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UNITARIES IN BANACH SPACES

PRADIPTA BANDYOPADHYAY, KRZYSZTOF JAROSZ, AND T. S. S. R. K. RAO

Abstract. We study the abstract geometric notion of unitaries in a

Banach space characterized in terms of the equivalence of the norm
determined by the state space.

1. Introduction

Motivated by the recent work of Akemann and Weaver [2] we introduce and
study an abstract geometric notion of a unitary in a Banach space defined as
those unit vectors whose state space spans the dual. Because of the important
role unitaries play in C∗-algebras, it is natural to study the properties of uni-
taries in general Banach spaces and to decide to what extent they determine
the geometry and structure of such spaces.

We first compare unitaries with the well-studied notion of a vertex; the
notions coincide for C∗-algebras. For Banach spaces we show that a vertex is
a unitary if and only if the norm determined by the state space is an equivalent
norm. As a consequence we conclude that in a complex Banach algebra the
unit is a unitary and, just as in the case of C∗-algebras, unitaries remain
unitaries in the bidual. We study the behavior of unitaries and the related
notions of strongly extreme points and of weak*-unitaries in various settings
including C∗-algebras, von Neumann algebras and L1-preduals.

In Section 4 we consider unitaries in the space C(X,E) of vector-valued
continuous functions on a compact set X. If E is a function algebra then
f ∈ C(X,E) is a unitary if and only if f(x) is a unitary for all x ∈ X.
However, in general, a unitary-valued function need not be a unitary. This
seems to be the first non-trivial example where a continuous function is point-
wise in an extremal class but does not globally belong to that class.

In the last section of the paper we consider, for a Banach space E and
T ∈ L(E), the relation between T ∗ being a unitary in L(E∗) and T being a
unitary in L(E).
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2. Definitions and notations

Our notation and terminology is standard as found in [3] or [6]. For a
Banach space E we denote by E1 its closed unit ball and by ∂eE1 the set of
extreme points of E1. A point e0 ∈ E1 is called strongly extreme (or a point of
local uniform convexity [3]) if for all sequences {xn}n≥1, {yn}n≥1 in E1 such
that (xn + yn)/2 → e0 we have xn − yn → 0. With each norm one element
e0 ∈ E1 we associate its state space Se0

def= {e∗ ∈ E∗1 : e∗(e0) = 1}; we call e0

a vertex [3] if spanSe0 is weak*-dense in E∗ and a unitary if spanSe0 = E∗.
We will denote by U(E) the set of unitaries of E.

Definition 2.1. For a norm one element e0 ∈ E1 we define a seminorm
pe0 on E by

pe0(e) = sup{|e∗(e)| : e∗ ∈ Se0}.

It is clear that pe0 ≤ ‖·‖ and that pe0 is a norm if and only if e0 is a vertex.
In some cases it may be useful to restrict the set of functionals to a norming
subspace W of E∗. A closed subspace W of E∗ is a norming subspace if ‖e‖ =
sup{e∗(e) : e∗ ∈ W1} for all e ∈ E. We put SWe0

def= {e∗ ∈ W1 : e∗(e0) = 1}
and write pWe0 in place of pe0 , assuming that pWe0 = 0 if SWe0 = ∅. We call
a norm one element e0 ∈ E1 a W -unitary if SWe0 spans W . In particular, if
E = F ∗, we call an F -unitary a weak*-unitary.

We denote by T the unit circle in C, by L(E,F ) the spaces of all linear con-
tinuous maps between Banach spaces E and F and by K(E,F ) the subspace
consisting of compact maps; we write L(E) in place of L(E,E). C(X,E)
stands for the space of all continuous E-valued functions defined on a com-
pact Hausdorff space X. The constant function f(x) ≡ 1 on X will be denoted
by 1. By a uniform algebra A on X we mean a closed subalgebra of C(X)
which separates the points of X and contains the constant functions; ChA
denotes the Choquet boundary of A [4]. A Banach space E such that E∗ is
isometric to L1(µ) for some measure µ is called an L1-predual space. We refer
to [7, Chapter 7] for examples and properties of such spaces.

