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ROBUST PROJECTIONS IN THE CLASS OF MARTINGALE
MEASURES

HANS FÖLLMER AND ANNE GUNDEL

Dedicated to the memory of J.L. Doob

Abstract. Given a convex function f and a set Q of probability mea-

sures, we consider the problem of minimizing the robust f -divergence
infQ∈Q f(P |Q) over the class P of martingale measures. Under mild
conditions on P and Q we show that a minimizer exists within the

class P if limx→∞ f(x)/x = ∞. If limx→∞ f(x)/x = 0 then there is a
minimizer in a class P̄ of extended martingale measures defined on the
predictable σ-field. We also explain how both cases are connected to re-
cent developments in the theory of optimal portfolio choice, in particular
to robust extensions of the classical expected utility criterion.

1. Introduction

Over the last three decades concepts and methods of martingale theory
have played a crucial role in developing the mathematical analysis of financial
risk. At the same time the field of finance has become a source of new prob-
abilistic problems which are of intrinsic mathematical interest. In this paper
our purpose is to analyze a projection problem for martingale measures which
arises in the context of optimal portfolio choice.

The notion of a martingale measure has helped to clarify the mathematical
structure of the efficient markets hypothesis. In its strong form, the hypoth-
esis states that the price fluctuation of liquid financial assets, modelled as a
stochastic process on some filtered probability space, is a martingale under
the given probability measure R. In this case Doob’s systems theorem would
imply that there are no trading strategies with positive expected gain. In a
less restrictive version, the hypothesis only requires the absence of arbitrage
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opportunities, i.e., of strategies which generate a positive expected gain with-
out any downside risk. In this form it is equivalent to the existence of an
equivalent martingale measure, i.e., a probability measure P ≈ R such that
the price process is a local martingale under P ; see Delbaen and Schacher-
mayer [7] and Yan [44]. The model is called complete if there is exactly one
equivalent martingale measure. It was already shown by Jacod [25], in the
Proceedings of an AMS Symposium on the occasion of J. L. Doob’s 65th
birthday, that uniqueness of the martingale measure implies a representation
property: Functionals of the price process can be represented as stochastic
integrals. In the financial interpretation such a functional is viewed as a fi-
nancial derivative, or a contingent claim. The integrand in the representation
specifies a trading strategy in the underlying assets which provides a perfect
hedge of the claim, and the arbitrage-free price of the claim is identified as the
expectation under the unique equivalent martingale measure. Most realistic
models, however, are incomplete in the sense that the representation property
no longer holds, and so there is a whole class Pe of equivalent martingale
measures.

In its general form, our projection problem consists in finding a probability
measure P0 in some class P of probability measures P � R which minimizes
the robust f-divergence

(1) f(P |Q) = inf
Q∈Q

f(P |Q)

for some class Q of probability measures Q� R, i.e.,

(2) f(P0|Q) = f(P|Q) := inf
P∈P

f(P |Q).

Here f is a convex function, and

(3) f(P |Q) := EQ

[
f

(
dP

dQ

)]
denotes the f -divergence between two measures P and Q. In the classical
case with Q = {Q0} the projection problem has been considered by many
authors, for instance in the context of statistical inference; see Csiszár [4] for
the case f(x) = x log x where the f -divergence reduces to the relative entropy
H(P |Q), Rüschendorf [37], or Liese and Vajda [32].

In the financial interpretation the problem of projecting a single measure
Q0 on the class Pe of equivalent martingale measures arises in the context of
optimal portfolio choice. Suppose we want to determine an optimal affordable
claim H, given some initial capital x0 and the possibility of trading in the
underlying liquid assets. Affordability translates into the constraint

(4) sup
P∈Pe

EP [H] ≤ x0.

If preferences are specified in terms of a concave utility function u and a
probabilistic model Q0 ≈ R, an affordable claim is optimal if it maximizes
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the expected utility EQ0 [u(H)]. In the complete case Pe = {P0} the solution
is given by

(5) H0 := (u′)−1

(
λ0
dP0

dQ0

)
,

where λ0 is such that EP0 [H0] = x0. In the incomplete case, the optimal claim
is of the form (5) when P0 is chosen to be the f -projection of Q0 on Pe, where
f(x) := v(λ0x) for some λ0 > 0 and v denotes the convex conjugate of u;
see, for instance, Karatzas and Shreve [27], Frittelli [17], Bellini and Frittelli
[3], Kramkov and Schachermayer [30] and [31], Goll and Rüschendorf [21],
Schachermayer [38], and also Gao, Lim, and Ng [19]. Thus the utility maxi-
mization problem is reduced to the classical projection problem of minimizing
the f -divergence f(P |Q0) over the set Pe. Existence results for classical f -
projections corresponding to certain utility functions can be found in Frittelli
[17] and Bellini and Frittelli [3]. Hugonnier, Kramkov and Schachermayer
[24] showed that for reasonably bounded claims the existence of f -projections
in the class of martingale measures is equivalent to the existence of unique
marginal utility based prices.

Our robust version of the projection problem is motivated by an extension
of the classical expected utility approach which takes model uncertainty into
account. Instead of fixing a single model Q0, we consider a whole class Q
of probability measures Q � R and define our preferences using the robust
utility functional

(6) U(H) := inf
Q∈Q

EQ[u(H)].

A microeconomic characterization of such utility functionals in terms of behav-
ioral axioms for the underlying preferences was given by Gilboa and Schmei-
dler [20]; see also Föllmer and Schied [16] for their relation to the theory of
convex risk measures. The robust version of the optimization problem con-
sists in maximizing the functional U(H) under the constraint (4). As shown
in Gundel [22], its solution is of the classical form (5) if (P0, Q0) ∈ Pe × Q
solves the robust projection problem (2) for the sets Pe and Q, i.e., if

(7) f(P0|Q0) = f(P0|Q) = f(Pe|Q).

In Section 2 we analyze the robust projection problem in its general form
(2). Our main result is Theorem 2.6. It states that a solution exists if

(8) lim
x→∞

f(x)
x

=∞,

the set P is closed in variation, and the set Q is weakly compact. The key step
is to show that {f(·|·) ≤ c}, viewed as a subset of L1(R) × L1(R), is weakly
compact. In the classical case with Q = {Q0} this follows easily from (8) using
the de la Vallée-Poussin compactness criterion. In the general robust case the
proof is more delicate. Instead of applying the compactness criterion in terms
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of f , we have to construct an auxiliary convex function l satisfying (8) such
that the compactness condition in terms of l follows via Young’s inequality
in an appropriate Orlicz space. In Csiszár and Tusnády [5] existence results
for robust projections were obtained in two special cases: (i) for the relative
entropy f(P |Q) = H(P |Q) on a finite set, and (ii) for the squared L2-distance
between the densities of P and Q.

In Section 3 we explain how the existence of a robust f -projection within
the class Pe yields the solution of the robust utility maximization problem
defined by (6) and (4). This section is largely expository: We follow Gundel
[22], but we do not assume that all measures in Q are equivalent. Moreover,
our presentation is different and contains some additional results, for example
in Theorem 3.11 and Lemma 3.12. In particular we argue for a fixed value x0

instead of using the duality properties of the maximal utility U(H), viewed
as a function of the initial capital x, as they were developed by Bellini and
Fritelli [3], Goll and Rüschendorf [21], Kramkov and Schachermayer [30], and
Gundel [22].

However, the application of our general existence result for robust f -pro-
jections involves Condition (8), and this amounts to the assumption that the
utility function u is finite on the whole real line. Without this condition a ro-
bust or even a classical projection within the class Pe of equivalent martingale
measures may not exist. Kramkov and Schachermayer [30] have shown how
to develop the duality between the classical problem of utility maximization
and the projection problem beyond the class Pe: A martingale measure P
is identified with the martingale of its densities with respect to the reference
measure R, this class of martingales is embedded in a suitable class of super-
martingales, and the projection problem is solved in this larger class. Recently
Quenez [36] and Schied and Wu [41] have extended this version of the duality
approach from the classical case with Q = {Q0} to the robust case.

In Section 4 we insist on the original idea of identifying the solution of the
robust optimization problem in terms of a martingale measure. In Cvitanic,
Schachermayer, and Wang [6] the solution of the projection problem is de-
scribed as a finitely additive measure. Here we use a different idea which goes
back to Doob’s construction of conditional Brownian motions corresponding
to a harmonic function; see [9], Chapter 2.X. As shown in Föllmer [11], [12],
any supermartingale on a sufficiently rich filtered probability space can be
represented as a measure on the predictable σ-field; see also Föllmer [13] in
the volume in honour of J.L. Doob mentioned above. For such measures we
introduce the notion of an extended martingale measure. Theorem 4.5 shows
how the robust projection problem can be solved in the class P̄ of extended
martingale measures. Corollary 4.8 describes the application to the robust
optimization problem. Some of the key arguments are essentially the same
as in Quenez [36] and Schied and Wu [41]. The main novelty is that here we
insist on an appropriate notion of a martingale measure.
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2. Robust f-projections

Let (Ω,F) be a measurable space and denote byM1(Ω) the set of probabil-
ity measures on (Ω,F). Let the function f : [0,∞)→ R∪{∞} be convex and
continuous. In order to define the f -divergence of P ∈M1(Ω) with respect to
Q ∈M1(Ω), we associate to f(·) the function f(·, ·) on [0,∞)× [0,∞) defined
by

(9) f(x, y) :=


0 if x = y = 0,
x lim
z→∞

f(z)
z if y = 0, x > 0,

yf
(
x
y

)
if y > 0.

