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A NEW DECOMPOSITION THEOREM FOR 3-MANIFOLDS

BRUNO MARTELLI AND CARLO PETRONIO

Abstract. Let M be a (possibly non-orientable) compact 3-manifold

with (possibly empty) boundary consisting of tori and Klein bottles.
Let X ⊂ ∂M be a trivalent graph such that ∂M \ X is a union of
one disc for each component of ∂M . Building on previous work of
Matveev, we define for the pair (M,X) a complexity c(M,X) ∈ N and
show that, when M is closed, irreducible and P2-irreducible, c(M, ∅) is
the minimal number of tetrahedra in a triangulation of M . Moreover
c is additive under connected sum, and, given any n > 0, there are
only finitely many irreducible and P2-irreducible closed manifolds having
complexity up to n. We prove that every irreducible and P2-irreducible

pair (M,X) has a finite splitting along tori and Klein bottles into pairs
having the same properties, and complexity is additive on this splitting.
As opposed to the JSJ decomposition, our splitting is not canonical, but

it involves much easier blocks than all Seifert and simple manifolds. In
particular, most Seifert and hyperbolic manifolds appear to have non-

trivial splitting. In addition, a given set of blocks can be combined

to give only a finite number of pairs (M,X). Our splitting theorem
provides the theoretical background for an algorithm which classifies

3-manifolds of any given complexity. This algorithm has been already
implemented and proved effective in the orientable case for complexity

up to 9.

We develop in this paper a theory of complexity for pairs (M,X), where
M is a compact 3-manifold such that χ(M) = 0, and X is a collection of
trivalent graphs, each graph τ being embedded in one component C of ∂M so
that C \ τ is one disc. In the special case where M is closed, so that X = ∅,
our complexity coincides with that introduced by Matveev [6]. Extending
his results we show that complexity of pairs is additive under connected sum
and that, when M is closed, irreducible, P2-irreducible and different from
S3, L3,1,P

3, its complexity is precisely the minimal number of tetrahedra in a
triangulation. These two facts show that complexity is indeed a very natural
measure of how complicated a manifold or pair is. The former fact was known
to Matveev in the closed case, the latter in the orientable case.
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The most relevant feature of our theory is that it leads to a splitting theorem
along tori and Klein bottles for irreducible and P2-irreducible pairs (so, in
particular, for irreducible and P2-irreducible closed manifolds). The blocks of
the splitting are themselves pairs, and the complexity of the original pair is
the sum of the complexities of the blocks. Recalling that in [6] a complexity
c(M) was defined also for the case when ∂M 6= ∅, we emphasize here that our
complexity c(M,X) is typically different from c(M). So the splitting theorem
crucially depends on the extension of c from manifolds to pairs.

Our splitting differs from the JSJ decomposition [2][3] since it is not unique
(see below for a further discussion of this point), but it has the great advantage
that the blocks it involves, which we call bricks, are much easier than all Seifert
and simple manifolds. As a matter of fact, our splitting is non-trivial on almost
all Seifert and hyperbolic manifolds it has been tested on. Another advantage
is that the graphs in the boundary reduce the flexibility of possible gluings
of bricks. As a consequence, a given set of bricks can only be combined in a
finite number of ways. This property is of course crucial for computations,
and our theory actually leads to very effective algorithms for the enumeration
of closed manifolds having small complexity.

Returning to the relation between our splitting and the JSJ decomposition,
we mention that all the bricks found so far [4] are geometrically atoroidal,
which suggests that our splitting is actually always a refinement of the JSJ
decomposition (and we know it is in the orientable case for complexity up to 9;
see [4]). Moreover, non-uniqueness for a Seifert manifold typically corresponds
to non-uniqueness of its realization as a graph-manifold. We have also found
some non-uniqueness instances in the hyperbolic case [5].

The orientable version of the theory developed in this paper, culminat-
ing in the splitting theorem, was established in [4]. In the same paper we
have proved several strong restrictions on the topology of bricks and, using
a computer program, we have been able to classify all orientable bricks of
complexity up to 9. Using the bricks we have then listed all closed irreducible
orientable 3-manifolds up to complexity 9, showing in particular that the only
four hyperbolic ones are precisely those of least known volume. The splitting
theorem proved below is the main theoretical tool needed to extend our pro-
gram of enumerating 3-manifolds of small complexity from the orientable to
the general case. We are planning to realize this program in the close future.
This will allow us to provide information on the smallest non-orientable hy-
perbolic manifolds and on the density, in each given complexity, of orientable
manifolds among all 3-manifolds.

We have decided to devote the present paper to the general theory and the
splitting theorem, leaving computer implementation for a subsequent paper,
because the non-orientable case displays certain remarkable phenomena which
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do not appear in the orientable case. To begin with, toric boundary compo-
nents restrict the shape of the trivalent graph they contain to only one possi-
bility, while Klein bottles allow two. Next, the assumption of P2-irreducibility
has to be added to irreducibility to get the finiteness of closed manifolds of
a given complexity. More surprisingly, these assumptions do not suffice when
a non-empty boundary is allowed, because the drilling of a boundary-parallel
orientation-reversing loop never changes complexity. Because of these facts,
the intrinsic definition of brick given below is somewhat subtler than that
given in [4], and the proof of some of the key results (including additivity
under connected sum) is considerably harder.

1. Manifolds with marked boundary

If C is a connected surface, we call spine of C a trivalent graph τ embedded
in C in such a way that C \ τ is an open disc. If C is disconnected then a
spine of C is a collection of spines for all its components. We denote by X
the set of all pairs (M,X), where M is a connected and compact 3-manifold
with (possibly empty) boundary made of tori and Klein bottles, and X is a
spine of ∂M . Elements of X will be viewed up to homeomorphism of pairs.

Remark 1.1. Since S2 and P2 do not admit spines with vertices, a pair
(M,X) with X a spine of ∂M belongs to X if and only if χ(M) = 0 and all
the elements of X have vertices.

Spines of the torus T and the Klein bottle K. A spine of T or K
must be a trivalent graph with two vertices, and there are precisely two such
graphs, namely the θ-curve and the frame σ of a pair of spectacles. Both
θ and σ can serve as spines of K, as shown in Fig. 1, left and center. The
following result will be shown in the appendix:

Proposition 1.2.

(1) Every spine of K is isotopic to one of the two graphs shown in Fig. 1.
(2) With notation as in Fig. 1, for both τ = θ and τ = σ there exists

f ∈ Aut(K) such that f(τ) = τ , f(e′) = e′′, and f(e′′) = e′, but for
all f ∈ Aut(K) such that f(τ) = τ we have f(e′′′) = e′′′.

The situation for T is completely different. First of all, σ is not a spine of
T . In addition, θ can be used as a spine of T in infinitely many non-isotopic
ways, because the position of θ on T is determined by the triple of loops on T
which are contained in θ. Note that any two of these loops generate H1(T ;Z),
and any such triple determines one spine θ. However we have the following
result, which we leave to the reader to prove using the facts just stated.
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Figure 1. Spines of the Klein bottle and the torus.

Proposition 1.3. If θ is a spine of T then all automorphisms of θ are
induced by automorphisms of T . If θ, θ′ are spines of T there exists f ∈
Aut(T ) such that f(θ) = θ′.