3. The geometry of unitaries

A norm one element e0 of a Banach space E is a unitary if and only if any
element e∗ of E∗ is a linear combination of finitely many elements of Se0 :

e∗ = α1e
∗
1 + · · ·+ αne

∗
n, for some e∗j ∈ Se0 .

It is an obvious but useful observation that the number of elements of Se0
taken in these linear combinations can always be limited to two in the real
case and to four in the complex case. Indeed, since Se0 is a convex set, we
can group together all of the terms with the same sign. If e0 is a unitary (and
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only in this case) we can define another norm on the dual space:

p∗e0 (e∗) def= inf
{∑

|αj | : e∗ = α1e
∗
1 + · · ·+ αne

∗
n, for some e∗j ∈ Se0

}
,

for e∗ ∈ E∗.
A close look at the proof of Theorem 2 in [2] shows that in a C∗-algebra

the notions of unitary and vertex coincide.

Theorem 3.1. For a norm one element e0 of a Banach space E the fol-
lowing conditions are equivalent:

(1) e0 ∈ E is a unitary.
(2) pe0 is a complete norm on E.
(3) pe0 is equivalent with the original norm of E.
(4) p∗e0 is a complete norm on E∗.
(5) p∗e0 is equivalent with the original norm of E∗,

Proof. The equivalences (2) ⇐⇒ (3) and (4) ⇐⇒ (5) are obvious by the
Open Mapping Theorem.

(1) =⇒ (5). Assume e0 is a unitary and put S def= conv(Se0 ∪−Se0 ∪ iSe0 ∪
−iSe0). Since spanSe0 = E∗ we have E∗ =

⋃∞
n=1 nS. As the set S is weak*-

compact and hence norm closed, it follows from the Baire Category Theorem
that there is a constant K > 0 such that E∗1 ⊆ KS. Hence

p∗e0 (e∗) ≤ K for any e∗ ∈ E∗1 .
(5) =⇒ (3). For any e∗ ∈ E∗ and e ∈ E,

|e∗(e)| ≤ p∗e0(e∗)pe0(e)

and hence, if p∗e0(e∗) ≤ K for any e∗ ∈ E∗1 , then pe0(e) ≥ 1
K ‖e‖.

(3) =⇒ (1). Assume that the norms pe0 and ‖ · ‖ are equivalent and define
J : E → C(Se0) by J(e)(e∗) = e∗(e). Notice that J is an isomorphism from
E onto a Banach space J(E) and J(e0) = 1. Fix e∗ ∈ E∗ and define a
continuous linear functional Λ on J(E) by Λ = e∗ ◦ J−1. Let µ be a regular
Borel measure on Se0 representing a norm preserving extension of Λ to C(Se0)
and let µ = µ1 − µ2 + iµ3 − iµ4, where the µj ’s are non-negative measures.
Observe that the normalized measures µj/‖µj‖ are probability measures and
hence are in the state space of 1 ∈ C(Se0). Let Λj be the functional on J(E)
represented by µj/‖µj‖. Since Se0 is convex and weak*-closed, it follows that
Λj ◦ J ∈ Se0 , so e∗ ∈ spanSe0 . �

Corollary 3.2. Let W be a norming subspace of E∗. Then any W -
unitary e0 of E is a unitary. In particular, any weak*-unitary e∗0 of E∗ is a
unitary.

Proof. Exactly as in the proof of Theorem 3.1, putting S = conv(SWe0 ∪
−SWe0 ∪ iS

W
e0 ∪ −iS

W
e0 ) and using the Category argument, it follows that if
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e0 ∈ E is a W -unitary then there is a constant K > 0 such that W1 ⊆ KS.
Since W is a norming subspace, pWe0 is thus an equivalent norm on E. Since
pWe0 ≤ pe0 , by Theorem 3.1, e0 is a unitary. �

It should be noticed that in the case of a von Neumann algebra A weak*-
unitaries and unitaries coincide [2, Theorem 3] and, as the following proposi-
tion shows, for any unitary u, pA∗u = pu, where A∗ is the predual of A. For
this result we use the notations of [2] and write Su for SA∗u .

Proposition 3.3. Let A be a von Neumann algebra with e as the identity
and let u ∈ A be a unitary. Then Su is weak*-dense in Su.