For an affine function l(x) = ax+ b on [0,∞) the associated function l(·, ·) on
[0,∞)× [0,∞) is given by l(x, y) = ax+ by. Since f(·, ·) is the supremum of
the affine functions l(·, ·) associated to some affine function l on [0,∞) such
that l ≤ f , f(·, ·) is lower semicontinuous and convex on [0,∞)× [0,∞).

Definition 2.1. Let P , Q ∈ M1(Ω), and let R ∈ M1(Ω) be some refer-
ence measure such that P,Q� R; for example, we may take R := (P +Q)/2.
The f-divergence of P with respect to Q is defined as

f(P |Q) :=
∫
f

(
dP

dR
,
dQ

dR

)
dR.

Remark 2.2. Let P a and P s denote the absolutely continuous and the
singular part in the Hahn-Lebesgue decomposition of P ∈M1(Ω) with respect
to Q ∈M1(Ω). Then

(10) f(P |Q) =
∫
f

(
dP a

dQ

)
dQ+ lim

x→∞

f(x)
x
· P s[Ω] ∈ (−∞,∞];

note that the first term on the right-hand side is bounded from below by
f(P a[Ω]) due to Jensen’s inequality and that limx→∞ f(x)/x > −∞. In
particular the f -divergence is well defined, and it is independent of the choice
of the reference measure R. If P � Q or if limx→∞ f(x)/x = 0, then Equation
(10) reduces to

f(P |Q) =
∫
f

(
dP a

dQ

)
dQ ∈ [f(P a[Ω]),∞].

Definition 2.3. For a subset P of M1(Ω) and Q ∈ M1(Ω), PQ ∈ P is
called an f-projection of Q on P if it minimizes the f -divergence over the set
P:

f(PQ|Q) = f(P|Q) := inf
P∈P

f(P |Q).
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For a subset Q of M1(Ω) and P ∈ M1(Ω), QP ∈ Q is called a reverse
f-projection of P on Q if it minimizes the f -divergence of P over the set Q:

f(P |QP ) = f(P |Q) := inf
Q∈Q

f(P |Q).

Finally, P0 ∈ P is called a robust f-projection of Q on P if it minimizes the
robust f-divergence f(P |Q) := infQ∈Q f(P |Q) over the set P:

f(P0|Q) = inf
P∈P

f(P |Q) =: f(P|Q),

i.e.,
inf
Q∈Q

f(P0|Q) = inf
P∈P

inf
Q∈Q

f(P |Q).

Remark 2.4. Since f(P |Q) = f̂(Q|P ) where f̂ : [0,∞)→ R∪ {∞} is the
convex continuous function defined by f̂(x) := xf(1/x), a reverse f -projection
of P on Q may be viewed as an f̂ -projection of P on Q; see Liese and Vajda
[32] and Gundel [22]. If f is strictly convex, then so is f̂ . In this case there is
at most one f -projection PQ of Q on P and at most one reverse f -projection
QP of P on Q.

Let us now fix two convex subsets P and Q ofM1(Ω). Our aim is to show
that the robust f -projection of Q on P exists under the following assumptions.

Assumption 2.5. All measures in P andQ are absolutely continuous with
respect to some reference measure R. The convex set

KP :=
{
dP

dR
: P ∈ P

}
is closed in L1(R), and the convex set

KQ :=
{
dQ

dR
: Q ∈ Q

}
is weakly compact in L1(R).

Note thatKP is closed in L1(R) iff P is closed in variation, and this property
implies that the convex set KP is weakly closed in L1(R).

Theorem 2.6. Let Assumption 2.5 hold and assume furthermore that

(11) lim
x→∞

f(x)
x

=∞.

Then there exists a robust f-projection P0 of Q on P. Moreover, there exists
a reverse f-projection Q0 of P0 on Q, i.e.,

f(P0|Q0) = f(P0|Q) = f(P|Q).
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The proof will consist in three steps: First we show that the f -divergence
is jointly lower semicontinuous in P and Q, then we formulate a compact-
ness criterion in terms of some auxiliary function l, and in the third step we
construct such a function l which has the required properties.

Define

FR(φ, ψ) :=
∫
f(φ, ψ)dR

for F-measurable φ, ψ ≥ 0. Note that f(φ, ψ) ≥ bψ for some constant b
since f(·) is convex and finally increasing due to our assumption (11), hence
bounded from below on [0,∞). Thus FR(φ, ψ) ∈ (−∞,∞] is well defined.
Note also that

f(P |Q) = FR

(
dP

dR
,
dQ

dR

)
for P , Q, R ∈M1(Ω) such that P , Q� R. We will view FR as a functional on
the closed convex subset L1

+(R)×L1
+(R) of the Banach space L1(R)×L1(R).

The following result appears also in Liese and Vajda [32], Theorem 1.47,
but with a different proof.

Lemma 2.7. Under Assumption (11) the functional FR is convex and
weakly lower semicontinuous on L1

+(R)× L1
+(R).

Proof. Convexity of FR follows from the convexity of f(·, ·) on [0,∞)2. In
order to verify weak lower semicontinuity, we have to show that the sets

Ac :=
{

(φ, ψ) ∈ L1
+(R)× L1

+(R) : FR(φ, ψ) ≤ c
}

are closed with respect to the weak product topology. But since Ac is convex,
it is enough to check that Ac is strongly closed; cf. Dunford, Schwartz [10],
Theorem V.3.13. To this end, take (φn, ψn) ∈ Ac (n ≥ 1) such that φn →
φ and ψn → ψ in L1(R) as n tends to infinity. Passing to subsequences
if necessary, we may assume that both sequences converge R-almost surely.
Since f(φn, ψn) ≥ bψn and (ψn)n=1,2,... is uniformly integrable we can use the
lower semicontinuity of f on [0,∞)2 and Fatou’s lemma to conclude

FR(φ, ψ) =
∫
f( lim
n→∞

(φn, ψn))dR

≤
∫

lim inf
n→∞

f(φn, ψn)dR

≤ lim inf
n→∞

FR(φn, ψn) ≤ c.

Since φ, ψ ∈ L1
+(R) we see that (φ, ψ) ∈ Ac. �

Remark 2.8. In particular the functional FR(dP/dR, ·) is weakly lower
semicontinuous on the weakly compact set KQ. This shows that a reverse
f -projection QP of P on Q exists for any P ∈ M1(Ω). Thus the existence
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of a robust f -projection of Q on P amounts to the existence of some P0 ∈ P
which minimizes the f -divergence f(P |QP ) over P.

Since FR(·, ·) is weakly lower semicontinuous on KP × KQ, the existence
of a robust f -projection will now follow if we can show that the set {(P,Q) :
f(P |Q) ≤ c} is compact in the weak product topology. To this end we prove
the following criterion.

Lemma 2.9. Let l : [0,∞) → R be a positive increasing function such
that limx→∞ l(x)/x = ∞. Let Assumption 2.5 hold and assume that for any
constant c > 0 there is a constant c0 > 0 such that for any P ∈ P

(12) f(P |Q) ≤ c =⇒ ER

[
l

(
dP

dR

)]
≤ c0.

Then there exist a robust f-projection P0 of Q on Pand a reverse f-projection
Q0 of P0 on Q.

Proof. We may assume f(P|Q) <∞ because otherwise every P ∈ P would
be a robust f -projection. Take c > f(P|Q). Since f(P |Q) = FR(dP/dR,
dQ/dR) and since FR is weakly lower semicontinuous by Lemma 2.7, it is
enough to show that {(P,Q) ∈ P ×Q : f(P |Q) ≤ c}, viewed as the subset

Cc := {(φ, ψ) : FR(φ, ψ) ≤ c} ∩ (KP ×KQ)

of L1(R)×L1(R), is weakly compact. Then FR attains its minimum in some
(P0, Q0) ∈ P ×Q, which implies

f(P0|Q) = f(P0|Q0) = inf
P∈P

f(P |Q),

and so P0 is a robust f -projection ofQ on P, andQ0 is its reverse f -projection.
Under Condition (12)

Cc ⊆ KP,c0 ×KQ,
where

KP,c0 := {φ ∈ KP : ER[l(φ)] ≤ c0}
is uniformly integrable by the de la Vallée-Poussin criterion, hence relatively
compact in the weak topology σ(L1(R), L∞(R)); see Dellacherie and Meyer
[8], Theorems II.22 and II.25. Since KQ is weakly compact by Assumption
2.5, Tychonov’s theorem implies that KP,c0 ×KQ is relatively compact in the
weak product topology, and so is Cc. But Cc is also weakly closed due to the
lower semicontinuity of FR and Assumption 2.5, and so Cc is in fact weakly
compact. �

Remark 2.10. Consider the classical case Q = {Q0}. Then Condition
(12) is trivially satisfied for l = f and R = Q, and the preceding proof
reduces to the standard argument for the existence of a classical f -projection;
see, e.g., Liese and Vajda [32], Proposition 8.5, and in the relative entropy
case f(x) = x log x Csiszár [4], Theorem 2.1.
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Since KQ is assumed to be weakly compact, we can choose a function
g : [0,∞)→ [0,∞) with limx→∞ g(x)/x =∞ such that

(13) sup
Q∈Q

ER

[
g

(
dQ

dR

)]
<∞;

cf. Dellacherie and Meyer [8], Theorem II.22. Given the functions f and g,
we are now going to construct a suitable function l and at the same time a
convex function h such that an appropriate Young inequality with respect to
h will allow us to obtain the estimate in terms of l which is required in Lemma
2.9.

For a convex function h on [0,∞) we denote by h∗ its Fenchel-Legendre
transform on [0,∞) defined by

(14) h∗(x) := sup
y≥0
{xy − h(y)}.