Examples of pairs. If M is a closed 3-manifold then (M, ∅) is an element
of X . For simplicity we will often write only M instead of (M, ∅). We list
here several more elements of X needed below. Our notation will be consistent
with that of [4]. The reader is invited to use Propositions 1.2 and 1.3 to make
sure that all the pairs we introduce are well-defined up to homeomorphism.
We start with the product pairs:

B0 = (T × [0, 1], {θ × {0}, θ × {1}}),
B′0 = (K × [0, 1], {θ × {0}, θ × {1}}),
B′′0 = (K × [0, 1], {σ × {0}, σ × {1}}).

We next have two pairs B1 and B2 based on the solid torus T and shown
in Fig. 2-left, and two on the solid Klein bottle K , namely B′1 = (K , θ) and
B′2 = (K , σ).

For k > 1 we take now the 2-orbifold D2 with k mirror segments on ∂D2

and we define Zk ∈ X as the Seifert manifold without singular fibers over this
orbifold [10], with a spine σ in each of the k Klein bottles on the boundary.
Note that Zk can also be viewed as the complement of k disjoint orientation-
reversing loops in S2 ×∼ S1. Another description of Zk is given in Fig. 2-right.
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Figure 2. The pairs B1, B2, and Zk for k > 1.

We also note that Z1 = B′2 and Z2 = B′′0 . We define now B′′2 to be Z3, for a
specific reason explained below.

We will now introduce three operations on pairs which allow us to construct
new pairs from given ones. The ultimate goal is to show that all manifolds
can be constructed via these operations using only certain building blocks.

Connected sum of pairs. The operation of connected sum obviously
extends from manifolds to pairs. Namely, given (M,X) and (M ′, X ′) in X ,
we define (M,X)#(M ′, X ′) as (M#M ′, X ∪X ′), where M#M ′ is one of the
two possible connected sums of M and M ′. Of course S3 = (S3, ∅) ∈ X is the
identity element for operation #. It is now natural to define (M,X) to be
prime or irreducible if M is. Of course the only prime non-irreducible pairs
are S2 × S1 and S2 ×∼ S1.

Assembling of pairs. Given (M,X) and (M ′, X ′) in X , we pick spines
τ ∈ X and τ ′ ∈ X ′ with τ ⊂ C ⊂ ∂M and τ ′ ⊂ C ′ ⊂ ∂M ′. If there is a
homeomorphism ψ : C → C ′ such that ψ(τ) = τ ′ we can construct the pair
(N,Y ) = (M ∪ψM ′, (X ∪X ′)\{τ, τ ′}). We call this an assembling of (M,X)
and (M ′, X ′) and we write (N,Y ) = (M,X)⊕ (M ′, X ′). Of course two given
elements of X can only be assembled in a finite number of inequivalent ways.

Considering the pairs B∗i and Zk introduced above, the reader may easily
check as an exercise that Zk ⊕ Zh = Zh+k−2 and that the following holds:

Remark 1.4.

1. (M,X)⊕B∗0 = (M,X) for any (M,X) ∈ X .
2. For (i, j) equal to (1, 1), (1, 2), or (2, 1), it is possible to assemble Bi

and Bj along a certain map ψ in order to get S3. So, for any (M,X),
if we assemble (M,X)#Bi to Bj along ψ, we get the original (M,X)
as a result.
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3. The assembling of B′′2 with B′2 gives B′′0 , so ((M,X) ⊕ B′′2 ) ⊕ B′2 =
(M,X) provided B′2 is assembled to one of the free boundary compo-
nents of B′′2 .

This shows that we can discard various assemblings without impairing our
capacity of constructing new manifolds. So we will call trivial an assembling
(M,X) ⊕ (M ′, X ′) if, up to interchanging (M,X) and (M ′, X ′), one of the
following holds:

(1) (M ′, X ′) is of type B∗0 .
(2) (M ′, X ′) = Bj for j ∈ {1, 2} and (M,X) can be expressed as

(N,Y )#Bi for i ∈ {1, 2} with (N,Y ) 6= S3 in such a way that the
assembling is performed along the boundary of Bi and Bi⊕Bj = S3.

(3) (M ′, X ′) = B′2 and (M,X) = (N,Y ) ⊕ B′′2 with B′2 being assembled
to B′′2 .

Self-assembling. Given (M,X) ∈ X , we pick two distinct τ, τ ′ ∈ X with
τ ⊂ C and τ ′ ⊂ C ′. If there is a homeomorphism ψ : C → C ′ we can choose
one such that ψ(τ) and τ ′ intersect transversely in two points, and we define
(N,Y ) as (Mψ, X \ {τ, τ ′}). We call this a self-assembling of (M,X) and we
write (N,Y ) = �(M,X). As above, only a finite number of self-assemblings
of a given element of X are possible.

In the sequel it will be convenient to refer to a combination of assemblings
and self-assemblings of pairs just as an assembling. Note that of course we
can first do the assemblings and then the self-assemblings.

2. Complexity, bricks, and the decomposition theorem

In the following sections we will introduce and discuss a certain function
c : X → N which we call complexity. In the present section we anticipate the
definition of c very briefly and state several results about this function, which
could also be taken as axiomatic properties. Then we show how to deduce
the splitting theorem from these properties only. Proofs of the properties are
given in Sections 3–5.

Given (M,X) ∈ X we denote by c(M,X) the minimal number of vertices
of a polyhedron P embedded in M such that P ∪∂M is simple, P ∩∂M = X,
and the complement of P ∪ ∂M is an open 3-ball. Here ‘simple’ means that
the link of every point embeds in the 1-skeleton of the tetrahedron, and a
point of P is a ‘vertex’ if its link is precisely the 1-skeleton of the tetrahedron.
We obviously have c(M, ∅) = c(M) if M is a closed 3-manifold and c(M) is
Matveev’s complexity [6]. Note that c(M) is also defined in [6] for ∂M 6= ∅,
but typically c(M,X) 6= c(M).

Axiomatic properties. We start with three theorems which suggest to
restrict the study of c(M,X) to pairs (M,X) which are irreducible and P2-
irreducible. Recall that M is called P2-irreducible if it does not contain any
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two-sided embedded projective plane P2 (see [1] for generalities about this
notion, and in particular for the proof that a connected sum is P2-irreducible if
and only if the individual summands are). When M is closed, we call singular
a triangulation of M with multiple and self-adjacencies between tetrahedra.
The first and second theorems, respectively, extend results of Matveev [6]
from the closed to the marked-boundary case, and from the orientable to the
possibly-non-orientable case. The extension is easy for the second theorem,
but less so for the first theorem. The third theorem shows that the non-
orientable theory is far richer than the orientable one.

Theorem 2.1 (Additivity under #). For any (M,X) and (M ′, X ′) we
have

c((M,X)#(M ′, X ′)) = c(M,X) + c(M,X ′).

Moreover c(S2 × S1) = c(S2 ×∼ S1) = 0.

Theorem 2.2 (Naturality). If M is closed, irreducible, P2-irreducible,
and different from S3, P3, L3,1, then c(M) = c(M, ∅) is the minimal number
of tetrahedra in a singular triangulation of M .

Theorem 2.3 (Finiteness). For all n > 0 the following holds:

(1) There exist finitely many irreducible and P2-irreducible pairs (M,X)
such that c(M,X) = n and (M,X) cannot be expressed as an assem-
bling (N,Y )⊕B′′2 .

(2) If (N,Y ) ∈ X is irreducible and P2-irreducible and c(N,Y ) = n then
(N,Y ) can be obtained from one of the pairs (M,X) described above
by repeated assembling of copies of B′′2 . Any such assembling has
complexity n.

