CONVOLUTIONS, MEANS, AND SPECTRA

BY
ManrLoN Marsg DAY!?

1. Introduction

In two recent papers ([6] and [7] of the bibliography) Kesten studied sym-
metric probability densities ¢ on discrete groups G. For each such ¢ he defined
first a matrix and then an operation on (@), an operation easily shown to
be equivalent to right convolution, o ¢, by ¢. The properties found in [6]
for the family of groups where \;:(¢), the spectral radius of o ¢ operating in
(@), is 1 suggested to Kesten the result he proved in [7]: Ae(p) = 1 for
every symmetric ¢ on G if and only if there is an invarant mean on the bounded
Sfunctions of G.

In this paper I exploit some results of my earlier work, [1] on invariant
means and [2] on uniform rotundity, to give a simpler proof of a more general
result. My proof uses uniform rotundity in place of symmetry and strong
amenability (see [1, §5, Theorem 1]) to replace Fglner’s characterization [4]
of groups with invariant means. This simpler proof with no dependence on
self-adjointness applies to all I, spaces, p > 1, and applies also to some semi-
groups which are not groups. In this semigroup case, where right and left
invariance are independent properties of means, it turns out that right invari-
ance of means is to be used in studying right convolutions.

The relation between these results and those of the paper [3] of Dieudonné,
which is concerned with locally compact groups with the property that right
convolution by each (Haar measurable) probability density is an operator of
norm one in every L, over @, are discussed but not settled in the final section
of this paper.

Theorem 3 isolates from the many results a response to Kesten’s hope that
some more direct construction of invariant means might be found when 1 is
in the spectrum of enough operators o ¢.

2. Principal results

It is assumed in this section that each semigroup Z discussed has right
cancellation (rc) and has a nonempty set U of right units (ru). If ¢ is a
probability density on 2, P, = {¢ : ¢(¢) > 0}. o¢, or right convolution by
¢, is defined precisely in the next section, as are d¢ and f*.

TuroreM 1. The following conditions on an (rcru) semigroup Z are equiva-
lent:
(a) = s right amenable.
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(b) For each probability density ¢ on = and each p = 1 the linear operator
o o has, when considered as a linear operator from 1, (Z) into 1, (Z), the number
1 4n dts spectrum.

(¢) For each probability density ¢ on T and each p = 1 the spectral radius
Mo (@) of the operator o in 1,(Z) s 1.

(d) For each probability density ¢ on Z and each p = 1 the norm of o ¢ in
L(2), || 0@ llpss, is 1.

() For each finite (or countable) subset & of Z there are at least one p > 1
and at least one probability density ¢ on = such that || o ¢ ||lpsp = 1, P, 2 &,
and P, n U s not empty.

(f) Every finitely (or countably) generated subsemigroup of Z s contained
i a strongly right amenable countable subsemigroup of Z.

(g8) = 1s strongly right amenable.

Starting from (b) and using Lemmas 5 and 6 we give a geometric condition.

THEOREM 2. For (reru) semigroups conditions (a) to (g) are equivalent to

(h) For each p > 1, K, the norm-closed convex hull of the set of right shift
operators in 1,(Z), {odc : o €=}, consists of operators T each of which is of
norm one and has 1 in its spectrum.

THEOREM 3. For (rcru) semigroups if for any p > 1, (fa, n € A) is a net
of nonnegative elements of norm one in l,(Z)such that for every probability
density ¢, || faoells — 1, then (f.°, neA) is a net of probability densities
converging tn norm to right invariance.

For groups some additional results follow.

THEOREM 4. When Z is a group with unit element u, the conditions (a) to
(h) are also equivalent to each of the following:

(e’) For each finitely (or countably) generated subgroup Z' of Z there are
at least one p > 1 and one probability density ¢ such that w e P, & Z', P, gen-
erates the group ', and || © ¢ ||pop = 1.

(") Every finitely (or countably) generated subgroup Z' of = is amenable.

(@), (by), - -+, (W), the conditions obtained from (a), -+, (h) by replacing
right amenability by left amenability and right convolution by left convolution.