Lemma 2.11. There exist strictly increasing functions h and li (i = 1, 2)
on [0,∞) with initial value h(0) = li(0) = 0 such that the following properties
hold:

(i) h is continuous, convex, strictly increasing, and limx→∞ h(x)/x =∞.
(ii) li is concave and limx→∞ li(x) =∞ (i = 1, 2).
(iii) h(xl1(x)) ≤ f(x) for large enough x.
(iv) xh∗(l2(x)) ≤ g(x) for large enough x.
(v) l(x) := xl1(l2(x)) ≤ g(x) for large enough x.

Proof. We are going to use repeatedly the following simple fact: If ũ is
a function on [0,∞) such that limx→∞ ũ(x) = ∞, then there is a strictly
increasing concave function u on [0,∞) such that limx→∞ u(x) =∞, u(0) = 0,
and u(x) ≤ ũ(x) on [x1,∞) for some x1 ≥ 0. Indeed, take a sequence 0 = x0 ≤
x1 < x2 < . . . converging to infinity such that for n ≥ 1, ũ(x) ≥ n+ 1 for all
x ≥ xn, and the sequence xn+1−xn increases in n ≥ 0. Define u(xn) := n and
u linear between xn and xn+1 for n ≥ 0. Then we have u(x) ≤ n+ 1 ≤ ũ(x)
on [xn, xn+1) for n ≥ 1, hence u is dominated by ũ on [x1,∞). Furthermore,
u′(x) = (u(xn+1) − u(xn))/(xn+1 − xn) = 1/(xn+1 − xn) for x ∈ (xn, xn+1)
for n ≥ 0. Since this fraction is non-increasing, u is concave.

In a first step we construct the convex function h. Since f is convex and
limx→∞ f(x)/x = ∞, its left-hand derivative f ′− is non-decreasing and tends
to infinity. In particular f ′− > 0 on [x0,∞) for some x0 ≥ 0. Take a non-
decreasing function ζ : [0,∞) → [0,∞) that tends to infinity, but satisfies
limx→∞ ζ(x)/x = 0. Define

(15) h′(x) := γ(x)f ′−(ζ(x))

on [x0,∞), where γ : [0,∞) → [0,∞) is decreasing, tending to 0, and such
that h′ > 0 is non-decreasing and tends to infinity. For example, we may
choose ζ(x) :=

√
x and γ(x) := (f ′−(ζ(x)))−1/2.
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Now define h such that (15) is satisfied on [x0,∞), and h is linear on [0, x0)
with h(0) = 0 and h(x0) = x0h

′(x0). Then h is a convex function which has
the required properties. Moreover,

(16) lim
x→∞

h(cx)
f(x)

= 0 for all c > 0.

Indeed, for c ∈ (0,∞) take α ≥ x0 such that ζ(y) ≤ y/c for y ≥ α. Then we
have for cx ≥ α,

h(cx) = h(α) +
∫ cx

α

γ(y)f ′−(ζ(y))dy

≤ h(α) + γ(α)
∫ cx

α

f ′−

(y
c

)
dy

= h(α) + γ(α)c
(
f(x)− f

(α
c

))
.

Therefore,

lim sup
x→∞

h(cx)
f(x)

≤ cγ(α),

and this implies (16) since limα→∞ γ(α) = 0.
In order to construct the concave function l1, consider first the function l̃1

defined by h(xl̃1(x)) = f(x), i.e., l̃1(x) := h−1(f(x))/x. Then limx→∞ l̃1(x) =
∞, because otherwise there would be a c ∈ (0,∞) and a sequence (xn) tending
to infinity such that

h(xnc) ≥ h(xn l̃1(xn)) = f(xn),

in contradiction to (16). As explained above, we can now choose a strictly
increasing concave function l1 such that l1(0) = 0, limx→∞ l1(x) = ∞, and
l1(x) ≤ l̃1(x), hence h(xl1(x)) ≤ f(x) for large enough x.

Finally we construct the concave function l2. Let h∗ be the Fenchel-
Legendre transform of h defined in (14). Then h∗ has the same properties
as h specified in (i); see Neveu [34], pages 193 and 194. First we define l̃2(x)
on [0,∞) such that

h∗(l̃2(x)) =
g(x)
x

on (0,∞).

This implies limx→∞ l̃2(x) = ∞. We can now choose a strictly increasing
concave function l2 such that l2(0) = 0, limx→∞ l2(x) = ∞ and l2(x) ≤
l̃2(x) ∧ l−1

1 (g(x)/x), hence xh∗(l2(x)) ≤ g(x) and xl1(l2(x)) ≤ g(x), for large
enough x. �

In order to conclude the proof of Theorem 2.6, we now show that the
function l appearing in part (v) of Lemma 2.11 allows us to apply the criterion
in Lemma 2.9.
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Lemma 2.12. The function l defined in Lemma 2.11 satisfies the condi-
tions of Lemma 2.9.

Proof. Observe first that limx→∞ l(x)/x = ∞. Now let us fix P ∈ P and
Q ∈ Q such that f(P |Q) ≤ c for some c > 0. Then P � Q, and φ := dP/dQ
and ψ := dQ/dR are well defined. Let x0 > 1 be such that Conditions (iii)–(v)
in Lemma 2.11 are satisfied for x ≥ x0. In order to verify Condition (12) we
decompose the expectation on the right-hand side as follows:

ER

[
l

(
dP

dR

)]
= ER[l(φψ)](17)

= ER[l(φψ);φ ≤ x0] + ER[l(φψ);φ > x0, l2(ψ) > 1]

+ ER[l(φψ);φ > x0, l2(ψ) ≤ 1].

We are going to show that each of these three terms is bounded by some
constant which only depends on c but not on the specific choice of P and Q.
Since li is concave with li(0) = 0 for i = 1, 2, we have li(αx) ≤ αli(x) for any
α ≥ 1, and this estimate will be used repeatedly.

On {φ ≤ x0} we have

l(φψ) ≤ l(x0ψ)

= x0ψl1(l2(x0ψ))

≤ x2
0ψl1(l2(ψ))

= x2
0l(ψ) ≤ x2

0(c1 + g(ψ)),

where c1 := sup{l(x) : x ≤ x0}, since l(x) ≤ g(x) for x ≥ x0, and so the first
term above satisfies

ER[l(φψ);φ ≤ x0] ≤ x2
0 (c1 + ER[g(ψ)]) ≤ x2

0

(
c1 + sup

Q∈Q
ER

[
g

(
dQ

dR

)])
,

which is finite by (13).
On {φ > x0, l2(ψ) > 1} we have

l1(l2(φψ)) ≤ l1(φl2(ψ)) ≤ l1(φ)l2(ψ),

and this implies

ER[l(φψ);φ > x0, l2(ψ) > 1] ≤ EQ[φl1(φ)l2(ψ)].

Now we use Young’s inequality to conclude that

EQ[φl1(φ)l2(ψ)] ≤ 2 · ||φl1(φ)||h · ||l2(ψ)||h∗ ;

see Neveu [34], Proposition IX.2.2. Here

||X||h := inf
{
a > 0 : EQ

[
h

(
|X|
a

)]
≤ 1
}
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denotes the Orlicz norm with respect to h and Q, and ||X||h∗ is defined in
the same manner in terms of h∗ and Q. But

||φl1(φ)||h ≤ max{1, EQ[h(φl1(φ))]}

(see Neveu [34], proof of Proposition IX.2.2), and

EQ[h(φl1(φ))] ≤ c2 + EQ[f(φ)]

= c2 + f(P |Q)
≤ c2 + c,

where c2 := sup{h(xl1(x)) : x ≤ x0}, since h(xl1(x)) ≤ f(x) for x ≥ x0. In
the same way,

||l2(ψ)||h∗ ≤ max{1, EQ[h∗(l2(ψ))]},

and

EQ[h∗(l2(ψ))] = ER[ψh∗(l2(ψ))]

≤ c3 + ER[g(ψ)]

≤ c3 + sup
Q∈Q

ER

[
g

(
dQ

dR

)]
,

where c3 := sup{xh∗(l2(x)) : x ≤ x0}, since xh∗(l2(x)) ≤ g(x) for x ≥ x0.
This yields the desired bound for the second term on the right-hand side of
Equation (17).

On {φ > x0, l2(ψ) ≤ 1} we have

l1(l2(φψ)) ≤ l1(φl2(ψ)) ≤ l1(φ),

and so the remaining term satisfies

ER[l(φψ);φ > x0, l2(ψ) < 1] ≤ ER[φψl1(φ)] = EQ[φl1(φ)].

Young’s inequality yields

EQ[φl1(φ)] ≤ 2 · ||φl1(φ)||h · inf
{
a > 0 : h∗

(
1
a

)
≤ 1
}
,

and we have already seen above that ||φl1(φ)||h is suitably bounded. �

Remark 2.13. For special choices of functions f and g the construction
of our auxiliary function l may of course be simpler. Take for example f(x) =
xα and g(x) = xβ with α, β > 1. Choose γ > 1 such that γ < α and
(α − 1)γ ≤ β(α − γ) and define l(x) = xγ . Condition (12) now follows by
applying Hölder’s inequality with exponents p = α/γ and q = α/(α− γ): For
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P ∈ P, Q ∈ Q, and φ = dP/dQ, ψ = dQ/dR,

ER

[
l

(
dP

dR

)]
= ER [φγψγ ] = EQ

[
φγψγ−1

]
≤ EQ

[
φγp

]
1/pEQ

[
ψ(γ−1)q

]1/q
≤ f(P |Q)1/p

(
1 + ER

[
g

(
dQ

dR

)]1/q
)

;

see also Gundel [22], Lemma 4.

Proof of Theorem 2.6. Due to Lemma 2.12 we can apply Lemma 2.9 to
conclude that a robust f -projection P0 of Q on P and a reverse f -projection
Q0 of P0 on Q exist. �

We conclude this section with a uniqueness result for robust f -projections.

