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It iS well known that if and R are constant-coefficient partial differential
operators, with elliptic and order R order , then

for all infinitely differentiable functions of compact support. The proof of
this "a priori estimate" uses Fourier transforms and the Plancherel theorem.
Similar estimates are known for p powers (1 < p < in place of squares,
although the easy proof for p 2 does not generalize, tn thepresent paper
we investigate the limiting case p , where supremum norms appear in
place of L integral norms. This case turns out to be genuinely exceptional.
For instance (Proposition 2) if A and B have the same order and B cA,
then no a priori estimate

sup BgI const sup

is possible. But (Proposition 5) ff B has strictly lower order, and A is elliptic,
then the estimate is reinstated. In fact (converse half of Proposition 5) in
dimension n 3 this property is characteristic of elliptic operators, just as
the L: a priori estimate is characteristic of elliptic operators for the case of
equM orders. Before proving these last assertions we must establish (Propo-
sitions 3 and 4) some basic facts about the n-dimensional Fourier transform
that do not seem to be in the literature. The connection between a priori
estimates and Fourier transforms is explained in Proposition 1.
The other limiting case p 1 has recently been treated by Ornstein [4].

The results for L are essentially the same as those for L, but seem to be
much harder to prove.

If

Operator domination

A a, - a,,...e,
\Oxl/ \Ox,/

is a partial differential operator with constant coefficients, then its full charac.
teristic polynomial is

P a,(ix) a,,..., (ix1) *’ (ix,,) ".
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PI%OPOSITION i.
tore in n variables.
Then

Throughout this paper, the notation IIf means

sup{If(x) :x (xl,...,xn) eRn}.

Let B, A1, , A, be constant-coecient differential opera-
Let Q, P P, be their full characteristic polynomials.

(1.1)

for all infinitely differentiable e of compact support, if and only if
(1.2) Q MkP
for suitable Fourier-Stieltjes transforms Mi Mm

Proof. Write D for the infinitely differentiable functions of compact
support, and Co for the continuous functions vanishing at infinity. Take
D as domain for each of the A, and by the mapping
embed their joint range in the direct sum @ Co of m copies of Co. Assum-
ing the a priori estimate (1.1), the functional (A e, "’", Ae) --* Be(0)
on the embedded joint range is continuous with respect to the natural to-
pology of @m Co. By the Hahn-Banaeh theorem this functional extends to
the whole space @ Co. And by the Riesz representation theorem we can
write

(1.3) Be(0)

for some integrable (i.e., finite total mass) measures m,’", m and all
e e D. Taking Fourier transforms we have

(1.4) f
And since the Fourier transforms of e D are sufficiently numerous, we con-
dude that formula (1.2) of Proposition 1 holds, having assumed the a priori
estimate (1.1).
On the other hand, assuming formula (1.2) we can work backwards through

the previous steps to obtain formula (1.3). Then taking const
we have

And since the right-hand side is unaffected by translation, we obtain the esti-
mate (1.1). This completes the proof of Proposition 1.

In the sequel, whenever the conditions of Proposition 1 obtain, we shall
say that the Ak jointly dominate B and the P jointly dominate Q.

PROPOSITION 2. Let P Pn and Q be polynomials of degree <- d, and
let P ,Pm jointly dominate Q. Then (writing P and Qfor the homogene-
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ous term of degree d) there exist numbers ck such that

(2.1) Q- ckP.
Proof. Let A and B be the differential operators having full characteristic

polynomials P and Q, as in the statement of Proposition 1. Write Q as the
sum of its homogeneous terms Q, and similurly P s the sum of P. Sub-
stituting these sums into formula (1.3) of Proposition 1, we have

(0) fB

for each infinitely differentiable q of compact support. If we define q, by
,(x) (rx) q(rx,..., rx,), then for homogeneous Q we have the
formula

(2.2) B (q) r (B).