The latter result is of course crucial for computational purposes. To better
appreciate its “finiteness” content, note that whenever we assemble one copy
of B′′2 the number of boundary components increases by one. Therefore the
theorem implies that for all n, k > 0 the set

M6k6n = {(M,X) ∈ X irred. and P2−irred., c(M,X) 6 n, #X 6 k}

is finite. It should be emphasized that not only we can prove that M6k6n is
finite, but the proof itself provides an explicit algorithm to produce a finite list
of pairs from which M6k6n is obtained by removing duplicates. The theorem
also implies that dropping the restriction #X 6 k we get infinitely many pairs,
but only finitely many orientable ones. This fact, which is ultimately due to
the existence of the Zk series generated by B′′2 under assembling, is one of the
key differences between the orientable and the general case (another important
difference will arise in the proof of Theorem 2.1—see Proposition 5.2). Note
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also that an assembling with B′′2 geometrically corresponds to the drilling of
a boundary-parallel orientation-reversing loop.

The following more specific version of the previous theorem for n = 0 is
needed below.

Proposition 2.4. The only irreducible and P2-irreducible pairs having
complexity 0 are S3, L3,1, P3 and all the pairs B∗i and Zk defined above.

We turn now to the behaviour of complexity under assembling.

Proposition 2.5 (Subadditivity). For any (M,X), (M ′, X ′) ∈ X we have

c((M,X)⊕ (M ′, X ′)) 6 c(M,X) + c(M ′, X ′),
c(�(M,X)) 6 c(M,X) + 6.

We define now an assembling (M,X) ⊕ (M ′, X ′) to be sharp if it is non-
trivial and c((M,X) ⊕ (M ′, X ′)) = c(M,X) + c(M ′, X ′). Similarly, a self-
assembling �(M,X) is sharp if c(�(M,X)) = c(M,X) + 6. Proposition 2.5
readily implies the following facts.

Remark 2.6.

1. If a combination of sharp (self-)assemblings is rearranged in a different
order then it still consists of sharp (self-)assemblings.

2. Every assembling with B′′2 is sharp (unless it is trivial, which only
happens when B′′2 is assembled to B′′0 or to B′2). To see this, note
again that (M,X)⊕B′′2 ⊕B′2 = (M,X) and c(B′′2 ) = c(B′2) = 0.

Theorem 2.7 (Sharp splitting). Let (N,Y ) be irreducible and P2-irredu-
cible. If (N,Y ) can be expressed as a sharp assembling (M,X) ⊕ (M ′, X ′)
or as a self-assembling �(M ′′, X ′′) then (M,X), (M ′, X ′), and (M ′′, X ′′) are
irreducible and P2-irreducible.

Proof. In both cases we are cutting N along a two-sided torus or Klein
bottle, so P2-irreducibility is obvious. If (N,Y ) = �(M ′′, X ′′), this torus
or Klein bottle is incompressible in N , and irreducibility of M ′′ is a general
fact [1]. We are left to show that if (N,Y ) = (M,X) ⊕ (M ′, X ′) sharply
then M and M ′ are irreducible. Since these manifolds have boundary, it is
enough to show that they are prime. Suppose they are not, and consider
prime decompositions of (M,X) and (M ′, X ′) involving summands (Mi, Xi)
and (M ′j , X

′
j). So one summand (Mi, Xi) is assembled to one (M ′j , X

′
j),

and the other (Mi, Xi)’s and (M ′j , X
′
j)’s survive in (N,Y ). It follows that,

up to permutation, (M,X) is prime, (M ′, X ′) = (M ′1, X
′
1)#(M ′2, X

′
2) with

(M ′1, X
′
1) and (M ′2, X

′
2) prime, (M,X) ⊕ (M ′1, X

′
1) = S3 and (M ′2, X

′
2) =

(N,Y ). Sharpness of the original assembling and additivity under # now im-
ply that c(M,X) = c(M ′1, X

′
1) = 0. So Proposition 2.4 applies to (M,X) and
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(M ′1, X
′
1). Knowing that (M,X) ⊕ (M ′1, X

′
1) = S3 it is easy to deduce that

(M,X) and (M ′1, X
′
1) are either B1 or B2, and that the original assembling

was a trivial one. This is a contradiction. �

Bricks and decomposition. Taking the results stated above for granted,
we define here the elementary building blocks and prove the decomposition
theorem. Later we will comment on the actual relevance of this theorem.

A pair (M,X) ∈ X is called a brick if it is irreducible and P2-irreducible and
cannot be expressed as a sharp assembling or self-assembling. Theorem 2.3
and Remark 2.6 easily imply that there are finitely many bricks of complexity
n. From Proposition 2.4 it is easy to deduce that in complexity zero the only
bricks are precisely the pairs B∗i introduced above, which explains why we
have given a special status to Z3 = B′′2 , and that the other irreducible and
P

2-irreducible pairs are assemblings of bricks. Now, we show more generally:

Theorem 2.8 (Existence of splitting). Every irreducible and P2-irredu-
cible pair (M,X) ∈ X can be expressed as a sharp assembling of bricks.

Proof. The result is true for c(M,X) = 0, so we proceed by induction on
c(M,X) and suppose c(M,X) > 0. By Theorem 2.3 we can assume that
(M,X) cannot be split as (N,Y )⊕B′′2 , because every assembling with B′′2 is
sharp, and we have seen that B′′2 is a brick. Now if (M,X) is a brick we are
done. Otherwise (M,X) is either a sharp self-assembling �(N,Y ), in which
case c(N,Y ) = c(M,X) − 6 and we can conclude by induction using The-
orem 2.7, or (M,X) is a sharp assembling (N,Y ) ⊕ (N ′, Y ′). Theorem 2.7
states that (N,Y ) and (N ′, Y ′) are irreducible and P2-irreducible. If both
(N,Y ) and (N ′, Y ′) have positive complexity we conclude by induction. Oth-
erwise we can assume that c(N ′, Y ′) = 0 and apply Proposition 2.4. Since the
assembling is non-trivial, (N ′, Y ′) is not of type B∗0 . It is also not B′′2 or Zk
for k > 3, by the property of (M,X) we are assuming. So (N ′, Y ′) is one of
B1, B′1, B2, B′2. In particular, it is a brick.

Now we claim that (N,Y ) cannot be split as (N ′′, Y ′′) ⊕ B′′2 . Assuming
it can, we have two cases. In the first case the assembling of (N ′, Y ′) is
performed along a free boundary component of B′′2 , but then we must have
(N ′, Y ′) = B′2, and the assembling is trivial, which is absurd. In the second
case (N ′, Y ′) is assembled to a free boundary component of (N ′′, Y ′′), and we
have

(M,X) =
(
(N ′′, Y ′′)⊕ (N ′, Y ′)

)
⊕B′′2 ,

which is again absurd. Our claim is proved.
Now we know that (N,Y ) again belongs to the finite list of irreducible

and P2-irreducible pairs which have complexity n and cannot be split as an
assembling with B′′2 . However (N,Y ) has one more boundary component
than (M,X), which implies that by repeatedly applying this argument we
must eventually end up with a brick. �
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Experimental facts. Theorem 2.8 shows that listing irreducible and P2-
irreducible manifolds up to complexity n is easy once the bricks up to com-
plexity n are classified. The finiteness features of our theory imply that there
exists an algorithm which reduces such a classification to a recognition prob-
lem. Moreover it turns out experimentally that recognition needs to be carried
out only on a comparatively short list of pairs. The complete list of orientable
bricks up to complexity 9 was found in [4] (see also [11]), and it consists of 30
pairs, whereas there are 1901 closed, irreducible, and orientable 3-manifolds
of complexity up to 9. As a matter of fact, only 7 bricks are already sufficient
to obtain 1882 closed manifolds (the other 19 being themselves bricks). In
addition, all bricks found are geometrically atoroidal, which makes it easy to
recognize their assemblings; see also [5].

