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I. Introduction
1. $eme o poblem d mi esl. In a previous paper [4] of the

same title the authors have studied the real-valued monotone solutions f(x) of
the functional equation

(1.1) f(u a) ’f(u a) (uarbitrary non-negative integers),

under various assumptions on m and the real constants a. In the present
sequel to [4], which does not assume a knowledge of [4], we propose to study
the uniformly continuous solutions of (1.1). Although some of the features of
[4] will again appear in the present situation, the methods now required are
different and they also permit a setting of the problem in higher dimensions.

Let a, a, a be elements of the real n-dimensional space R (n m)
satisfying the following conditions:

1. Every set of n among the a are linearly independent over the real field.
2. The elements, a are rationally independent, i.e., linearly inde-

pendent over the rational field.

Let f(x) denote a solution of 1.1 having values in the Banach space B. Such
a solution needs to be defined only on the set

(1.2) S {x ’uluiintegers >_- 0}.
Without further conditions on f(x) the problem is of little interest for we

clearly obtain the most general solution of (1.1) by assigning at will the values
of f(uia) for u 1, 2, and i 1, ..., m. We propose, however, to
determine those solutions f(x) of (1.1) which are uniformly continuous (ab-
breviated below to UC), i.e. are such that to every e there corresponds a
such that

[[f()--f()l[ < i [-- 1 < (x,).

Here we denote by and [] the norms of the spaces R" and B, re-
spectively.

If k(x) is a linear function from R into B then it is clear that f(x) k(x)
is a UC solution of (1.1). Other such solutions are obtained as follows" For
every i 1, m we consider the set
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(1.3) S {x u a -- ’/al u integer >__ 0, k integers I.
Observe that S has the periods a. (j i) since x e S implies that x + a e S.
Let the function (x) be defined in S, with vlues in B, such that

1. (0) 0,
2 (xWa) (x) (ji;xeS),
3 (x) isUCon

We claim that (x) is a solution of (1.1). Indeed, observe that S S and
that by 1 and 2 we may write

+
Adding together all solutions so far obtained we see that

(1.4) f(z) X(x) +  7o (x)
represents a UC solution of (1.1). Indeed, observe that S S and that
1.1 is a linear relation.
Our aim is to establish the converse

THEOREM 1. Uf(x) is a solution of (1.1) which is UC on S then f(x) admits
a unique representation of the form 1.4 in which (x) is a linear function from
R into B, while the (x) satisfy the conditions 1, 2 and 3 stated above.

2. Consequences of Theorem 1. Given n, the value of m is crucial in
this problem. First of all we required that m > n and for a good reason.
Indeed, if m n and we still assume the a, a to be linearly inde-
pendent, then the distances between two distinct points of S have a positive
lower bound. But then our requirement of uniform continuity becomes mean-
ingless.

Let us now assume that m n 2. Now (x) is to have n 1 periods
a,..., a_, a+,.-., a+ which are rationally independent. From
(0) 0 we conclude that

(2.1) 0.

However, the arguments of appearing here are dense in R; as first observed
by Jacobi, the relations (2.1) in conjunction with the uniform continuity of

imply that (x) 0 if x e S and thus (1.4) reduces tof(x) k(x). This
reasoning is valid afortiori if m > n 2. This proves

THEOREM 2. Um n 2 and iff(x) is a solution of (1.1) which is UC on
S, then f(x) is the restriction to S of a linear function k(x) from R to B.

We now deal with the only remaining case when m n + 1. The main
result for this case will readily appear as soon as we settle the following ques-
tion" Let f(x) be a solution of (1.1) UC on S. Is it possible to extend f(x)
to a UC solution F(x) of the unrestricted functional equation
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(2.2) F(+ k a) +F(k a) ( arbitrary integers)?

The answer is affirmative and very simply settled as follows: Let (1.4) be the
representation of our solution according to Theorem 1. The function (x)
is UC on S having the n periods a (j i). Since S is dense in R" we may
extend (x) uniquely to a function i(x) defined throughout R by means of

(x) lim.s (y).

The function (I)(x) is likewise UC in R and has the same periods as (x).
But then the relation

(2.3) F(x) h(x) + -+_: (x) (xe R)

defines a function F(x) which is UC on R" and evidently satisfies the un-
restricted equation (2.2). Moreover F(x) f(x) if x e S. This extension
and representation (2.3) is unique because (1.4) was unique. This es-
tablishes

THEOREM 3. Let m n 1. We obtain the most general uniformly con-
tinuous solution f(x) of (1.1) as the restriction to the set S, defined by 1.2 ), of a
function F(x), defined by (2.3), where h(x) is a linear function from R to B,
while (x) (i 1, n 1 is a continuous function from R to B having
the n periods a a_ ai+ a,+ while (0 O. This construc-
tion is unique in the sense that two distinct sets {),(x), (I)(x)} as above, furnish
distinct solutions of (1.1).
In particular, every UC solution f(x) of (1.1) has a unique extension F(x) UC

on all of R which is a solution of the unrestricted functional equation (2.2).