Thus replacing by q in (2.2) we have

(0) f  (Air (B

Dividing both sides by rand letting r -- , we have

(B) (0) ck (A ) (0),

where c is the measure assigned to the origin by t. Thus, since is arbi-
trary enough, we can conclude (2.1), and Proposition 2 is proved.

CoRonv. Let P P, and Q all be homogeneous of the same degree.
Then in order that the P jointly dominate Q it is necessary and sucient that Q
belong to the vector space of polynomials spanned by the P.
The proof is immediate.
Remark. The proof of Proposition 2 did not actually use the full hypothesis,

but only that Q --< const P for all of small support.

Fourier transforms
This section is devoted to proing certain facts about Fourier transforms

that will be needed in the next section. We begin with a further comment
on Proposition 2. According to the proof of that proposition, each numerical
coefficient ck in the expression Q c P can be chosen (and if the P
are linearly independent, must be chosen) as the mass at the origin of the
measure whose Fourier transform is M in the expression Q M Pk
of Proposition 1. The following lemmu interprets c directly in terms of the
function M.
LWMMA. Let t be an integrable measure, let c be the signed mass of at the

origin, and let M be the Fourier transform of . Then the constant function c
can be approximated uniformly by - M, with - a probability measure.
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Proof. This fact is due to Eberlein [3]. His proof first shows that M is
weakly-almost-periodic, then applies the Markov-Kakutani fixed-point
theorem [1] to approximate c by some convex combination of translates of
M, or equivalently by M with some probability measure of finite support.
Here is an elementary proof of the lemma. In fact, taking Fourier trans-

forms, we can get a stronger result. It is possible to approximate the point-
mass c in measure norm by , with now some positive-definite function
such that (0) 1. To accomplish the approximation we need only find a
sequence of such . converging pointwise to zero everywhere except at the
origin, for then with sup (0) 1 we can apply the Lebesgue
bounded convergence theorem to conclude that

, c ] (, c) f I], c]

converges to zero. So let V be a fundamental sequence of neighborhoods of
the origin, and let f be a positive continuous function vanishing outside V
such that f ]f f f%. (0) 1. Then f ] is our sequence, and
the lemma is proved.

In the application of this lemma to the converse half of Proposition 5,
we would not actually need the full Eberlein conclusion concerning approxi-
mation by finite convex combinations. But this conclusion can be obtained
by first discarding some small part of the mass of that lies near infinity,
then chopping up the remaining mass into small pieces and averaging over
each piece. We note also that the proof of the lemma will work for an arbi-
trary locally compact abelian group; in the case where the group is not
metrisable, and hence there exists no fundamental sequence of neighborhoods
V, it is enough to pick a sequence such that - c[ (V) converges to
zero.

In Proposition 3 below, the phrase rapid decay pertains to L. Schwartz’s
space S. Recall that g e S if g is infinitely differentiable and if for each m
the function

(0 0rAg (x +... + x)
_

+... +] g

is bounded. We shall regard the function f below as an element of the dual
space S’. As such, it has a well defined Fourier transform , also in S’, given
y ] ] Of or .
PROPOSITION 3. Let a > O, b > O, a + b n. For any function f on

Euclidean n-space, the following conditions are equivalent:
(3.1) f is homogeneous of degree -a, and infinitely differentiable away

from the origin.

(3.2) f(x) ta--g (tx) dt, for some infinitely differentiable g or rapid

decay on Euclidean n-space.
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(3.3) The Fourier transform is homogeneous of degree -b, and infinitdy
differentiable away from the origin.

(3.4) (y) f -1 (ty) dt, for some g of rapid decay.

The g in condition (3.2) and the in condition (3.4) can be taken as Fourier
transforms of each other, and one of them can be chosen to vanish identically
near the origin and near infinity. For the equivalence of (3.1) with (3.2) one
need only assume a O, and similarly for the equivalence of (3.3) with (3.4)
only b O.

