bounded variation taking its values in a large space. In
what follows, ei shall denote the ith unit vector in `p (resp. `np ).

Theorem 3.1. For 1 < p < ∞, the following statements are equivalent
for a Banach space X:

(i) `p(X) ⊂ Rvbv(X).
(ii) Π2(X, `1) ⊂ N(X, `q), (q = p∗).
(iii) ∃ c > 0 s.t. for (xi)ni=1 ⊂ X, (x∗i )ni=1 ⊂ X∗,∣∣∣∣∣

n∑
i=1

〈xi, x∗i 〉

∣∣∣∣∣ ≤ c π2

(
n∑
i=1

x∗i ⊗ ei : X → `n1

)
εp((xi)ni=1).
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Before we proceed to prove the theorem, a few remarks are in order. First of
all, the inclusion in (ii) above is meant in the sense that for each T ∈ Π2(X, `1),
the composite map i1q ◦ T belongs to N(X, `q), where i1q : `1 → `q is the
inclusion map. Further, it is easy to see that in the definition of Rvbv(X) one
can assume without loss of generality that X0 = `∞(BX∗), the Banach space
of bounded functions on BX∗ , which we shall throughout denote by the same
symbol X0. In view of this, it is possible to define a norm on Rvbv(X) by
means of the formula

‖x̄‖vbv = inf
{

tv(µ); ∃ a vector measure µ : Σ→ X0

of bounded variation s.t. (xn) ⊆ rg(µ)

}
,

which makes Rvbv(X) into a Banach space. Finally, we recall (see [5, p. 162])
that the vector measure µ : Σ→ X is of bounded variation if and only if the
corresponding integration map Tµ : C(K) → X is absolutely summing. In
this case, π1(Tµ) = tv(µ). Using this, it is not difficult to prove the following
characterisation of such vector measures, which will be used in the proof (see
[14]).

Fact. Given a bounded sequence x̄ = (xn) in a Banach space X, we have
x̄ ∈ Rvbv(X) if and only if Tx̄ ∈ Π1(`1, X). In this case, tv(µ) = π1(Tx̄).

Note that `1 has cotype 2, so that Π2(`1, X) = Π1(`1, X), which shows
that Rvbv(X) and Π2(`1, X) can be identified as Banach spaces. We are now
ready to prove the theorem.

Proof. (i)⇒(ii).
Step 1: Let I : `p(X)→ Rvbv(X) denote the inclusion map induced by (i).

We show that I is continuous, i.e., there exists c > 0 such that

‖x̄‖vbv ≤ c εp(x̄), ∀ x̄ ∈ `p(X).(1)

Invoking the denseness of ϕ(X) in `p(X) and the completeness of Rvbv(X), it
suffices to verify (1) for x̄ ∈ ϕ(X), the space of finitely non-zero sequences in
X, defined by

ϕ(X) = {x̄ = (xn) : ∃ N s.t. xn = 0, ∀ n > N}.
Assume, on the contrary, that (1) does not hold for x̄ ∈ ϕ(X). Then for each
n ≥ 1 there exists Hn = {x(n)

i }
k(n)
i=1 ⊂ X with εp((xi)

k(n)
i=1 ) ≤ 1 such that for all

vector measures µ : Σ→ X0 of bounded variation with Hn ⊂ rg(µ), we have
tv(µ) ≥ n2. Now the sequence having its terms in the set H =

⋃∞
n=1Hn/n

is included inside `p(X), so that by (i) there exists µ0 : Σ → X0, a vector
measure of bounded variation such thatHn ⊂ n rg(µ0) = rg(nµ0) for all n ≥ 1.
But then tv(nµ0) ≥ n2, or equivalently tv(µ0) ≥ n for all n ≥ 1, contradicting
that µ0 is of bounded variation. Thus I restricted to ϕ(X) is continuous,
and so is its (unique) extension to `p(X), which obviously coincides with the
inclusion map I.
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Step 2: Π2(X, `1) ⊂ (Rvbv(X))∗, i.e., each S =
∑∞
n=1 x

∗
n ⊗ en ∈ Π2(X, `1)

defines a continuous linear functional ψS on Rvbv(X) given by

ψS(x̄) =
∞∑
n=1

〈xn, x∗n〉, x̄ = (xn) ∈ Rvbv(X).