In Part II we establish Theorem 1. In the brief Part III we give some
examples and also mention a theorem of ErdSs which suggested the present
investigation.

II. Proof of Theorem 1
3. A fmdamental inequality. Let f(x) be a UC solution of (1.1), and let

x u a, y v a be two elements of S. Finally, being given let
be such that

(3.1) IIf(x)-f(y)ll < if Ix- y < .
We set q u v and divide the numbers 1, m into two disjoint

classes I {i} and J {j}. For each j e J let w. be a given non-negative
integer. We now define for/c 1, 2,

uk) w+kq, vk) w+ (k- 1)q. if q. >- 0,

u? / 1)1 [, v? / if q. < 0.

Observe that in either case u) v) q.. For each k we have
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so that if Ix Y < then (3.1) and (1.1) imply that

I] -, (f(u a) f(v o)) + Y (f(u)o) f(v)o)) l[ < e.

Letting/ 1, M and forming the arithmetic mean of the M quantities
within the norm bars we obtain the inequality

(3.2)
1 .{f((w + M lq I)a) f(w a)}

wheren. +lifq.>= 0and. -lifq. < 0.
be applied below on two occasions.

The inequality (3.2) will

4. The asymptotic behavior of solutions. As a first application of the in-
equality (3.2) let us show that the limits

(4.1) limzc_.+f(Yoj)/Y ), (j 1, m)

exist. To see this let us choose integers q, so that q, a, < with q- > 0,

and set u, max (q,, 0), v, max (-q,, 0). Definingx u,.,
y v, a, we have x Y ’q,a,I < 6. To these pointsxandy
we now apply the inequality (3.2), where J consists of the single subscript
j, I denoting the set of j, and obtain

1 1
(4.2) , (f(u o) f(v) -t- - f( (w -t- Mq)o) -f(w o) < e.

Let now N be an arbitrary natural number. Dividing N by q. let
N w -t- q M, where 0 <= w < qj. The numbers M and w so determined
(as functions of N) we select for M and w appearing in (4.2). If N --then also M -- while w remains bounded. Thus in (4.2)the term
1/M)f(w) O. Let E denote the sum appearing in (4.2). If denotes

one of the limits of the sequence 2. {f(Na)/N} and if we observe that
N/M q we see that on letting N -+ through appropriate values the
inequality (4.2) becomes

E / +. x -<-
Thus if ’ and X" are any two of the limits of the sequence 2;, then

X’
hence =< 2e. Sinoe e is arbitrary we conclude that
X’ X" and (4.1) is established.

1. The linear component X(x). We shall now use the relations (4.1)
to isolate the linear component of a solution f(x) of (1.1). We define X(x)
as a linear mapping of R" into B as follows"

(5.1) If x xa(xreal) then X(x)
The linearity of X(x) is apparent from this definition, but its being a function
from R into B is still in doubt. To establish this we have to show that a
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relation

(5.2) xi ai 0 (xi real, x 0 for some l)
implies the relation

(5.3) x, o.
This may be shown as follows: In the space R of the m-tuples (xl, xm)
the vector relation (5.2) defines an (m n)-dimensional subspace Vm-n.
As the a are rationally independent, we conclude that Vm_n contains none
of the points of the lattice L of points of R having integral coordinates with
the exception of the origin. However, the sequence of points

..., 1, 2,
comes arbitrarily close to such lattice points. Indeed, by a theorem of
Dirichlet (see [3, page 170]) we know that for each natural number we can
find integers (), k(), k(v) (t() > 0) such that

(5.4) It(V)xi-- k)[ < 1/ (i-- 1, ...,m);
in fact k) 0 for all if xi 0. But then, in view of (5.2) and (5.4)

xA X -{- _, xA X 0
Xl v Xl

which is equivalent to the relation (5.3) to be established.

and hence

(5.5) lim [E, k)a O.

On the other hand (5.4) implies the following: If xz 0 then

k(’)/’(’) X/X(5.6) lim
Let U i x > 0}, V {i x. < 0}, W {i x 0}. Moreover, iris
clear that sgn k) sgn x (i 1, m) provided that P is sufficiently large.
But then we can rewrite (5.5) as

lim Zv k)a- Ziv k) ]a 0

and now the uniform continuity of f(x) and 1.1 imply that

Choosing a fixed U and dividing the last relation by k) we obtain a fortiori
(because lim k) + as v )

If we now perform the passage to the limit within the norm bars we obtain

by (4.1) and (5.6) the relation
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6. The periodic components. The linear function ),(x) constructed in 5
is now used as follows" We define a new function co(x) by

(6.1) co(x) f(x) ,(x).

