THE TYPE SET OF A TORSION-FREE GROUP OF FINITE RANK'

BY
JouN E. KorHLER, S.J.

In this paper, we shall show that the type set of a torsion-free group of finite
rank has certain lattices of types and of pure subgroups associated with it.
Conversely, if certain lattice requirements are met by a finite set of types T
and by associated subspaces, then a torsion-free group A can be constructed
having type set 7. The construction of A suggests defining a class of groups
having a similar construction. For this class of groups, we shall next estab-
lish a set of quasi-isomorphism invariants, together with several other prop-
erties. Finally, we shall examine the structure both of the groups and of the
class.

1. Necessary conditions on the type set

DEeriniTionN 1.1 Throughout this paper, by “group” we shall mean ‘tor-
sion-free abelian group of finite rank” unless some further qualification is
given. Let ~ denote the usual equivalence relation on the set of heights;
and let [A] denote the equivalence class, or type, to which the height A belongs.
Let <, n, and u have their usual meaning for both heights and types. The
set of all types then forms a distributive lattice in which the meet and join
of the types ¢t and ¢’ are given by ¢ n ' and ¢ u ¢’ respectively, [4, pp. 146-147]

DeriniTioN 1.2 Let A be a group of rank n. Use A* to denote the
minimal divisible group containing A. Without loss of generality, it can be
assumed that 4 € R" and A = R", where R" is an n-dimensional rational
vector space. Let 0 = x e A; t*(x), or simply ¢(x), denotes the type of z in
A. Let t*(0) = t», a type defined to be greater than all other types. 7T(A4)
= {t*(z)] x ¢ A} is called the (augmented) type set of A. Let C(4) =
T(A) u {all finite intersections of members of T(A)}. C(A) is countable
since A is countable.

DerinTiON 1.3 Let ¢ be a type; define A; = {xed |t(x) > t}. A,isa
pure subgroup of 4, [4, p. 147]. Let
P(A) = {A,|teC(A)} and P*(4) = (A |teC(A)}.
We shall use A, to denote A4, if no confusion arises.

LEMMA 1.4 Let A be a group; let ty, ta e C(A) such that te > to > t1. Then
Rank(A4;) > Rank(4,).
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Proof SincetieC(A),t1 = s1ns;n -+ ns,,wheres; e T(A). At least
one of these, say s;, is not greater than or equal to ¢, , or else
S1NSN - s >ty > t,

a contradiction. There exists 0 = = ¢ A such that {(x) = s; > ti. Thus
xedA;,xze¢As,. Since A, is pure, this implies Rank(4;) > Rank(4.).

LemMa 1.5 Let A be a group, teC(4), and x1, x2, -+, 2, a Mmaximal
independent set of elements in A,. Then

t = t"(z) nt* (@) n - nt'(z,).

Proof Let t = t*(2) n t*(x2) n -+ n t*(x) eC(A). ¢ > t since
t*(x;) > t for each 7. Suppose # > t. Then Rank(4,) < Rank(4,),
contradicting the fact that z;, 2, ---, 2, ¢ Ay and they form a maximal

independent set in 4; .

TurEorEM 1.6 Let A be a group of rank n. Then C(A) forms a lattice of
length at most n in which lattice meet is type intersection. Thus C(A) has a
minimum type

to = t(x1) nt(x2) 0 -+ nt(xn),

where X1, Xs, ** +, Ty 18 any maximal independent set in A.

Proof C(A) forms a semi-lattice in which meet is type intersection by
definition. Let ¢, > & > --- > t be any linearly ordered subset of C(A4).
Then 0 < Rank(4;) < --- < Rank(4;) < n. Thus k < n, and the semi-
lattice C(A) has length at most n. Since any two elements in C(A4) have an
upper bound ¢, in C(4), they have a least upper bound in C(4). Therefore
C(A) is a lattice; the rest follows from Lemma 1.5.

Remark 1 Theorem 1.6 answers conjectures 1(b) and 2(d) of [2, p. 40].

Remark 2 C(A) is not necessarily a sublattice of the lattice of all types,
since groups exist (see example 1.10) in which ¢, &z e C(A) and the Lu.b. of
t and f; in C(A) is greater than t; U £, .

TaEOREM 1.7 Let A be a group.

1. P(A) forms a lattice of pure subgroups of A; P*(A) forms a lattice of
subspaces of A*. As lattices, P(A) is isomorphic to P*(A), and both are
dually isomorphic to C(A).

2. In the laitices P(A) and P*(A), denote lattice meet by a and lattice join
by v. Then,if A;, A;je P(A),

A; A A; = Ain 4, AT A AT = AT n AT,
A;v A; DA+ 4;, AT v AT D AT + AT

Proof (1) The correspondence &, — Ay, tx e C(A), Ar e P(A), is onto by
definition. Suppose 4; = 4, and 21, 22, - -+, @, i8 & maximal independent
set in both A; and A;. Then ¢; = ¢(x1) 0 é(xz2) 0 - -+ nt(x,y = ¢; by Lemma
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1.5. Thus #x — A is also one-to-one. Ift; < & and x € Ay, , then by definition,
xeA;; hence A; 2D A;. Thus P(A) forms a lattice dually isomorphic to
C(A).The lattice P(A) is isomorphic to P*(A) since all the members of P(4)
are pure subgroups of A.

(2) Letxed;nAd;. zeA;, = t(x) > t;;xed; = t(x) > t;. Hence
t(x) > t;ut;; thus t(x) > t; v i;, the Lu.b. of the lattice C(4). The argu-
ment reverses to give t(z) > t; v i;=>xedind;. Thusdind; = A,y =
A; A A; by the dual isomorphism of P(A4) and C(A) as lattices.

Lete =y +2eA;+ A;,whereyeA;,2¢A;. Then

tz) 2 t(y) ni(z) = tint,
andsoxedyn, . NowAy,n, = A; v A;from the dual isomorphism. Thus
¢4¢-|-4AJ_C_A.z v A,‘.

The relations in P*(A4) hold because of the isomorphism of the lattices
P(A) and P*(4).

Example 1.10 will show that 4; v A; D A; + A; is possible.

LemMa 1.8 If Si, Sz, - -+, Sn are proper subspaces of R", then there is a
basis 1, xa, +++, Ty of R" such that z; ¢ S; for 1 < i <m,1 <j < m.

The proof is by induction on m.

