THE MULTIPLIERS OF THE SPACE OF ALMOST CONVERGENT
SEQUENCES

BY
Cuing CHoU

1. Introduction

Let N be the set of all positive integers, m(N) the space of bounded real-
valued functions on N with the sup norm. A continuous linear functional
¢ on m(N) is called a Banach limit, cf. [6], if for f e m(N),

inf, f(n) < o(f) < sups f(n) and o(f) = o(7f),

where 7f e m(N) is defined by (7f)(n) = f(n + 1). Let M be the set of all
Banach limits. It is well-known that M is non-empty, w*-compact and
convex.

Let F be the set of all f em(N') such that ¢(f) equals a fixed constant as ¢
runs through M. If feF then we say f is almost convergent, cf. [6]. It is
easy to see that F is a closed subspace of m(N) and it contains constant
functions. fem(N) is a multiplier of Fif fF C F. Since F is not an algebra,
My, the set of all multipliers of F, is properly contained in F. Lloyd [5] gave
an example to show that 9y is not even the largest subalgebra of F. The
purpose of this paper is to provide a characterization of the set 9. We
show that fF C F if and only if f converges to a constant « in the following
weak sense: given ¢ > 0 there is a set A C N such that ¢(X,) = 0 for all
oeM and |f(n) — a| < eif n e N\A. Thus, in some sense, Ny is a very
small subspace of F. For example, it follows from the above characterization
that if f is a non-constant almost periodic function on N then fF ¢ F.

In the last section of this paper we shall consider the generalization of the
above results to groups. The author wishes to thank Professor M. M. Day
for suggesting the generalization.

2. Preliminaries

Let k; and n; be two sequences of positive integers such that k; — « as
j— «. ForjeN let ¢; be the linear functional on m(N) defined as follows:

oi(f) = k7' 285 f(n; + 5)  (f em(N)).

It is easily verified and is well known that the w*-cluster points of the sequence
(¢;) are Banach limits. With the above observation and the Krein-Milman
theorem, Raimi [9] proved the following.

LemMA 2.1. For fem(N), let
d(f) = sup {o(f) : 0o e M} and d(f) = inf {(f) : ¢ e M}.
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Then
d(f) = lim sup, supe n™* 25527 £(5);

d(f) = lim inf, infe n™" 2527 £(5).

If f e F, then d(f) = d(f) and we shall denote the common value by d(f).
The above lemma implies that f € F if and only if

lim, n™" 25527 f(5) exists uniformly in k, cf. [6].

For convenience, if A < N, then d(X,), d(X4) and d(X,) will be denoted
by d(4), d(A) and d(A) respectively, where X, is the characteristic function
of the set A in N. By applying Lemma 2.1 to the function X, , we see that
d(A) exists if and only if 4 is “evenly distributed” in N and d(4) = 0if and
only if A is “thinly distributed” in N.

We shall also need the following consequence of Lemma 2.1. We quote it
here for later reference.

Lemma 2.2 (ef. [1]). Let A € N. Then d(A) > 0 if and only if there
exists a positive integer m such that

AN{k,E+1,---,k+m—1} %@ foreachkeN.

Let BN be the Stone-Cech compactification of the discrete set N, cf. [4].
Each f em(N) can be extended uniquely to a continuous function f~ on 8N.
The mapping f — f~ is an isometry of m(N) onto C(BN), the space of real-
valued continuous functions on BN with the sup norm. Therefore, each
¢ em(N)* corresponds to a measure w, on BN. The correspondence is
characterized by ¢(f) = [enf due, f e m(N).

If A C N, then A~ denotes the closure of A in BN. Sets of the form 47,
A C N, are closed-open and they form an open basis for BN. As in [10] we
set

K =MNA":4 cN,d4) = 1}.
Then K’ is a compact nowhere dense subset of BN and
K" = cl [u {suppt u, : ¢ € M}].
3. The main theorem

DEeriniTION. fem(N) is said to be r-convergent if there is a real number
o satisfying the following: given ¢ > 0 there exists a set A C N such that
d(4A) = 0and |f(n) — a| < €if n e N\A. In this case we denote a by
7-lim f.

Clearly, every convergent sequence is r-convergent and if 7-lim f = «
exists them f ¢ F and d(f) = a.

