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Any functor P on a category ( determines an equivalence relation on the
morphisms of a which is compatible with composition in a. We call any
relation determined by a functor a homotopy and develop the ideas of cylinder
and cone functors in this general context. An appropriate generalization of
the homotopy extension axiom implies that a cone functor is essentially a
functorial injective for the category. This structure occurs in the cases of
the usual homotopy on CW-complexes and the Eckmann-Hilton injective
homotopy of modules which we present in a generalized categorical context.
For any category a together with a class of its morphisms M, the projection

functor P a --* (/M yields a homotopy, where (/M is the Gabriel-Zisman
category of fractions of ( by M. Indeed for the "right" choice of M, P
yields the well-known homotopies above: to be precise, take M to be the class
of coretracts i:X -- Y for all X, Y such that Y/i(X) is injective. This
enables us to determine the "right" homotopy from the knowedge of the
contractible objects (injectives) alone.

1. Categorical preliminaries
If a is a category, a homotopy (or congruence) on a is an equivalence rela-

tion on each of the sets a (X, Y) of morphisms between objects of a which
is compatible with composition; that is, f g implies fh N gh and kf kg
for all h, k for which the compositions are defined. If a has a homotopy
the homotopy category of a with respect to is the category a/, whose ob-
jects are those of a and whose morphisms are the equivalence classes under

of a (X, Y) together with the projection functor p a -- 6/,’,., which is the
identity on objects and maps each morphim f to its equivalence class If]
under -. The functor p determined by the homotopy is clearly universal
with respect to all functors F a --+ (B such that f g implies F (f) F (g).
Conversely any functor F ( --* (B defines a homotopy byf g iff F (f) F (g)
and f, g have the same domain and codomain, though (B need not then be
a/,’,.,, e.g. when F is not one-to-one on objects.

Three examples indicate the applicability and generality of these tech-
niques. These are the usual homotopy of continuous functions on CW-
complexes, the fibre homotopy in the category of functions to a fixed base
space, and the Eckmann-Hilton injective homotopy of modules of which a
development is given in Section 4. For more details see Hilton [4].
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Let a be any category and M any class of its morphisms. We denote the
category of fractions of ( by M [1, 3] by a/M and denote the canonical projec-
tion by P" a --. aiM.
For any class M, the homotopy determined by the functor P a -- aiMis called M-homotopy. If two different classes of morphisms M and N yield

the same homotopy we write [M] IN]. Theorem 1.1 (Theorem 2.3 of [1])
is useful in determining when [M] IN].

THEOREM 1.1 (Bauer and Dugundji). Let a be a category, M a class of
morphisms of a with projection P" a a/M, and a homotopy on a with
Q a --> (/,. the projection to the homotopy category. Suppose that if fo fl
X - Y then there exists an object Zx of a with morphisms

io, i X- Zx, r Zx-- X and F Zx--) Y

such that r o ij 1 and f F o i j O, 1.
(a) If P (r) is invertible in a/M,

Then:

Q(fo) Q(f) P(fo) P(f).

(b) If Q (f) is invertible for every f M, then

P(fo) P(f) Q(fo) Q(f).

We shall restrict our discussion to categories having conull objects. For
CW-complexes this is the one point space, for modules the zero module, and
for morphisms to a fixed base space the conull object is the identity morphism
of the base space. Using this conull object we may define what we mean by
a quotient. If f X --* Y is any morphism of the category a, we shall denote
by Y/f(X) the pushout (if it exists) of the diagram

X:f y

0

If for all morphisms f of a the pushout above exists we shall say the category
a has quotients. If f is a monomorphism we shall call Y/f(X) the quotient
of Y by the subobject f, and where the context makes clear which monomor-
phism is meant we shall merely write Y/X and refer to the quotient of Y by
(the subobject) X.
Finally we shall want the following definition [9].