CoroLLARY 1.9 If T(A) is finite, then C(A) = T(A) and there are
Rank(A;) independent elements of type t in A for every t e T(A).

Proof Let teC(A). Suppose ti, ta, -+, are all the types in T(4)
that are greater than ¢. By Theorem 1.7, A7, A5, ---, Ai are all proper
subspaces of A7 . Thus by Lemma 1.8 there is a basis 21, &2, -+ -, @, of A},
where » = Rank(A4,), such that z;¢ A} ;¢ = 1,2, -+, r;5 =1,2, -+, k.
Moreover, the z; can be chosen so that they are in 4,. Since z;¢ A}, then
t(x;) &= t;. But t(x;) > t; hence t(x;) = teT(A). This proves both
statements.

Remark Examples have been constructed of groups of rank 2 and infinite
type set such that T(A4) = C(4), [2, p. 30].

Exampre 1.10 (1) Define hg, h1, he, hs by
ho(p) = 0 for all p;
h(2) = «; hi(p) = 0 otherwise;
ho(3) = o; ho(p) = 0 otherwise;
h3(2) = hs(3) = hy(5) = = hs(p) = 0 otherwise.

Let t; = [hi,7 = 0, 1,2,3. In the next section we shall show that there is a
rank 3 group A such that T(A) = {t, t1, &2, s, tw}. Now C(4) = T(A)
has a lattice structure as illustrated. Clearly & v t2 = #3 > tyu fa. Thus
C(A) is not a sublattice of the lattice of all types.
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Too
t3

ts ¢5
To

(2) Let A be as in the previous example. Let B be a rank 1 group of
type fo . Let A’ = A ® B. Then Rank(4’ ) = 4 and T(A) = T(A’), in
P(A"),A1C A, A; C A,[4,p.146]. Hence A; + A; CAC A’ = A1 v A;.
Thus P(A’) is not a sublattice of the lattice of all subgroups of A’, nor is
P*(A’) a sublattice of the lattice of all subspaces of A’* = R*.

2. A partial converse to Theorems 1.6 and 1.7

THEOREM 2.1 Let T = {tw,to, t1, * -+, tv} be a set of distinct types, where
tw 18 @ type defined to be greater than all other types. Suppose T forms a lattice
under the operations A and v, where t; A t; = t;nt; and v is the lub.in T.
Let L* = {0, A5, AT, -+, Ax} be a lattice of subspaces of R* = Aq under the
operations A and v, where A7 A AT = A n AT and v is the L.ub. in L*.
Suppose further that, as lattices, T is dually isomorphic to L*. Then a group A
can be constructed such that T(A) = T and P*(4) = L*.

Remark Theorem 2.1 assures the existence of the group A in Example
1.10, since the dual of the lattice of types is clearly realizable in R’

Theorems 1.7 and 2.1 show that the problem of finding all the possible
finite type sets which are type sets of groups of finite rank is equivalent to
the (unsolved) problem of finding all the possible finite lattices, under the
operations A and v, of subspaces of a rational vector space whose dimension
is equal to the given rank.

An example of a lattice of types of length 3 may be constructed which has
no corresponding lattice of subspaces in 3-space, due to the restrictions on the
latter that follow from Desargues’ Theorem when we intersect the subspaces
by a plane that does not pass through 0.

The actual construction of the group A will oceupy the rest of the section.

Lemma 2.2 Let {ty, t1, - -, tx} be a set of types closed under intersection.
Let ho , by, - hN be arbztmry hezghts such that hiet; ,© = 0,1, ---,N. Then
there are hezghts o, ki, - hN satisfying, for 0 < 4,7,k < N

(1) h ~ hi;
(i) hi < hi;
(iii) ift; < t;, then hi < h, ;
(iv) zftnt,—tk,thenh nhy = hi.
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Proof For each ¢ = 0,1, ---, N, let hi = N{h|t; < t}. It can be
shown that ko, hy, - - -, hy satisfy properties (i), (ii), and (iii).
For a fixed pair of indices 7, 7, t; n ¢; = # for some k. Define

w(%,7) = {p| ki (p) # min {k{ (p), ki (p)}}.
Each (4, j) is a finite set since hx ~ hi n hj. Therefore ' = U, ; x (s, j) is

a finite Iset. ,
Let ho = ho. Fori = 1,2, ---, N define h; by

hi(p) = ho(p) if per and Rl (p) < =
= hi(p) otherwise.
ho , k1 Sy, hy is the desired set of heights.

2.3 Tae CoNsTRUCTION OF A. Let 7 denote the primes, Z the integers.

1. Let us first index T so that ¢, is the minimum type in the lattice. Index
L* so that t; — A7 gives the dual isomorphism 7' — L*.

2. Choose a basis By = {3}, ---, y2} for A5 = R", where yl¢ Ar; i =
1,2, ---,n;k =1,2, ---, N. This can be done by Lemma 1.8. Applying
1.8 to subspaces, we can choose a basis 4} , 45 , - - -, 9%, foreach 45,1 <k < N,
where foreachs = 1,2, - -+, m , yi ¢ AT if A} C Ay and where yi= Yty
with a¥; integers such that g.c.d. {a%, - -+, ak,} = 1.

3. Choose heights Ay, hy, - - -, hy such that, for 0 < ¢, 5, k < N; h;et;,
hi < h;jif t; < t;,and h; n by = Ry if t; n t; = & (Lemma 2.2).

4. Let A be the group generated by

G = {p*PyYi[per;0 < silp) < ha(p) + 15 5(p) € Z;

E=01, -+ Nji=12 -, m}.
Every element x of A can then be written in the form
(1) R0 D1 D e Doaer CE(Q)T VYL,

where ¢5(q) € Z, s.(q) € Z, s:(q) < h(q) + 1, and the sum has a finite number
of terms.

NoraTioN 2.4 Define
mo = {p|h0(p) = hi(p);z = ]-’ 27 "',N}7
m =1{p |k = N {h;| hi(p) > ho(p)}}, k=12 ---, N,

It is easy to show that mo, m, - -, 7» partition the primes.

Let Ay = AnAf,k=0,1,---,N. Ifaxed,let A(z) = N{A;|zed}.
Due to the lattice structure of L*, A(z) = A; for some k; in particular,
A('!/,:) = A.