Thus, let x̄ = (xn) ∈ Rvbv(X). By the remarks preceding the proof, T =
Tx̄ ∈ Π1(`1, X) with π1(T ) ≤ ‖x̄‖vbv. An easy calculation shows that ST =∑∞
n=1〈 , fn〉en, where fn ≡ {〈xi, x∗n〉}∞i=1 ∈ `∞, n ≥ 1. Since Π(2)

2 ⊂ N (Propo-
sition 2.2(c)), it follows that ST is nuclear and, in fact, ν(ST ) =

∑∞
n=1 ‖fn‖

by [8, 1.15]. This gives

|ψS(x̄)| ≤
∞∑
n=1

|〈xn, x∗n〉| ≤
∞∑
n=1

‖fn‖ = ν(ST )

≤ π2(S)π2(T ) ≤ π2(S)‖x̄‖vbv,

which yields the continuity of ψS on Rvbv(X). Combining the above conclu-
sions, it follows that ψS is continuous on `p(X). But it is well known that
(`p(X))∗ ' N(`p, X∗) (see [3, Proposition 3] and [2, Proposition 1]). Further,
under this correspondence, ψS gives rise to a nuclear map ηS : `p → X∗,
where ηS(ᾱ) =

∑∞
n=1 αnx

∗
n, ᾱ = (αn) ∈ `p, such that for each x ∈ X we have

〈η∗S(x), α〉 = 〈x, ηS(α)〉

=

〈
x,
∞∑
n=1

αnx
∗
n

〉

=
∞∑
n=1

αn〈x, x∗n〉

=

〈 ∞∑
n=1

〈x, x∗n〉en, α

〉
= 〈S(x), α〉.

This yields that S = η∗S |X is nuclear.
(ii)⇒(iii): By (ii), the map

T ∈ Π2(X, `1)→ i1q ◦ T ∈ N(X, `q)

is well-defined and continuous, by the closed graph theorem. Thus, there
exists c > 0 such that

ν(i1q ◦ T ) ≤ c π2(T ), ∀ T ∈ Π2(X, `1).

To show that (iii) holds, fix (xi)ni=1 ⊂ X, (x∗i )ni=1 ⊂ X∗, and define

u : X → `nq , v : `nq → X,
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where

u(x) =
n∑
i=1

〈x, x∗i 〉ei, v(ᾱ) =
n∑
i=1

αixi, x ∈ X, ᾱ ∈ `nq .

Denoting by inq1 : `nq → `n1 the identity map, by in : `n1 → `1 the canonical
inclusion and by v̂ the ‘canonical’ extension of v to `q, we note that ‖ν‖ =
εp((xi)ni=1) and that v̂i1qininq1u = v ◦ u. This gives∣∣∣∣∣

n∑
i=1

〈xi, x∗i 〉

∣∣∣∣∣ = trace(v ◦ u) ≤ ν(v̂i1qininq1u)

≤ ‖v̂‖ν(i1qininq1u)

≤ c‖v‖π2(ininq1u)

= c π2

(
n∑
i=1

x∗i ⊗ ei : X → `n1

)
εp((xi)ni=1).

(iii)⇒(i): Define a map ψ : (ϕ(X), εp)→ Π2(`1, X) by

ψ(x̄) = Tx̄.

ψ is clearly a well-defined linear map. We show that ψ is continuous. To
this end, for n ≥ 1 let ϕn(X) denote the subspace of ϕ(X) consisting of all
sequences which are zero after the nth term. Letting ψn : ϕn(X)→ Π2(`n1 , X)
denote the map given by ψn(x̄) = Tx̄ and using trace duality, we see that for
each x̄ ∈ ϕ(X) we can write x̄ = (x1, x2, . . . , xn, 0, 0), such that using (iii) we
get

π2(ψ(x̄)) = π2(ψn(x̄))

= π2(Tx̄)

= sup{| trace(Tx̄ ◦ S)| : S ∈ π2(X, `n1 ), π2(S) ≤ 1}

= sup

{∣∣∣∣∣
n∑
i=1

〈xi, S∗e∗i 〉

∣∣∣∣∣ : S =
n∑
i=1

S∗e∗i ⊗ ei ∈ π2(X, `n1 ), π2(S) ≤ 1

}

≤ c sup

{
π2

(
n∑
i=1

S∗e∗i ⊗ ei : X → `n1

)
εp((xi)ni=1), π2(S) ≤ 1

}
≤ c εp((xi)ni=1).