3. Skeleta

We introduce here the notion of skeleton of a pair (M,X), we define the
complexity of (M,X) as the minimal number of vertices of a skeleton, and we
discuss the first properties of minimal skeleta, deducing some of the results
stated above. The other results require a deeper analysis and new techniques
and will be proved later.

Simple skeleta and complexity. We recall that a compact polyhedron
P is called simple if the link of every point of P embeds in the space given by
a circle with three radii. The points having the whole of this space as a link
are called vertices. They are isolated and therefore finite in number. Given
a pair (M,X) ∈ X , a polyhedron P embedded in M is called a skeleton of
(M,X) if the following holds:

• P ∪ ∂M is simple;
• M \ (P ∪ ∂M) is an open ball;
• P ∩ ∂M = X.

Remark 3.1. If P is a skeleton of (M,X) then P is simple, and the
vertices of P cannot lie on ∂M . When #X = 1 then P is a spine of M (i.e.,
M collapses onto P ), and when #X = 0 (i.e., when M is closed) then P is a
spine of M \ {point}. When #X > 2 no such interpretation is possible.

The proof that every (M,X) ∈ X has a skeleton, already given in [4,
Remark 2.1], extends verbatim to the non-orientable context. For a simple
polyhedron P we denote by v(P ) the number of vertices of P , and we define
the complexity c(M,X) of a given (M,X) ∈ X as the minimum of v(P ) over
all skeleta P of (M,X). So we have a function c : X → N.

Some skeleta without vertices. If we remove one point from the closed
manifolds S3, L3,1, P3, S2 × S1, and S2 ×∼ S1 we can collapse the result re-
spectively to a point, to the “triple hat,” to P2, and to the join of S2 and
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S1 (for both the last two cases). Here the triple hat is the space obtained
by attaching D2 to S1 so that ∂D2 runs three times around S1. This shows
that S3, L3,1, P3, S2×S1, and S2 ×∼ S1 all have complexity zero. It is a well-
known fact, which we will prove again below, that these are the only prime
and P2-irreducible manifolds having complexity zero.

Turning to the pairs B∗i and Zk defined in the previous section, we now
show that they also have complexity 0. This is rather obvious for the product
pairs B0, B′0, and B′′0 , because they have the product skeleta P0 = θ× [0, 1] ⊂
T × [0, 1], P ′0 = θ × [0, 1] ⊂ K × [0, 1], and P ′′0 = σ × [0, 1] ⊂ K × [0, 1].

For B1 = (T , {θ}) we note that θ contains a meridian of the torus, so we
can attach to X a meridional disc and get the skeleton P1 shown in Fig. 3.
The same construction applies to B′1 = (K , {θ}) and leads to the skeleton
P ′1 also shown in the figure. Of course P1 and P ′1 are isomorphic as abstract
polyhedra (just as P0 and P ′0 are), but we use different names to keep track
also of their embeddings.

1 1P P

Figure 3. The skeleta P1 and P ′1 of B1 and B′1.

Figure 4. The skeleta P2 and P ′2 of B2 and B′2.

The skeleta P2 and P ′2 of B2 and B′2, respectively, are shown in Fig. 4, both
as abstract polyhedra, and as polyhedra embedded in T and K . We conclude
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with the series Zk for k > 3, for which a skeleton is shown in Fig. 5. Recalling
that B′′2 was defined as Z3, we denote this skeleton by P ′′2 when k = 3.
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Figure 5. The skeleton of Zk for k = 4.

Nuclear and standard skeleta. A skeleton of (M,X) is called nuclear
if it does not collapse to a proper subpolyhedron which is also a skeleton of
(M,X). A nuclear skeleton P of (M,X) ∈ X having c(M,X) vertices is called
minimal. Of course every (M,X) has minimal skeleta.

We will introduce now two more restricted classes of simple polyhedra.
Later we will show that, under suitable assumptions, minimal polyhedra must
belong to these classes. A simple polyhedron Q is called quasi-standard with
boundary if every point has a neighborhood of one of the types (1)-(5) shown
in Fig. 6. A point of type (3) was already defined above to be a vertex of
Q. We denote now by V (Q) the set of all vertices, and we define the singular
set S(Q) as the set of points of type (2), (3), or (5), and the boundary ∂Q as
the set of points of type (4) or (5). Moreover we call 1-components of Q the
connected components of S(Q) \ V (Q) and 2-components of Q the connected
components of Q \ (S(Q) ∪ ∂Q).

(5)(1) (2) (3) (4)

Figure 6. Typical neighborhoods of points in a quasi-
standard polyhedron with boundary.

If the 2-components of Q are open discs (and hence are called just faces),
and the 1-components are open segments (and hence called just edges), then
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we call Q a standard polyhedron with boundary. For short we will often just
call Q a standard polyhedron, and possibly specify that ∂Q should be empty
or non-empty. We prove now the first properties of nuclear skeleta.

Lemma 3.2. If P is a nuclear skeleton of a pair (M,X) ∈ X , then P =
Q ∪ s1 ∪ . . . ∪ sm ∪G, where:

(1) Q is a quasi-standard polyhedron with boundary ∂Q ⊂ X.
(2) For all components (C, τ) of (∂M,X), either ∂Q ⊃ τ or Q appears

near C as in Fig. 7, so that ∂Q ∩ τ is one or two circles, depending
on the type of (C, τ).

(3) s1, . . . , sm are the edges of the τ ’s in X which do not already belong
to Q.

(4) G is a graph with G ∩ (Q ∪ s1 ∪ . . . ∪ sm) finite and G ∩ V (Q ∪ ∂M)
empty.

e e

e

e e

e

e

e

e

Figure 7. Local aspect of Q near C if ∂Q 6⊃ τ .

Proof. Nuclearity is a property of local nature, and the result is trivial if
∂M = ∅. For ∂M 6= ∅, defining Q as the 2-dimensional portion of P and G as
P \ (Q∪X), the only non-obvious point to show is (2). Of course Q∩C ⊂ ∂Q
is either τ or a union of circles. To check that the only possibilities are those
of Fig. 7 one recalls that M \ (P ∪∂M) is a ball, so C \ (Q∪G) is planar, and
then C \Q is also planar. �

Remark 3.3. Every (M,X) ∈ X has a minimal skeleton P = Q ∪ s1 ∪
. . . ∪ sm ∪ G as above, where in addition G ∩ ∂M = ∅. This is because,
without changing v(P ), we can take the ends of G lying on ∂M and make
them slide over Q∪s1∪ . . .∪sm until they reach int(M). Note that the regular
neighborhood of τ ∈ X in P is now either a product τ × [0, 1] or as shown in
Fig. 7.
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Subadditivity. Some properties of complexity readily follow from the def-
inition and from the first facts shown about minimal skeleta. To begin with, if
P and P ′ are skeleta of (M,X) and (M ′, X ′) and we add to P tP ′ a segment
which joins P \V (P ) to P ′\V (P ′), we get a skeleton of (M,X)#(M ′, X ′) with
v(P )+v(P ′) vertices. Therefore c((M,X)#(M ′, X ′)) 6 c(M,X)+c(M ′, X ′).
Turning to assembling, let P and P ′ be as in Remark 3.3, and let an as-
sembling (M,X) ⊕ (M ′, X ′) be performed along a map ψ : C → C ′ with
ψ(τ) = τ ′. Then P ∪ψ P ′ is simple, and it is a skeleton of (M,X)⊕ (M ′, X ′).
We deduce that c((M,X)⊕ (M ′, X ′)) 6 c(M,X) + c(M ′, X ′).