If zeA, let H*(x), or simply H(x), denote the height of z in A. Let
Ba(z) = H*(z)(p). If reR, write r = [],p®, and define h,(r) = e,.
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Remark If A(z) = Ay, then we can writex = 2% a; i , where a; ¢ R.
Now H(y¥) > h by the definition of G. Hence ¢(y%) > # and so t(x) > & .
To get, as desired, that t(x) = # , it therefore suffices to show that for some
integer D(z), hp(z) < h(p) + hp(D(z)) for all pew. We now proceed to
find this integer D(x) for every z in A.

DeriNiTION 2.5 Let B = {21, 22, **+, .} be an arbitrary set of inde-
pendent elements in A. Let Fz be the free subgroup of A generated by B.
We shall say that x is B-reduced if z ¢ F5 and hp%(z) = O for all p e .

Let 0 5 z ¢ 4 ; then there is a unique s ¢ B, s > 0, such that sz is Bo-reduced,
where By = {yi, y3, -, y%}. Since t(z) = t(sz), T(A) is determined by
the Bo-reduced members of A. Let Fz, = F.

LemMa 2.6 If x is a Bo-reduced element of A, then h(x) = ho(p) for every

pemo.

Proof Writez = D 7= b;yj. The lemma is obvious if p € my , ho(p) = .
Suppose pem, ho(p) = s < o, p_ *2¢A. Then we can write p° 'z in
the form (1). Since pemo, Sk (p) ho(p) for all z and k. Thus we may

write
P = Do 2tk dip Ty,
where the d¥ are rationals with denominators prime to p. But then
o= i iki(pdi)yt = e Dthpdi Xial; yi
= Z?=1(PZ;Z=0 Zml ds aw)ya = Ei-ﬂ b ?/i .
Thus p | b; for each j, contradicting hy(2) = 0.

DEeFiNITION 2.7 Letperw,0 <reZ, K ¢ F. Wecan ertex = Ew=1 a:ye,
where a;¢Z. Define z(p’) = 2.1a ai Y} , where 0 < a; < p" and a; = a;
(mod p"),7 = 1,2, .-+, n. If A’is a subgroup of 4, define

A'(p) = {x(p)lzed' n F}.

LeEMMA 28 Letpern,0 <reZ,xeF, A’ be a subgroup of A. Then
(1) x(p")ed;

(ii) if 2 # 0 4s Bo-reduced, then z(p") # 0;

(iil) A’(p") is a group, where addition is defined by

x(p") + y(p) = (@ + y)(0);

(iv) ifp £ m, (mz)(p) e A'(p"), then x(p") e A’(p");
(v) A" C A, then A" (p") S A’ (p)
(Vi) Fnd' C {z]|z@™) eA’ @™} C (z]2() e A0}

The proof follows easily from the definitions. Note that ye¢A’ but
y(p") e A’(p") is possible as long as y(p") = z(p") for some xe A’ n F.
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LeEmMA 2.9 Let x be a Bo-reduced element of A. If pem and hy(x)
ho(p) + 7, where 0 < reZ, then x(p") e Ai(p").
PTOOf If pem, then h; = ﬂ{hk ! hk(p) > ho(p)}. Let

IT={k|h>h},J={k|h <hi.

v

Then
kel o h(p) > h(p) @ Ar C Af & yie AT,

i=1,2 -, m.

Let s = ho(p);if ha(z) > s -+ r, we may write p—* " in form (1). Since
pem, si(p) < sfor ke, and we may rewrite

(2) pﬁs_rx = Zkel Z?=kl d’f y'f + Eke.} Z?ﬁl 6’5 p—’y'f s

where the d are rationals, and the ¢! are rationals with denominators prime
to p. Let
Yy = Zke[ Zznil p8+rd’§ y'Z .

Y+ Dk 2k pel o
Y+ 2 p (ke el i)y = y + 2.
There is an integer m prime to p such that mzeF. But then my =
mx — mz e F; hence my e 4;n F and
(my)(p") = (mx)(p") — (me)(p") = (mx)(p") e Au(p").

By Lemma 2.8(iv), z(p") e A; (p").
We now proceed to find necessary conditions on the By-reduced elements
2 of A such that z(p") € Ax(p").

Then

X

Lemma 2.10 Let S be a proper subspace of R” and uy , us, - -+, um e R" — 8.
Then there is an (n — 1)-dimensional subspace S’ of R™ containing S and such
that uy, ug, -+, ume B" — S,

The proof is by induction on m.

NoraTioN 2.11 For the rest of Section 2, let x be a Bo-reduced element of
A,z = Y.a;yj. Let dbe thefirst index such that a; = 0. Then we define
a new basis of Ay, B, = {21, %2, -+ -, &}, where z; = 37 if j # ¢ and z; = .

Fork = 1,2, ---, N, choose (n — 1)-dimensional subspaces 4 2O Ax
such that yj e Ax for all 4, and also z¢ Ax whenever z ¢ Ay (Lemma 2.10).
Extend the basis 4f, 45, - -, y'ﬁ,k of A to a basis vf,vh, -+, 95— of Ax.
Let Ay and this basis be fixed for each By-reduced z.

Let m% be the unique positive rationals such that m% y5 is B,-reduced,
1<k<N,1<i<n—1 Writemfyf= D 7biz;, whereb’jeZ. Let
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M* = ((b%)), a matrix whose 4™ entry is b%;. Let M% be the (n — 1) X
(n — 1) matrices formed by deleting the 7** columns from M*.

Let 8 be the determinant of M%. &%e¢Z, since all b¥;eZ. Let D} =
8t/g.c.d.{sh, -+, %) €Z. Finally, define

wi; = Dix; + (=1)""'Dfx;, 1<k<N,1<i<j<n
LEMMA 2.12
Di#0 o x,¢ds; i=1,2 -,nk=12 -, N.

Proof TFor each index 7 and k, let N be the (n) X (n) matrix whose first
n — 1 rows are those of M* and whose last row has 1 in the 5** place, 0 else-
where.

By choice of Ax, and since z; ¢ A, we have z; ¢ A, < x; ¢ Ax. From vector
space theory,

xi ¢ Ax ¥i, -, ¥h-1, x; form a basis of A*

the row vectors of N are independent

0 5« determinant(N5) = (—1)""'"
& 0 Di.