This shows that ψ is continuous and, therefore, has a (unique) continu-
ous extension—denoted again by ψ—to `p(X), which contains ϕ(X) as a
dense subspace. It follows from our construction that the (extended) map
ψ : `p(X)→ Π2(`1, X) = Π1(`1, X) is again given by

ψ(x̄) = Tx̄,

which in light of the above Fact means that `p(X) ⊂ Rvbv(X). This completes
the proof of the theorem. �
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Corollary 3.2. For 1 ≤ p ≤ 2, `p(X) ⊂ Rvbv(X).

Proof. By the above theorem, it suffices to show that Π2(X, `1) ⊂ N(X, `q),
where q = p∗. But that is an easy consequence of Grothendieck’s theorem,
which says that the inclusion map i12 : `1 → `2 is absolutely summing. Now
for T ∈ Π2(X, `1), iq ◦ T can be factorised as iq ◦ T = i2q ◦ i12 ◦ T as long as
1 ≤ p ≤ 2. But then as a composite of 2-summing maps, the indicated map
is nuclear by Proposition 2.2(c). �

Remark 3.3. The above corollary is a strengthening of a well-known the-
orem of Diestel and Anantharaman [1], which says that weakly 2-summable
sequences in a Banach space X are included inside the range of an X-valued
measure. This follows from the above Fact that if x̄ ∈ Rvbv(X), then Tx̄ :
`1 → X is absolutely summing and, therefore, factors over a Hilbert space.
But it is well-known (see [1]) that the unit ball of a Hilbert space H lies inside
the range of an H-valued vector measure.

Remark 3.4. The case when p-unconditionally Cauchy sequences in a
Banach space X are contained inside the range of a vector measure has been
treated by C. Pineiro in [15]. Our main theorem provides a refinement of this
work for the case of vector measures of bounded measures taking values in a
superspace of X.

Remark 3.5. In the limiting case when p = 1, the above theorem trans-
lates into the statement that c0(X) ⊂ Rvbv(X) if and only if Π2(X, `1) =
N(X, `1). The fact that each of these conditions is equivalent to X be-
ing Hilbertian follows from Theorem 4.1 to be proved in the next section.
C. Pineiro [14] had arrived at the same conclusion by employing methods
which are different from our approach (see also [12]).

4. Relationship with nuclear operators

We start with an alternative approach to a proof of the following theorem
of C. Pineiro (see [12] and [14]).

Theorem 4.1. For a Banach space X, the following assertions are equiv-
alent:

(i) X is Hilbertian.
(ii) BX ⊂ Rvbv(X).
(iii) `∞(X) ⊂ Rvbv(X).
(iv) c0(X) ⊂ Rvbv(X).
(v) Π2(X, `1) = N(X, `1).

Proof. We shall prove this theorem, invoking Theorem 1.1 by showing that
under each of these conditions, N(X) = Π(2)

2 (X), so that as a consequence of
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Proposition 2.2 (e), each nuclear operator on X shall have absolutely summa-
ble eigenvalues.

It is clear that (ii)⇒(iii)⇒(iv). We begin by showing (i)⇒(ii). Applying
Grothendieck’s theorem to X, which is assumed to be a Hilbert space, we
have

L(`1(∧), X) = Π1(`1(∧), X),
where the index set ∧ is chosen such that it has the same cardinality as BX .
Combining this equality with the above Fact gives that BX is included inside
the range of a vector bv-measure, i.e., BX ⊂ Rvbv(X).

(iv)⇒(v): Let T ∈ Π2(X, `1). Thus, as proved in Step 2 of Theorem 3.1,
the map

ψT (S) =
∞∑
n=1

〈xn, x∗n〉

defines a continuous linear functional on Π2(`1, X) = Π1(`1, X). Recall that
T and S can be written as

T (x) =
∞∑
n=1

〈x, x∗n〉en, S(α) =
∞∑
n=1

αnxn,

where x ∈ X,α ∈ `1, (xn)∞n=1 ⊂ X and (x∗n)∞n=1 ⊂ X∗. Further, it is easy to
see that the inclusion in (iv) is already continuous, so that ψT is continuous
when restricted to c0(X). In other words, there exists (y∗)∞n=1 ∈ (c0(X))∗ =
`1{X∗}—the space of absolutely convergent sequences in X∗—such that for
each x̄ = (xn)∞n=1 ∈ c0(X),

ψT (x̄) =
∞∑
n=1

〈xn, x∗n〉 =
∞∑
n=1

〈xn, y∗n〉.