The theorem of Kesten [7, p. 150] is similar to the case of (a) < (e’") of
the following

CoRoOLLARY. If Z s a countable group, then (a) is equivalent to

(€”) There are at least one p > 1 and ot least one probability density ¢ on =
such that || o ¢ ||pop = 1, u € P, , and P, generates Z.

(") Like (") with “1 in the spectrum of o ¢” replacing “|| o ¢ ||lp»p = 17.

3. Definitions and some lemmas

Terminology for amenable semigroups and general normed spaces can
be found in references [1] and [2], respectively.
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A semigroup is a system X of elements with an associative binary rule of
multiplication. A semigroup Z has right cancellation when for a, b, and ¢ in
2, ac = bc implies @ = b. w is a right unit in 2 if au = @ for all ¢ in =.

If p = 1, I,(2) is (see [2, Chapter 2, §2]) the normed linear space of all
those complex-valued functions f on 2 for which || f|,, defined to mean
(e | £(s) |P)2, is finite. 1,(Z), on rare occasions, will be used to refer
to the space m(Z) of all complex-valued functions z on = such that || ||,
defined to be sup {| z(s) | : s € Z}, is finite.

An f in any of these function spaces is called nonnegative, written f = 0,
if for every s in T the function-value f(s) is a nonnegative number.

A mean on I is a linear functional u on m (Z) such that () || x| = 1, and
(i) u(x) =2 0if x em(Z) and x = 0. If e is the constantly 1 function on Z,
then a mean p also satisfies (iii) u(¢) = 1; also any two of the conditions
(i), (i), and (iii) imply the third.

The left [or right] translation operators I; [or r,] in m (Z) are defined when =
is a semigroup by the following formulas (see [1, §4]): For each z in m(2)
and each ¢ in 2,

[lex) @) = z(st) lor [rsz](t) = z(s)].

A mean u on 2 is left [or right] invariant whenever
ploz) = p@) for plsz) = p@)]

for every x in m(Z) and s in Z. 2 is called left [or right] amenable if there
exists a left [or right] invariant mean on 2. Z is amenable if there is at least
one mean g on T which is both left and right invariant. From [1] we quote
§4, (A): If Z s both left and right amenable, it is amenable; and §4, (B):
A left [or right] amenable group is amenable.

A probability density on Z is a nonnegative element ¢ of [;(2) such that
Y e @(0) = 1. Tt is easily seen that if ¢ is a probability density on Z, then
Qo, defined from I, (Z) to m (2)* by

Q] (@) = 2oz 0(0)x(0)

for every x in m(Z), is a mean on 2. For this reason the probability densi-
ties on T were called, by slight abuse of language, finite or countable means in
my paper [1].

Define the (Kronecker) s-mapping of = into [; (£) by: For each sin Z, és
is that element of 7;(2) which is 1 at s and O elsewhere.

The operation of convolution is defined among functions on Z so that 6 is an
isomorphism of = into the multiplicative semigroup of the convolution algebra
1.(2). Formally if ¥ and ¢ are functions on 2, convolution is defined by

[IP ° §0] (0') = Zst=a 2 (8)90 (t) ’

where the sum is over the unordered set of all those ordered pairs (s, ¢) of
elements of = for which st = ¢. Because this set of pairs has no natural
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order, [¢ o ¢](¢) is defined only when the series is unconditionally (that is,

absolutely) convergent. Hereafter the defining formula will be abbreviated
as

) [Woul(o) = 2ume ¥(8)e(?) for each ¢ in .
§5 of [1] discusses the semigroup algebra [; (2); it is shown there that
@) [doeli=ll¢lllel,

and that the convolution of two probability densities is another probability
density.

Even in a semisgroup, for each probability density ¢ the operator o ¢ of
right convolution by ¢ can be regarded as a linear, not-necessarily-closed-or-
continuous operator defined on some linear, not-necessarily-closed subspace
of 1,(2) which includes ;; (Z). (See §5, C1 and C2, for examples.) How-
ever, in the special case of a right-cancellation semigroup 2, o ¢ is defined
everywhere in each [, (£), p = 1, and carries I, (2) into [, (2) without increase
of any norm. (See Lemma 4, below.)