LemMA 2.13 Each u%;e Ax n A.

t 11

Proof uijeA clearly. The lemma is obvious from 2.12 if z; or z; are in
Ay . Supposez;,x;¢ Ay, wherei < j;thenz;,z;¢ Ay. Since Ay is (n — 1)-
dimensional and z; and z; are independent, d z; 4+ df z;e Ax n A for some
non-zero rationals d , d5 .

Thus y¥, - -, ¥%~1, di; + d% z; are dependent. Thus the determinant
of their coefficients, namely (—1)""d; 8% + (—=1)"F'd} &, is o.
Hence d! = (—1)™'d D%/D%. Substituting this value for d% into d% z.+ d¥ z;
and multiplying both coefficients by D}/d} yields u¥;. Thus u¥; e A% n A.

LeMMA 2.14 Let # = z:¢Ar. Suppose there is a yeAr such that
y = 2. b;x;, where hy(b;) = 0 and hy(b;) > O for all j # 5. Then

min;ei{hp(b;)} < hy(DF).

Proof {u;|j # 4} are independent, and therefore form a basis for Ay.
This is clear since z; appears with a non-zero coefficient only in the expression
for u¥;,j # ¢ (Lemma 2.12). Hence no linear combination of the u%; can be
0 unless all coefficients are 0.

Thus we may write y = D« ¢; us; , where ¢; e R. Since

bi = 2 jui( —1)" e, DY,
then min;.i{h,(c;)} < 0 or else hy(b,) > 0. Since b; = ¢; D}, then h,(b;) =
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ho(c;) + ho(D%). Hence
min i hp(b;)} = mingei{hy(c;)} + hp(DF) < hy(DY).
LEmMMA 2.15 Letx = 2 = 2 ;2:0;y7. Then x(p’) e Ax(p’),0 < reZ,
only if r < hp(a; DY).
Proof 1If x € Ay, then Df = 0 by 2.12 and hy(a; D¥) = © > r. Ifzeds
and z(p") e Ax(p"), then thereis a y e Ay n F such that z(p") = y(p"). Write

y= 2 bz, =bia:yi + Djwi (b; + biay)y;,

where each by eR. Since y(p') = xz(p"), then b;a; = a; (mod p"). If
ho(a;) > r, then hy(a; D5) > r. If hy(a;) < r, then hy(b;) = 0. Let
s = r — hy(a;); find the smallest positive integer m such that mb; e Z.
hp(m) = 0 since h,(b;) = 0. Now (my)(p’) = (mz)(p"), yielding
mb; a; = ma;
and
mb; + mb; a; = ma; (mod p").

Thus mb; = m (mod p°). This implies that mb; e Z and mb; = 0 (mod p°) if
j #= i. Hence hp(b;) = hy(mb;) > s > 0if j % 7. Thus by Lemma 2.14,
ho(D¥) > min,ed{hy(b;)} > s. Therefore r = s + hy(a:;) < hy(a; D).

CoOROLLARY 2.16 If A(x) = Ay, then there is an integer D(x) such that,
for all p e,

ho(p) + ho(D(z)) > hp(x) > ho(p);
thus t(x) = to .

Proof Write € = 2 ;2:0;y7, a;eZ. By Lemma 2.6, if p e, then
ho(x) = ho(p). If pem for some k = 1,2, ---, N, then, since z ¢ A;,
we may combine Lemmas 2.9 and 2.15 to get

hap(x) 2 ho(p) + 71 = a(p) e Au(p) = hp(a;Di) 27
whenever r > 0. Thus if D(z) = a:;][[i= D%, then D(z) = 0 and
ho(p) + ho(D(2)) = hp(x) 2 ho(p)
forall pew. t(x) = t follows at once.
LemMmA 217 If A(z) = Ax,, then t(z) = &, .

Proof Define 7t° = {p | he(p) < hu(p) for all k}, and if & > 0,
= {p|h = N {h;| hi(p) > hy(p)}}.

Note that =} is empty unless & > #, , and that «¢°, #3°, - - - , 73 partition .
If p ewb?, then h5(x) < hi,(p) following the same proof as in Lemma 2.6,
letting now s = h,(p).

If p e 77°, then, defining T and J as in 2.9, we get
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keJ & h(p) < hio(p).

This is sufficient to obtain the conclusion of Lemma 2.9, that h‘;(x) >
hio(p) + 7, where 0 < r e Z, only if 2(p") e Au(p’). By 2.15, 2(p") e Ai(p")
only if r < hy(a; D}). By 2.12, D! = 0 since A(x) = Ay, D A,, implying
that z ¢ A;.

Let S = {k|t > t,) and D(z) = a;][rs Di. We have just showed
that hi,(p) + hp(D(x)) > hjp(x) for all p; therefore t(x) = t, .

CoroLLARY 2.18 T(A) = T, P*(A) = L* and therefore Theorem 2.1 is
proved. For eachk = 0,1, --- |, N, the elements y1 , ys, e, y’ﬁ,k demonstrate
explicitly Rank(A,) independent elements in A of type t,. For each xe A
and p e, an upper bound of hy(x) may be found by calculating the integer

D(rx) as defined above, where rx is Bo-reduced.
3. Quasi-essential groups

Following the construction of the previous section, we define a class of
groups as follows:

DerintTion 3.1 (1) Let A be a group. We shall call A an essential
group if A has for a set of generators

(PP | per; 0 < si(p) < ha(p) + 1;

k=0)1:“°’N;i= 1’2: "'9"’0})
where

(a) ho, hi, -+, hy are heights satisfying
[hi] = t:,
hi < hj if t,<t,

hinh; =h if tnt;=108; 0 < 4,5 k < N;
(b) m = Rank(4x),k =0,1,---, N;
(¢) Bo= {43,935, -+, y%) is a basis of A* such that

yig Ar 1<k<N,1<17< m;

(d) foreachk = 1,2, ---, N, {¢5,%5, -+, yr.} is a basisof A5 such that
% is Byreduced and yf ¢ AT if A} C Af.

(2) B is a quasi-essential (qg.e.) group if B is quasi-isomorphic to some
essential group 4.