Proof. By appealing to the theory of spherical harmonics one can swiftly
show the equivalence of (3.1) with (3.3), which is the part of the lemma
actually needed for the proof of Proposition 4. In fact, taking a complete
normalized set of spherical harmonics/Pk} with degree Pk _-< degree P when
/ =< l, then f on the sphere is infinitely differentiable if and only if
f(0) c P (0) with c decaying more rapidly than any fixed power of
1/]c. Also, if the harmonic P has degree d, then r-ap (0) has Fourier trans-
form r-bP (0) up to complex constant k depending on d in such a way that
the rapid decay of the sequence c is not disturbed.
We shall present, however, a more elementary proof, inspired partly by

CalderSn-Zygmund [2].
(3.1) (3.2). ’Take any infinitely differentiable function k(t) on the

positive real axis identically zero near 0 and near oo and with

t- k(t) dt 1.

Define g by g (x) (I x l)f (x). Then for x 0, we have

fo ta-1 g(tx) dt fo ta-1 k(t Ix [)f(tx) dt f(x) fo t- X(t Ix I)dt

f(x) fo -1 k(t) dt f(x).

(3.2) (3.1). Given g e S, it is clear that the integral in condition (3.2)
defines at least a continuous f homogeneous of degree -a. For the purposes
of Proposition 4 we do not actually need more than this. But for complete-
ness we present also a proof of differentiability. Represent f as the limit of
f, where

/e

re(x) a- g(tx) dt.

We claim that this limit is uniform on any compact subset of the complement
of the origin in Euclidean n-space. Indeed suppose 0
Then

If(x) f(x)[ _-<
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There is some c > 0 such that

<- c

g (x) " C X
-a-1

Hence

On he ogher hand

/e

for

for Ixl >- 1.

ta-llxl-ag
e/r

a-1<= r-c dt.

foo.,/e ta_lg (t_[) dt <-- r c dt.

From the inequalities above, it is clear that fa and f* go to zero with
s; hence fi converges to f uniformly on each compact set not containing the
origin. Moreover, let D be any homogeneous differentiation operator,

\Ox# ""\Ox/
Since differentiation across the integral sign is legitimate here, we have

/e

(D’ f)(x) t’’+’"+’’+a-l(D’g)(tx) dt.

As e goes to 0, the above converges uniformly for 0 < r -< x < 1/r < .
The argument is the same as for f,, taking a + ml + + m. as the new
a. Thus f is infinitely differentiable away from the origin.

(3.2) (3.4). We argue by duality. Take any o S. We want

f f,p(y)](y) dy 9(y) dy b- (l(ty) dt.

We have

f f f,p(y)](y) dy (o(x)f(,) dz (x) dx a- g(tz) dt.

On the other hand

f f,p(y) dy - (l(ty) dt - dt o(y)(l(ty) dy

fo t- dt (x) g(x/t) dx -a-1 dt (x)g(x/t) dx

(,) dx -a-1 g(x/t) dt (x) dz -* g(t,) dt.

We have established the implications (3.1) # (3.2) (3.4), from which
all other implications can be got by symmetry. Thus Proposition 3 is com-
pletely established.
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PROPOSITION 4. Iff satisfies the conditions of Proposition 3, thenf is a Fourier
transform near infinity. In other words there is some integrable function
on Euclidean n-space whose Fourier transform g agrees with f identically outside
some compact subset.

Proof. The theorem is not obvious even for the function f(x) 1/r.
But this special case can be handled by means of the theorem of Young-
Kolmogoroff-Rudin [5], which gives sufficient conditions that a radial func-
tion (r) be a Fourier transform of an L function, namely that the derivatives
of be alternately positive and negative up to a certain order depending on
the dimension n. And this single case f l/r, together with the facts about
the Fourier transform of r-ap (0), for spherical harmonic P, can be used
to establish all of Proposition 4.
We present, however, an elementary proof, which we owe to a conversation

with HSrmander.
Let p be infinitely differentiable, identically 1 near the origin, identically 0

near infinity. Define g f pf. We want to show that the Fourier trans-
form i (pf)^ belongs to L1. (As usual, the Fourier transform is
defined by duality with the space S.) From Proposition 3 we know that
] is locally L1. And (pf) is an ordinary Fourier transform, and hence con-
tinuous. Combining these functions we see that is locally L.
To show that is also L near infinity, we shall demonstrate that for large

m the function r2m0 is bounded, indeed is a classical Fourier transform. Or
since multiplication by r is the transform of the Laplacean operator A we
shall demonstrate that A g A (f pf) belongs to L. We need consider
the behavior of f pf only near infinity, because it is differentiable at all
finite points. And near infinity we may as well consider f itself. Let us
use polar coordinates x tO, r x I, 0 x/I x We can write