Proposition 2.14. If f is strictly convex and f(P|Q) < ∞, then the
density of the robust f-projection P0 of Q on P with respect to its reverse
f-projection Q0 is R-almost surely unique.

Proof. Assume that P1 and P2 ∈ P are two robust f -projections of Q on
P with reverse f -projections Q1 and Q2. Then Pi � Qi due to Remark 2.2.
Take γ ∈ (0, 1) and define Pγ := γP1 + (1− γ)P2, Qγ := γQ1 + (1− γ)Q2,

φi :=
dPi
dQi
· 1{dQi/dR>0} +∞ · 1{dQi/dR=0,dPi/dR>0},

and ψi := dQi/dQγ for i = 1, 2. Note that γψ1 + (1− γ)ψ2 = 1 and γψ1φ1 +
(1− γ)ψ2φ2 = dPγ/dQγ . By convexity of f and minimality of P1 and P2,

f(Pγ |Q) ≥ γf(P1|Q) + (1− γ)f(P2|Q)

= EQγ [γψ1f(φ1) + (1− γ)ψ2f(φ2)]

≥ EQγ [f (γψ1φ1 + (1− γ)ψ2φ2)]

= f(Pγ |Qγ)

≥ f(Pγ |Q),

and so we have equality everywhere. But since f is strictly convex, the second
inequality can only reduce to an equality if φ1 = φ2 Qγ-almost surely. This
means that φ1 = φ2 R-almost surely on the set {dQγ/dR > 0}. On the
set {dQγ/dR = 0} we have dPi/dR = 0 for i = 1, 2 R-almost surely since
f(Pi|Qi) <∞, hence φ1 = φ2 = 0 R-almost surely. �
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3. Robust preferences and least favorable martingale measures

In this section we explain the connection between (robust) f -projections
and one of the key problems in Mathematical Finance, namely the choice of
a portfolio which is optimal with respect to certain (robust) preferences.

In its general form, the problem of optimal portfolio choice consists in find-
ing a maximal element with respect to a given preference order � over some
convex class of “affordable” financial positions or contingent claims, described
as random variables H on a given probability space (Ω,F , R). Typically such
a preference order admits a numerical representation

H � H̃ ⇐⇒ U(H) ≥ U(H̃)

in terms of some utility functional U . In order to specify the functional U
we fix an increasing concave utility function u : R→ R ∪ {−∞}. We assume
that u is strictly increasing, strictly concave, and continuously differentiable
on the interior (a,∞) := int{x : u(x) > −∞} of its domain and satisfies the
Inada condition

(18) lim
x↘a

u′(x) =∞, lim
x→∞

u′(x) = 0.

Moreover we assume that u has regular asymptotic elasticity in the sense of
Kramkov and Schachermayer [30], Schachermayer [38], Frittelli and Rosazza
[18], i.e.,

(19) lim sup
x→∞

xu′(x)
u(x)

< 1 and, if a = −∞, lim inf
x→−∞

xu′(x)
u(x)

> 1.

In the classical framework of “expected utility”, whose axiomatic founda-
tions were clarified by von-Neumann-Morgenstern and by Savage, the utility
functional is of the form

U(H) = EQ[u(H)],

where Q is some probability measure on (Ω,F). In this paper we use a
“robust” extension of the expected utility approach which was introduced by
Gilboa and Schmeidler [20]. Instead of a single probabilistic model Q � R
we take a whole class Q of such models and define the preference order � via
the utility functional

U(H) := inf
Q∈Q

EQ[u(H)].

Thus, model uncertainty is taken into account explicitly. As shown by Gilboa
and Schmeidler [20], such robust preferences can be characterized by certain
behavioral axioms, and they resolve several well-known “paradoxa” which
arise in the classical framework; see, for instance, Karni and Schmeidler [28]
or Föllmer and Schied [16], Chapter 2.5.



ROBUST PROJECTIONS IN THE CLASS OF MARTINGALE MEASURES 453

Assumption 3.1. The measures Q ∈ Q are absolutely continuous with
respect to R, and the class Q is equivalent to R in the sense that

(20) R[A] = 0 ⇐⇒ Q[A] = 0 for all Q ∈ Q.

Due to (20) the contingent claim H satisfies U(H) > −∞ only if

(21) H ≥ a R− a.s.

since a = inf{x : u(x) > −∞}. From now on we will only consider contingent
claims with this property.

The class of affordable contingent claims will be specified in terms of a
financial market model with d liquid financial assets and finite time horizon
T . The price fluctuation of these assets, properly discounted, is described by
a d-dimensional positive semimartingale (Xt)0≤t≤T on the probability space
(Ω,F , R), equipped with a right-continuous filtration (Ft)t≥0 such that FT =
F and F0 is trivial for R. We assume that (Xt)0≤t≤T is locally bounded, i.e.,
there exists a sequence of stopping times (τn)n=1,2,... such that (Xτn∧t)0≤t≤T
is bounded for each n and τn ↗ T R-almost surely.

Definition 3.2. A probability measure P � R is called an absolutely
continuous martingale measure if (Xt)0≤t≤T is a local martingale under P . If
in addition P ≈ R, then P is called an equivalent martingale measure. The
class of absolutely continuous martingale measures will be denoted by P, the
class of equivalent martingale measures by Pe.

From now on we assume the existence of an equivalent martingale measure,
i.e.,

Pe 6= ∅.
This assumption is equivalent to the absence of arbitrage opportunities; see
Delbaen and Schachermayer [7] and also Yan [43] and [44] for precise versions
of this equivalence and for different choices of the numéraire which is used to
define the discounted price process (Xt)0≤t≤T .

Remark 3.3. Since the price process (Xt)0≤t≤T is assumed to be locally
bounded, the class P of absolutely continuous martingale measures is closed in
the sense of Assumption 2.5 since their densities φ can be characterized by the
conditions ER[φXτ ] = X0 for stopping times τ ≤ T such that Xτ ∈ L∞(R);
see, for instance, Frittelli [17] or Bellini and Frittelli [3].

Let us fix an initial wealth x0 > a. Consider a contingent claim H, given as
an FT -measurable random variable at the final time T such that (21) holds.

Definition 3.4. Let us say that H is affordable with limited downside risk
if there exist some P ∈ Pe such that H ∈ L1(P ) and a trading strategy in the
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underlying liquid assets, described by a d-dimensional predictable and suitably
integrable process (ξt)0≤t≤T , such that the corresponding value process

(22) Vt := x0 +
∫ t

0

ξsdXs (0 ≤ t ≤ T )

satisfies

(23) Vt ≥ EP [H|Ft] (0 ≤ t ≤ T )

and in particular VT ≥ H R-almost surely. For P0 ⊆ P such that P0∩Pe 6= ∅
we will say that the strategy has P0-limited downside risk if H ∈ L1(P ) and
(23) holds for any P ∈ P0.

Note that the value process (22) is a local martingale under any P ∈ P, and
that it is a supermartingale under any P ∈ P0. This implies the constraint

(24) sup
P∈P0

EP [H] ≤ x0

for any contingent claim H which is affordable with P0-limited downside risk.

Remark 3.5. Suppose that the contingent claim H is bounded from below
by some constant c. If H is affordable with limited downside risk, then the
corresponding value process is bounded from below by c, and hence (23) is in
fact satisfied for all P ∈ Pe. In particular the constraint (24) is satisfied for
P0 = Pe. A key result in the theory of superhedging implies that, conversely,
a claim which is bounded from below and satisfies the constraint (24) for
P0 = Pe is in fact affordable with Pe-limited downside risk. More precisely,
there exists a trading strategy whose value process (Vt) is bounded from below
and satisfies VT ≥ H R-almost surely, and this implies (23) for any P ∈ P
since (Vt) is a P -supermartingale. See, for instance, Kramkov [29], Delbaen
and Schachermayer [7], or Yan [43], and also Föllmer and Kramkov [15] and
Föllmer and Kabanov [14] for an extension to trading strategies with convex
constraints. Moreover, if the supremum supP∈Pe EP [H] is assumed by some
P ∈ Pe, then H is even attainable by some trading strategy in the sense that
H = VT ; see Ansel and Stricker [1], Theorem 3.2.

We are going to discuss the problem of maximizing the robust utility

(25) U(H) := inf
Q∈Q

EQ[u(H)]

under the constraint

(26) sup
P∈P0

EP [H] ≤ x0

for a suitable choice of the set P0. It will turn out that the resulting contingent
claim H0 is in fact affordable by means of a strategy with P0-limited downside
risk, and this may be viewed as an extension of the superhedging result recalled
in Remark 3.5.
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Recall that the utility function u is finite on (a,∞) for some a ∈ [−∞,∞).
From now on we assume that

(27) a = 0 or a = −∞

and that

(28) u(∞) := lim
x→∞

u(x) =∞ or u(∞) = 0;

In view of our optimization problem this is no loss of generality since we can
shift the origin along the two axes if necessary.

In order to connect this robust optimization problem to our discussion
of robust f -projections, let us introduce the convex conjugate function v :
[0,∞)→ R ∪ {∞} of the concave utility function u:

(29) v(y) := sup
x>a
{u(x)− xy} = u(I(y))− yI(y),

where I := (u′)−1 : (0,∞) → (a,∞) is decreasing from ∞ to a. Note that
v(0) := limx↘0 v(x) = u(∞), that v is finite and differentiable with v′ = −I
on (0,∞), and that

(30) lim
x→∞

v(x)
x

= lim
x→∞

v′(x) = −a.

due to the Inada condition (18). Moreover, our Assumption (19) of regular
asymptotic elasticity implies that for any λ > 0 there are constants a(λ) and
b(λ) such that

(31) v(λx) ≤ a(λ)v(x) + b(λ)(x+ 1);

see, for instance, Schachermayer [38] or Frittelli and Rosazza [18]. We define
vλ(x) := v(λx) for λ > 0, and we denote by

vλ(P |Q) = vλ(P a|Q)− aλP s[Ω]

the vλ-divergence of P ∈ P with respect to Q ∈ Q; for λ = 1 we simply write
v(P |Q). Note that v(P |Q) <∞ implies Q� P whenever v(0) = u(∞) =∞
and P � Q whenever a = −∞.