Remark If A is the essential group constructed above, then it is clear from
Corollary 2.18 that

T(A) = {tw,thtl) e 7tN}
and

P*(4) = L* = {0, A, AT, -+, AN},
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NoraTioN 3.2 Let y, bein R™ and let &, be corresponding heights, where
v €T, T some indexing set; by 4 = {(yy, hy) | v €T} we shall mean that 4
is the group generated by

(™" Py, | pem; 0 < 8,(p) < hy(p) + 1; v €Tl
Thusin 3.1, A = {(?/’f y b))}

4. Quasi-isomorphism invariants for q.e. groups

DErINITION 4.1 Let A and B be groups; define
(1) A & B if there is some 0 < n ¢ Z such that nA C B;
(2) A = B (4 is quasi-equal to B) if A & B, B € A;
(3) A ~ B (A is quasi-isomorphic to B) if there are subgroups A’ of 4 and
B’ of Bsuchthat A’ = B’, A € A’, B € B/, 1, p. 62].

LEMMA 4.2 Let A and B be groups; then the following are equivalent:
(i) A~ B.
(ii) There is a subgroup B’ of B and a monomorphism ¢ from B’ to A such
that A & ¢(B’) and B € B'.
(iii) There is a monomorphism ¢ from B to A such that A < ¢(B) C A.
(iv) There is a subgroup A’ of A such that B= A" = A.
(v)  There are non-singular linear transformations Ly and L, of R" such
that I,(A) € B and L(B) € A.

The proofs are routine.

CoroLLARY 4.3 Let A and B be quasi-tsomorphic subgroups of R". Then
(i) Rank(A4) = Rank(B);
(i) T(4) = T(B);
(iii) A~ By, for all types t;
(iv) there is a mnonm-singular linear transformation L of R" such that
L(BY) = Af for all t;
(v) if A = B,then A, = B,, AY = BY for all t.

Proof That Rank(A) = Rank(B)isobvious. For the rest,let¢ : B— A
be a monomorphism such that NA € ¢(B) C A for some integer N > 0.
Then for every z ¢ B,

H"(z) ~ H*(Nz) = H*®(N¢(2)) < H*(N¢(2)) ~ H'*(N¢(x))

< H*®(No(z)).
Thus t*(z) = t*(¢(x)) and so

T(B) S T(A) and A, C¢(B,) C A,.

The argument reverses to get 7(4) € T(B). ¢ extends naturally to a
non-singular linear transformation L of R", yielding

A} = (NA,)* C L(BY) C Al
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Remark The converse to this corollary is not true in general, as may be

seen from the theory of rank 2 groups [2]. However, in the case of q.e. groups,
we get

THEOREM 4.4 Let A and B be q.e. groups. Then A ~ B if and only if
(1) T(A) = T(B); (i) there exists a non-singular linear transformation L of
R" such that t e T(B) = L(BY) = Af.

Proof If A ~ B, then (i) and (ii) follow from 4.3.
Conversely, assume that A and B are essential groups. Then

A={(yllc'yhk)lk'_:():l""’N;j:1;2)"')nk}~
Similarly, ,
B={(x,;’hk)lk=0,1)"'3N;j=1’27"'7mk}’

where all the conditions of Definition 3.1 are satisfied.

Let L be a non-singular linear transformation of R" such that L(B7) = A}
for every ¢ e T(B). This implies that m; = Dim(B;) = Dim(4y) = m
for every & e T(B) = T(A). For each j and k, L(a%) = D_;r% 4%, where
the r%; ¢ R. Let M be the product of the denominators of all the 7§;. Find
integersJ, such thatJy hy(p) < hi(p) for all p; this can be done since h; ~ b .
LetJ =JoJ1 - Jx. (JM)L is also non-singular. A simple computation
shows that (JM)L(p~*®a%) ¢ A for every generator p~"*P2% of B. Hence
(JM)L(B) € A. Similarly, there are non-zero integers J’ and M’ such that
(J'M')L™'(A) € B. Hence A ~ B by 4.2.

Finally, if A and B are q.e., then there are essential groups 4’ and B’
such that 4 = A’, B = B’. By 4.3, T(A’) = T(4) = T(B) = T(B’)
and AF = A:* B¥ = B.* for all types t. Hence L(B.*) = A;* for every
teT(B). By the above argument, A’ ~ B’; hence A ~ B,

CoroLLARY 4.5 If A and B are g.e. groups, then A = B if and only if (i)
T(4) = T(B); (i) P*(A) = P*(B).

DEerinITION 4.6 Let A’ be an essential subgroup of A. We shall call 4’ a
maximal essential subgroup if, whenever A’ & B C A, where B is an essential
subgroup of A, then A’ = B, Similarly define a maximal q.e. subgroup.

THEOREM 4.7 Let A be a group with finite type set.
(1) A has a maximal essential subgroup A’ such that T(A') = T(A) and
P*(A’) = P*(A). A’ s unique up to quasi-equality.
(2) Ifze A, there is a maximal essential subgroup A’ of A containing x.
(3) A s q.e. if and only if A/A’ is a finite group for every maximal essential
subgroup A’ of A.
(4) If A’ is a maximal essential subgroup of A, then A/A’ is a torsion group.
Proof (1)and (2). Assume Rank(4) =n, T(A) = {tw,to, t1, -, In};
assume also that % 0. There is an independent set {z, y3, - -+ , ¥%} Where
the y? are of type f , the minimal type in 7(4). These elements can always
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be found since 7'(4) is finite (Corollary 1.9). If t(x) = &, let yy = z. If
{(z) > to, then consider the pure subgroup P in A generated by {z, y3}.

P has finite type set, since t"(y) = t*(y) for all yeP. In particular,
£ (y3) = ty. For some meZ,

'z + mys) = to = t*(z + my3)

[2,p.27]. Letyi =+ my3;Bo= {y3,y5, -+ ,yn}. «is Byreduced, since
=yl — mys.

For each &, eT(A), & to, we can ﬁnd n, = Rank(4;) independent
Bo-reduced elements of type & in A y1 yg y s Y. Let e = N HA®YY,
k= 0 1, , N. Flnd heights Ao, h1 , e hN such that for0 <14,7,k <N,
(1) ki < h, ; (11) h; ~ h;; (i) if ¢ < t,,thenh < hy; s (Av)if éint; = &,
then hi n b = hk (Lemma 2.2).

LetA’—{(y,,hk){lc—O 1, ,N;7=1,2, .} ; A’ is an essential
group. Since b < hy < H “(y,), a,ll the generators of A’ arein A and 4’
is a subgroup of A. T(A4’) = T(A) and P*(4’) = P*(4) (Corollary 2.18).
If B is any other essential subgroup of A with A’ & B C A, then it is clear
that T(B) = T(A'), P*(B) = P*(A’). Hence by 4.5, A’ = B, Thus 4’
is maximal essential, contains z, and by 4.5 is unique up to quasi-equality.