If f is a complex-valued function on 2 and if d is a positive number, define
the function f* on = by

[f1(s) = | £(s) |” sign f(s) for each s in Z.
Here, for a complex number z, sign z = z/| 2| if z # 0, sign 0 = 0.

LemMma 1. Let 2 be a set, let p and d be positive numbers, and let f be an
element of 1, (Z); then

@) felpa@) and Q) [ e = U171

The proof follows at once from the definitions.

LemMmA 2. Let ¢ and p be probability densities on a set Z, let p exceed 1, and
definef = &%, r = p"'". Then
@) Iflls=1=1|rl»,sofandr are on the unit sphere of 1,(Z),
@ If—rl. =1

< lle — o', and
(i) lle—pli=p2"f—rl,.

Proof. (i) follows from Lemma, 1.
G). If 0 < @ < b, concavity of the p*-power function implies that
(b — a)” < bv® — a”. Hence

Uf—rllel” = 2| f) —7(s) P S 2 [ — [r ()] |
=2.le@) —pE) |=lle—0nl:.

@iii). The theorem of the mean applied to the pt*-power function in
0=<a=t=0b=1yields a number ¢ between a and b such that

W —a"=(b—a)pt® = 0O —a)pla+b)™



104 MAHLON MARSH DAY

Then
le —pli= 2uzlel) —p@) | = 2l ff(s) — 17 (s) |
< 2eplfe) —r@) [1F6) +r@) P

If ¢ is chosen in the usual way so that 1/p + 1/¢ = 1, then p/q¢ = p — 1,
and | f + 7| €1, (2); by Holder’s inequality

e — ol S P[22 [7() — r() P[220 1£() + r(s) P17

pllf =rlallf 47l s p2" 5 =75

The homeomorphism of I; with I, was proved by Mazur [9]; this is his proof,
and it is used to get uniform continuity between the positive parts of the
unit spheres.

IIA

LeEmMA 3. Let Z be a right-cancellation semigroup, and let p and d be posi-
tive numbers. Then
(1) for each s in Z and each f defined on =

[f] o 85 = [f o 3s]".

(ii) For each s in 2 and each p = 1 the right shift operation o ds is an
isometry of 1, (Z) into 1,(Z). The range of o ds is all of 1,(2) if and only if
right multiplication by s 7s a permutation of 2.

(i) If ¢ is a probability density on Z and p = 1, then
(largest real number in spectrum of o ¢ in 1,(Z))

S Nle) S lloellpsr = lelh=1

Proof of (i). For each g, 7in 2,
[f* 0 801 () = 2simr f1(8)00 (t) = Durmr ° (5).

By the right-cancellation property this last sum has no more than one term.
By interpreting an empty sum as zero, the original sum equals

[Es«r=rf(s) ]d = [[f  d0] (T)]d = [f°5°']d(”')'

Since this holds for each 7 in 2, f* 0 8¢ = [f o 80]".
Proof of (ii). If reZ, then [fodo]l(r) = X e f(s), and by right can-
cellation the sum has only one term. Hence

[fobdolly = (Xra| Zuwmr F6) )7 = (Za|f &) )" = [I£1l5-

If right multiplication by ¢ is a permutation of Z, then for given ¢ in [, (2),
fodc = g can be solved for f by setting f(s) = g(so), so o dc is a mapping of
1,(2) onto 1,(Z). If right multiplication by ¢ is not a permutation of Z, it
must fail to map = onto =, that is, there is a 7 in Z which is not in Zo. Hence,
no matter how f may be chosen, 87 is not f o 8o. But || 67 ||, = 1, s0 87 €1, (Z)
and is not in the range of o és.
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Proof of (iii). If fel,(Z), then
foo = 2eze(@)lf o dol.

Hence
”f°¢ ”P = ” Z“z<p(a')f°30‘ ”P = ZNEG"(U') ”f°5‘7 ”P
2oz @) [ fllo =11l el =11l

IA

Hence
loollpspr =sup {|foel,: Ifll. =1} =1L

The other inequalities of (iii) are standard properties of elements of a normed
algebra; see [8].