For P ∈ P and Q ∈ Q with densities φ := dP/dR and ψ := dQ/dR we
denote by

dP

dQ
:=

φ

ψ
1{ψ>0} +∞ · 1{ψ=0,φ>0}

the generalized Radon-Nikodym density of P with respect to Q. Note that

I

(
λ
dP

dQ

)
= I

(
λ
dP a

dQ

)
1Ac + a1A,

where A := {ψ = 0, φ > 0} is the support of the singular part of P . In
particular I(λdP/dQ) = I(λdP a/dQ) R-almost surely if a = 0, or if a = −∞
and v(P |Q) <∞.
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Lemma 3.6. For P ∈ P and Q ∈ Q the following conditions are equiva-
lent:

(i) v(P |Q) <∞,
(ii) vλ(P |Q) <∞ for any λ > 0,
(iii) For any λ > 0 the contingent claim

Hλ := I

(
λ
dP

dQ

)
satisfies

(32) Hλ ∈ L1(P ) and u(Hλ) ∈ L1(Q),

(iv) H−λ ∈ L1(P ) and u(Hλ)+ ∈ L1(Q) for any λ > 0.

Proof. The equivalence of (i) and (ii) follows from (31). In order to check
the equivalence of (ii) to (iv), define ρ := dP a/dQ and note that (ii) is equiva-
lent to aP s[Ω] > −∞ and EQ[v(λρ)] <∞ for any λ > 0. For 0 < λ1 < λ < λ2,
the two estimates

v (λiρ) ≥ v (λρ) + v′ (λρ) (λi − λ)ρ on {0 < ρ <∞}
for i = 1, 2 show that v′ (λρ) ρ ∈ L1(Q) and hence I (λρ) ∈ L1(P a) and
Hλ = I (λρ) + a · 1A ∈ L1(P ), as soon as (ii) holds. Since u(Hλ) = u(I(λρ))
Q-almost surely and

(33) u(I(λρ)) = v(λρ) + λρI (λρ)

by (29), Condition (ii) also implies u(Hλ) ∈ L1(Q). Clearly, (iii) implies
(iv). Conversely, (33) allows us to verify (ii) as soon as u+(Hλ) ∈ L1(Q)
and H−λ ∈ L1(P ). Indeed, v−(λρ) ∈ L1(Q) by convexity of v and v+(λρ) ≤
u+(I(λρ)) + λρH−λ . Moreover, if a = −∞, then |a|P s[Ω] ≤ EP [H−λ ], hence
P � Q and vλ(P |Q) = EQ[v(λρ)] <∞. �

Remark 3.7. Consider the following standard choices of a utility function
u:

(i) u(x) = log x on (0,∞) (logarithmic utility),
(ii) u(x) = 1

γx
γ on (0,∞), 0 6= γ ∈ (−∞, 1) (power utility),

(iii) u(x) = − 1
αe
−αx on R1, α ∈ (0,∞) (exponential utility).

The corresponding divergences vλ(P |Q) are given by
(i) H(Q|P )− (1 + log λ),

(ii) 1
βλ
−βEQ

[(
dQ
dP

)β]
for β = γ

1−γ ,

(iii) λ
α (H(P |Q) + log λ− 1),

where

H(P |Q) :=

{
EQ

[
dP
dQ log

(
dP
dQ

)]
if P � Q,

∞ otherwise,
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denotes the relative entropy of P with respect to Q. In particular vλ(P |Q) <
∞ for all λ > 0 as soon as P and Q satisfy the corresponding condition (i)
H(Q|P ) <∞, (ii) 1/βEQ

[
(dQ/dP )β

]
<∞, or (iii) H(P |Q) <∞.

For fixed P ∈ P and Q ∈ Q such that P ≈ Q, it is well known how to solve
the classical problem of maximizing the expected utility EQ[u(H)] under the
simple constraint EP [H] ≤ x0; see, for instance, Karatzas and Shreve [27].
For the convenience of the reader we summarize the solution in a slightly more
general form, which will then be extended to the robust case. Note that here
we only assume that v(P |Q) <∞.

Theorem 3.8. Suppose that P ∈ P and Q ∈ Q are such that v(P |Q) <∞.
(i) The function h : (0,∞)→ R

1 defined by

h(λ) := vλ(P |Q) + λx0

is strictly convex and continuously differentiable with derivative

(34) h′(λ) = x0 − EP
[
I

(
λ
dP

dQ

)]
.

In particular h attains its minimum in the unique value λP,Q > 0 such
that

EP

[
I

(
λP,Q

dP

dQ

)]
= x0.

(ii) The contingent claim

HP,Q := I

(
λP,Q

dP

dQ

)
∈ L1(P )

maximizes the expected utility EQ[u(H)] under the constraint EP [H] ≤
x0, and the maximizer is R-almost surely unique on the set {dP/dR >
0} ∪ {dQ/dR > 0}. The maximal expected utility is given by
vλP,Q(P |Q) + λP,Qx0:

max
H:EP [H]≤x0

EQ[u(H)] = EQ[u(HP,Q)](35)

= vλP,Q(P |Q) + λP,Qx0

= min
λ>0
{vλ(P |Q) + λx0}.

Proof. The function g(λ) := v(λ) + λx0 is strictly convex and differen-
tiable on (0,∞) with g(0) = v(0) = u(∞), g′ = x0 − I, g′(0+) = −∞, and
limλ→∞ g′(λ) = x0 − a > 0, hence limλ→∞ g(λ) = ∞. In particular g is
bounded from below. For ρ = dP a/dQ, Jensen’s inequality implies

h(λ) = EQ [v (λρ) + λx0ρ] + x0λP
s[Ω]

≥ EQ [g (λρ)] ≥ g(λ)
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since Ps[Ω] = 0 if a = −∞ and v(P |Q) < ∞, and x0 > 0 if a = 0. Note
that g′ (λρ) ρ ∈ L1(Q) for any λ > 0 by Lemma 3.6. Using the monotonicity
of g′ in order to get an integrable bound, we can apply Fubini’s theorem to
conclude

h(λ2) = h(λ1) + EQ

[∫ λ2

λ1

g′ (λρ) ρdλ

]
+ x0P

s[Ω](λ2 − λ1)

= h(λ1) +
∫ λ2

λ1

EPa [g′ (λρ)] dλ+ x0P
s[Ω](λ2 − λ1)

= h(λ1) + x0(λ2 − λ1)−
∫ λ2

λ1

EP

[
I

(
λ
dP

dQ

)]
dλ,

and this implies (34). Moreover, h(·) attains its unique minimum in some λ :=
λP,Q > 0 such that h′(λ) = 0 since h′ is continuous by (32), h(∞) = g(∞) =
∞, and since (34) implies h′(0+) = −∞ by monotone convergence. Since I is
strictly decreasing, the minimizing value λP,Q is uniquely determined by the
condition

EP

[
I

(
λ
dP

dQ

)]
= x0.

Finally, any H ∈ L1(P ) such that H ≥ a R-almost surely and EP [H] ≤ x0

satisfies

EQ[u(H)] ≤ EQ[u(H)] + λ(x0 − EP [H])(36)

= EQ [u(H)− λρH] + λx0 − λEP s [H]

≤ EQ [v (λρ)] + λx0 − λaP s[Ω]

= vλ(P |Q) + λx0

= EQ [v (λρ) + λρI(λρ)] + λ (x0 − EPa [I(λρ)]− aP s[Ω])

= EQ

[
u

(
I

(
λ
dP

dQ

))]
+ λ

(
x0 − EP

[
I

(
λ
dP

dQ

)])
,

for any λ > 0, and the two inequalities reduce to equalities iff λ = λP,Q and
H = HP,Q due to (29). The uniqueness on the set {dP/dR > 0} ∪ {dQ/dR >
0} follows from the strict concavity of u. �

From now on we assume

(37) v(P|Q) <∞,

and we consider the robust divergences vλ(P|Q) for λ > 0. As shown in
Gundel [22], Theorem 2, the function λ 7→ vλ(P|Q) + λx is convex on (0,∞),
and it follows as in the proof of Theorem 3.8 (i) that it attains its minimum
in some positive value λ0.
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Remark 3.9. In all three cases considered in Remark 3.7,

vλ(P|Q) = vλ(P0|Q0) for any λ > 0

whenever P0 is a robust v-projection ofQ on P andQ0 is its reverse projection.
In such a situation we can simply apply Theorem 3.8, and the minimizing value
of λ is given by λ0 := λP0,Q0 .

Let us write f := vλ0 . Note that f(P|Q) < ∞ due to Assumption (37)
and Lemma 3.6. Suppose that the robust f -projection P0 of Q on P and its
reverse f -projection Q0 exist. For P ∈ P, Q ∈ Q, and α ∈ (0, 1], we define
Pα := αP + (1− α)P0, Qα := αQ+ (1− α)Q0,

Q0 : = {Q ∈ Q : f(P0|Qα) <∞ for some α ∈ (0, 1]}(38)

⊇ {Q ∈ Q : f(P0|Q) <∞} ,

and

P0 : = {P ∈ P : f(Pα|Q0) <∞ for some α ∈ (0, 1]}(39)

⊇ {P ∈ P : f(P |Q0) <∞} .