(3) Ais ge. ® A = A’ for any maximal essential subgroup A’of
A= NAC A C Aforsome0 < NeZ < A/A’ is a finite group (A being of
finite rank).

(4) This is obvious. Thus a maximal essential subgroup A’ furnishes a
“large’’ subgroup of A that is also ‘“‘standard’ since A’ is unique up to quasi-
equality. The problem of finding quasi-isomorphism invariants for torsion-
free groups A with finite rank and finite type set could possibly be solved by
examining the groups A/A’, where A’ is a maximal essential subgroup of 4.

5. The structure of g.e. groups

THEOREM 5.1 Let A = {(yx, W) |k = 1,2, ---, N}, where the h are
arbitrary heights and y, e R*. Then A is a q.e. group and T(A) and P(A) may
be found in a natural way.

Proof In (1) we shall describe this “natural way’”’. Then we shall show
that this method does yield T(4) and P(A). Finally, we shall show that 4
is q.e.

(1) Assume that Rank(4) = n. Foreach h;, 1 < ¢ < N, let A be the
subspace of R" generated by all the y; such that A, > h;. Clearly every
zeA n AF will have type ¢(z) > [h]. Let F be the (finite) set of all subsets
of the indices {1, 2, ---, N}. For each feF, f # ¢, define A} = D ;. Af
and t; = Ny [h]. Define Ay = 0, t, = i .

Ifzed n Af, then ¢ = X usa;a;, wherea; e R, z;¢ AY. Hence

t(x) = Nigt(xi) = Niglhd] = ¢;.
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If zeA, define t, = Uft;|zeAf}. By the above remarks, t(x) > .,
t(0) = t, = t. We shall show eventually that ¢, = ¢(x). Let
T = {t,|reA} v {all finite intersections of members of {t,|zeA}}. T is
finite since F is finite, and forms a lattice {x, fo, t1, - , tx!}-

(2) {xeA|t. >t} is a pure subgroup By of A foreach k =0, 1, --- , K.

Proof The only difficult part is to show closure, since fy = to 2>t , ts = ts,
be =t ifreed.

First note that, if f, g ¢ F, then

trnt, = nief[hi] n niea[hj] = niéfUa[hi] = tfuy .
Since the lattice of all types is distributive,
(Ua ta) n (U,s t,g) = Ua'p(ta n tﬂ)
if a, B are finite sets. If z e A}, ye A, then
x+yedf + A = Al ;
thus
{fugleeAf,yed;} S {h|a+ yedi).

Now let z, y e By ; that is, 2, ye A and ¢,, {, = & . Combining the above
properties, we get

e <tont,=Ulty|zedf}nU{t, |yed)}
=Uftynt,|zedf, yeAS}
=Uftyylwedf, yed]} S Uftila + yedd} = toy.
(3) P = {0, By, By, ---, Bg} forms a lattice dually isomorphic to the

lattice 7. In P, the meet of B;, B;is B; n B; and the join of B;, B; is the
member of P that corresponds to #; n ¢; in the dual isomorphism.

Proof Lett,,t,eT. Ift >t ,then

Br= {xeAltzZtths} C{xeA]tzZts} =Bs-

If B, C B,, then
tr = N{t,|zeB,} > N{t,|zeB,} = ¢,

where the equalities hold because T is a finite lattice closed under N and be-
cause of the definition of B, . Therefore P forms a lattice dually isomorphic
to T and lattice join in P is as asserted. That lattice meet is group intersec-
tion is an easy computation (or see Theorem 1.7),

(4) Clearly P* = {0, By, BY, - -+, Bx} forms a lattice isomorphic to P.
Following 2.1 and 3.1, let B be an essential group with 7(B) = 7T and
P*(B) = P*.

If ze A n B, then t°(z) = t,. Fort, = & forsome k, 1 < k < K, by
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definition of 7. Hence z¢B; and t*(z) > & = t.. If *(x) = t; > t,
then z ¢ B; C By, implying ¢, > ¢; > # , a contradiction. Also if xe¢A4 n B,
then t*(z) > t, = t°(z). Hence t*™(z) = t*(z). Since 4* = B*, some
integral multiple of every element in A or Bisin A n B. Hence T(4A n B) =
T(B) = T and P*(4 n B) = P*. By Theorem 4.7, there is an essential sub-
group A’ of A n B such that T(4’) = T(A n B) and P*(4’) = P*(4 n B).
By Corollary 4.5, A’ = B.

(5) A’ = A.

Proof Let M, be integers such that M} yx € A’, where the y; are as in the
statement of the theorem. Then
' (Mege) = " (Meh) = tug = b 2 [ul.
Thus there are integers N}, such that

We (M yi) + ho(Ni) = i(p)

for all p. Thus My Ny p "yr € A’ for all p and %k, where s < hy(p) + 1. If
M = H My Ny, then Mue A’ for every generator u of A. Therefore
MACA'"CAnBC Aand A’ = A.

Thus A is a q.e. group, and t*(z) = t*' (Mz) = ty, = {, for every z ¢ A.
This completes the proof of the theorem.

CoroLLARY 5.2 Let T and L* be as in 2.1. For each k = 0,1, ---, N,
let i, = Dim(A7) and let y¥ , 45, -, y'ﬁ,,, be arbitrary independent members of
Ax, B, Wb, -, h%. be arbitrary heights in the equivalence class t,. Then

A= {(y,lc:h,:)|k = 0’ 17 e 7N;7: = 1’2’ e 7nk}

is a q.e. group, with T(A) = T, P*(A) = L*
CoROLLARY 5.3 Let A be a group with T(A) = {tw, to, b1, ++ ,tx}. For

each k, let m, = Rank(Ay,) and let 5 , o5, -+ - , %, be independent elements in
B = {(yfde(yf))[k =0,1,---,N;2=12, - ;nk}

is a maximal g.e. subgroup of A such that T(B) = T(A) and P*(B) = P*(A).
B is unique up to quast-equality.

THEOREM 5.4 If A is a q.e. group, then there are elements y1, Y2, -+ , Yn of
R™ and heights hy, ha, - - -, hy such that

A= {(y, )| k=12,---,N}.
Proof Let A’ be a maximal essential subgroup of 4,
A = {(y, ) | k=1,2, -+, M}.