Evidently also co(x) is a solution of (1.1) UC on S. Moreover

(6.2) limN co(Nai)/N 0 (i 1, m)

because of (4.1), (6.1) and the relation X(Nai)/N implied by (5.1).
For each i 1, m we now define a function (x) throughout the set

S, described by (1.3), by the following requirements". (o) o,
2. (x + ) (x) (j # i; x ),
3. (ua) co(uia) (u_-> 0).

Evidently x u a implies

f(x) X(x) + co(x) X(x) + _,i co(ui as)

and the desired representation (1.4) is seen to hold.
We are still to show that (x) is UC on S. Given e, let 1 be such that

Let
x eS, y eS and ]x- y] < 1 imply [[co(x)- co(y)[[ < e.

be two points of Si such that /I < and let us show that

(6.3) () (v) <-- .
For this purpose we write ks ls qs and select non-negative u. and vs
such that qs u.- vs (j i). Finally let

(6.4) x u ai -t- sua y v as -[- ’va
observing that x and y are elements of S. Moreover

x- y u a v ai A- ,si qs as

so that x y < . We may therefore apply the fundamental
inequality of 3 to the solution (x), rather than f(x), and the points (6.4)
with I {i},J {j[j i}, q ui v, and wy O, obtaining

Legfing M we know by (6.2) ha he erms of he sum converge go

ero, so hag we obtain in ghe limi
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On the other hand, from the periodicities of and its defining property 3,
we know that

,() (u) (u ), (,) (,) ()

so that our last inequality furnishes the desired inequality (6.3). This com-
pletes a proof of Theorem 1.

III. Concluding remarks

7. Examples and applications. We discuss some applications of Theorems
2 and 3 for the simplest case when n 1 and B R1.

a. Let n 1, m n W 2 3, hence 1, a., a real, all 0 and all three
rationally independent. By Theorem 2 we conclude that the UC solutions
of

(7.1) f(u + u. a - ua ) f(u a) - f(u a.) - f(ua aa) (u >= 0),

are of the form f(x) Cx (C real constant).
All conditions are met if a log p, where p, p, pa are three distinct

rational primes. Setting f(log y) F(y), we see that F(y) is defined on the
set of integers

(7.2) A {ppp u >- OI
on which it is additive in the sense that

(7.3) F(plpp3) F(p) + F(p) + F(p).

We now observe that the uniform continuity off(x) on the set

S= x uo + uo + ual u >- O}

amounts to the condition that

xeS, yeS, x yandx- y--0 imply f(x) -f(y)--.0.

Thus by the change of variable x log y, Theorem 1 furnishes the

ConoLhnY 1. If the real-valued F y is additive on the set (7.2) in the sense
that (7.3) holds and if

r e A, s e A, r s and r/s --> 1 imply F(r) F(s) -- 0

then F y C log y.

This corollary (and the paper [4]) suggested the present investigation.
The Corollary 1 in turn owes its origin to the following theorem of ErdSs:

Let F(y) (y 1, 2, be an arithmetic function which is additive in the sense
that F rs F r + F s whenever r, s) 1. If we also assume that
F(r + 1 F(r) --, 0 as r -- then F(y) C log y (see. [2, Theorem XIII
on p. 18] and [5], [1] for more recent and elementary proofs).
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Corollary 1 and ErdSs’ theorem now suggest the following open problem:
Let o, log p (i 1, 2, 3 ), where p are three distinct primes. Le

S {log (ppp)} I, ., , ""}

be our familiar set with its elements arranged in increasing order < < ).
If f(x) is a solution of (7.1) such that

f(/) f() ---> 0 as , -->

is it still true that f x Cx on S?
An affirmative answer to this problem would certainly contain Corollary 1

(since + - 0), but would say much more.
b. We return to the assumptions of Corollary 1 with the difference that

we now have only two primes, hence the relation

(7.4) F(pp) F(p) + F(p)

with solutions F(y) defined on the set A’ {pp}. Here we may apply
Theorem 3 with n 1, m n -t- 1 2 and obtain the following curious

COROLLRY 2. The most general solution F(y) of the functional equation
(7.4) having the property that

(7.5) r e A’, s e A’, r s and r/s --) 1 imply F(r) F(s) -- 0

is given by the formula
(7.6) E(y) C log y + (log y) - (log y),

where (x) and (x) are everywhere continuous functions having the periods
log p and log p respectively, while (0) (0) O. The representation
(7.6) is unique.
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