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MIXING AND DESCRIPTIVE SET THEORY

ROBERT KAUFMAN

If you seek his monument, look around you.

Abstract. A complete analytic set is defined through the concepts of
invariant measure mixing.

0. Introduction

Let X be a compact metric space and H(X) the group of all homeomor-
phisms of X. The subset Hm(X) is then defined as follows: T ∈ Hm(X)
provided there is a T -invariant probability measure µ such that T defines a
mixing operator in L2(µ).

The main results are then:

Example (Siboni). For a certain space X1, Hm isn’t closed in H.

Theorem 1. Hm is always an analytic subset of H.

Theorem 2. For a certain space X2, Hm(X2) is a complete analytic
subset of H(X2).

Theorem 2 suffers from a stylistic defect: the space X2 has infinite topo-
logical dimension. This is remedied by re-working the example with a space
X3 of dimension 0, and Theorem 2 with a space of dimension 1.

We now provide some detail on the group H(X); we write h(X) for the
set of continuous maps of X into X (sometimes called self-maps of X). Then
h(X) is provided with the uniform metric

d∗(f, g) ≡ sup{d(f(x), g(x))}.

h(X) is then a Polish space [2, I, p. 244] whose open sets depend only on the
open sets of X, not on the metric d. Composition is jointly continuous in
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h(X) as we see from the inequalities

d∗(fn · gn, f · g) ≤ d∗(fn · gn, f · gn) + d∗(f · gn, f · g)

≤ d∗(fn, f) + d∗(f · gn, f · g).

Supposing then that lim fn = f , lim gn = g, we have only to observe that the
last distance tends to 0 because f is uniformly continuous.

The metric in H(X) is defined by

d∗(h1, h2) ≡ d∗(h1, h2) + d∗(h−1
1 , h−1

2 ).

Then H(X) is a Gδ set in h(X) and is homeomorphic to a closed subset of
h(X)× h(X). We observe a whimsical definition of the metric

d∗(I, h2h
−1
1 ) + d∗(I, h−1

2 h1).

A classical source for analytic sets is [2], especially [2, I, pp. 446, 447, 453].
Theorem 2 means that for each analytic set A in a Polish space W , there is a
continuous map ϕ of W into H(X2), such that ϕ−1(Hm(X2)) = A.

1. Example

Let K be the Cantor set, represented as infinite sequences y = (εp)∞−∞
(εp = −1,+1), and S1 a circle represented as R/2π. Let 0 < α < 1, and
let (αn) be a sequence of numbers converging to 0 such that each α−1

n π is
irrational, and let σ be the left shift on K. We define

Tn(y, z) ≡ (σy, z + α+ αnε0(y)).

Skew products of this type have been investigated by Siboni, for example in
[5]. Here each Tn is mixing for the usual product measure on K × S1, while
its limit, T∞, has a nonconstant eigenfunction (and thus isn’t in Hm).

Thanks are due to Manfred Denker for references to the literature on skew
products.

2. Theorem 1

Let P(X) be the set of probability measures in X, endowed with its usual
w∗ topology, and (gp)∞1 a dense sequence in the real B-space C(X). Let Mix
be the subset of H(X)× P(X) containing pairs (T, µ) such that

(i) µ is T -invariant,
(ii) T is mixing in L2(µ).

In a moment we’ll see that Mix is a set of type Fσδ in H × P. Since its
projection in H(X) is Hm(X), the latter set is analytic. Clearly (i) defines a
closed set. The meaning of (ii) is

lim
∫

(gp · T k)gqdµ =
∫
gpdµ

∫
gqdµ
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for each p and q and clearly this defines an Fσδ (and in fact implies that µ
is T -invariant). We observe in passing that the set Weak Mix—defined by
analogy with Mix—is a Gδ in H × P.

3. Theorem 2

Let N∗ be the set {1, 2, 3, . . . ,+∞} regarded as the Alexandroff compact-
ification of N , and Y = X1 × N∗. We define an element T of H(Y ) by the
formula

T (x,m) = (Tmx,m) (x ∈ X1,m ∈ N∗).
In the product space Z = Y N , we use S to denote the homeomorphism which
operates by T in each factor Y ; finally, we set X2 = Z × S1. Let f be a
continuous mapping on Z into S1; we define a skew product of S and f by
the formula

S′(z, θ) ≡ (Sz, θ + f(z)) (z ∈ Z, θ ∈ S1)
and we use the symbol Snρ(f) for S′. We observe that the inverse of Snρ(f)
is S−1

n ρ(−f · S−1)). Thus, keeping S fixed, we see that S n ρ(f), as an
element of H(X2), depends continuously on f .

When f has a very special form, we can decide precisely when Snρ(f) be-
longs to Hm(X2). An element (m1,m2,m3, . . . ) of N̄ will be called irrational
(by analogy with continued fractions) if all mk < +∞. The set I of irrationals
is therefore homeomorphic to the Baire null-spaceN×N×N×· · · , customarily
denoted by N . We impose the requirement that f(z1,m1, z2,m2, z3,m3, . . . )
depends only on (m1,m2,m3, . . . ), so that f is effectively a continuous map
of N̄ ≡ N∗ ×N∗ ×N∗ × · · · into S1.