DEFINITION 1.2. Let fo, fl X --* Y be morphisms of a. We call , Y --* Z
a weak equalizer of fo and f if

(a) ofo ’y of and
(b) if ’ Y -- Z’ is any morphism such that ,’ o f0 ’ o f then there

is a morphism (not necessarily unique) g’Z -- Z such that / g o ,.



448 j.A. SEEBACH JR.

2. Cylinders and cones
In the two topological examples the following definition is illustrated by the

cylinder over X, that is, X X I for a CW-complex X and f:X I ---. B
where f(x, t) p (x) for a morphism p :X --+ B. For an abelian category
with an injective cogenerator the "standard" cylinder over X is the sum of X
with C (X) where C is a functorial injective (cf. Section 4).

DEFINITION 2.1. A cylinder functor for a category ( is a quadruple
(Z, i0, i, r) where Z" a - a is a functor and

io, i" Id---Z and r" Z-- Id a

are natural transformations such that r o i id, j 0, 1 [6].

Any cylinder functor (Z, i0, i, r) gives rise to an obvious relation on
morphisms, written f "-z g, which extends to an equivalence relation which is a
homotopy, 1. The relation given directly by the cylinder may fail to be an
equivalence relation, and moreover not every homotopy arises from a cylinder
[8]. For a homotopy which does come from a cylinder to be given directly by
that cylinder we mean that f, g:X -- Y are homotopic iff there exists
H Z (X) - Y such that H i0 fo, H o i f. Henceforth we will assume
that every homotopy is given directly by a cylinder functor and leave the
extensions to the reader. It should be noted that Theorem 1.1 enables one
to tell when the homotopy category resulting from a category with cylinder
is a category of fractions.
When a given homotopy comes from a cylinder, we have the following:

PROPOSitiON 2.2. Let ( be a category with direct limits and a homotopy
given directly by a cylinder functor (Z, io i r ). Then the homotopy category
a/. has weak equalizers in the sense of Definition 1.2.

Proof. A categorical version of the proof in [9, page 406].
It is easy to construct cases where the weak equalizer is not unique but

this result is sufficient for its application in representability of cohomology
theories.
Now if ( has a homotopy given directly by a cylinder functor (Z, i0, i, r)

then a morphism f X --. Y is homotopic to a null morphism (one factoring
through 0) iff there is a mor:phism

F Z (X)/i(X) Y

such that F o p o io(X) f where p Z (X) ---. Z (X)/i (X) is the morphism
from Z (X) to Z (X)/i (X) in the definition of Z (X)/i (X) as a pushout.
Now Z (X)/i (X) defines a functor C a -- a and p o i0 (X) defines a natural
transformation i: Id --* C. We call any pair (C, i) where C a -. a is a
functor and i:Id --* C is a natural transformation a pre-cone. If for some
object X, id is hmotopic to a null morphism we say X is contractible. If
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the homotopy is given by a cylinder functor, X is contractible iff idx may be
factored as

i(X) Fx c(x) x
for some X where C (X) Z (X)/il (X).

In any category with a pre-cone (C, i) we say an object X is contractible if
idx may be factored through i (X). In the usual cases CX is contractible for
every X, and indeed the existence of a "natural" contraction is equivalent to
the existence of a natural transformation p C --+ C such that p o i (C) ida.
We call such a triple (C, i, p), where C a --+ a is an endofunctor on the
category a and i id --+ C and p C" -+ C are natural transformations such
that p o i (C) ida, a cone-functor.

3. Homotopy extension and injectives
Let (Z be any category having a homotopy with projection p

and a cone functor (C, i, p).

DElImaIO. We say a monomorphism i" A -+ X in (t has the homotopy
extension property (HEP) if for each pair of morphisms f:X .--, Y and
g"A -+ Y such that f’ f o i is homotopic to g’ there exists g" X -- Y
such that g’ g o i and g and f are homotopic. If every monomorphism
satisfies HEP we say the homotopy satisfies HEP.