Proof. Since the isometry a → u∗a is also a weak*-homeomorphism it is
enough to prove the statement for u = e. Furthermore, using the Gelfand-
Naimark representation of A as a weak*-closed subalgebra of L(H), we may
assume that u = I ∈ L(H).
SI is the weak*-closed convex hull of the functionals of the form x ⊗ y,

where x, y are unit vectors in H satisfying 〈x, y〉 = 1 (see, e.g., [8]). Since any
such functional is in SI , the latter space is weak*-dense in SI . �

Notice that the concept of the unitary refers not only to a particular point
but also to a specific space containing that point—if e0 ∈ E ⊆ F then e0 may
be a unitary in E and at the same time may not even be an extreme point
in F . For example, if E is a proper M -summand in F , none of the points of
E remain extreme in F . On the other hand, it is easy to see that if e0 is a
unitary in F it must be a unitary in E. The next corollary shows that in the
case of F = E∗∗ we have both implications.

Corollary 3.4. Let e0 be a norm one element of a Banach space E.
Then e0 is a unitary in E if and only if it is a unitary in E∗∗.

Proof. If e0 ∈ E is a unitary in E∗∗ then by the above remark it is a
unitary in E. Conversely, if e0 is a unitary in E, then by the definition it is
a weak*-unitary in E∗∗. By Corollary 3.2 it is a unitary in E∗∗. �

Corollary 3.5. Let A be a complex Banach algebra with identity e0.
Then e0, as well as any invertible element x such that ‖x‖ = 1 = ‖x−1‖, are
unitaries.

Proof. As pe0 coincides with the numerical radius function V of [3], by [3,
page 34, Theorem 1], we get that for a complex Banach algebra epe0(·) ≥ ‖·‖.
Thus e0 is a unitary. Since a 7−→ ax−1 is a surjective isometry of A that maps
x to e0 the other conclusion follows. �

By Theorem 3.1 pe0 and ‖·‖ are equivalent if and only if e0 is a unitary. It is
easy to notice that these norms are equal if and only if E∗1 = acow

∗
(Se0), where
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aco denotes the absolutely convex hull. By Milman’s Theorem this happens
if and only if |e∗(e0)| = 1 for any e∗ ∈ ∂eE

∗
1 . This is indeed the case for

E = C(X), or more generally if E is an L1-predual space—see Theorem 3.12.
Such a situation is however rather rare; for example, it happens for a C∗-
algebra A if and only if A is commutative [9, page 277].

Corollary 3.6. Any unitary is a strongly extreme point.

Proof. Assume x, y, e0 ∈ E1 are such that ‖(x + y)/2 − e0‖ ≤ ε and let
e∗ ∈ Se0 . We have

|(e∗(x)− 1) + (e∗(y)− 1)|
2

=
∣∣∣∣e∗(x+ y

2
− e0

)∣∣∣∣ ≤ ε,
and

|e∗(x)| ≤ 1, |e∗(y)| ≤ 1.

Hence
−2ε ≤ Re (e∗(x)− 1) ≤ 0, −2ε ≤ Re (e∗(y)− 1) ≤ 0,

and

max {|Im (e∗(x)− 1)| , |Im (e∗(y)− 1)|} ≤
√

2 |Re (e∗(x)− 1)| ≤ 2
√
ε,

so
|e∗(x)− e∗(y)| ≤ 2

√
ε,

and consequently
pe0(x− y) ≤ 2

√
ε.

Hence, if e0 is a unitary and (xn + yn)/2→ e0 we get xn − yn → 0. �

The next example shows that a vertex need not be strongly extreme and
hence need not be a unitary.

Example 3.7. Let E be the space of all convergent sequences with the
norm defined by

‖(an)∞n=1‖ = sup
{

1
n
‖(a1, an)‖1 +

(
1− 1

n

)
‖(a1, an)‖∞ : n = 2, 3, . . .

}
,

where
‖(x, y)‖1 = |x|+ |y| and ‖(x, y)‖∞ = max{|x|, |y|}.