Let us first consider the reduced problem of maximizing

(40) U0(H) := inf
Q∈Q0

EQ[u(H)]

under the constraint

(41) sup
P∈P0

EP [H] ≤ x0.

Remark 3.10. (i) If a > −∞ as for the logarithmic and the power utility
functions, then

(42) P0 = P.

Indeed, take P ∈ P and define ρ0 := dP a0 /dQ0, ρ := dP a/dQ0, and ρα :=
dP aα/dQ0 for α ∈ (0, 1). Since f = vλ0 is convex with derivative f ′(x) =
−λ0I(λ0x) ≤ −λ0a,

f(ρα) ≤ f(ρ0)− f ′(ρα)(ρ0 − ρα)

≤ f(ρ0) + λ0I(λ0(1− α)ρ0)ρ0 − λ0aρα on {0 < ρα <∞}.

Since ρ0I(λρ0) ∈ L1(Q0) for any λ > 0 by Lemma 3.6, we obtain f(ρα) ∈
L1(Q0) for any α ∈ (0, 1), hence f(Pα|Q0) = EQ0 [f(ρα)]− aλP sα[Ω] <∞ and
P ∈ P0.

(ii) If u is bounded from above as for the exponential utility function, then

(43) Q0 = Q.
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Indeed, take Q ∈ Q and define θ0, θ, and θα as the densities of the absolutely
continuous parts of Q0, Q, and Qα with respect to P0. Recall from Remark
2.4 that

f(P0|Qα) = f̂(Qα|P0) = f̂ ′(∞)Qsα[Ω] +
∫
f̂(θα)dP0

for f̂(x) := xf(1/x). Note that f̂ ′(∞) = f(0) = v(0) = u(∞) and that

(44) f̂ ′(x) = v

(
λ0

x

)
+
λ0

x
I

(
λ0

x

)
= u

(
I

(
λ0

x

))
.

As above we see that

f̂(θα) ≤ f̂(θ0)− u
(
I

(
λ0

1− α
ρ0

))
θ0 + u(∞)θα on {0 < θα <∞}.

Since u (I (λρ0)) ∈ L1(Q0) for any λ > 0 by Lemma 3.6, we obtain f̂(θα) ∈
L1(P0) and f̂(Qα|P0) = EP0 [f̂(θα)] + u(∞)Qsα[Ω] < ∞ for any α ∈ (0, 1),
hence Q ∈ Q0.

Let us now show how the existence of a robust f -projection P0 of Q on P
yields the solution of the reduced optimization problem.

Theorem 3.11. Assume that a robust f-projection P0 of Q on P and
its reverse f-projection Q0 on Q exist. Then the robust utility maximization
problem defined by (40) and (41) has the solution

(45) H0 := I

(
λ0
dP0

dQ0

)
,

and the solution is R-a.s. unique on the set {dP0/dR > 0} ∪ {dQ0/dR > 0}.
The maximal value of the robust utility is given by

U0(H0) = f(P|Q) + λ0x0.

Moreover, the contingent claim H0 is affordable with P0-limited downside risk
if P0 ≈ Q0 ≈ R.

Proof. For any H ≥ a satisfying the constraint (41), the estimate (36)
applied to P0, Q0, and λ > 0 shows that

U0(H) = inf
Q∈Q0

EQ[u(H)] ≤ EQ0 [u(H)]

≤ inf
λ>0
{vλ(P0|Q0) + λx0}

= vλ0(P0|Q0) + λ0x0

= EQ0 [u (H0)] + λ0(x0 − EP0 [H0]),
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where we have used (29) in the last step. Note that λ 7→ vλ(P0|Q0) + λx0

attains its minimum in λ0. Thus, Theorem 3.8 implies that EP0 [H0] = x0,
and this yields

U0(H) ≤ vλ0(P0|Q0) + λ0x0

= EQ0 [u (H0)] .

Lemma 3.12 shows that H0 satisfies the constraint (41) and that

EQ0 [u (H0)] = U0(H0) = min
Q∈Q0

EQ [u (H0)] .

This concludes the proof thatH0 is optimal, with U0(H0) = vλ0(P0|Q0)+λ0x0.
In order to show uniqueness, assume that H̃ ≥ a solves the problem defined

by (40) and (41). Then we have EP0 [H̃] ≤ x0 and hence

inf
Q∈Q

EQ[u(H̃)] ≤ EQ0 [u(H̃)] ≤ EQ0 [u(H0)].

The second inequality holds strictly unless H̃ = H0 R-almost surely on
{dP0/dR > 0}∪{dQ0/dR > 0}. This follows from the fact that H0 maximizes
EQ0 [u(H)] under the constraint EP0 [H] ≤ x0 and from the uniqueness result
in Theorem 3.8. But the strict inequality is a contradiction to EQ0 [u(H0)] =
infQ∈QEQ[u(H0)]. Thus H̃ = H0 R-almost surely on {dP0/dR > 0} ∪
{dQ0/dR > 0}.

Moreover, we obtain from Goll and Rüschendorf [21], Theorem 3.2, that

(46) H0 = x0 +
∫ T

0

ξsdXs

for some trading strategy (ξt)0≤t≤T such that the corresponding value process
Vt :=

∫ t
0
ξsdXs (0 ≤ t ≤ T ) is a P0-martingale; this representation is based on

results due to Yor [45] and Jacod [26]. For any P ∈ P0 the value process is a
local martingale under P , and the conditional estimates (49) show that it is
bounded from below by the P -martingale EP [H0|Ft], 0 ≤ t ≤ T . Thus, H0 is
affordable with P0-limited downside risk if P0 ≈ Q0 ≈ R. Uniqueness follows
from the strict concavity of u, and this is consistent with the uniqueness result
in Proposition 2.14 for a strictly convex function f . �

The following lemma was used in the proof of Theorem 3.11; it extends the
arguments in Goll and Rüschendorf [21], Theorem 5.1.

Lemma 3.12. Let P0 be a robust f-projection of Q on P, and let Q0 be
the reverse f-projection of P0 on Q. Then the contingent claim H0 defined by
(45) has the following properties:

H0 := I

(
λ0
dP0

dQ0

)
∈ L1(P ) for all P ∈ P0,

u(H0) ∈ L1(Q) for all Q ∈ Q0,
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(47) EP0 [H0] = max
P∈P0

EP [H0],

and

(48) EQ0 [u(H0)] = min
Q∈Q0

EQ[u(H0)].

If P ≈ Q0 for some P ∈ P0, then P0 ≈ Q0. If in addition Q0 ≈ R, then for
all t ∈ [0, T ] and P ∈ P0,

(49) EP0 [H0|Ft] ≥ EP [H0|Ft] R− a.s.

Proof. Take P ∈ P0, ρ := dP a/dQ0, and ρ0 := dP a0 /dQ0. Due to our
assumption a = 0 or a = −∞ we have f(P |Q0) = f(P a|Q0) if f(P |Q0) <∞.
Since P0 is an f -projection of Q0 on P and f := vλ0 is differentiable on (0,∞),
a criterion in Rüschendorf [37], Theorem 5, for f -projections implies

(50) EQ0 [f ′(ρ0)(ρ− ρ0)] ≥ 0.

For the convenience of the reader we include the argument: Define Pα :=
αP + (1 − α)P0 and ρα := dP aα/dQ0. The function α 7→ f(ρα) is convex on
[0, 1], and so

Zα :=
f(ρα)− f(ρ0)

α

is increasing in α and decreasing to Z0 = f ′(ρ0)(ρ − ρ0) as α ↘ 0. By
definition of P0 there is α0 ∈ (0, 1] such that Zα0 ∈ L1(Q0), and Zα is bounded
by Zα0 for α ≤ α0. By monotone convergence we obtain Z0 ∈ L1(Q0) and
EQ0 [Z0] ≥ 0, since EQ0 [Zα] = α−1 (f(Pα|Q0)− f(P0|Q0)) ≥ 0 for any α > 0.

In our situation we have f ′(x) = −λ0I(λ0x) and f ′(ρ0)ρ0 ∈ L1(Q0) by
Lemma 3.6, hence f ′(ρ0)ρ ∈ L1(Q0) and H0 ∈ L1(P ) since Z0 ∈ L1(Q0).
Moreover, Inequality (50) and Assumption (27) allow us to conclude

(51) EP

[
f ′
(
dP0

dQ0

)]
≥ EP0

[
f ′
(
dP0

dQ0

)]
,

and this amounts to the inequality

(52) EP [H0] ≤ EP0 [H0].

In order to verify (48) take f̂(x) := xf(1/x). Then Q0 is the f̂ -projection
of P0 on Q, and f̂ ′ (dQ0/dP0) = u(H0) due to (44). Note that due to our
assumption u(∞) = 0 or u(∞) = ∞ we have f(P0|Q) = f(P0|Qa) for any
Q ∈ Q with f(P0|Q) < ∞. Q0-integrability of u(H0) follows from Lemma
3.6. Now we apply the argument above in terms of f̂ , reversing the role of
the sets Q and P to obtain

EQ[u(H0)] ≥ EQ0 [u(H0)].

Q-integrability of u(H0) for Q ∈ Q0 follows as above.
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In order to show that P0 ≈ Q0 take P ∈ P0 with P ≈ Q0. If P0 is not
equivalent to Q0, then P (dP0/dQ0 = 0) > 0 and hence EP [H0] = ∞ since
I(0) =∞. But in view of (52) this is a contradiction to H0 ∈ L1(P0).