LeMMa 4. Let Z be a semigroup with right cancellation and o right undt,
let p be > 1, and let ¢ be a probability density such that P, contains a right undl
u of . Then the following conditions on ¢ are equivalent:

@) lloellsss = 1.
(i) There exist nonnegative f, of norm one in 1,(Z) such that || fn o ¢ ||l» — 1.

(iii) There exist (the same) nonnegative f, of norm one in 1, (=) such that

| fo = facdoll,—0 for each o in P, .

(iv) Ap(e) = 1.
(v) 1 s in the spectrum of o o.

Proof. Lemma 3(iii) shows that (v) implies (iv) implies (). @{) im-
plies (ii) because the sum defining || f o ¢ ||, is not decreased if f is replaced
by | f].

(i) implies (iii). Given a sequence or net (f, , n € A) which fails to satisfy
(iii), then for any right unit % in P, and some s, in P, we have the conclusion
that || fu o du — fu o 8so ||, does not tend to zero. By uniform rotundity of
1,(Z) (see [2, pp. 112-113]) it follows that

|l @ @)fn 0 8u + ¢ (s0)fa © 80 [lo/ (0 (@) + ¢ (s0))
can not tend to 1 so must have some upper limit 1 — o < 1. Then
| faoells = [l @ @)fa o du + ¢(s0)fn © 850 + other terms |,
has an upper limit £ 1 — g(p(u) + ¢(s0)) < 1, so (ii) fails for (f», n e A)
if (iii) fails.
(iii) implies (v). Choose (fn, n € A) to satisfy (iii). Then

”fn _fnc’q’”p = ” ZS¢Z¢(S) (fa — fu o 8s) ”p = Zaez @ (s) “fn — faods ”p:

which tends to zero. Hence o (u — ¢) has no bounded inverse; that is, 1 is
in the spectrum of o ¢.

Note that the nature of this proof, especially the crux of it, (ii) implies
(iii), can be applied to a more geometrical result.
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Lemma 5. If B is a uniformly rotund space, if T <s a linear operator from
Binto Bofnorm £ 1,40 < a < lLyand if U = ol + (1 — )T, then the
following conditions are equivalent: (1) | U || = 1. (i) 1 ¢s in the spectrum
of U. (iii) 1 s in the spectrum of T.

Because || U || = 1, (ii) implies (i) as before. If | U || = 1, then there
exist f, of norm one in B such that || Uf. || = 1,80 || ofn + (1 — &) TS0 || — 1;
then || (f» + Tf.)/2| — 1. By uniform rotundity, || f. — Tf. || — 0, so
I — T can not have a bounded inverse; that is, 1 is in the spectrum of 7.
This proves (i) implies (iii). To see that (iii) implies (ii) note that because
I —U=1-—a){ — T),the operator I — U has no inverse if and only if
I — T has no inverse, so 1 is in the spectrum of U if and only if it is in the
spectrum of 7'.

Let us restate Lemma 5 in a more geometric form.

LemMA 6. Let 8 be the unit sphere in the algebra of continuous linear opera-
tors from a uniformly rotund Banach space B into B. Then an element T of 8
has 1 in its spectrum if and only if the segment connecting T to I (the identity
operator) is a subset of 8.

If T is a subset of Z, define g (T') to be the smallest subset of £ which con-
tains T and contains with any two of s, ¢, and st the third.

(The family of sets 9 D T closed under the given process has 2 as a member,
and the intersection of all such g has the desired property; hence J (T") exists.)

Note that if T' is nonempty, then U C ¢ (T'), for v in T and » in U imply
yu = vel,s0 ued(T).

For each p = 1 and each net (f,, n ¢ A) of nonnegative elements of norm
one in 1,(2), define

Zp(fn) = {0 :lim, “ o — faodo Hp = 0}.

