MIXING AND DESCRIPTIVE SET THEORY

ROBERT KAUFMAN

If you seek his monument, look around you.

ABSTRACT. A complete analytic set is defined through the concepts of invariant measure mixing.

0. Introduction

Let X be a compact metric space and H(X) the group of all homeomorphisms of X. The subset $H_{\mathbf{m}}(X)$ is then defined as follows: $T \in H_{\mathbf{m}}(X)$ provided there is a T-invariant probability measure μ such that T defines a mixing operator in $L^2(\mu)$.

The main results are then:

Example (Siboni). For a certain space X_1 , $H_{\mathbf{m}}$ isn't closed in H.

Theorem 1. $H_{\mathbf{m}}$ is always an analytic subset of H.

THEOREM 2. For a certain space X_2 , $H_{\mathbf{m}}(X_2)$ is a complete analytic subset of $H(X_2)$.

Theorem 2 suffers from a stylistic defect: the space X_2 has infinite topological dimension. This is remedied by re-working the example with a space X_3 of dimension 0, and Theorem 2 with a space of dimension 1.

We now provide some detail on the group H(X); we write h(X) for the set of continuous maps of X into X (sometimes called *self-maps* of X). Then h(X) is provided with the uniform metric

$$d^*(f,g) \equiv \sup\{d(f(x),g(x))\}.$$

h(X) is then a Polish space [2, I, p. 244] whose open sets depend only on the open sets of X, not on the metric d. Composition is jointly continuous in

Received May 11, 2005.

 $2000\ Mathematics\ Subject\ Classification.\ 28A05,\ 54H15,\ 60G10.$

h(X) as we see from the inequalities

$$d^*(f_n \cdot g_n, f \cdot g) \le d^*(f_n \cdot g_n, f \cdot g_n) + d^*(f \cdot g_n, f \cdot g)$$

$$\le d^*(f_n, f) + d^*(f \cdot g_n, f \cdot g).$$

Supposing then that $\lim f_n = f$, $\lim g_n = g$, we have only to observe that the last distance tends to 0 because f is uniformly continuous.

The metric in H(X) is defined by

$$d_*(h_1, h_2) \equiv d^*(h_1, h_2) + d^*(h_1^{-1}, h_2^{-1}).$$

Then H(X) is a G_{δ} set in h(X) and is homeomorphic to a closed subset of $h(X) \times h(X)$. We observe a whimsical definition of the metric

$$d^*(I, h_2h_1^{-1}) + d^*(I, h_2^{-1}h_1).$$

A classical source for analytic sets is [2], especially [2, I, pp. 446, 447, 453]. Theorem 2 means that for each analytic set A in a Polish space W, there is a continuous map φ of W into $H(X_2)$, such that $\varphi^{-1}(H_{\mathbf{m}}(X_2)) = A$.

1. Example

Let K be the Cantor set, represented as infinite sequences $y=(\epsilon_p)_{-\infty}^{\infty}$ $(\epsilon_p=-1,+1)$, and S^1 a circle represented as $R/2\pi$. Let $0<\alpha<1$, and let (α_n) be a sequence of numbers converging to 0 such that each $\alpha_n^{-1}\pi$ is irrational, and let σ be the left shift on K. We define

$$T_n(y,z) \equiv (\sigma y, z + \alpha + \alpha_n \epsilon_0(y)).$$

Skew products of this type have been investigated by Siboni, for example in [5]. Here each T_n is mixing for the usual product measure on $K \times S^1$, while its limit, T_{∞} , has a nonconstant eigenfunction (and thus isn't in $H_{\mathbf{m}}$).

Thanks are due to Manfred Denker for references to the literature on skew products.

2. Theorem 1

Let $\mathbb{P}(X)$ be the set of probability measures in X, endowed with its usual w^* topology, and $(g_p)_1^{\infty}$ a dense sequence in the real B-space C(X). Let Mix be the subset of $H(X) \times \mathbb{P}(X)$ containing pairs (T, μ) such that

- (i) μ is T-invariant,
- (ii) T is mixing in $L^2(\mu)$.