This gives (x∗n)∞n=1 = (y∗n)∞n=1, so that
∑∞
n=1 ‖x∗n‖ =

∑∞
n=1 ‖y∗n‖ <∞, which

yields that T ∈ N(X, `1).
(v)⇒(i): By the closed graph theorem, there exists c > 0 such that ν(S) ≤

c π2(S) for all S ∈ Π2(X, `1). We show that L(`1, X) = Π2(`1X). To this
end, let T ∈ L(`1, X). Then for Tn = T |`n1 , we get, using trace duality,

π2(Tn) = sup{trace(TnSn) : Sn ∈ L(X, `n1 ), π2(Sn) ≤ 1}
≤ c sup{trace(TnSn) : Sn ∈ L(X, `n1 ), ν(Sn) ≤ 1}
= c ‖Tn‖ ≤ c ‖T‖, ∀ n ≥ 1.

In other words, we get

π2(T ) = sup
n≥1

π2(Tn) ≤ c ‖T‖.

This gives

L(`1, X) = Π2(`1, X).(2)
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Finally, let T ∈ N(X). Then T = T2DT1, where D : `∞ → `1 is a diagonal
(nuclear) operator and T1 : X → `∞, T2 : `1 → X are bounded linear opera-
tors. By (2), T2 ∈ Π2(`1, X), so that T = T2DT1 ∈ Π2 ◦N(X) ⊂ Π(2)

2 (X) (by
Proposition 2.2(a) and (c)). In other words, N(X) = Π(2)

2 (X), so that by the
eigenvalue theorem (Theorem 1.1), X is a Hilbert space. This completes the
proof of the theorem. �

Remark 4.2. It is natural to ask for a description of Banach spaces for
which Theorem 4.1(v) holds with `1 replaced by `2. However, it is not diffi-
cult to see that there are no infinite dimensional Banach spaces X for which
Π2(X, `2) = N(X, `2). Indeed, given T ∈ N(X), so that T = T2DT1 as in the
proof of (v)⇒(i) above, we can further factorise D as D2D1, where D1 : `∞ →
`2 and D2 : `2 → `1 are diagonal operators induced by sequences in `2. But
then D1 is 2-summing by [13, 1.6.2], so that DT1 ∈ Π2(X, `2) = N(X, `2),
which means that DT1 factorises over a nuclear operator into `1. Invoking
Grothendieck’s theorem yet again, it follows that DT1 ∈ N ◦Π1(X, `2), which
yields that T = T2DT1 ∈ N◦Π1(X) ⊂ Π(2)

2 (X), so thatX is a Hilbert space by
Theorem 1.1. Finally, recalling that on an infinite dimensional Hilbert space
there always exist non-nuclear Hilbert-Schmidt (= 2-summing) operators, we
conclude that X is finite dimensional. We isolate the above conclusion in the
form of

Proposition 4.3. For a Banach space X,Π2(X, `2) = N(X, `2) if and
only if dimX <∞.

In light of the above result, it is still conceivable that there may exist
infinite dimensional Banach spaces X on which `2-valued absolutely summing
maps are nuclear. In the theorem below, we give a complete description of
these spaces.

Theorem 4.4. For a Banach space X, the following statements are equiv-
alent:

(i) Π1(X, `2) = N(X, `2).
(ii) X∗ has (GT) and (GL).

Before we proceed to prove the theorem, we recall that a Banach space X
verifies (GT) if it satisfies Grothendieck’s theorem, i.e., if all X-valued bounded
linear maps on an L1-space are absolutely summing. X is said to have (GL)
(Gordon-Lewis property) if all absolutely summing maps on X factorise over
an L1-space. For further details see [17, Chapter 6] and [4, Chapter 17].

Proof. (i)⇒(ii): Using the fact that X has (GL) if and only if X∗ has it
(Proposition 17.9 in [4]) and noting that under the given hypothesis absolutely
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summing maps on X factorise over a nuclear map into `1, we see that X∗ has
(GL).