Now we consider a self-assembling �(M,X). If P is a skeleton of (M,X)
as in Remark 3.3 and the self-assembling is performed along a certain map
ψ : C → C ′ such that τ ′ ∩ψ(τ) consists of two points, then (P ∪C ∪C ′)/ψ is
a skeleton of �(M,X). It has the same vertices as (M,X) plus at most two
from the vertices of τ , two from the vertices of τ ′, and two from τ ′ ∩ ψ(τ).
This shows that c(�(M,X)) 6 c(M,X) + 6.

Surfaces determined by graphs. We will need very soon the idea of
splitting a skeleton along a graph, so we spell out how the construction goes.

∂ ∂

∂
∂

M M

M

γ

Pγ P

M

γ

γ

γ

γ
P

P

P P

P

P

W

W

WW

W

Figure 8. Surface determined by a trivalent graph.

Lemma 3.4. Let P be a quasi-standard skeleton of (M,X) and let γ be a
trivalent graph contained in P ∪ ∂M , locally embedded as in Fig. 8-left. Then
there exists a surface S properly embedded in M such that S ∩ (P ∪ ∂M) = γ
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and S \ γ is a union of discs. Moreover S is separating in M if and only if γ
is separating in P ∪ ∂M .

Proof. To construct S we first take a surface W with boundary as shown
in Fig. 8-right, so that W ∩ (P ∪ ∂M) = γ. Then we attach disjoint discs
to the components of ∂W lying in the interior of M . See [4, Remark 4.1] for
details. �

Remark 3.5. With the same notation as in the previous lemma, assume
further that γ ∈ {θ, σ} is contained in P , that S is separating in M , and that
S \ γ is only one disc. Then cutting M along S and choosing γ as a spine
for the two new boundary components we get a decomposition (M,X) =
(M1, X1) ⊕ (M2, X2) which, at the level of skeleta, corresponds precisely to
the splitting of P along γ.

Minimal skeleta are standard. We now prove a theorem on which most
of our results are based. In particular, Proposition 2.4 readily follows from it,
and Theorem 2.2 will be easily proved using it. We start with an easy remark.

Remark 3.6. If P is a nuclear and standard skeleton of (M,X) then it
is properly embedded, namely ∂P = ∂M ∩ P = X, and P ∪ ∂M is standard
without boundary. Moreover P ∪∂M is a spine of a manifold bounded by one
sphere and some tori and Klein bottles, so χ(P ∪ ∂M) = 1. Knowing that
S(P ∪ ∂M) is 4-valent, we then see that P has #X + v(P ) + 1 faces.

Theorem 3.7. Let (M,X) ∈ X be an irreducible and P2-irreducible pair,
and let P be a minimal skeleton of (M,X). Then:

(1) If c(M,X) > 0 then P is standard.
(2) If c(M,X) = 0 and X = ∅ then M ∈ {S3, L3,1,P

3} and P is not
standard.

(3) If c(M,X) = 0 and X 6= ∅ then (M,X) is one of the B∗i or Zk, and
P is precisely the skeleton described in Section 3, so P is standard
unless (M,X) is B1 or B′1.

Proof. We first show that if P is not standard then either X = ∅ and
M ∈ {S3, L3,1,P

3}, or (M,X) ∈ {B1, B
′
1} and P ∈ {P1, P

′
1}. Later we will

describe standard skeleta without vertices.
If P reduces to one point, then of course M = S3. Let us first assume

that P is not purely 2-dimensional, so there is segment e contained in the
1-dimensional part of P . We distinguish two cases depending on whether e
lies in int(M) or on ∂M .

If e ⊂ int(M), we take a small disc ∆ which intersects e transversely in one
point. As in the proof of Lemma 3.4 we attach to ∂∆ a disc contained in the
ball M \ (P ∪ ∂M), getting a sphere S ⊂M intersecting P in one point of e.
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By irreducibility S bounds a ball B, and P ∩B is easily seen to be a spine of
B. Nuclearity now implies that P ∩B contains vertices, so P \B is a skeleton
of (M,X) with fewer vertices than P . This is a contradiction.

If e ⊂ ∂M , let C be the component of ∂M on which e lies. Since on C
there is a circle which meets τ transversely in one point of e, looking at the
ball M \ (P ∪ ∂M) again we see that in M there is a properly embedded disc
D intersecting P in a point of e. We have now three cases depending on the
type of the pair (C, τ).

• If (C, τ) = (T, θ) then D is a compressing disc for T , so by irreducibil-
ity M is the solid torus. Knowing that ∂D meets P only in one point
it is now easy to show also that (M,X) = B1 and P = P1.
• If (C, τ) = (K, θ) then e must be contained in the edge e′′′ of θ by

Lemma 3.2, and the same reasoning shows that (M,X) = B′1 and
P = P ′1.
• If (C, τ) = (K,σ) then e must be contained in the edge e′′′ of σ by

Lemma 3.2. The complement in K of ∂D is now the union of two
Möbius strips. If we choose any one of these strips and take its union
with D, we get an embedded P2 in M . Since M is irreducible and
P

2-irreducible, it would then have to be P3, but ∂M 6= ∅, so we have
obtained a contradiction.

We are left to deal with the case where P is purely two-dimensional, so
that P is quasi-standard, but not standard. Let us first suppose that some
2-component F of P is not a disc. Then either F is a sphere, in which case
P also reduces to only a sphere, which is clearly impossible because M would
then be S2× [0, 1], or there exists a loop γ in F such that one of the following
holds:

(1) γ is orientation-reversing on F .
(2) γ separates F in two components none of which is a disc.

We consider now the closed surface S determined by γ as in Lemma 3.4,
and note that S is either S2 or P2. If S = P

2 we deduce that (M,X) = P
3.

If S = S2 irreducibility implies that S bounds a ball B in M . This is clearly
impossible in case (1), so we are in case (2). Now we note that P ∩ B must
be a nuclear spine of B. Knowing that F ∩B is not a disc it is easy to deduce
that P ∩B must contain vertices. This contradicts the minimality because we
could replace the whole of P ∩ B by only one disc, getting another skeleton
of (M,X) with fewer vertices.

If P is quasi-standard and its 2-components are discs then either P is
standard or S(P ) reduces to a single circle. Then it is easy to show that P
must be the triple hat and (M,X) = L3,1.