In a moment we'll see that Mix is a set of type $F_{\sigma\delta}$ in $H \times \mathbb{P}$. Since its projection in H(X) is $H_{\mathbf{m}}(X)$, the latter set is analytic. Clearly (i) defines a closed set. The meaning of (ii) is

$$\lim \int (g_p \cdot T^k) g_q d\mu = \int g_p d\mu \int g_q d\mu$$

for each p and q and clearly this defines an $F_{\sigma\delta}$ (and in fact implies that μ is T-invariant). We observe in passing that the set Weak Mix—defined by analogy with Mix—is a G_{δ} in $H \times \mathbb{P}$.

3. Theorem 2

Let N^* be the set $\{1, 2, 3, \ldots, +\infty\}$ regarded as the Alexandroff compactification of N, and $Y = X_1 \times N^*$. We define an element T of H(Y) by the formula

$$T(x, m) = (T_m x, m) \quad (x \in X_1, m \in N^*).$$

In the product space $Z = Y^N$, we use S to denote the homeomorphism which operates by T in each factor Y; finally, we set $X_2 = Z \times S^1$. Let f be a continuous mapping on Z into S^1 ; we define a skew product of S and f by the formula

$$S'(z,\theta) \equiv (Sz, \theta + f(z)) \quad (z \in Z, \theta \in S^1)$$

and we use the symbol $S \ltimes \rho(f)$ for S'. We observe that the inverse of $S \ltimes \rho(f)$ is $S^{-1} \ltimes \rho(-f \cdot S^{-1})$. Thus, keeping S fixed, we see that $S \ltimes \rho(f)$, as an element of $H(X_2)$, depends continuously on f.

When f has a very special form, we can decide precisely when $S \ltimes \rho(f)$ belongs to $H_{\mathbf{m}}(X_2)$. An element (m_1, m_2, m_3, \dots) of \bar{N} will be called *irrational* (by analogy with continued fractions) if all $m_k < +\infty$. The set \mathcal{I} of *irrationals* is therefore homeomorphic to the Baire null-space $N \times N \times N \times \cdots$, customarily denoted by \mathcal{N} . We impose the requirement that $f(z_1, m_1, z_2, m_2, z_3, m_3, \dots)$ depends only on (m_1, m_2, m_3, \dots) , so that f is effectively a continuous map of $\bar{N} \equiv N^* \times N^* \times N^* \times \cdots$ into S^1 .

LEMMA. $S \ltimes \rho(f)$ belongs to $H_{\mathbf{m}}(X_2) \iff f$ has a zero in \mathcal{I} .

Proof. If f = 0 at an irrational $(m_1^0, m_2^0, m_3^0, \dots)$, we observe that $S \ltimes \rho(f)$ leaves the coefficients m_1, m_2, m_3, \dots unchanged. Restricting $S \ltimes \rho(f)$ to the subset $m_1 = m_1^0, m_2 = m_2^0, m_3 = m_3^0, \dots, \theta = 0$, we see that $S \ltimes \rho(f)$ belongs to $H_{\mathbf{m}}(X_2)$.

Conversely, suppose that μ is invariant for $S \ltimes \rho(f)$, and that $S \ltimes \rho(f)$ is mixing in $L^2(\mu)$. Since μ is ergodic, the variables m_1, m_2, m_3, \ldots must be constant on the closed support of μ , hence f is constant μ -a.e. Since μ is mixing—or just weakly mixing—we see that f = 0 μ -a.e. and (m_1, m_2, m_3, \ldots) is a fixed irrational value μ -a.e. Hence f has a zero in \mathcal{I} , proving the lemma. \square

The last step is classical, and seems to go back to Mazurkiewicz and Sierpiński. Let A be an analytic set in a Polish space W, and let δ be a metric in $\bar{N} \times W$ of diameter $< 2\pi$. Let ψ be a continuous mapping of $\mathcal I$ onto A. Let r be the function on $\bar{N} \times W$ whose value at (\bar{n}, w) is the distance to the graph of ψ , i.e., the set of pairs $(\bar{n}, \psi(\bar{n}))$, where $\bar{n} \in \mathcal{I}$. We observe that $\sup r < 2\pi$, that r is uniformly continuous on $\bar{N} \times W$; for each w, the partial

function $f(\cdot, w)$ mapping \bar{N} into $[0, 2\pi)$ has an irrational zero iff $w \in A$. (Here we use the continuity of ψ on \mathcal{I} .)

To define a continuous mapping φ of W into $H(X_2)$ we map w to $S \ltimes \rho(f(\cdot,w))$, so that $\varphi(w) \in H_m(X_2) \iff$ the partial function has an irrational zero $\iff w \in A$. This is Theorem 2.