In order to show the conditional estimate (49) for P ∈ P0 and t ∈ (0, T ),
we write ρ0 = ρ0,tρ̂0,t where ρ0,t := dP a0 /dQ0|Ft and ρ̂0,t is the conditional
density with respect to Ft. In the same way we define ρt, ρ̂t, ρα,t and ρ̂α,t.
Due to (31) we have on {ρα,t > 0}

f(ρ0,tρ̂α,t) = f

(
ρ0,t

ρα,t
ρα,tρ̂α,t

)
≤ a

(
ρ0,t

ρα,t

)
f(ρα,tρ̂α,t) + b

(
ρ0,t

ρα,t

)
(ρα,tρ̂α,t + 1)

= a

(
ρ0,t

ρα,t

)
f(ρα) + b

(
ρ0,t

ρα,t

)
(ρα + 1).

For α ∈ (0, α0] we have EQ0 [f(ρα)|Ft] <∞ Q0-almost surely, and this implies
that also EQ0 [f(ρ0,tρ̂α,t)|Ft] <∞Q0-almost surely on {ρα,t > 0}. If f(0) = 0,
then f(ρ0,tρ̂α,t) = 0 on {ρα,t = 0} due to the definition of ρα,t. If f(0) =∞,
then ρα,t > 0 R-almost surely. Hence EQ0 [f(ρ0,tρ̂α,t)|Ft] < ∞ Q0-almost
surely on Ω. Furthermore,

EQ0 [f(ρ0,tρ̂α,t)|Ft] ≥ EQ0 [f(ρ0,tρ̂0,t)|Ft] Q0 − a.s.

Indeed, the measure P̃ with density

ρ̃ :=

{
ρ0,tρ̂α,t on A,

ρ0 on Ac,

with A := {EQ0 [f(ρ0,tρ̂α,t)|Ft] < EQ0 [f(ρ0,tρ̂0,t)|Ft]} belongs to the set P,
and Q0[A] > 0 would imply

f(P̃ |Q0) = EQ0 [f(ρ̃)] = EQ0 [EQ0 [f(ρ̃)|Ft]] < EQ0 [f(ρ0)] = f(P0|Q0),

which contradicts the minimality of P0. We can now repeat the argument
above, with

Zα,t :=
f(ρ0,tρ̂α,t)− f(ρ0)

α
instead of Zα, to obtain

ρ0,tEQ0 [f ′(ρ0)(ρ̂t − ρ̂0,t)|Ft] ≥ 0 Q0 − a.s.
Since Q0 ≈ R, P0 ≈ R and hence ρ0,t > 0 R-almost surely, the proof of (49)
is complete.

�

Remark 3.13. Equation (47) shows that the robust f -projection P0 of
Q on P is indeed a least favorable pricing measure for the optimal claim
H0. In the same manner, Equation (48) allows us to view Q0 as a least
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favorable measure for the utility evaluation of H0. If Q0 minimizes the reverse
f -divergence of P0 over the set Q simultaneously for all convex functions f ,
then Q0 is in fact a least favorable measure in the sense of Huber and Strassen
[23]; see Schied [39] and [40] for a more detailed discussion of the connection
between robust utility maximization, risk measures, and the robust Neyman-
Pearson lemma.

Clearly, the solution of the reduced problem provides the solution of the
original optimization problem for the utility functional U defined in (25) as
soon as Q0 = Q. This condition is satisfied in the classical case where Q
consists of a single measure. Recall from part (ii) of Remark 3.10 that it also
holds if u is bounded from above.

Corollary 3.14. Suppose that Q is weakly compact in the sense of As-
sumption 2.5 and satisfies Q = Q0, and that the utility function u is finite
on R. Then the robust optimization problem defined by (25) and (26) has the
unique solution

H0 := I

(
λ0
dP0

dQ0

)
,

where P0 is a robust f-projection of Q on P and Q0 is its reverse projection
on Q. The contingent claim H0 is affordable with P0-limited downside risk if
P0 ≈ Q0 ≈ R.

Proof. If u is finite on R, then a = −∞. This implies limx→∞ f(x)/x =
−a = ∞, and the same property holds for f = vλ0 . Recall from Remark 3.3
that the set KP is closed. Thus both parts of Assumption 2.5 are satisfied in
our case. We can therefore apply Theorem 2.6 in order to obtain the existence
of a pair (P0, Q0) ∈ P × Q that minimizes f(P |Q) over the sets P and Q.
Thus the assumptions of Theorem 3.11 are verified, hence H0 is the solution
of the original optimization problem defined by (25) and (26). �

Remark 3.15. The compactness assumption on the set Q can be moti-
vated as follows. Note first that our robust utility functional U , defined by
(25) for some class of measures Q� R, remains unchanged if we pass to the
weak closure of KQ in L1(R). Thus it is no loss of generality to assume that
Q is weakly closed. Weak compactness of Q is now equivalent to uniform
integrability of KQ, and hence to the condition

(53) ∀ ε > 0 ∃ δ > 0 such that R[A] < δ =⇒ Q[A] < ε ∀ Q ∈ Q;

see, for example, Dellacherie and Meyer [8], Theorem II.19. This condition
means that all models in Q agree that an event is highly unlikely if it has
sufficiently small probability under the reference measure R.

Clearly, Corollary 3.14 includes the case of exponential utility functions.
But it does not cover the remaining cases considered in Remark 3.7 where
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a = 0, hence limx→∞ f(x)/x = 0. In order to formulate an existence result
for such cases we are now going to extend our setting and in particular the
notion of a martingale measure.

4. Extended martingale measures

In this section we enlarge our initial probability space by introducing an
additional default time ζ, defined as the second coordinate ζ(ω, s) := s on the
product space Ω̄ := Ω× (0,∞]. Let

F̄ := σ({A× (t,∞] : A ∈ Ft, t ≥ 0})
denote the predictable σ-field on Ω̄, where Ft := FT for t > T ; the predictable
filtration (F̄t)t≥0 is defined in the same manner. An adapted process Y =
(Yt)t≥0 on (Ω,F , (Ft)t≥0) will be identified with the adapted process Ȳ =
(Ȳt)t≥0 on (Ω̄, F̄ , (F̄t)t≥0) defined by Ȳt := YtI{ζ>t}, i.e.,

Ȳt(ω, s) := Yt(ω)1(t,∞](s) (t ≥ 0).

To a probability measure Q on (Ω,F) corresponds the probability measure
Q̄ := Q× δ∞ on (Ω̄, F̄). Conversely, for any probability measure Q̄ on (Ω̄, F̄)
we define its projections Qt on (Ω,Ft) by

Qt[A] := Q̄[A× (t,∞]] (A ∈ Ft).
In order to introduce the class P̄ of extended martingale measures, let us

denote by V(x0) the class of all non-negative value processes V = (Vt)t≥0 of
the form (22) with Vt := VT for t ≥ T , i.e.,

Vt = x0 +
∫ t∧T

0

ξsdXs ≥ 0 (t ≥ 0),

and by V̄(x0) the class of the corresponding processes V̄ = (V̄t)t≥0.

Definition 4.1. A probability measure P̄ on (Ω̄, F̄) will be called an
extended martingale measure if

(i) P t � R on Ft (t ≥ 0),
(ii) Under P̄ , any V̄ ∈ V̄(x0) is a supermartingale with respect to (F̄t)t≥0.

We denote by P̄ the class of all extended martingale measures.

Clearly, for any martingale measure P ∈ P the corresponding measure
P̄ := P × δ∞ on (Ω̄, F̄) belongs to P̄.

We are going to use the representation of a right-continuous non-negative
supermartingale Z = (Zt)t≥0 with Z0 = 1 as a probability measure P̄Z on
(Ω̄, F̄) such that

(54) P̄Z [A× (t,∞]] = ER[Zt;A]

for A ∈ Ft and t ≥ 0; see Föllmer [12]. This requires a regularity assumption
on the underlying filtration, for instance in the following form.
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Assumption 4.2. (Ft)t≥0 is the right-continuous modification of a stan-
dard system (F0

t )t≥0 in the sense of Parthasarathy [35] V, i.e., (i) each (Ω,F0
t )

is a standard Borel space, and (ii) any decreasing sequence of atoms Ai of Fti
for 0 ≤ t1 ≤ t2 ≤ . . . has a non-void intersection.

Remark 4.3. (i) For any probability measure P̄ on (Ω̄, F̄) whose projec-
tions satisfy Condition (i) of Definition 4.1, the adapted process Z = (Zt)t≥0

defined by

(55) Zt :=
dP t

dR
(t ≥ 0)

is a right-continuous non-negative supermartingale on the filtered probability
space (Ω,F , (Ft)t≥0, R) with Z0 = 1. Conversely, any such supermartingale
induces a probability measure P̄Z on (Ω̄, F̄) via (54) if the underlying filtered
space (Ω,F , (Ft)t≥0) is rich enough, for example in the sense of Assumption
4.2; see Föllmer [12] and also Föllmer [11], Meyer [33], Azéma and Jeulin [2],
and Stricker [42]. For any supermartingale Y = (Yt)t≥0 on (Ω,F , (Ft)t≥0, R),
the process Ū = (Ūt)t≥0 defined by

Ūt(ω, s) :=
Yt
Zt

1{Zt 6=0}1(t,∞](s)

is a P̄Z-supermartingale. Conversely, if the process Ū with Ūt = Ut1{ζ>t} is
a supermartingale under P̄Z , then Y := UZ is an R-supermartingale; see
Föllmer [11], Proposition 4.2.

(ii) Let P̄ = P̄Z be a probability measure on (Ω̄, F̄ ) such that (54) holds.
It follows from part (i) that P̄ is an extended martingale measure if and only
if

(56) ZV is an R-supermartingale for any V ∈ V(x0).

Thus our class P̄ of extended martingale measures corresponds exactly to the
class of supermartingales which appear in the duality approach of Kramkov
and Schachermayer to the problem of maximizing expected utility in incom-
plete financial markets; see [30], page 6.