We are left to analyze the case where P is standard and c(M,X) = 0, so
that X 6= ∅. Denoting #X by n, Remark 3.6 shows that P has n+ 1 faces.
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We consider first the case n = 1. Since P has one edge and two faces, it
is easy to see that it must be homeomorphic to either P2 or P ′2 (see Fig. 4)
as an abstract polyhedron. This does not quite imply that (M,X) is B2 or
B′2, because in general a skeleton P alone is not enough to determine a pair
(M,X). However P ∪ ∂M certainly does determine (M,X), because it is a
standard spine of M minus a ball, and X = P ∩∂M . We are left to analyze all
the polyhedra of the form P2 ∪ψ T for ψ : ∂P2 → θ ⊂ T , of the form P2 ∪ψ K
for ψ : ∂P2 → θ ⊂ K, and of the form P ′2 ∪ψK for ψ : ∂P ′2 → σ ⊂ K. Among
these polyhedra we must select those which can be thickened to manifolds with
two boundary components (a sphere plus either a torus or a Klein bottle). The
symmetries of (T, θ), (K, θ), and (K,σ) described in Propositions 1.3 and 1.2
imply that there are actually not many such polyhedra. More precisely, there
is just one P2 ∪ψ T , which gives B2. There are two P2 ∪ψ T , one of which
is not thickenable (i.e., not the spine of any manifold), and the other can be
thickened to a manifold with three boundary components (a sphere and two
Klein bottles). Finally, there are two P ′2∪ψK, one of which is not thickenable,
and the other gives B′2. This concludes the proof for n = 1.

Having worked out the case n = 1, we turn to the case n > 2, so that P
has n edges and n+ 1 faces. If a face of P meets ∂M in one arc only, then it
meets S(P ) in one edge only, and this edge joins a component of ∂M to itself,
which easily implies that n = 1, contradicting our present assumption n > 2.
If a face of P is an embedded rectangle, with two opposite edges on ∂M and
two in S(P ), then it readily follows that n = 2 and P is either θ × [0, 1] or
σ×[0, 1]. As above, to conclude that (M,X) ∈ {B0, B

′
0, B

′′
0 }, we must consider

the various polyhedra obtained by attaching (T, θ), (K, θ), and (K,σ) to the
upper and lower bases of θ× [0, 1] and σ× [0, 1]. Using again Propositions 1.3
and 1.2 one sees that there are only six such polyhedra. Three of them are
not thickenable, and the other three give B0, B

′
0, B

′′
0 .

Returning to the general case with n > 2, we note that there are a total of
3n edges on ∂M , so there are 3n germs of faces starting from ∂M . Knowing
that there is a total of n + 1 faces and none of them uses only one germ,
we see that at least one face uses only two germs, and so it is a rectangle
R, possibly an immersed one. If n = 2 we have three rectangles, one of
which must be embedded, and we are led back to a case already discussed.
If n > 3 then R must be immersed, so in particular it joins a component
(K1, σ1) of (∂M,X) to another (K2, σ2) component. A regular neighborhood
in P of R ∪ σ1 ∪ σ2 is shown in Fig. 9. The boundary of this neighborhood
is again a graph σ which determines a separating Klein bottle according to
Remark 3.5. If we cut P along σ we get a disjoint union P ′′2 t P ′, which at
the level of manifolds gives a splitting (M,X) = B′′2 ⊕ (M ′, X ′). Moreover
P ′ is a nuclear skeleton of (M ′, X ′), so c(M ′, X ′) = 0, P ′ is minimal, and
#X ′ = n − 1. Now either (M ′, X ′) = B′′0 and P ′ = P ′′0 or we can proceed,
eventually getting that (M,X) = B′′2 ⊕ . . . ⊕ B′′2 , so (M,X) = Zk for some
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k > 3, and P is the corresponding skeleton constructed in Section 3. The
proof is now complete. �

Figure 9. An immersed rectangle joins two (K,σ) components.

Proof of Theorem 2.2. By the previous result, a minimal spine of M is
standard with vertices, and dual to it there is a singular triangulation with
c(M) tetrahedra (and one vertex). A singular triangulation of M with n
tetrahedra and k vertices dually gives a standard polyhedron Q with n vertices
whose complement is a union of k balls. If we puncture k− 1 suitably chosen
faces of Q we get a skeleton of (M, ∅), whence the conclusion at once. �

4. Finiteness

The proof of Theorem 2.3 will be based on the following result.

Proposition 4.1. Let (M,X) be an irreducible and P2-irreducible pair
which does not split as (M,X) = (N,Y )⊕B′′2 . Assume that c(M,X) > 0 and
let P be a standard skeleton of (M,X). Then every edge of P is incident to
at least one vertex of P .

Proof. Assume by contradiction that an edge e of P is not incident to any
vertex of P , i.e., that both the ends of e lie on ∂M . If the ends of e lie on
the same spine τ ∈ X then τ ∪ e is a connected component of S(P ) ∪ ∂M .
The standardness of P implies that P has no vertices, which contradicts the
assumption that c(M,X) > 0. So the ends of e lie on distinct spines τ, τ ′ ∈ X.
Let C and C ′ be the components of ∂M on which τ and τ ′ lie, and let R be a
regular neighborhood in P of C∪C ′∪e. By construction R is a quasi-standard
polyhedron with boundary ∂R = τ t τ ′ t γ. Here γ is a trivalent graph with
one component homeomorphic to θ or to σ, and possibly another component
homeomorphic to the circle.

Let us first consider the case where γ has a circle component γ0. This circle
lies on P and is disjoint from S(P ). The standardness of P then implies that
γ0 bounds a disc D contained in P and disjoint from S(P ). In this case we
set γ′ = γ \ γ0 and R′ = R∪D. In case γ is connected we just set γ′ = γ and
R′ = R. In both cases we have found a graph γ′ homeomorphic to θ or to σ
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which separates P . Moreover one component R′ of P \ γ′ is standard without
vertices and is bounded by τ t τ ′ t γ′.

According to Lemma 3.4, the graph γ′ determines a separating surface S
in M such that S ∩ P = γ′. Since χ(γ′) = −1 and S \ γ′ consists of discs, we
have χ(S) > 0. Of course χ(S) 6= 1, for otherwise S would be an embedded
P

2, but we are assuming that M is irreducible and P2-irreducible and has
non-empty boundary. We will now show that if χ(S) = 2 then c(M,X) = 0,
and if χ(S) = 0 then (M,X) splits as (M,X) = (N,Y )⊕B′′2 . This will imply
the conclusion.

Assume that χ(S) = 2, so S is a sphere. We denote by B the open 3-
ball M \ (P ∪ ∂M) and note that S ∩ B = S \ γ′ consists of three disjoint
open 2-discs, which cut B into four open 3-balls. By irreducibility, S bounds
a closed 3-ball D, and B \ D is the union of some of the four open 3-balls
just described. Viewing (D, γ′) abstractly we can now easily construct a
new simple polyhedron Q ⊂ D without vertices such that Q ∩ S = γ′ and
D \Q consists of three distinct 3-balls, each incident to one of the three open
2-discs which constitute S \ γ′. Let us consider now the simple polyhedron
P ′ = R′∪γ′Q viewed as a subset of M . By construction P ′∩∂M = τ∪τ ′ = X.
Moreover M \ (P ′ ∪ ∂M) is obtained from B \D (which consists of open 3-
balls) by attaching each of the three 3-balls of D \ Q along only one 2-disc
(a component of S \ γ′). It follows that M \ (P ′ ∪ ∂M) still consists of open
3-balls. By puncturing some of the 2-components of P ′ we can then construct
a skeleton of (M,X) without vertices, so indeed c(M,X) = 0.