Lemma 7. () If p' = 1 and Fo = £,7'7, then Z,(fa) = Zp (F).
(ii) U, the set of right units of =, is contained in Z,(f,).
(i) Zp(fa) = 9(Zp(fa)), so for any nonempty subset T of Z,(f») it follows
that 9 (T) C Zp(fa)-

Proof. (i) This follows from Lemma 2 by working from f, to ¢, = f.7,
and then on to F, using F,,” = ¢, .
(ii) If u e U, then o u is the identity in [, (Z).
(i) Ifs,teZ = Zy(f,), then
[ fo = faodst|| S || fa — faodt]l 4+ || (fa — faods) odt| —O.
If s and st e Z, then
[ fo = facdt] = | fo—facdst| + | (fucds —fu)odt|—0.
If ¢ and st e Z, then

”fn’_fn°5s” = ”fn°5t_fn°53t”_’”fn_fn|[ = 0.



CONVOLUTIONS, MEANS, AND SPECTRA 107

Lemma 8. Ifp > 1 and (fu,n € A) is a net of nonnegative elements of norm
one in 1,(Z), then Z,(f,) = U, P, , where the union is taken over the set of all
probability densities ¢ such that || fa o ¢ ||, — 1 and P, meets U.

The proof of equivalence of (ii) and (iii) of Lemma 4 proves this also.

4. Proofs of principal theorems

Proof of Theorem 1. 'The proof of equivalence of (a) with (g) is the “right”’
part of the equivalence of amenability and strong amenability [1, §5, Theorem
1. That (f) implies (g) is easily shown by the methods which prove a
group is strongly right amenable if every finitely generated subgroup is [1,
§4, (K)]. By the definition of right strong amenability (g) is equivalent
to the existence of a net (¢, , n e A), of (finite) probability densities on =
such that for each ¢ in =, lim, || ¢» — ¢n © 80 || = 0; this is the assertion that
Zy(¢n) = =. But Lemma 7 (i) allows this to be transferred to f, = ¢,"? in
l,(Z). Thisis the same as the condition that every o 6 has 1 in its spectrum.
By Lemma 4 this implies (b), (b) implies (¢), and (¢) implies (d). (e) is
a formal weakening of (d), so we need only prove (e) implies (f). This
proof is based on an idea of Granirer [5, Theorem E; , pp. 50-51].

For each countable set £ there is by (e) a ¢ such that P, n U = @, P, 2 &,
and || ¢ |lp»p = 1. Therefore there is a sequence of elements f, of norm
one in 7,(Z) such that || faoe|, — 1. By Lemma 4, (ili) implies (i),
| fo — faodo|,—0if ¢ e P, 2 & Setting . = f.*, Lemma 2 shows that
len — @noda|1— 0if o ek

Now let £ = £; then the above method produces a sequence ¢y, of prob-
ability densities converging to right invariance for each ¢ in & . If
4 C & C -+ C &, are countable subsets of =, the same construction will
give a corresponding sequence ¢m,, such that lim, || ¢mn — @mnodo || = 0
for each o in £, . Then let w1 = &n u U, Py, , and construct the next
sequence for this new countable set. Let =’ be the smallest semigroup
containing all the &, ; then 2’ is countable and contains all P,,, , and £. To
show that 2’ is right amenable, enumerate U, £, as a sequence
S1, 8, *, 8, -. Foreach k there is an m = m (k) such that all s,
t = k, are in £, . Then there is a ¥; among the terms of the corresponding
sequence ¢, such that

Il¢k_¢k°681|l<1/k fori=1,2,---,k.

Hence limy || ¢ — ¢rods| = 0if sed(Unén) 2 2. Because Py, also
C Z’, this proves [1, Lemma 1, p. 522] that =’ is right amenable; it was
already known to be countable and to contain &.

Proof of Theorem 2. (b) of Theorem 1, restated, implies that the convex
hull of the set of all o §s consists exclusively of elements o ¢ with 1 in the
spectrum.

By Lemma, 6 every o ¢ is connected by a straight line segment lying in §



108 MAHLON MARSH DAY

tolI. If T ¢ K, the closed convex hull of the o §s, then there exist ¢, such that
logn — T || — 0. Hence for each o between 0 and 1 the sequence
al + (1 — a) op, tends to af + (1 — )T, so every point on the closed
segment from I to T is in §. By Lemma 5, 1 is in the spectrum of 7'.