To show that X∗ has (GT), the given condition yields c > 0 such that
ν(T ) ≤ c π1(T ) for all T ∈ Π1(X, `2). Equivalently,

ν(T ) ≤ c π1(T ), ∀ T ∈ Π1(X, `m2 ), ∀ m ≥ 1.(3)

It suffices to show that π1(T ) ≤ c ‖T‖ for all T ∈ L(X∗, `m2 ),m ≥ 1.
Fix m ≥ 1, n ≥ 1, T ∈ L(X∗, `m2 ) and (x∗j )

n
j=1 ⊂ X∗ arbitrarily. We can

write T =
∑m
i=1〈xi, ·〉ei for some xi ∈ X, 1 ≤ i ≤ m. For 1 ≤ i ≤ m, 1 ≤ j ≤

n, put aij = 〈xi, x∗j 〉/Bi, where Bj = (
∑m
i=1 |〈xi, x∗j 〉|2)1/2, and let M = (aij)

denote the corresponding operator M : `n1 → `m2 . Let S : X → `n1 be the
map given by S(x) =

∑n
i=1〈x, x∗i 〉ei, x ∈ X. Then ‖S‖ = ε1((x∗i )

n
i=1). By

Grothendieck’s theorem we have

π1(M) ≤ KG‖M‖,(4)

where KG is the Grothendieck constant. Let us estimate the nuclear norm of
the composite map `m2

T∗→ X
S→ `n1

M→ `m2 . Indeed, combining (3) and (4) and
noting that ‖M‖ ≤ 1, we get

ν(MST ∗) ≤ ν(MS)‖T‖ ≤ c ‖T‖π1(MS)(5)

≤ c π1(M)‖T‖ ‖S‖
≤ c KG‖T‖ε1((x∗i )

n
i=1).

Further, we note that, for each x ∈ X,

T ∗MS(x) =
m∑
i=1

 n∑
j=1

aij〈x, x∗j 〉

xi,

which yields

ν(MST ∗) ≥ trace(MST ∗) = trace(T ∗MS)(6)

=
m∑
i=1

n∑
j=1

aij〈xi, x∗j 〉

=
n∑
j=1

(
m∑
i=1

|〈xi, x∗j 〉|2
)1/2

.

After combining (5) and (6) we get

n∑
i=1

‖Tx∗i ‖ =
n∑
i=1

 m∑
j=1

|〈xj , x∗i 〉|2
1/2

≤ ν(MST ∗)

≤ C KG‖T‖ε1((x∗i )
n
i=1).



380 M.A. SOFI

In other words,

π1(T ) ≤ C KG‖T‖, ∀ T ∈ L(X∗, `m2 ),

which establishes (ii).
(ii)⇒(i): By the (GL)-property of X∗ or equivalently of X, every T ∈

Π1(X, `2) factors over an L1-space: T = T2T1, where T1 ∈ L(X,L1), T2 ∈
L(L1, `2). Also, the (GT)-property of X∗ yields L(X,L1) = Π2(X,L1) by
Proposition 6.2 of [17]. This gives T1 ∈ Π2(X,L1), and by Grothendieck’s
theorem T2 ∈ Π2(L1, `2), so that finally T = T2T1 ∈ Π(2)

2 (X, `2) ⊂ N(X, `2),
which completes the proof. �

Corollary 4.5. Under the assumptions of Theorem 4.4, X∗ has cotype 2.

Proof. The (GT) property of X∗ gives L(X∗, `2) = Π1(X∗, `2), so that, in
particular, Π2(X∗, `2) = Π1(X∗, `2). Now, in the presence of (GL), it follows
from Theorem 17.11 of [4] that X∗ has cotype 2. �

Remark 4.6. Regarding the converse of Corollary 4.5, we see that `2 is
a cotype 2 space having (GL) but which is not (GT). The fact that there
are cotype 2 spaces having (GT) but not (GL) follows from a highly non-
trivial theorem of J. Bourgain to the effect that the dual (A(D))∗ of the
disc algebra A(D) has (GT) and cotype 2, but lacks the (GL)-property! The
latter statement is a famous theorem of A. Pelczynski, which can be ‘deduced’
from the (GT) property of (A(D))∗ combined with the supposed hypothesis
that (A(D))∗ has (GL). Indeed, these two conditions put together yield, by
virtue of Theorem 4.4, the equality Π1(A(D), `2) = N(A(D), `2), which, in
conjunction with the existence of a surjection in Π1(A(D), `2) (see [17, 5.f]),
leads to a contradiction, in view of the compactness of a nuclear operator.