Assume now that χ(S) = 0, so S is a separating torus or Klein bottle.
Remark 3.5 now shows that (M,X) is obtained by assembling some pair
(N,Y ) with a pair (N ′, Y ′) which has skeleton R′. By construction R′ is
standard without vertices and ∂N ′ has three components, and it was shown
in the proof of Theorem 3.7 that (N ′, Y ′) must then be B′′2 . This completes
the proof. �

Corollary 4.2. Let (M,X) be irreducible and P2-irreducible. Assume
c(M,X) > 0 and there is no splitting (M,X) = (N,Y ) ⊕ B′′2 . Then #X 6
2c(M,X).

Proof. A minimal skeleton P of (M,X) is standard by Theorem 3.7, and
we have just shown that each edge of P joins either V (P ) to itself or V (P ) to
X. Since P has c(M,X) quadrivalent vertices, there can be at most 4c(M,X)
edges reaching X. Each component of X is reached by precisely two edges,
so there are at most 2c(M,X) components. �

Proof of Theorem 2.3. The result is valid for n = 0 by the classification
carried out in Theorem 3.7, so we assume n > 0. Let Fn be the set of all
irreducible and P2-irreducible pairs (M,X) which cannot be split as (M ′, X ′)⊕
B′′2 . By Theorem 3.7, each such (M,X) has a minimal standard spine P with
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n vertices. By Corollary 4.2, we have that S(P ∪∂M) is a quadrivalent graph
with at most 5n vertices. Since P ∪ ∂M is a standard polyhedron, there are
only finitely many possibilities for P ∪ ∂M and hence for (M,X).

Given an irreducible and P2-irreducible pair (M,X) with c(M,X) = n,
either (M,X) ∈ Fn or (M,X) splits along a Klein bottle K as (M ′, X ′) ⊕
B′′2 . The only case where K is compressible in M is when (M ′, X ′) = B′2,
but B′2 ⊕ B′′2 = B′′0 and c(B′′0 ) = 0. So K is incompressible, whence M ′ is
irreducible and P2-irreducible. Moreover c(M ′, X ′) = n by Remark 2.6 (which
depends on the now proved Propositions 2.4 and 2.5). Since (M ′, X ′) has one
boundary component less than (M,X), we can iterate the process of splitting
copies of B′′2 only a finite number of times, and then we get to an element of
Fn. �

5. Additivity

In this section we prove additivity under connected sum. This will require
the theory of normal surfaces and more technical results on skeleta. We start
with an easy general fact (see [4, Proposition 2.9] for a proof).

Proposition 5.1. Given a pair (M,X) ∈ X , let Q ⊂ M be a quasi-
standard polyhedron with Q ∩ ∂M = ∂Q ⊂ X. Assume that M \ Q has
two components N ′ and N ′′. Then the 2-components of Q that separate N ′

from N ′′ form a closed surface Σ(Q) ⊂ Q ⊂ int(M) which cuts M into two
components.

Normal surfaces. Given a pair (M,X) ∈ X , let P be a nuclear skeleton
of (M,X). The simple polyhedron P ∪ ∂M is now a spine of M with a ball
B ⊂M removed. Choose a triangulation of P ∪∂M , and let ξP be the handle
decomposition of M \B obtained by thickening the triangulation of P ∪ ∂M ,
as in [7]. In this subsection we will study normal spheres in ξP . Note that
there is an obvious example, namely the sphere parallel to ∂B and slightly
pushed inside ξP . The following result deals with the other normal spheres.
Its proof displays another remarkable difference between the orientable and
the general case. Namely, it was shown in [4] that, when M is orientable,
any normal surface reaching ∂M actually contains a component of ∂M . By
contrast, when (∂M,X) contains some (K,σ) component, an arbitrary normal
surface can reach K without containing it. As our proof shows, however, this
cannot happen when the surface is a sphere.

Proposition 5.2. Let P be a nuclear skeleton of (M,X) ∈ X , and let S
be a normal sphere in ξP . Then there exists a simple polyhedron Q such that
v(Q) 6 v(P ), Q ∩ ∂M = X and M \ (Q ∪ ∂M) is a regular neighborhood of
S. If in addition P is standard, c(M,X) > 0, and S is not the obvious sphere
∂N(P ∪ ∂M), then there exists Q as above with v(Q) < v(P ).
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Proof. Every region R of P carries a color n ∈ N given by the number of
sheets of the local projection of S to R. Now we cut P ∪ ∂M open along S as
explained in [7], i.e., we replace each R by its (n+ 1)-sheeted cover contained
in the normal bundle of R in M . As a result we get a polyhedron P ′ ⊂ M
which contains ∂M , such that M \ P ′ is the disjoint union of an open ball
B and an open regular neighborhood N of S in M . By removing from each
boundary component C ⊂ ∂M the open disc C \ τ we get a polyhedron P ′′

intersecting ∂M in X. Now we puncture a 2-component which separates B
from N and claim that the resulting polyhedron Q is as desired. Only the
inequalities between v(P ) and v(Q) are non-obvious.

We first prove that all the vertices of P ∪ ∂M which lie on ∂M disappear
either when we cut P along S getting P ′ or later when we remove ∂M \ X
from P ′ to get P ′′. This of course implies the first assertion of the statement.
We concentrate on one component (C, τ) of (∂M,X). By Lemma 3.2 either
both vertices of τ are vertices of P ∪ ∂M or none of them is. In the latter
case there is nothing to show, so we assume that there are three (possibly
non-distinct) 2-components of P incident to τ . Let v and v′ be the vertices of
τ . Looking first at v, we denote by (n, n, n, p, q, r) the colors of the six germs
at v of 2-component of P ∪ ∂M . Here n corresponds to C \ τ , which is triply
incident to v.

The compatibility equations of normal surfaces now readily imply that (up
to permutation) r is even, p = q > r, and that n > p/2 when p = q = r.
Moreover:

• v disappears in P ′ if p = q > r;
• v survives in P ′ and remains on ∂M , so it disappears in P ′′, if p =
q = r and n = p/2;
• v survives in P ′ and moves to int(M) if p = q = r and n > p/2.

Now if τ = θ then the same coefficients appear at v′. The only case where
v and v′ do not both disappear in P ′′ is when p = q = r and n > p/2.
But in this case S would then contain n − p/2 parallel copies of C, which is
impossible. The case τ = σ is easier, because if v survives in P ′′ the situation
is as in Fig. 10. This is absurd because S would contain Möbius strips.

n
p p

p S

n-p/ 2

Figure 10. Möbius strips in a normal surface.
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Now we turn to the second assertion. If v(P ′′) < v(P ) the conclusion is
obvious, so we proceed assuming v(P ) = v(P ′′). It is now sufficient to show
that some face of P ′′ which separates B from N contains vertices of P ′′, be-
cause we can then puncture such a face and collapse the resulting polyhedron
until it becomes nuclear, getting fewer vertices. Assume by contradiction that
there is no such face.

We note that P ′′ is the union of a quasi-standard polyhedron P ′′′ and some
arcs in X. The 2-components of P ′′ which separate B from N are the same
as those of P ′′′, so they give a closed surface Σ ⊂ P ′′ by Proposition 5.1.
From the fact that v(P ′′) = v(P ) we deduce that near a vertex of P the
transformation of P into P ′′ can be described as in Fig. 11, namely P ′′ can

Figure 11. Transformation of P into P ′′ near a vertex of P .

be identified near the vertex with P ∪ S. Of course this does not imply that
globally P ′′ = P ∪ S, because the components of P ′′ playing the role of P
near vertices may not match across faces.