Notice that
1
2

sup {|an| : n = 2, 3, . . .} ≤ ‖(an)∞n=1‖ ≤ |a1|+ 2 sup{|an| : n = 2, 3, . . .},

so E is isomorphic with c0 and E∗ is isomorphic with `1. Let {en} be the
standard Schauder basis of E and {e∗n} the standard Schauder basis of E∗,
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that is, e∗n((an)∞n=1) = an. It is easy to check that the following functionals
are in Se1 :

(3.1) e∗1, e
∗
1 +

1
2
e∗2, . . . , e

∗
1 +

1
n
e∗n, . . . ,

and the span of these functionals is weak*-dense in E∗, so e1 is a vertex. The
point e1 is however not strongly extreme, since

‖e1 ± en‖ =
2
n

+
(

1− 1
n

)
→ 1 while ‖en‖ = 1.

The next easy example shows that the set of unitaries may not be closed
even in a finite dimensional Banach space.

Example 3.8. Put

K =
{(

cos
π

n
, η sin

π

n

)
∈ R2 : n = 2, 3, . . . ; η ∈ {−1, 1}

}
and let E be the two dimensional real Banach space whose unit ball is B =
aco(K). Notice that B has an “edge” at each point of K, so all these points
are unitaries. On the other hand, the limit point (1, 0) has only a single
supporting functional and consequently is not a unitary.

We now consider the notion of a strongly vertex point and examine its
relation to a unitary. We say that e0 ∈ E1 is a strongly vertex point [1] if
there exists D ⊆ E1 such that

E1 = aco(D ∪ {e0}) and e0 /∈ aco(D).

Lemma 3.9. If e0 ∈ E1 is a strongly vertex point then e0 is a unitary as
well as a strongly exposed point of E1.

Proof. Assume e∗ ∈ ∂E∗1 separates e0 from aco(D), that is,

‖e∗‖ = 1 = e∗(e0) > sup{|e∗(e)| : e ∈ D} def= ρ

Let 0 < r < (1 − ρ)/2. If ‖x∗ − e∗‖ ≤ r then |x∗(e0)| = ‖x∗‖ [1] and
consequently x∗/‖x∗‖ ∈ Se0 . That is, e0 is a unitary.

Claim. e∗ strongly exposes e0.

Let ε > 0. We will show that there exists η > 0 such that if x ∈ E1

and Re(e∗)(x) > 1 − η, then ‖x − e0‖ ≤ ε. Since E1 = aco(D ∪ {e0}),
x = λte0 + (1 − λ)z for some λ ∈ [0, 1], t ∈ T and z ∈ aco(D). Then
Re(e∗)(x) = λRe(t) + (1 − λ) Re(e∗)(z) > 1 − η. If 0 < η < (1 − ρ), then
Re(e∗)(z) < 1 − η, and hence, Re(t) > 1 − η. Since |t| = 1, |1 − t|2 =
2− 2 Re(t)2 < 2η(2− η). It also follows that

1− η < λRe(t) + (1− λ) Re(e∗)(z) < λ+ (1− λ)ρ
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and hence (1− λ) < η/((1− ρ). Therefore

‖x− e0‖ ≤ ‖x− te0‖+ |1− t| = ‖(1− λ)(z − te0)‖+ |1− t|

<
2η

1− ρ
+
√

2η(2− η) < ε

for sufficiently small η. �

Remark 3.10. Let E be a Banach space and e ∈ E be a nonzero element.
For any 0 < r < ‖e‖, if we define B = aco(rE1 ∪ {e0}), then B is the unit
ball of an equivalent norm on E in which e becomes a strongly vertex point.

This shows in particular that in any Banach space E, given any nonzero
element e, E has an equivalent renorming in which e becomes a unitary.

Even though the notions of vertex and unitary coincide in the case of a
C∗-algebra, we show that a C∗-algebra has no strongly vertex points.

Theorem 3.11. Let A be a unital complex C∗-algebra such that A 6= C.
Then A has no strongly vertex points.

Proof. Let A be a C∗-algebra with identity e. Suppose u ∈ A is a strongly
vertex point. By Lemma 3.9, u is a unitary. From [2, Theorem 2] we get that
uu∗ = u∗u = e. By passing through the isometry a→ au∗ of A, if necessary,
we may assume that u = e.