A= .._n--1 0 1
r +

where A0 stands for the Laplace-Beltrami operator on the unit sphere. The
condition (3.1) of Proposition 3 characterizing f can obviously be stated in
the equivalent form

f (rO) r-an (0),

where h is some infinitely differentiable function on the unit sphere. Hence
Af-- Ax(r-ah(O)) r-a-2[a(a-- 1)h(0) -a(n- 1)h(0) + A0h(0)]
r-a-ehl (O). Similarly

A’ f r-a-mhn(O)
for some infinitely differentiable function h on the unit sphere. Hence
when a + 2m > n, the function Af is integrable near infinity, A g is glo-
bally integrable, and Proposition 4 is proved.
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Elliptic operators

The constant-coefficient differential operator A of order d is called elliptic
if the principal term P of its full characteristic polynomial vanishes nowhere
except at the origin. In this case we also call the full characteristic poly-
nomial P itself elliptic.

PROPOSITION 5. Let P be a polynomial in n >= 3 variables, of degree d >-_ 2.
Then a necessary and sucient condition that P be elliptic is that P and 1 to-
gether dominate all polynomials of degree <-_ d 1. If n 2, the condition
is only necessary.

Proof. We first prove necessity. Suppose P elliptic and Q of degree
-< d 1. Using Proposition 1, we want integrable measures and whose
Fourier-Stieltjes transforms M and N satisfy

(5.1) Q MP - N.

Our construction will in fact make and integrable functions. First choose
N Q near 0, 0 near , and infinitely differentiable everywhere. Such
a Fourier transform N exists because

(i) every differentiable function is locally a Fourier transform, and
(ii) every function locally a Fourier transform (near each finite point,

and near is globally a Fourier transform.
Once N is constructed, the continuous function M is completely determined,
since

M(x) Q(x) N(x) for every x 0.
P(x)

In particular, M 0 near 0, M Q/P near , and M is infinitely differen-
tiable at every finite point. We must decide whether the displayed formula
for M (x) defines a Fourier transform. Remarks (i) and (ii) in the construc-
tion of N apply here also. Clearly there is no problem near finite points.
Hence to finish this half of the proof of Proposition 5 we must show that
there is a Fourier transform M Q/P near .
We shall proceed by reducing all cases to the case P homogeneous of degree

d and Q homogeneous of degree d 1. This "main case" is a direct conse-
quence of Proposition 4, since Q/P is infinitely differentiable away from the
origin and homogeneous of degree -1.

Case 1. P homogeneous of degree d and Q homogeneous of degree
d 1 k. We have Q/P (1/r) (rQ/P). Since the pointwise product
of Fourier transforms is again a Fourier transform, it is enough that 1/r and
rQ/P each be Fourier transforms near . The latter is the main case. And
both the main case and the function 1/r are instances of Proposition 4.

Case 2. P homogeneous of degree d, and Q arbitrary. Split Q into its
homogeneous terms Q, apply the preceding case to each of these, and add.
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Case 3. P arbitrary, Q arbitrary.
d--1 -JI-P Pe-t- ’o P"= Pe 2:e-.

Split P into its homogeneous terms.
Then

1Q-Q(’1+p pd -l/pd)
By the preceding case, both Q/P and F,-I/P are Fourier transforms near. Choose a neighborhood V of such that

sup v Z-I (x)/Pd (x) < 1.