4. Improving the example

If the example is obtained with a space of dimension 0 then the set X_2 will have dimension 1, and will in fact be homeomorphic to $K \times S^1$. Let α be any continuous map of the Cantor set K onto X_1 . For each $m=1,2,3,\ldots,+\infty$ we define a subset F_m of K^Z , which is shift-invariant and can be described as the "subshift over T_m by α ." By definition an element (x_k) of K^Z belongs to F_m if for each k $\alpha(x_{k+1}) = T_m \alpha(x_k)$. Denoting by π_0 the mapping $x \mapsto \alpha(x_0)$ of K^Z onto X_1 , we see that the elements of F_m satisfy the relation $\pi_0 \sigma(x) = T_m \pi_0(x)$. From this it follows that $\sigma \mid F_\infty$ doesn't belong to $H_{\mathbf{m}}(F_\infty)$. We shall see in a moment that the reverse is true for $1 \leq m < +\infty$.

To establish the last assertion we use a Borel selector of α , that is a Borel map τ of X_1 into K such that $\alpha \tau = \mathrm{id}$ on X_1 . The existence of the map τ is discussed in a final paragraph. We use τ to define a map $\tau^{\#}$ of X_1 into K^Z : the k-th co-ordinate of $\tau^{\#}y$ is $\tau(T_m^k y)$ ($y \in X_1, k \in Z$). Then $\tau^{\#}X_1 \subseteq F_m$ and $\sigma \circ \tau^{\#} = \tau^{\#} \circ T_m$. Hence an invariant measure μ for which T_m is mixing yields an invariant measure ν for σ (in F_m) for which σ is mixing, namely that defined by $\nu(B) \equiv \mu(\tau^{\#-1}(B))$.

We observe that the metrical \limsup of the sequence $(F_m)_1^{\infty}$ is contained in F_{∞} ; stated differently, every neighborhood of F_{∞} contains all but a finite number of the sets F_m . We now define a closed set L of $K^Z \times N^*$ as the union of the sets $F'_m = F_m \times \{m\}$ for $1 \leq m \leq +\infty$; σ acts on L, leaving the co-ordinate m unchanged.

Finally, we make the Cantor set K into an abelian topological group (it does not matter how) and look at a skew product $\sigma \ltimes \rho(f)$, where f is a continuous map of L into K. We suppose that f is constant on each of the sets F'_m , $1 \leq m \leq +\infty$. We see that $\sigma \ltimes \rho(f)$ is in $H_{\mathbf{m}}(L \times K)$ if and only if f = 0 on one of the sets F'_m , $1 \leq m < +\infty$. Hence $H_{\mathbf{m}}(L \times K)$ isn't closed in $H(L \times K)$, as claimed.

5. On selectors

Here is a simple way to find the selector τ . We place K in the interval [0,1] and define

$$\tau(y) = \sup\{x \in K, \alpha(x) = y\},\$$

for each y in X_1 . We observe that $\tau(y) \ge t \iff y \in \alpha(K \cap [t, 1])$, for $0 \le t \le 1$, so that $\{\tau < t\}$ is open, and τ is upper semicontinuous. One can also use

a theorem on selectors by Kuratowski and Ryll-Nardzewski, stated in [2, II, p. 74] and proved in [4], [3, pp. 570–576], [1, pp. 8–13].

References

- J. E. Jayne and C. A. Rogers, Selectors, Princeton University Press, Princeton, NJ, 2002. MR 1915965 (2003j:54018)
- [2] K. Kuratowski, Topology. Vols. I, II, New edition, revised and augmented, translated from the French, Academic Press, New York, and PWN, Warsaw, 1966, 1968. MR 0217751 (36 #840); MR 0259835 (41 #4467)
- [3] _____, Selected papers, PWN—Polish Scientific Publishers, Warsaw, 1988. MR 988888 (90h:01024)
- [4] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 397–403. MR 0188994 (32 #6421)
- [5] S. Siboni, Ergodic properties of a class of skew-systems obtained by coupling the translation of the 1-torus with the endomorphism 2x mod [0,1), Nonlinearity 7 (1994), 1133–1141. MR 1284683 (95m:28023)

Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, USA

 $E ext{-}mail\ address: rpkaufma@math.uiuc.edu}$