We conclude with an application of Theorem 4.4 to the theory of vector
measures. As already stated in the introduction, a Banach space X has the
property that every X-valued measure is of bounded variation (if and) only
if X is finite dimensional. The locally convex analogue of this statement is
an old result of M. Duchon [6], which says that the stated condition holds in
a Fréchet space exactly when it is nuclear. This together with Remark 3.3
motivates the more general question of characterising Banach spaces X which
enjoy the following property:

Property P (X,Y ). A (bounded) set A ⊂ X included inside the range of
an X-valued vector measure already lies inside the range of a Y -valued mea-
sure of bounded variation via an isometric embedding of X into the Banach
space Y .

We list below a set of equivalent conditions for P (X,X∗∗).
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Theorem 4.7. For a Banach space X, the following assertions are equiv-
alent.

(i) X has P (X,X∗∗).
(ii) L(X, `1) = Π1(X, `1).
(iii) Both X and X∗ have (GT).
(iv) A ⊂ Rc(X) ⇒ A ⊂ Rbv(X). (Here A ⊂ Rc(X) means that A lies

inside the range of an X-valued measure having relatively compact
range.)

Proof. It is proved in [7] that (ii), (iii) and (iv) are all equivalent. To
see that (i)⇔(ii), let A ⊂ R(X). By the definition of P (X,X∗∗) we get
A ⊂ R∗bv(X). In particular, A ⊂ Rvbv(X). By [11, Theorem 6] it follows
that Π2(X, `1) = Π1(X, `1). Further, if A ⊂ Rvbv(X), then, as seen above,
A ⊂ R(X). But then, by P (X,X∗∗), A ⊂ R∗bv(X). Invoking Theorem 6
of [14], this yields that X∗ has (GT). Equivalently, L(X, `1) = Π2(X, `1).
Combining this with the above equality, we get (ii). Retracing the above
argument yields the reverse implication. �

Combining the above result with Theorem 4.4 yields the following

Corollary 4.8. A (GL)-space X with P (X,X∗∗) is finite dimensional.

Proof. Theorem 4.8 yields that both X and X∗ are (GT)-spaces. Now
under the assumption of the (GL)-property, Theorem 4.4 gives Π1(X, `2) =
N(X, `2). Combining this with the (GT)-property of X, namely that L(X, `2)
= Π1(X, `2), leads to the equality L(X, `2) = N(X, `2), which, by virtue of
Proposition 4.3, amounts to the finite dimensionality of X. �

The above corollary may be compared with Chapter 10 of [17], where in
Section (d) the author lists certain conditions which do not hold in an infinite
dimensional Banach space violating Grothendieck’s conjecture. One of these
properties is the ‘Local unconditional structure’, which is stronger than the
(GL)-property, so that Corollary 4.9 can be viewed as a strengthening of the
indicated result of [17].

Remark 4.9. The above corollary does not hold in the absence of (GL)-
property. In fact, the existence of infinite dimensional Banach spaces with
these properties has been a remarkable discovery of G. Pisier in his ground-
breaking work pertaining to ‘Grothendieck’s Conjecture’ ! (See [17, Chapter
10].) Incidentally, the above corollary shows that ‘Pisier’s space’ does not
have the Gordon-Lewis property. Finally, a useful result that can be gleaned
from the above considerations is given in

Proposition 4.10. Let X be a Banach space such that X∗ has (GT).
Then X has (GT) if and only if Π2(X, `2) = Π1(X, `2).



382 M.A. SOFI

We conclude with the following conjecture, which is motivated by the above
discussion.

Conjecture. For a Banach space X, P (X,X) holds (if and) only if
dimX <∞.
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[16] C. Piñeiro and L. Rodŕıguez-Piazza, Banach spaces in which every compact lies in-

side the range of a vector measure, Proc. Amer. Math. Soc. 114 (1992), 505–517.
MR 1086342 (92e:46038)

[17] G. Pisier, Factorisation of operators and geometry of Banach spaces, CBMS Regional
Conference Series in Mathematics, vol. 60, American Mathematical Society, Provi-
dence, R.I., 1985. MR 0829919 (88a:47020)

[18] M. A. Sofi, Nuclear operators and the geometry of Banach spaces, Functional analysis,
Narosa, New Delhi, 1998, pp. 75–88. MR 1668794 (2000a:46020)

Department of Mathematics, University of Kashmir, Srinagar - 190 006, India

E-mail address: aminsofi@rediffmail.com, aminsofi@indiatimes.com