TIEOIEi 3.1. If for every contractible object K of a, p ((Z (X, K)) is a one
element set and if N satisfies HEP then the contractible objects of a are injective
objects. Furthermore, if I is injective and i(I)’I ---+ C (I) is a monomor-
phism then I is contractible.

Proof. If i (I) is a monomorphism and I is injective then i (I) is a coretract
so I is contractible. On the other hand let j" A --+ X be any monomorphism
and. f’:A --+ K any morphism. Since p(a(X, K)) is a one element set
there exists g X -+ K for which g oj f’. By HEP there exists f" X --+ K
such that f oj f’ so K is injective. QED

Examples. With the usual homotopy and cone in the category of CW-com-
plexes we see that the contractible objects are precisely the injeotive objects.
We shall see in the next section that the same statement applies in the category
of modules over a ring, using the notion of injective homotopy developed by
Eckmann and Hilton [4]. Thus these categories have enough injectives and
the contractible objects are precisely the absolute retracts in the categories.

4. Injective homotopy in an abelian category
In this section we shall discuss the structure of the homotopies on an abelian

category which are given by a cylinder functor and which satisfy HEP. We
shall see that such a homotopy is essentially unique and thus is the injective
homotopy presented by Hilton [4].
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For any abelian category a with enough injectives the Eckmann-Hilton
injective homotopy is defined as follows’f, g e a (X, Y) are homotopic ifff-g
factors through some injective, or equivalently iff f-g factors through the
inclusion of X into some injective.
We shall adopt the following notation. The morphism from X --, A X B,

the direct product of A and B, defined by f X --, A and g X - B will be
denoted by (f, g)T (where T denotes transpose) and likewise we shall use
(f, g) for the morphism from A B -- X defined by f: A --+ X, g B -- X.
In this notation matrix multiplication then yields the composition of the
morphisms involved.

Let (Z, i0, il, r) be a cylinder functor for a. Then since p o i0 id we
may write Z I K where I is the identity functor and i0, il, r become
(id, 0)T:I--I K, (id, t)T:I--I K and (id, 0):I 9 K--.I
respectively for some natural transformation t’I --) K. We then see im-
mediately that (Z, i0, i, r) yields a homotopy defined by f g X - Y
iff f-g factors through (X) :X 4. K (X) and that this is precisely the rela-
tion z given by (Z, i0, il, r). Thus, in this case, z is always an equivalence
relation without extension. It should also be noted that (K, t) is a pre-cone
and that the above shows that f-g factors through K iff f-g is null homotopic.
Further if (C, i) is any pre-cone then

(I C, (id, 0)T, (id, i)T, (id, 0))

is a cylinder functor and "-xec is precisely the relation given by f "ec g
iff f-g is nullhomotopic with respect to (C, i). Thus in abelian categories the
study of pre-cone functors is equivalent to the study of cylinder functors.

Before proceeding to a general consideration of homotopies in an abelian
category we shall note that in certain cases cylinder functors do exist which
give the injective homotopy for an abelian category. We consider the dual
of the construction given in [5]. Let G (X) a (X, U) where U is an injec-
tire cogenerator for a, be the usual contravariant horn functor. Then G has
a right adjoint P which is a contravariant (!) product functor. For details
see [8]. We may conclude (by duality) from Huber [6] that P and G are
adjoint and that therefore PG C, which is a covariant functor (!), has the
structure of a triple (C, i, p). Also we note that C is an injective monofunctor
iff U is an injective object in a and i (X) is a monomorphism for all X iff U
is a cogenerator for a.

DEFINITION. If for a cylinder functor (Z, i0, il, r), r (X) ZX -- X is a
homotopy equivalence with i0 (X) as homotopy inverse we call (Z, i0, i, r)
a natural cylinder functor.

PROPOSITION. (I K, (id, O)T, (id, t)T, (id, 0)) is a natural cylinder
functor iff (K, t) is a cone functor.