By spectral theory, there exists a nontrivial commutative C∗-subalgebra
B of A containing e. By the Gelfand-Naimark Theorem [3], B is C∗-algebra
isomorphic to C(X) for a compact set X with at least two distinct points. Let
us identify B with C(X). Then e corresponds to the function 1. Let p, q ∈ X
be distinct and fix f ∈ C(X) such that 0 ≤ f ≤ 1, f(p) = 1 and f(q) = 0.
Suppose e = 1 is a strongly vertex point. Let D ⊆ A1 be a closed absolutely
convex set such that e /∈ D and A1 = aco(D ∪ {e}). Since e /∈ D, there exists
s ∈ T, s 6= 1, such that f + s(e− f) /∈ D. But f + s(e− f) ∈ A1, so

(3.2) f + s(e− f) = λte+ (1− λ)z

for some λ ∈ (0, 1], t ∈ T and z ∈ D as in Lemma 3.9. Note that this implies
z ∈ B. Evaluating (3.2) at p, we get 1 = λt+ (1−λ)z(p), so that t = 1. Now,
evaluating (3.2) at q, we get s = λ+ (1− λ)z(q). Since s 6= 1 and |z(q)| ≤ 1,
this is impossible. �

We thank the referee for this version of the above theorem.
We now show that if an L1-predual space E satisfies the analogue of the

Russo-Dye theorem [3], that is, if E1 is the closed convex hull of unitaries,
then E is a C(X) space. Note that by Corollary 3.6 the hypothesis implies in
particular that E1 is the closed convex hull of its strongly extreme points.

Theorem 3.12. Let E be an L1-predual space. If E = span(U), then E
is isometric to C(X) for some compact Hausdorff space X.
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Proof. Let e0 ∈ ∂eE1. Let Se0 be equipped with the weak*-topology. It
follows from [9, Theorem 1.5] that the map Ψ : E → A(Se0) defined by
Ψ(e)(e∗) = e∗(e) is an onto isometry such that Ψ(e0) = 1. Thus by Theo-
rem 3.1 every extreme point of E1 is a unitary. Moreover, since ∂eA(Se0)∗1 =
T∂eSe0 [7, Section 20] (Se0 is embedded in A(Se0)∗1 by the canonical evaluation
map), we get |e∗(e0)| = 1 for any e∗ ∈ ∂eE∗1 .

We show that ∂eSe0 is a weak*-closed set. Let {e∗α} ⊆ ∂eSe0 be a net
such that e∗α → e∗ in the weak*-topology. Suppose e∗ = (e∗1 + e∗2)/2 for
e∗i ∈ Se0 . For any e ∈ ∂eE1, by the previous paragraph, |e∗(e)| = 1. Thus
e∗(e) = e∗1(e) = e∗2(e). Since E = span(U), we get e∗ = e∗1 = e∗2. Therefore
∂eSe0 is a closed set.

Since E is a L1-predual, when considered over the real scalar field, the
space A(Se0)∗ is a lattice. Thus Se0 is a Choquet simplex [7]. Since ∂eSe0 is
closed, a → a|∂eSe0 is an onto isometry between A(Se0) and C(∂eSe0). Thus
E is isometric to C(∂eSe0). �

We now give an example of a Banach algebra E with involution which is
not a C∗-algebra in which an analogue of the Russo-Dye Theorem holds.

Example 3.13. Let E = `1(Z) with convolution as multiplication and
e0 = δ(0) as the identity. For n ≥ 1, by taking D def= {δ(m) : m 6= n}, it is
easy to see that δ(n) is a strongly vertex point. Since any point of ∂eE1 is
of the form tδ(n) for some n ∈ Z and t ∈ T, we get that any extreme point
is a strongly vertex point, and hence a unitary. Clearly E1 = conv(U), and
E = span(U).

4. Unitaries in C(X,E) spaces

Theorem 4.1. Let E be a Banach space and X a compact Hausdorff
space. If f ∈ C(X,E) is a unitary, then for all x ∈ X, f(x) is a unitary.
Furthermore, if p∗f (F ) ≤ K ‖F‖ for all F ∈ C(X,E)∗, then p∗f(x) (e∗) ≤
K ‖e∗‖ for all x ∈ X and e∗ ∈ E∗.