Proof of Theorem 3. This is part of the proof of Theorem 1. It begins
with “(ii) implies (iii)” from Lemma 4 and is completed with Lemma 2 (iii).

To prove Theorem 4 recall that for groups amenability is equivalent to
right amenability [1, §4, Theorem 1], and that a group is amenable if and
only if every subgroup, or every finitely generated subgroup, is amenable
[1, §4, (D) and (K)].

The equivalence of (f') with (e’) is very much like the corresponding proof
in Theorem 1. The mapping ¢ <> ¢ * in @ interchanges left and right both
for convolutions and for invariance of means. Since (f') is invariant under
such a change, the “left” versions (a;), ---, (h;) are equivalent to the
original conditions when = is a group.

5. Examples and remarks

A. The adjoint of o . It is easily calculated that if @ is a group and if
for ¢ in I (@) the element ¢ of I, (@) is defined by: ¢* (¢) = complex conjugate
of ¢(g™"), then o ¢* interpreted in I, (@) is the adjoint of o ¢ in 1,(@). Hence
for each probability distribution ¢ on G the operator o ¢ is self-adjoint on
(@) if and only if ¢ is symmetric, that is ¢ (g7") = ¢ (g) for all g in G; this
is the case studied by Kesten ([6] and [7]). In this case the spectrum of o ¢
is real, and 1 is in the spectrum of o ¢ if and only if 1 is the supremum of the
spectrum of o ¢.

B. Random walk and convolution. When Z is a semigroup, a random walk
W, on = may be defined by assigning to ¢ and 7 the number ¢ () as the
probability of taking the step from ¢ to or. When 2 is a group, the walk
W, is called symmetric if ¢ is symmetric.

If ¥ and ¢ are probability densities on Z, then ¢ o¢ is quite naturally
described as the transform of the density ¥ by the walk W,. Indeed ¢ o¢
assigns to a point r the sum of products of the probability ¥ (s) of being at s
by the probability ¢ (¢) that the step from s to st = 7 will be taken by the
walk. Kesten [6] represents this walk in a group @ by a matrix ((m.)) where
me = (s 't). His ¢ is symmetric so his matrix is symmetric, my = m,
for all s, ¢ in G. Then he defines the linear operator M from lye into lye
by means of the matrix ((ms))

[Mf](s) = Ztea mes f(8) = ZMG % (S-It)f(t) = Zteo ¢(t_13)f(t)-

Calculation of f o ¢ in a group shows that

[Foel(s) = 2umef @) = Dteaf B s).
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Hence Kesten’s Mf is f o ¢ whenever ¢ is a symmetric probability density on a
group.

C. In general semigroups convolution by ¢ need not be everywhere defined
nor closed, nor bounded, nor need the conditions of the theorems remain
equivalent for general semigroups.

Cl. An abelian (therefore amenable) semigroup where 1 is in the point
spectrum of op. Let T be an infinite set containing a point 0, and let T’ be
made into a trivial semigroup 3 by the rule: for all s, ¢ in T' the product st = 0.
Then for any ¢ and f, [f o ¢] (x) = 0 unless z = 0; also

[foel(0) = Dumo F()e () = 200 F(8) 2t 0(t) = 2 f(s)

whenever this sum is defined, that is, whenever fel;(Z). Hence foe is
defined if and only if f € [ (3), and then foo = (D, f(s) )s0.

Then 60 = 80 o ¢, so 1 is in the point spectrum of o ¢.

For p > 1 all X are in the spectrum of o ¢ in [, (3). We already know that
1 is in the spectrum. Suppose that for a N 5 1 there were a T defined and
linear and continuous on I, (3) such that for each f in [ (3), the domain of
definition of A\ — ¢,

TMA — o)f =f= (M — op)Tf.
=T — (2. f(s))T00,

(2 f(s))T80 = \T'f — 1.

The right side depends continuously on f in the I, norm, but the left will not
unless 7%0 = 0. On the other hand, 30 = T"(\60 — 40), so T™60 =
80/(\ — 1) % 0. Hence all X are in the spectrum of o ¢ in 7,(3).