Let A be the algebra of Fourier transforms with its natural Banach alge-
bra norm. For each feA let fv be the restriction of f to V, and let
A be the algebra of all such, with the natural quotient norm. If
Co W cl }, W c2 k - is a power series with radius of convergence 1, and
f e A has sup ,f(x) < 1, then from the theory of Banach algebras we know
that Co cf, c.f2 converges in the Banach algebra A. In
particular, substituting f Y,-/P into the Mac!aurin expansion of
1/(1 - },), we see that 1/(1 + Y,-/P) belongs to Av. Hence the arbi-
trary case finally reduces to the main case, and the direct half of Proposition
5 is proved.
We now undertake the converse, assuming n ->_ 3. We must demonstrate

the incompatibility of the following two assumptions:

(5.1) Q MP -t-- N,

(5.2) P (x0) 0.

In (5.1) the polynomial P has degree d __> 2, the polynomial Q degree -<
d 1, the functions M, N are Fourier-Stieltjes transforms whose choice
depends on Q. In (5.2) of course x0 is some point other than the origin.
From now on we shall write P Pd -t- P- + 2;-2, with 2;-2 representing

all the terms of degree <- d 2. If we choose Q homogeneous of degree
d 1 such that Q (x0) 0, then on the ray determined by x0 we have

Q (txo) td-iQ (xo) i (t-IP-1 (Xo) -t- Y,-2 (txo) + N.

Since M and N are bounded, and since Z-2 (txo) <- const.t-2, we must
have P-(Xo) O, and without loss of generality we can assume Pd-(Xo) 1.
Now consider the sphere {x’[ x Ix0 I}. We claim that there will

exist at x0 some (pure first order) derivation T tangential to the sphere and
such that TP (xo) is real (possibly zero). Indeed this assertion about a
homogeneous polynomial in n real variables at a point on the real (n 1)-
sphere becomes an assertion about an arbitrary polynomial at the origin in
real (n 1)-space" Given a complex polynomial F in >__ 2 real variables,

OF
we want to find real numbers ck not all zero such that ck- (0) is real.

Equivalently we want the differential dF (which coincides with the pure
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linear term F of F, and can be regarded as a linear map from real -space
into real 2-space) either to include the real axis in its range or else to send
some nonzero -vector into zero. But when >__ 2, this always happens
because dimension (range F1) + dimension (nullspace F1).

Returning now to x0 on the sphere, we claim that P cannot vanish iden-
tically on the great circle determined by x0 and the direction T, or indeed
on any other great circle. For if the homogeneous polynomial P vanishes
on a great circle, then P vanishes on the whole 2-dimensional subspace Z
spanned by that great circle. Let Qz be an arbitrary polynomial of degree
d 1 in 2 real variables, regarded as a function on Z. Let Q be the same
polynomial regarded as a function on n-space, or for that matter let Q be
any polynomial of degree d 1 in n real variables whose restriction to Z
is Qz. Writing subscript Z systematically for this restriction map, the
equation (5.1) gives us Qz Mz Pz + Nz. The functions Mz and Nz
are Fourier-Stieltjes transforms on the plane. (Proof" Write

M M1- Ms+i(M3- M4)
with the M positive definite. Then Mz M M + i(M M).
But the M are positive definite on the plane by direct appeal to the matrix
definition.) Hence Pz, which has degree at most d 1, dominates an arbi-
trary polynomial Qz of degree d 1, contradicting Proposition 2.
Hence choose y0 on the great circle determined by x0 and T so that
P (y0) 0, and for the rest of the proof restrict everything to the plane Z
spanned by x0 and y0. We will use classical notation (x, y) for rectangular
coordinates in Z, and will assume that x0 and y0 have coordinates (1, 0) and
(0, 1) respectively. This is legitimate because the argument from now on is
purely affine.

(5.2*)
(5.3)

In this notation, our assumptions so far amount to

P (1, 0) 0,

P-(1, 0) 1,

Op
(1,0) real.

Oy

From now on we shall refer to (5.1) only in the following instance:

(5.1") P- MP N.