Lemma 4.4. Let (P̄n)n≥1 be a sequence in the set P̄. Then there is a
sequence P̄n,0 ∈ conv(P̄n, P̄n+1, . . . ) (n = 1, 2, . . . ) and a measure P̄0 ∈ P̄
such that

(57)
dPTn,0
dR

∣∣∣∣∣
FT

−→ dPT0
dR

∣∣∣∣
FT

R− a.s.

Proof. Let Zn be the supermartingale which corresponds to P̄n via (55).
By Föllmer and Kramkov [15], Lemma 5.2, there are processes

Zn,0 ∈ conv(Zn, Zn+1, . . . ) (n = 1, 2, . . . )
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and a right-continuous non-negative supermartingale Z such that Zn,0 is Fa-
tou convergent to Z on the set of rational points, i.e.,

Zt = lim sup
s↓t,s∈Q

lim sup
n→∞

Zn,0s = lim inf
s↓t,s∈Q

lim inf
n→∞

Zn,0s

R-almost surely for t ≥ 0. In particular Zn,0T converges to ZT R-almost surely
because Zn,0 is constant for t ≥ T for every n ≥ 1. Furthermore, V Zn,0 is
Fatou convergent to the supermartingale V Z for every V ∈ V(x0). Thus, part
(ii) of Remark 4.3 shows that the probability measure P̄0 := P̄Z belongs to
P̄, and this completes the proof. �

Let us now formulate a general projection result for the class P̄ of extended
martingale measures and for the class

Q̄ := {Q× δ∞ : Q ∈ Q}.

Let f : (0,∞)→ R be a strictly convex function such that

(58) lim
x→∞

f(x)
x

= 0.

In this case the definition of f(·, ·) in (9) simplifies to

f(x, y) :=

{
0 if y = 0,

yf
(
x
y

)
if y > 0,

f(·, ·) is continuous on (0,∞) × [0,∞), and the f -divergence of P̄ ∈ P̄ with
respect to Q̄ ∈ Q̄ is given by

f(P̄ |Q̄) = EQ

[
f

(
d(P∞)a

dQ

)]
= EQ

[
f

(
d(PT )a

dQ

)]
= f(PT |Q)

due to Remark 2.2 and our assumption FT = F , where (PT )a is the absolutely
continuous part of PT with respect to Q.

Theorem 4.5. Let Q be weakly compact in the sense of Assumption 2.5,
and let f satisfy Condition (58). Then there exist a robust f-projection P̄0 of
Q̄ on P̄ and its reverse f-projection Q̄0, i.e.,

f(P̄0|Q̄0) = f(P̄|Q̄) = inf
P̄∈P̄

inf
Q∈Q

f(PT |Q).

Proof. Let (Qn)n≥1 ⊆ Q and (P̄n)n≥1 ⊆ P̄ be such that f(P̄n|Q̄n) con-
verges to the infimum of the values f(P̄ |Q̄) for P̄ ∈ P̄ and Q ∈ Q, and define

ψn :=
dQn
dR

.

By Delbaen and Schachermayer [7], Lemma A1.1, we can choose

ψn,0 ∈ conv(ψn, ψn+1, . . . ) (n = 1, 2, . . . )
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and a function ψ0 such that

ψn,0 −→ ψ0 R− a.s.
Since the set KQ is weakly compact we have ψ0 ∈ KQ, i.e., ψ0 is the density
of some measure Q0 ∈ Q. Due to Lemma 4.4 we can also choose

P̄n,0 ∈ conv(P̄n, P̄n+1, . . . ) (n = 1, 2, . . . )

and P̄0 ∈ P̄ such that (57) holds.
Define φn,0 := dPTn,0/dR

∣∣
FT

and φ0 := dPT0 /dR
∣∣
FT

. Note first that

f(P̄0|Q̄0) = ER [f (φ0, ψ0)]

= ER

[
lim
ε→0

f (φ0 + ε, ψ0)
]

= lim
ε→0

ER [f (φ0 + ε, ψ0)]

by monotone convergence, since f(·, y) is continuous and decreasing on [0,∞)
and

ER [f (φ0 + ε, ψ0)] = EQ0

[
f

(
φ0 + ε

ψ0

)]
≥ f(1 + ε) > −∞

by Jensen’s inequality. For any ε > 0 if follows as in Schied and Wu [41],
Lemma 3.6, that the set {f−(φ+ ε, ψ) : φ ∈ KP̄ , ψ ∈ KQ} is uniformly inte-
grable, where KP̄ :=

{
dPT /dR : P̄ ∈ P̄

}
. This implies

ER [f (φ0 + ε, ψ0)] = ER

[
lim
n→∞

f(φn,0 + ε, ψn,0)
]

= ER

[
lim
n→∞

f+(φn,0 + ε, ψn,0)
]

− ER
[

lim
n→∞

f−(φn,0 + ε, ψn,0)
]

≤ lim inf
n→∞

ER[f(φn,0 + ε, ψn,0)]

≤ lim inf
n→∞

ER[f(φn,0, ψn,0)]

≤ lim inf
n→∞

ER[f(φn, ψn)] = f(P̄|Q̄).

The first equality follows from the continuity of f(· + ε, ·) on [0,∞)2, the
first inequality follows from Fatou’s lemma (applied to the first term) and
Lebesgue’s theorem (applied to the second term) and the last one from the
convexity of f(·, ·). This shows that f(·|·) attains its minimum in (P̄0, Q̄0). �

Remark 4.6. Uniqueness of the density dPT0 /dQ0 holds as in Proposition
2.14 if the function f is strictly convex.

Let us now return to the utility maximization problem. In view of Corollary
3.14 we assume that the utility function u is given on (0,∞). Thus the convex
conjugate function v of u as defined in (29) satisfies Condition (58) due to
(30).
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Since {u > −∞} ⊆ [0,∞), a contingent claim is relevant for our utility
maximization problem only if it is non-negative. In this case affordability
reduces to the price constraint (24) for P0 = Pe as explained in Remark 3.5.
In fact the price constraint also includes the class P̄ of extended martingale
measures:

Lemma 4.7. For a contingent claim H ≥ 0 the following conditions are
equivalent:

(i) supP∈Pe EP [H] ≤ x0.
(ii) There exists a value process V ∈ V(x0) such that VT ≥ H R-almost

surely.
(iii) The corresponding claim H̄ := H1{ζ>T} satisfies the constraint

sup
P̄∈P̄

EP̄ [H̄] ≤ x0.

Proof. The equivalence of (i) and (ii) is a key result in the theory of su-
perhedging as recalled in Remark 3.5. To check that (ii) implies (iii) note
that for any V ∈ V(x0) the process (V̄t) is a P̄ -supermartingale with V̄T ≥ H̄
P̄ -almost surely because P̄ [V̄T ≥ H̄] = PT [VT ≥ H] and PT � R. Since
P × δ∞ ∈ P̄ for any P ∈ Pe, (iii) implies (i). �

As in Section 3 we denote by λ0 > 0 a minimizer of vλ(P̄|Q̄) + λx0 and
define the class Q0 as in (38). Our aim is to maximize the robust utility

(59) U0(H) = inf
Q∈Q0

EQ[u(H)]

over all contingent claims H ≥ 0 such that H̄ := H1{ζ>T} satisfies the con-
straint

(60) sup
P̄∈P̄

EP̄ [H̄] ≤ x0.

Corollary 4.8. Let Q be weakly compact in the sense of (2.5). Then
there exists a solution to the utility maximization problem defined by (59) and
(60). It is given by

H0 := I

(
λ0
dPT0
dQ0

)
,

where P̄0 is the robust vλ0-projection of Q̄ on P̄ and Q̄0 = Q0×δ∞ is its reverse
vλ0-projection. H0 is affordable in the sense that it satisfies the conditions of
Lemma 4.7.
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Proof. For P̄ ∈ P̄, Q̄ = Q× δ∞ ∈ Q̄, and H ∈ L1(PT ) such that EP̄ [H̄] =
EPT [H] ≤ x0 we obtain

EQ[u(H)] ≤ EQ
[
u(H)− λH d(PT )a

dQ

]
− λE(PT )s [H] + λx0

≤ vλ(P̄ |Q̄) + λx0

in analogy to (36). Since limx→∞ v(x)/x = a = 0, Theorem 4.5 ensures the
existence of a robust vλ0-projection P̄0 of Q̄ on P̄. We can now continue as
in the proof of Theorem 3.11 to conclude that EP̄0

[H̄0] = EPT0 [H0] = x0 and

U0(H) ≤ vλ0(P̄0|Q̄0) + λ0x0

= EQ0 [u(H0)].

It follows from Lemma 3.12 and Remark 3.10 that

EP̄0
[H̄0] = max

P̄∈P̄
EP̄ [H̄0],

that EQ̄0
[u(H̄0)] = minQ̄∈Q̄0

EQ̄[u(H̄0)]. Thus H0 solves the optimization
problem defined by (59) and (60). �
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Basel, 2004, pp. 291–321. MR 2096294 (2005h:91116)
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abilités, IX (Seconde Partie, Univ. Strasbourg, Strasbourg, années universitaires

1973/1974 et 1974/1975), Springer, Berlin, 1975, pp. 408–419. Lecture Notes in Math.,
Vol. 465. MR 0423515 (54 #11491)

[43] J.-A. Yan, A new look at the fundamental theorem of asset pricing, J. Korean Math.

Soc. 35 (1998), 659–673. MR 1660801 (2000k:91059)
[44] , A numeraire-free and original probability based framework for financial mar-

kets, Proceedings of the International Congress of Mathematicians, Vol. III (Beijing,
2002) (Beijing), Higher Ed. Press, 2002, pp. 861–871. MR 1957586 (2004b:60169)

[45] M. Yor, Sous-espaces denses dans L1 ou H1 et représentation des martingales,
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