Proof. Fix x ∈ X. Since the space C(X,E)∗ can be identified with the
space of E∗-valued regular Borel measures equipped with the total variation
norm, P (F ) = F |{x} = δ(x) ⊗ F ({x}) is a well-defined norm one projection.
As in the case of scalar-valued measures, it is easy to check that

‖F‖ = ‖F |{x}‖+ ‖F − F |{x}‖, F ∈ C(X,E)∗,

‖Λ‖ = max{‖P ∗(Λ)‖, ‖Λ− P ∗(Λ)‖}, Λ ∈ C(X,E)∗∗.

If F ∈ Sf we get

1 = F (f) = F ({x})(f(x)) + (F − P (F ))(f)

≤ ‖P (F )‖‖f(x)‖+ ‖F − F |{x}‖ ≤ ‖P (F )‖+ ‖F − F |{x}‖ = 1,
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so ‖F |{x}‖ = F ({x})(f(x)) 6= 0 whenever P (F ) 6= 0. Consequently

F ({x})
‖F ({x})‖

∈ Sf(x) if F ∈ Sf and F ({x}) 6= 0.

Let 0 6= e∗ ∈ E∗ and let δ(x)⊗e∗ ∈ C(X,E)∗ be defined by (δ(x)⊗e∗)(g) =
e∗(g(x)). By our hypothesis, δ(x) ⊗ e∗ =

∑
αiFi, where Fi ∈ Sf . Hence by

evaluating at {x} we have

e∗ = P (δ(x)⊗ e∗)({x}) =
∑

αiFi({x})

and all of αiFi({x}) are multiples of elements from Sf(x). Thus at least one
of the terms αiFi({x}) is nonzero and f(x) is a unitary in E. Furthermore
‖e∗‖ = ‖δ(x)⊗ e∗‖ and

∑
‖αiFi({x})‖ ≤

∑
‖αiFi‖, so the second part of the

theorem follows. �

The crucial part of the above proof was the `1-decomposition of an arbitrary
functional F in C(X,E)∗ and the corresponding `∞ decomposition in the
second dual. By Theorem 2.4.7 and Theorem 2.3.4 of [4], it can be seen that
the same is true for the injective tensor product A ⊗ε E ⊆ C(X) ⊗ε E '
C(X,E) of a uniform algebra A ⊆ C(X) and any point x in the Choquet
boundary ChA of that algebra. Thus we have a natural generalization of the
last result.

Theorem 4.2. Let E be a Banach space and A a uniform algebra. If
f ∈ (A⊗ε E) is a unitary, then for any x ∈ ChA, f(x) is a unitary.

We now obtain a converse to the previous theorem.

Theorem 4.3. Let E be a Banach space and A a uniform algebra on its
Shilov boundary X. If f ∈ A ⊗ε E is such that there exists K > 0 with
pf(x)(e) ≥ 1

K ‖e‖ for all e ∈ E and all x in X, then f is a unitary.
In particular, in each of the following cases f ∈ A⊗ε E is a unitary if and

only if f(x) is a unitary for all x ∈ X: (i) f(X) is finite, in particular, (a)
X is finite or (b) f is constant; (ii) E is a C∗-algebra; (iii) E is a function
algebra; (iv) E is a L1-predual; or (v) E is a L1(µ) space.

Proof. Since Sf is a w*-closed face of (A ⊗ε E)∗1, Sf = cow
∗
∂eSf and

∂eSf ⊆ ∂eC(X,E)∗1. It follows that

∂eSf = {e∗ ⊗ δ(x) : x ∈ X, e∗ ∈ Sf(x)}l.

Therefore, for any g ∈ A⊗ε E,

pf (g) = sup{|(e∗ ⊗ δ(x))(g)| : x ∈ X, e∗ ∈ Sf(x)}
= sup{|e∗(g(x))| : x ∈ X, e∗ ∈ Sf(x)}
= sup{pf(x)(g(x)) : x ∈ X} ≥ K‖g‖∞.
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Hence, f is a unitary.
It follows from our remarks in Section 3 and from Theorem 4.2 that if E

is as in cases (ii)–(iv), then there exists K > 0 such that pu(e) ≥ 1
K ‖e‖ for

all e ∈ E and u ∈ U(E). Note that even in the case of E = L1(µ), since
extreme points of E1 are given by atoms of µ and as extreme points of E∗1 are
of absolute value 1 a.e, any extreme point is a unitary and K = 1 works. �

We may notice that the above theorem would not be valid if we replaced
unitary with vertex, even in the scalar case. For example, a norm one element
f of the disc algebra such that {x ∈ T : |f(x)| = 1} has nonempty interior is
a vertex, but |f(x)| may not be equal to 1 on all of T, which is the Choquet
boundary of A.