Lemma. S n ρ(f) belongs to Hm(X2)⇐⇒ f has a zero in I.

Proof. If f = 0 at an irrational (m0
1,m

0
2,m

0
3, . . . ), we observe that Snρ(f)

leaves the coefficients m1, m2, m3, . . . unchanged. Restricting Snρ(f) to the
subset m1 = m0

1, m2 = m0
2, m3 = m0

3, . . . , θ = 0, we see that Snρ(f) belongs
to Hm(X2).

Conversely, suppose that µ is invariant for S n ρ(f), and that S n ρ(f) is
mixing in L2(µ). Since µ is ergodic, the variables m1, m2, m3, . . . must be con-
stant on the closed support of µ, hence f is constant µ-a.e. Since µ is mixing—
or just weakly mixing—we see that f = 0 µ-a.e. and (m1,m2,m3, . . . ) is a
fixed irrational value µ-a.e. Hence f has a zero in I, proving the lemma. �

The last step is classical, and seems to go back to Mazurkiewicz and
Sierpiński. Let A be an analytic set in a Polish space W , and let δ be a
metric in N̄ ×W of diameter < 2π. Let ψ be a continuous mapping of I onto
A. Let r be the function on N̄ ×W whose value at (n̄, w) is the distance to
the graph of ψ, i.e., the set of pairs (n̄, ψ(n̄)), where n̄ ∈ I. We observe that
sup r < 2π, that r is uniformly continuous on N̄ ×W ; for each w, the partial
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function f(·, w) mapping N̄ into [0, 2π) has an irrational zero iff w ∈ A. (Here
we use the continuity of ψ on I.)

To define a continuous mapping ϕ of W into H(X2) we map w to S n
ρ(f(·, w)), so that ϕ(w) ∈ Hm(X2)⇐⇒ the partial function has an irrational
zero ⇐⇒ w ∈ A. This is Theorem 2.

4. Improving the example

If the example is obtained with a space of dimension 0 then the set X2 will
have dimension 1, and will in fact be homeomorphic to K ×S1. Let α be any
continuous map of the Cantor set K onto X1. For each m = 1, 2, 3, . . . ,+∞ we
define a subset Fm of KZ , which is shift-invariant and can be described as the
“subshift over Tm by α.” By definition an element (xk) of KZ belongs to Fm if
for each k α(xk+1) = Tmα(xk). Denoting by π0 the mapping x 7→ α(x0) of KZ

ontoX1, we see that the elements of Fm satisfy the relation π0σ(x) = Tmπ0(x).
From this it follows that σ | F∞ doesn’t belong to Hm(F∞). We shall see in
a moment that the reverse is true for 1 ≤ m < +∞.

To establish the last assertion we use a Borel selector of α, that is a Borel
map τ of X1 into K such that ατ = id on X1. The existence of the map τ is
discussed in a final paragraph. We use τ to define a map τ# of X1 into KZ :
the k-th co-ordinate of τ#y is τ(T kmy) (y ∈ X1, k ∈ Z). Then τ#X1 ⊆ Fm
and σ ◦ τ# = τ# ◦ Tm. Hence an invariant measure µ for which Tm is mixing
yields an invariant measure ν for σ (in Fm) for which σ is mixing, namely
that defined by ν(B) ≡ µ(τ#−1(B)).

We observe that the metrical lim sup of the sequence (Fm)∞1 is contained
in F∞; stated differently, every neighborhood of F∞ contains all but a finite
number of the sets Fm. We now define a closed set L of KZ × N∗ as the
union of the sets F ′m = Fm × {m} for 1 ≤ m ≤ +∞; σ acts on L, leaving the
co-ordinate m unchanged.

Finally, we make the Cantor set K into an abelian topological group (it
does not matter how) and look at a skew product σ n ρ(f), where f is a
continuous map of L into K. We suppose that f is constant on each of the
sets F ′m, 1 ≤ m ≤ +∞. We see that σ n ρ(f) is in Hm(L×K) if and only if
f = 0 on one of the sets F ′m, 1 ≤ m < +∞. Hence Hm(L×K) isn’t closed in
H(L×K), as claimed.

5. On selectors

Here is a simple way to find the selector τ . We place K in the interval [0, 1]
and define

τ(y) = sup{x ∈ K,α(x) = y},
for each y in X1. We observe that τ(y) ≥ t⇐⇒ y ∈ α(K∩[t, 1]), for 0 ≤ t ≤ 1,
so that {τ < t} is open, and τ is upper semicontinuous. One can also use
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a theorem on selectors by Kuratowski and Ryll-Nardzewski, stated in [2, II,
p. 74] and proved in [4], [3, pp. 570–576], [1, pp. 8–13].
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