C2. A left-but-not-right-amenable semigroup where 1 7s in the point spectrum
of op. Let L be an infinite set, and let £ be the semigroup obtained from it
by defining st = ¢ for every ordered pair of elements s, ¢ of L. As £ has more
than one element, there are no right invariant means or right units nor any
ghost of right cancellation. Also for each f for which the sum converges
unconditionally and for each ¢ in £

fodo = (2.5(s) )b,

80, as in 3, convolution of an f by a ¢ is defined if and only if fel,;(£). If ¢
is a probability density, then

foo =2 0e(@)fobs = 2 00(0)(2of())be = (2.7 (s) e

Then ¢ oo = ¢, 80 1 is a characteristic number of o ¢ corresponding to the
characteristic vector ¢. To show that every A s 1 is also in the spectrum
of o in [, (L), merely repeat the argument of C1 replacing 60 by ¢.

Note that in both these semigroups 0 is the characteristic number of o ¢

Then

or
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in () corresponding to all elements of the hyperplane {f: Y . f(s) = 0}.
There are no other points in the spectrum of o ¢ in {1 (3) or ;(£).

D. The special case p = 1 of (b), (c), and (d) of Theorem 1 1is true for
every semigroup. | c¢llis1 = 1 because ||[¢ ol = || ¢1] || ¢1 | whenever
¢ and ¢ are nonnegative elements of /; (£). To show that o¢ has 1 in its
spectrum, for each n let f, = (¢ + ¢ oo + --+ + @o - 0¢p)/n. Then
fa is also a probability density, and

[foco —fall=lle —@o--0p|/n=2/n—0.

Hence 1 is in the spectrum of o ¢, and as in §3, these conditions make the
spectral radius of o ¢ equal to 1.

E. Semigroups satisfying the hypotheses of Theorem 1 which are not groups.

El. Let ®, be a set of elements (m can be any cardinal number), and
define products so that all elements are right units, that is, ab = a for each
pair a, b of elements of ®,,. Then ®,, also has right cancellation, and o ¢
is the identity operation in I, (®,) for every probability density ¢ and number
p = 1. Hence all the conditions of Theorem 1 are trivially verified for Q.. .

E2. If = is any semigroup with right cancellation and a right unit, for
example, if = is a group, then ®, X Z has right cancellation and right unit.
Multiplication is defined coordinatewise, of course, so (u, s) (W', s’) = (u, ss’).
Then, if v is any right unit in =, (u, v) is a right unit for ®,, X Z. If Zisa
group, every o & (u, s) is an isometry of every I, (®,, X =) on itself.

E3. If Z = set of nonnegative integers under the usual addition operation,
let F be any function from ®,, into = such that there is at least one u with
F(u) = 0. Let ' be the subsemigroup of ®, X = consisting of all these
elements (u, ¢) with ¢ = F(u). Then Z’ is a semigroup with cancellation
and right unit which satisfies all the conditions (a)-(h).

E4. If in example E2, F is any function from ®, into =, let 2’ be the set
of ordered pairs { (u, s) : s e F(u)-Z}. Then 2’ is a subsemigroup of ®,, X =
with right cancellation. =’ has a right unit if and only if there is a u in R
and a right unit » in = such that v e F (u) -2 (so (u, v) € Z').

This example includes those of E2 and E3 as special cases. =’ will be right
amenable if T is.

E5. It is to be noted that if = is right amenable in examples E2 and E4,
then ®, X Z and 2’ satisfy all the conditions (a)—(h) of the principal the-
orems. In particular, if 2 is an amenable group, then ®,, X 2 is right amena-
ble but not left amenable.

F. Generalizations to be studied further. The extension of this to Orlicz
spaces is a natural problem for a thesis, and one of my students is currently
at work on it. The relation of this study to that of groups studied
by Dieudonné [3] is also to be catrried forward. Much of the above discussion,
especially the lemmas, can be carried out for measurable or continuous
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probability distributions on locally compact groups, but some of the proofs
involving measurability give trouble when uncountable directed systems
and nets are used. Also that difference between atomic and nonatomic
measures which is responsible for the Riemann-Lebesgue theorem also inter-
feres with direct generalizations of the theorems. Again this is under investi-
gation.
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