The next example shows that in general a unitary-valued function need not
be a unitary even when E is finite dimensional.

Example 4.4. Put

L =
{(

cos
π

n
, sin

π

n

)
∈ R2 : n = 2, 3, . . .

}
and let E be the two dimensional real Banach space whose unit ball is W def=
aco(L). Our Banach space is similar to that considered in Example 3.8—the
unit ball W is identical with B in the first and the third quadrant, but in
the second and the fourth one W coincides with the `1-ball. So this time
(1, 0) is a unitary; W still has an “edge” at each point of L and all these
points are unitaries. However the angles of W at the points (cosπ/n, sinπ/n),
n = 2, 3, . . . increase and tend to π/2; consequently these points are “less and
less unitaries”, that is, p∗(cosπ/n,sinπ/n) and ‖ · ‖ are “less and less equivalent”.
More precisely

lim
n

sup
{
|e∗(0, 1)| : e∗ ∈ S(cosπ/n,sinπ/n)

}
= 0,

and hence

(4.1)
p∗(cosπ/n,sinπ/n) ((0, 1))

‖(0, 1)‖
= p∗(cosπ/n,sinπ/n) ((0, 1))→∞ as n→∞.

Let X = N ∪ {∞} be one point compactification of the discrete set N, and
put

f(n) =
{

(cosπ/n, sinπ/n) for n ∈ N
(1, 0) for n =∞ .

For all n, including n = ∞, f(n) is a unitary; however, by (4.1) and Theo-
rem 4.1, f ∈ C(X,E) = c(E) is not a unitary.

Arguments similar to Theorem 4.3 show that if E1, E2, . . . , En are Banach
spaces and E = ⊕∞Ek, then e = (ek) ∈ E with ‖e‖∞ = 1 is a unitary if
and only if for all k, ek is a unitary in Ek. While the necessity still holds
for arbitrary `∞ sums, the above example shows that in an `∞ sum of even a
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single E there may be a vector that is not a unitary, but each of its coordinates
is a unitary.

In the following proposition we show that any vertex-valued continuous
function is a vertex. Thus the above is yet another example of a vertex that
is not a unitary.

Proposition 4.5. Let f ∈ C(X,E) be such that for all x in a dense
subset X ′ of X, f(x) is a vertex. Then f is a vertex.

Proof. It suffices to show that Sf separates points of C(X,E). Suppose
g ∈ C(X,E) and g 6= 0. Then, for some x ∈ X ′, g(x) 6= 0. Since f(x) is a
vertex, there exists e∗ ∈ Sf(x) such that e∗(g(x)) 6= 0. Note that δ(x)⊗e∗ ∈ Sf
and (δ(x)⊗ e∗)(g) = e∗(g(x)) 6= 0. �

We use this opportunity to present a short C∗-algebra proof of the following
result of Grza̧ślewicz [5, Theorem 1].

Theorem 4.6. Let H be a Hilbert space and let f ∈ ∂eC(X,L(H))1. Then
for all x ∈ X, f(x) ∈ ∂eL(H)1.

Proof. In a unital C∗-algebra A,

(4.2) f ∈ ∂eA1 ⇐⇒ (1− ff∗)A(1− f∗f) = 0

[10, Proposition 1.4.7]. Since, with the point-wise multiplication, C(X,L(H))
is a C∗-algebra, we have (1 − ff∗)C(X,L(H))(1 − f∗f) = 0. Evaluating at
1⊗ L(H), we have for any x ∈ X, (1− f(x)f(x)∗)L(H)(1− f(x)∗f(x)) = 0;
using (4.2) again, we get f(x) ∈ ∂eL(H)1. �

5. Unitaries in spaces of operators

For a Banach space E, the map T 7−→ T ∗ is an isometry of L(E) onto
the space Lw∗(E∗) of weak*-continuous operators. Since surjective isome-
tries preserve unitaries and, as noted before, a unitary in a Banach space is
automatically a unitary in a subspace that contains it, we have

[T ∗ ∈ L(E∗) is a unitary] =⇒ [T ∗ ∈ Lw∗(E∗) is a unitary]

⇐⇒ [T ∈ L(E) is a unitary] .