By Theorem 4.7, A/A’ is a finite group, generated by yusr + 47, -+ ,yx + A’.
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Then
4 = {(yk:hk)|k= L2 "':N})

where hy(p) = Oforallpif M +1 <k < N.
CoROLLARY 5.5 If A and B are q.e. groups, then so s A + B.
LemMmA 5.6 If A and B are q.e., then so is A n B.

Proof (1) Let
4 = {(yJ’h’J)l.7= 1’2’ e 7N}’

B = {(ujykj)|j= 172,°"’M}-

We proceed by induction on N 4+ M. The lemma is certainly true if
N + M < 3, since then A n Bis O or of Rank 1. If welet

Ai={(y;, )17 =12, .-+, N;j #1}

and define B; similarly, then for all 72, A; n B, B; n A are q.e. by the induction
hypothesis.

Let D = A nB. Since T(A) and T(B) are both finite, so is T'(D) because
each z ¢ D has type t*(x) n t°(z). For each teT(D), there is a maximal
independent set B; = {zi} in D such that

t N t M 12
2i = 2i-ari Yi = 2o sl U

for each ¢, where 0 5 ri; , s{; ¢ Z and where all the z; have the same height in
D. Let Ao = {(2i, H’(2{))}. We shall show that

C=A0+ qulAinB+ ZfilB,-nA i.D.

Since C is q.e. by Corollary 5.5, this will prove the lemma.

(2) Since ¢ € D, H°(y) < H®(y) for all yeC. As a corollary of the
induction hypothesis, there is 0 < K ¢ Z such that H°(Ky) > H”(y) if
yeA; n B, B;a A. Thus we need only show that H°(Kz) > H”(x) if
T = D 9=1a;y; = D 1= b;u;eC, wherea;, b; #= 0.

Let us now fix p and assume that min;{h5(2})} < hp(zf) for all . If
min;{h5(2f)} < hp(z) for all 4, a similar process to that described below,
with the roles of A and B interchanged, will give us the same results. If
t°(x) = t, we may assume that x is B;-reduced. We may further assume that
p *a;y;je A for every j and every k < hj(x) -+ 1; for if this condition does
not hold, then z is in some A4; by another representation z = Yz a; y; and
h5i(z) = hi(x), implying that hS(Kxz) > ho(z).

Let

r = Zici 2 = szv=1 Zz‘ Ci 7‘5:‘ Y; = Z?Ll a;Yj,

where each ¢; ¢ Z, min.{h,(c;)} = Oforall p, a; = 0 forallj. By our assump-
tions on z,
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ha(z) < hp(e) = mini{hy(a;) + ho(ys))
= min;{mini{hy(ri;)} + hp(y;)} < mindhp(2)} < hp(2i)

for all ¢, and therefore h2(z) < ho(x), unless hy(a;) > ming{h,(r;)} for
some j.
(3) Suppose r = max;{h,(a;) — m;} > 0 for some j, where

m; = min,-{h,,(rﬁj)} .

For simplicity’s sake, suppose j = 1 and h,(r};) = m; = h. Then find m ¢ Z
such that
—m(ri/p") =1 (mod p").

Since
Dicirh =a,=0 (modp™),
then
Ei>1 Ci 7‘51/Ph = —0 Til/Ph (mod p").
Thus

t h t h
m D s 6 /Pt = —meri/p" = ¢ (mod p7).
Hence we may rewrite x as * = x1 + 22, where

o =m ((Ls1cirh/p")el — 2ot (cirin/p")el)

o = p' (2 dizi), dieZ.
Since k,(a;) < r + h for each j, then
hy(z1) > mini{r + hp(d; 2i)}
> ming{hy(a;) + hp(yi)} = hp(z) > hp(2).

Ta= D i1 a; y; since the coefficient of y; is 0 in the expression for z; . Hence
xze Ay and ho(Kxs) > ho(x:). Now

hy(2:) 2 min {h5(z), hp(21)} > min [A3(2), ho(21)] > ha().
Similarly, A5(2;) > hp(x). Thus hp(xz) > ho(x). Therefore
hy(Kz) > min {hy(Kz1), hy(Kxs)} > hp(x).

Continuing this process for all p, we get H°(Kz) > H”(xz). Hence
K(AnB)=KDC(CCZCAnB;AnB = (Cisq.e.

and

COROLLARY 5.7 Every pure subgroup of a q.e. group s q.e.

Proof Let P be a pure subgroup of the g.e. group A. P*, being a rational
vector space, is q.e. P = A n P*is therefore q.e.

CoROLLARY 5.8 If A and B are direct sums of a finite number of rank 1
groups, then A n B is q.e.

Remark (1) Thus, although even pure subgroups of A or B are not com-
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pletely decomposable in general [4, p. 166], they are at least q.e. groups. To
see what A n B looks like, we give the following construction:

LetA= A, ®A,® --- ®DA4,,B=B, ®B,® --- ® B, , where each
A; = {(u;, hj)} and each B; = {(v;, k;)}. Let F and G be, respectively, the
set of all subsets of the indices {1, 2, ---, n} and {1, 2, ---, m}. For each
feF and geG, there is a maximal independent set By, = {2/} in 4 n B,
where for each 7,

z{a = Zjef 7'{?' U; = Z:’ea sjz:g' V5, 0 = 74?’ ’ S{‘;' eZ.
Let C = {(f*, H*™(2°)) | feF, g G, all ¢}. By a proof much the same as
that of Lemma 5.6, it can be shown that C = A n B.

(2) If A, B, C, D are groups, A = B, C = D, then A nC = B n D,
A + C = B + D. Thus if & is the set of equivalence classes of quasi-equal
subgroups of R", then & forms a lattice with meet A and join v defined as
follows:let E, F e &, define E A F =[AnBland E v F = [A 4+ B], where
Ae¢E, BePF.

CoROLLARY 5.9 The set of equivalence classes of quasi-equal q.e. subgroups of
R™ form a sublattice of &, the set of all equivalence classes of quasi-equal subgroups
of R

6. Quotient divisible groups

DeriniTion 6.1 Let A be a torsion-free group. Then A is called quotient
divisible (q.d.) if A contains a free subgroup F such that A/F is a torsion
group D @ B, where D is divisible and B is of bounded order. (If A is of
finite rank, then B is necessarily a finite group.)