The closed surface Σ cannot be disjoint from S(P ′′), because otherwise
S would be the obvious sphere ∂B. On the other hand we are supposing
Σ ∩ V (P ′′) = ∅, so Σ ∩ S(P ′′) must be a non-empty union of loops. In
particular, S(P ′′) contains a loop γ disjoint from V (P ′′).

Figure 11 now shows that S(P ′′) coincides with S(P ) away from ∂M . Using
the analysis of the transition from P to P ′′ near ∂M already carried out above,
we also see that near a component (C, τ) of (∂M,X) either S(P ′′) coincides
with S(P ) or it is obtained from S(P ) by adding one edge of τ , and then
slightly pushing the result inside M . When (C, τ) = (K,σ) the edge added is
necessarily e′′′. This implies that the loop γ described above can be viewed
as a loop in S(P ∪ ∂M) such that γ ∩ V (P ) = ∅. In addition, if γ contains
a vertex of P ∪ ∂M on a certain component of ∂M then it contains also the
other vertex in that component. This readily implies that the union of γ with
all the τ ’s in X touched by γ is a connected component of S(P ∪ ∂M). But
P ∪ ∂M is standard, so S(P ∪ ∂M) is connected, and we deduce that P has
no vertices. This is a contradiction. �
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Proof of Theorem 2.1. We have already shown that c(S2×S1) = c(S2 ×∼ S1)
= 0 and that c is subadditive. Let us consider now a non-prime pair (M,X)
and a minimal skeleton P of (M,X). Since (M,X) is not prime, there exists
a normal sphere S in ξP which is essential in M , namely it either is non-
separating or it separates M into two manifolds both different from B3. Then
we apply the first point of Proposition 5.2 to P and S, getting a polyhedron
Q.

If S is separating and splits (M,X) as (M1, X1)#(M2, X2), we must have
that Q is the disjoint union of polyhedra Q1 and Q2, where Qi is a skeleton
of (Mi, Xi). Since v(Q1) + v(Q2) = v(Q) 6 v(P ) we deduce that c(M,X) >
c(M1, X1) + c(M2, X2), so equality actually holds.

If S is not separating we identify a regular neighborhood of S in M with
S× (−1, 1) and note that there must exist a face of Q having S× (−1,−1+ε)
on one side and S× (1− ε, 1) on the other side. We puncture this face getting
a polyhedron Q′. Now Q′ is a skeleton of a pair (M ′, X) such that (M,X) =

(M ′, X)#E, where E is S2 ×S1 or S2 ×∼ S1. Moreover v(Q′) = v(Q) 6 v(P ),
and hence c(M,X) > c(M ′, X), so equality actually holds.

We have shown so far that an essential normal sphere in (M,X) leads to a
non-trivial decomposition (M,X) = (M1, X1)#(M2, X2) on which complexity
is additive. If (M1, X1) and (M2, X2) are prime we stop; otherwise we iterate
the procedure until we find a decomposition of (M,X) into primes on which
complexity is additive. Since any other decomposition into primes actually
consists of the same summands, we deduce that complexity is always additive
on decompositions into primes. If we take the connected sum of two non-prime
manifolds then a prime decomposition of the result is obtained from prime
decompositions of the summands, so additivity holds also in general. �

Appendix: Some facts about the Klein bottle

In this appendix, following Matveev [7], we classify all simple closed loops
on the Klein bottle K and we deduce Proposition 1.2 from this classification.
We also mention two more results on K which easily follow from the clas-
sification. These results are strictly speaking not necessary for the present
paper, and they are probably well-known to experts, but we have decided to
include them because they show a striking difference which exists between the
orientable and non-orientable cases.

Proposition A.1. There exist on the Klein bottle only four non-trivial
loops up to isotopy, as shown in Fig. 12. These loops are determined by their
image in H1(K;Z) = 〈a, b|a+b = b+a, 2a = 0〉, as also shown in the picture.
Moreover a and ±2b are orientation-preserving on K, while ±b and a± b are
orientation-reversing.
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a+b +b

b

b

aa

a +2b

Figure 12. Non-trivial loops on the Klein bottle.

Proof. A non-trivial loop is isotopic to one which is normal with respect to a
triangulation of K, i.e., it appears as in Fig. 13. We must have n+m = n′+m′,

m p

m

n
n

p

p

p m

m

n
n

Figure 13. Normal loops in a triangulation of K.

n + p = n′ + p′, m + p = m′ + p′, so n′ = n, m′ = m, p′ = p. If p > m, we
further distinguish between the following cases: If n < p, since we look for a
connected curve, we get n = m = 0 and p = 1, whence the loop a; if n > p
we do not get any solution; if n = p we get m = 0 and n = p ∈ {1, 2}, whence
the loops ±b and ±2b. If m > p we must have p = n = 0 and m ∈ {1, 2},
whence the loops ±b and ±2b again. If m = p, since the connected curve we
look for is also non-trivial, we must have m = p = 0 and n ∈ {1, 2}, whence
the loops a± b and ±2b. �

Proof of Proposition 1.2. We start by showing that σ embeds uniquely as
a spine of K. The closed edges e′ and e′′ of σ are disjoint simple loops in K,
and they must be orientation-reversing. It easily follows that {e′, e′′} must
be {±b, a± b}. Now the ends of e′′′ can be isotopically slid over e′ and e′′ to
reach the position of Fig. 1-centre, and uniqueness is proved.

Turning to the uniqueness of the embedding of θ, note that two of the three
simple closed loops contained in θ must be orientation-reversing on K. Let e′′′

be the edge contained in both of these loops. If we perform the move shown



A NEW DECOMPOSITION THEOREM FOR 3-MANIFOLDS 779

in Fig. 14 along e′′′ we get a spine σ of K, and the newborn edge is the edge

e

e

e

e

ee

Figure 14. A move changing a spine θ of K into a spine σ.

e′′′ of σ. So θ is obtained from σ by the same move along e′′′ ⊂ σ. Since the
embedding of σ is unique, we obtain the same conclusion for θ.

Having proved uniqueness, we must understand symmetries. Our descrip-
tion obviously implies that, in both σ and θ, the edges e′ and e′′ play symmet-
ric roles, while the role of e′′′ is different, and the conclusion easily follows.
The same conclusion could also be deduced from Proposition A.3 below. �

Proposition A.2. If K is the solid Klein bottle and K = ∂K then every
automorphism of K extends to K. In particular, there is only one possible
“Dehn filling” of a Klein bottle in the boundary of a given manifold.

Proof. Proposition A.1 shows that the meridian a of K can be character-
ized in K = ∂K as the only orientation-preserving loop having connected
complement. So every automorphism of K maps the meridian to itself and
the conclusion follows. �

Proposition A.3. The mapping class group of K is isomorphic to Z/2Z×
Z/2Z and every automorphism of K is determined up to isotopy by its action
on H1(K;Z).

Proof. It is quite easy to construct commuting order-2 automorphisms φ
and ψ of K such that their action on H1(K;Z) is given by

φ(a) = a, φ(b) = −b, ψ(a) = a, ψ(b) = a+ b.

Given any other automorphism f , combining the geometric characterization
of a with the observation that a is isotopic (not only homologous) to itself
with opposite orientation, we deduce that (up to isotopy) f is the identity on
a. Up to composing f with φ we can assume that f is actually the identity
also near a, so f restricts to an automorphism of the annulus K\a which is the
identity on the boundary. The mapping class group relative to the boundary
of the annulus is now infinite cyclic generated by the restriction of ψ (but ψ
has order 2 when viewed on K), and the conclusion follows. �
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