Proof. A direct mechanical computation. For details see [8].
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Now applying the above results together with the results of Section 3 we
see that in an abelian category any homotopy given by a natural cylinder
functor, or equivalently by a cone functor, which satisfies HEP is precisely
the Eckmann-Hilton injective homotopy.

5. The injective homotopy in a category
We present here a construction of a homotopy for any category with

quotients which depends only on the injectives of the category. Since this
homotopy is the usual homotopy in the three examples we have been consider-
ing, we conclude that this is the "right" way to reclaim a homotopy from the
knowledge of the contractible objects (injectives).

DEFINITION. Let M be the set of morphisms i of a such that i" A -- Bis a coretract and B/i (A) is injective, construct the category a/M together
with the projection functor P ( --> aiM and define f, g X -- Y to be homo-
topic (written f g) if P (f) P (g). We call the injective homotopy
for a.

THEOaEM 5.1. (a) If ( is an abelian category with an injective cogenerator,
N is the usual Hilton-Eckmann injective homotopy.

(b) If ( CW-complexes with continuous functions, is the usual
homotopy of continuous functions.

Proof. (a) Let (Z, i0, il, r) be the cylinder functor for a discussed in
Section 4. By Theorem 1.1 it is sufficient to prove that P (r) e aiM is inver-
tible and that each i e M is invertible in a, the homotopy category of a with
respect to Hilton-Eckmann homotopy. If i e M, i A -- B, let p B -- Abe such that poi ida.

may be factored as

Then

i p
A ;B- ;A

(id, ’) (id,0)
A )AI

for some i’" A -- I where I is an injective. Then clearly i is invertible in
a. Now in a/M io has an inverse j hence, since i0 o r o i0 i0, we have
i0 o r id in a/M. So P (r) is indeed invertible in a/M with i0 (or i) as
inverse.

(b) Let (Z, i0, il, r) be the usual cylinder functor for topological spaces.
That P (r) is invertible follows exactly as above. Let i e M where

i
A ;B-

with poi ida. It remains to show that lop id.. Since this is a
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homotopy problem we may assume that i is a cellular map. Since B/i(A)
is injective it is contractible and

n (B/i(A); G) -- i (B, A; G) 0 for all n, G

(including local coefficients G). Then by obstruction theory the partial
homotopy which is given by r: A X I --* A c B on A X I, the identity on
B X /01, andiponB X /11 may be extended rob X I. Soiop-,id.
QED

6. Summary
The previous section has shown that in two classical cases it is indeed

possible to reconstruct the homotopy from the knowledge of the contractible
objects (injectives) alone. This appears to answer a conjecture of R. L.
Knighten [7].
For an abelian category a category of fractions may be described equiva-

lently as a quotient category in which identification occurs only within mor-
phism classes; instead of specifying the class of morphisms to be inverted by
an additive functor, one specifies the corresponding class of morphisms to be
identified with (appropriate) null morphisms. Thus for an abelian category
Freyd [2] obtains (dually) via quotient categories various homotopy categories.
Freyd’s central construction enables one to reconstruct an abelian category
from any "ample class", that is a full subcategory of a resolving set of rela-
tive projectives. The analogous problem of reconstructing a topological
category from the full subcategory of contractible objects runs into the usual
problem of choosing the "right" category of topological spaces" for example,
the category of CWocomplexes is not closed under "kernels" of morphisms be-
tween injectives.
Although computational difficulties in a/M, which allows no calculus of

fractions since homotopy does not preserve limits, make it difficult to prove
that injective homotopy has in general such properties as HEP, we hope
eventually to investigate the above and more of the general properties of the
injective homotopy. However, the following remarks indicate that some at
least of the expected results do hold in our general context.

It can be shown that if a:X -- Y has a left inverse p, and a e M then
P (a) has P (p) as its inverse. Hence if a is a coretract in M with p o a lx
we may add p toM and [M u p}] [M]. We should also note that if a 0 - I
is a morphism where 0 is conull and I is injective, then a e M. Thus for
injective homotopy every injective is contractible.
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