It is natural to ask whether the converse of the first implication is also true.
The following propositions provide a partial answer. We recall that a unitary
is an extreme point.

Proposition 5.1. If T ∈ ∂eL(`1)1 then T ∗ is a unitary. If T ∈ ∂eL(`∞)1

then T is a unitary.
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Proof. Assume T ∈ ∂eL(`1)1. Since the space L(`1) may be identified with
⊕∞`1, via R 7−→ (R(en))∞n=1, T (en) is an extreme point of `11 for any n ∈ N.
Hence

(5.1) T (en) = αnej(n), for n ∈ N,
where |αn| = 1 and j : N → N. Notice that L(`∞) can be linearly embedded
into the space of bounded functions on ∂e`

∞
1 × N:

Φ(S)(u, n) = S(u)(en), for S ∈ L(`∞), u ∈ ∂e`∞1 , n ∈ N.
Since `∞1 = conv∂e`∞1 , Φ is an isometry. For S = T ∗, by (5.1) we get

|Φ(T ∗)(u, n)| = |T ∗(u)(en)| = |u(T (en))| = 1, for (u, n) ∈ ∂e`∞1 × N.
Thus Φ(T ∗) is a function of absolute value one and hence a unitary; conse-
quently T ∗ is a unitary.

If T ∈ ∂eL(`∞)1, using the identification of L(`∞) as ⊕∞(`∞)∗, we again
get that T ∗(en) is an extreme point of (`∞)∗1, so T ∗(en) = tδ(x) for some
x ∈ β(N) and |t| = 1. Thus |Φ(T )(u, n)| = |T ∗(en)(u)| = 1 as |u| = 1 on
β(N). Hence T is a unitary. �

Since L(c0) can be isometrically embedded into L(`1) via the adjoint map,
we get that for every T ∈ ∂eL(c0)1, T ∗ is a unitary.

In general, it is not clear whether T ∗ is always a unitary, even if T is
compact. The following proposition addresses a special case.

Proposition 5.2. Let E be a Banach space such that the set U(E∗) of
unitaries on E∗ is closed. For any unitary T ∈ K(E,C(X)), T ∗ is a vertex
of K(C(X)∗, E∗).

Proof. Since K(E,C(X)) can be identified with C(X,E∗) via the map T →
T ∗|X , we can assume that T ' f ∈ C(X,E∗). Since T is a compact operator,
T ∗ can also be identified with a f̃ ∈ C(K,E∗) = C(K) ⊗ε E∗ = C(X)∗∗ ⊗ε
E∗ = K(C(X)∗, E∗), where K is the Stone space of C(X)∗∗.

It is well-known that K is extremally disconnected and that X can be
embedded as a discrete set in K [7, Section 11] and there exists a retract
φ : K → β(X) such that f̃ = f ◦φ (as f(X) is a compact subset of E, f has a
natural extension to β(X) still denoted by f). For any k ∈ K, f̃(k) = f(φ(k)).
Arguments similar to the ones given during the proof of Theorem 4.1 show
that f(X) ⊆ U . Since X is dense in β(X) and U is closed, f̃(k) is a unitary
and hence by Proposition 4.5, f̃ is a vertex. �

Added in Proof. It has been pointed out to us that the results of [2] are
essentially known and can be found in Chapter 9 of T. W. Palmer, “Banach
algebras and the general theory of *-algebras, Volume II, *-algebras” (Ency-
clopedia of Mathematics and its Applications, vol. 79, Cambridge University
Press, Cambridge, 2001). Theorem 9.5.9 and the remarks following 9.5.16 in
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that book show that the semi-norm we have considered is in the context of a
*-algebra, an equivalent norm with the constant e replaced by 2.
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