Q.d. groups are of importance in the study of rings over torsion-free groups
[1]. We shall prove a few facts concerning the types of the elements in such
groups.

LEmMa 6.2 (1) If A is qd. and A ~ A’, then A’ is q.d. (i) If A is ¢.d.,
then there is a free subroup F of A such that A/F is divisible. (iil) Any torsion-
free homomorphic image of a q.d. group of finite rank is also q.d.

The proofs are given in [1].

DeriNITION 6.3 A height H is said to be non-nil if H(p) = 0 or « for all
but a finite number of primes p.

A type t is said to be non-nil if ¢ = [H], where H is a non-nil height. If ¢
is non-nil, then there is a unique H ¢ ¢ such that H(p) = 0 or « for all p.

THEOREM 6.4 Let A be a q.d. group of finite rank and let
C(A) = T(A) u {all finite intersections of members of T(A)}
(see 1.2). Then t,, the minimal type in C(A), s non-nil.

Proof Let A be of rank n, F a free rank n subgroup such that A/F = D,
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where D is divisible. Let z:, x2, ---, 2, be independent generators of F.
Then for each prime p, either hj(x;) = o for all ¢, or hs(x;) = O for some z; .

For let p be a prime such that © > hj(z;) = kb > 0 for some generator z;
of F. Since p"z; ¢ F, it follows that p™z; + F = 0in A/F = D. Hence
thereisay e A suchthaty + F = p™"z; + Fand p "'y e A. Write

P =yt ozt ezt o+ G,
where each a; e Z. Since p'y ¢ A and p~"p "z, ¢ A, we must have
Pz + a2+ 0+ aa) £ 4.

Hence p'z; ¢ A for some %, that is, ha(x;) = 0 as we asserted.
Thus min;{h%(x:)} = 0or . Hence

to = Nit(z:) = N{H(2:)] = [ming{hp(x:)}]
is non-nil.

LemmA 6.5 Let
A= {(y’:)hk)lk=07 1, "'7N;7:= 1,2>"';nk};

be an essential group, where hi(p) = 0 or » for all p and oll k. Let F be the
free group gemerated by {y3 , ys, -+, Yno}. Then A/F is divisible.

Proof By the definition of an essential group, the 3% and A, satisfy the con-
ditions of Definition 3.1. The added condition above on the A in no way
conflicts with these conditions. To show that A/F is divisible, it is sufficient
to show that, if te A — F and pr e F, then 2 + F, as an element of A/F,
is divisible. If ko(p) = oo, then hp(z) = « and so z + F is divisible. If
ho(p) = O, then h4(pxr) > 1 implies that pr = y + pz where z¢ F
and y € A, n F for some k such that h;(p) > 1, (Lemmas 2.6, 2.9). But then
hi(p) = o ; therefore hy(y) = o = hp(p_y). Hence z = p~'y + 2z and
z + F = p~'y + F is divisible.

LeMMa 6.6 Let
A= {(y,:yhk)|k = 0, 1. 7N;i =12 .- ank}
be an essential group, where some hy, is not non-nil. Then A s not a q.d. group.

Proof Let h; be a minimal not non-nil height among all the h; .  If by, = hy,
then A is not q.d. by Theorem 6.4. If by > ho, let

= (p|0 = h(p) < W(p) = h3(¥) = - = h3(¥h) < ).
7’ is infinite since ko is non-nil, A; is not non-nil, and
H(yi) ~ «+ ~ H(yn,) ~ he..

Since A is a minimal non-nil height, then &; n A; is non-nil unless h; > h; .
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Hence for all but a ﬁnite number of primes in 7/, hj(p) = 0. Thus for an infi-
nite set of primes 7 < 7/, hj(p) > 0 only if h; > hy ; that is, yi e A, for all 4.

Let A’ be the progectlon of A upon A¥. A’is then a torsion-free homomor-
phic image of A and hence H*' (4%) > H*(4*) [4, p. 146] Extend 3%, - -+, 9%,
to a basis B of A™ by proper choice of members y3- of By. Let

z = ayi + 2 a; 5
be a Bo-reduced member of A, where D a; 4% ¢Ax. If per” and hi(z) =
r > 0 = ho(p), then z(p") e Ax(p’) by Lemma 2.9. ayi(p") ¢ Ax(p") and
therefore 2 a; y} € Ax(p") by Lemma 2.8.
Thus thereisay = D a;yy + 2 p'c; yy e Ai , where ¢j e Z and ka(y) >r.
(This statement is almost equivalent to the definition of Ax(p").) Hence
r < h(2 a;y5) and

hﬁ(w) =r< hp(x Zaa Yir) = Ry (ayz)
If a'z e A, then ha(a'z) < ha(yh).

hy (%) = sup {h3(2) [z = of + 2 biyyred, bjeR} = 8

When z is in the above form, hp(x) # o, since ¢* (x) < t,forall pen”.
Hence we have ]ust showed that S < h,,(y,) if per’. For such p, an in-
finite set, 0 < h3 (y@) hﬁ(yl) < . Since the minimal type in A’ is
given by [H A'(y'{) n - n H*(y%,)], it cannot be non-nil. Therefore by 6.4,
A’ is not q.d., and by 6 2, neither is 4.

TaEOREM 6.7 Let A be a q.e. group. Then A s q.d. if and only if every
type in T(A) is non-nil.

Proof Necessity was proved in Lemma 6.6. For sufficiency, we may
assume that A is essential, since quotlent divisibility is a quasi-isomorphism
invariant (Lemma 6.2). Thus4d = {4}, hk)}, where every hk isnon-nil. For
each &, let Ay, be the unique height such that ki ~ h; and hk(p) = 0 or » for
all p Itis easy to check that the hy satisfy all the conditions of 3.1. Hence

= {(¢%, ht)} is essential, and A’ = A by Corollary 45. A’ is q.d. by
Lemma 6.5, and so 4 is q.d.

CoRrOLLARY 6.8 (1) If A is a q.d. group and T(A) possesses some type
that is mot non-nil, then A requires among its generators an infinite number of
pairwise independent elements of A.

(2) If A is a g.d. group that has a set of generators containing only a finite
number of pairwise independent elements of A, then T(A) is finite and every
type in T(A) is non-nil.

Proof Apply Theorem 6.7 and Theorem 5.4.

Remark There are many q.d. groups whose type sets possess some type
that is not non-nil [5].
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