For the sake of concreteness, we choose to derive most of our subsequent
formulas from the factorization

(5.4) P= II.=l (ak x- bk y).

Such factorization is possible because there are only 2 variables. The (a: b)
are the homogeneous roots of P. Ellipticity of P would mean all a and b
nonzero and all ak/b nonreal. But we are now assuming P nonelliptic, and
in fact (5.2*) can be restated in the form
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(5.2**)
Hence

And

P y l-I-1 (a x b y).

Pd
x, O) ax- with a IX-oy a

We shall find that in the presence of assumptions (5.1") and (5.2*) either
one of the alternatives

Op
(5.5) OP(x,O) 0 or (x, 0) =0

Oy

leads to a contradiction.

OP
(x O) ax-First suppose -y 0, so that we may write

P ayI-I- (x (b/a)y).

Then along the horizontal line y -1/a we have

Re (x, -l/a) -II- (x + b/a a).

And letting x -- + along y -1/a we have

(5.6) Pd (x, l/a) -ze-1.
On the other hand, y/x ---. 0 along this same horizontal line. Since

pal-1 (X, y) xa-Pa-1 (1, y/z),
from (5.3) we have

(5.7) P-I (x, l/a) za-.
Let us write oh for any function such that o/x 0 as x , and 0h for
any function such that O/x is bounded as x -- . Then the asymptotic
expressions (5.6) and (5.7) can be written equivalently:

(5.6*) P (x, l/a) -x- -t- o-,
(5.7*) P- (x, -l/a) x-1 + o-1.
We also have

(5.8) M 01 N 01
And substituting (5.6*), (5.7*), (5.8) into (5.1") we obtain on y -i/a,

Xd--1 od--1 + 01 -xd-1 "-t- Xd-1 + 0d-l) -- 01.
OF

(x, O) 0This asymptotic absurdity is what results from assuming -y-y
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We now must arrive at a contradiction on the other horn of (5.5). As a
preliminary step we shall demonstrate that M -- 1 for x --+ , y const.
On the x-axis, the formula (5.1") becomes- (x- o-)x =N+M +
And from this formula, without any information about OP/Oy, we at once
deduce that M --* 1 along the x-axis. But since we are now assum-

Op
ing -0-y- (1, 0) 0, or equivalently

(5.9) p y2 ii-2 (a x bk y),

we are able to show that M approaches 1 along every horizontal line.
In fact, setting y b in (5.9),

P (x, b) 5 Hd-2 (a x b b) b ( II-2a )x-2.
Hence

(5.10) P (x, b) o-1.

And, independent of (5.5), we still have

(5.11) p-i (x, b) x-1,
(5.12) N (x, b) 01,
arguing as in the special case b -1/a. Substituting (5.10), (5.11), (5.12)
into (5.1"), we have x-1 M (x-1 + o-1) + oa-1 along each horizontal
line y b. In particular

(5.13) M (x, b ---> l as x --We now use the Eberlein lemma to get our ultimate contradiction. In
fact, if a and/3 are the convex invariant means of M and N, from formula
(5.1") and Proposition 2 we have

0 aPa + t3,

which forces a 0. Then 0 can be approximated uniformly by convex
combinations of translates of M. But this is impossible, since by (5.13)
every translate of M has limit i along the x-axis. This completes the proof
of Proposition 5 in dimension n >- 3.

Finally let us remark that the converse half of Proposition 5 is actually
false in dimension n 2. (We owe this observation, and the counterexample
justifying it, to Malgrange.) Consider the nonelliptic operator

A= 0
+1 -A-1

If 0 is the Heaviside function (= 0 on the negative real .axis, and 1 on the
positive real axis), and if e @, y) 0 (x) 0 (y) exp (-z y), then Ae
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0 0e
(Dirac measure). We have - A -. But

0e [ 0(x) exp (-x)]0(y) exp (-y),
Ox

which is an integrable measure. Hence by Proposition 1, A dominates O/Ox.
By symmetry, A also dominates O/Oy.
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