Tueorem 3.1. Let fem(N). Then the following three conditions are
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equivalent:

(a) fF CF.
(b) f s T-convergent.
(¢) f~ = a constant on K.

Proof. (b) = (¢). Assume that r-lim f = « exists. Then, for a given
& > 0, there exists a set A C N with d(4A) = 1 and |f(n) — a| < &for
nedA. Therefore |f (w) — a| < eifweK C A™. Since ¢ > 0 is arbitrary,
=aonK'.

(¢) = (b). Assume that /- = « on K" and let ¢ > 0 be given. Then
since K is compact and sets of the form B™, B < N, form a basis for BN, we
can find a set A < N such that A~ D K" and |f (w) — a| < eif weAd™.
It follows that d(A) = 1 and | f(n) — a| < cifn e A.

(¢) = (a). Assumef = aonK'. If gem(N) then (f§)” = ag on K.
If ¢ € M, then suppt x, € K’ and hence

o(fg) = [xrag” du, = ap(g).
Thus if g € F then so is fg. Thus fF C F.

(a) = (b). This is the most difficult implication. Let f e 9r be fixed.
We have to show that r-lim f exists. Without loss of generality, we may
assume that f > 0and d(f) = 1. Fore > 0, let

A(e) ={neN :f(n) 21+ &, B(e) ={neN:f(n) <1— ¢,
C(e) ={neN:|f(n) — 1] < ¢}

Note that N is the disjoint union of A(e), B(e) and C(e). We need to
show that d(A(¢)) = 0 and d(B(e)) = 0 for each ¢ > 0. For the sake of
clearness, we divide the proof of this fact into several steps.

I. Leta < bbereal numbers. Let
A={neN:f(n) 2b and B ={neN:f(n) <al.
Then either d(4) = 0 or d(B) = 0.

Notation. For a fixed positive integer m, N can be divided into blocks of
m consecutive integers N (m, n), where

Nmn)={(n—-—1m+1,(n—1)m+2,:---,nm}, neNN.

Proof of I. 1If both d(A) and d(B) are positive then by Lemma 2.2 there
exists m € N such that N(m, n) N 4 > @ and N(m,n) N B = @ for n e N.
Choose

a,€N(m,n) NA and b,eN(m,n) NB, neN.

Let ki, ks, --- be an increasing sequence of positive integers such that
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knyr — ku — o asn — oo;let kp = 0. Define a subset S = {8, 83, +++}
of N as follows
s;=a; if ke <j<lkwp, n=01,2 -+,
=b; if kwa<jZ<lhwm, n=12- .-,
Then, for eachn ¢ N, N(m,n) N Sis a singleton. Thus, by Lemma 2.1
(1) XseF and d(8S) = 1/m.

On the other hand, since k,41 — ks — © asn — ©, we may apply Lemma
2.1 again to get the following inequalities:
. . 1 &
d(fXs) = lim supy, —————
(f S) P m(k2n - k?n-—l) f—kg_:1+1
> b/m, sinceb;e A,
1 kang.1

M(Fentr — Kon) jmbgrrt

1(b;)

d(fXs) < lim inf, f(a;)

< a/m, since a; ¢ B.
Thus,
(2) fXs¢F.

By (1) and (2), f ¢9Mr. This contradicts our assumption and the proof of
I is completed.

II. Foragivene > 0,d(A(e)) = 0and d(B(e)) = 0.

Proof. Let A = {neN :f(n) 2> 1}. Assume that d(B(¢)) > 0. Then,
by I, d(A) = 0. Thus there exists a ¢ € M such that

(3) o(X4) = 0.
But,
(4) o(Xn») 2 d(B(e)) > 0.
Hence,
= d(f) = o(f)

= ¢(fX5@&) + o(fX4) + o(fX c(e\a)
< sup {f(n) :n eB(e)}lp(Xnw) + || flle(Xa)

+ sup {f(n) : n e C(e)\A)}o(Xeena) (by (3))
S (1 = 8e(Xs) + o(Xeo)
= o(Xsyu o)) — ep(Xpe) <1 (by (4)).

This is impossible and, hence, d(B(¢)) = 0. Similarly, d(4(e)) = 0.
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III. Foragivene > 0,d(C(e)) = 1.

Proof. If d(C(e)) < 1 then d(A(e) u B(e)) =t > 0. Since, by
II,d(A(et/2)) = 0, there exists ¢ € M such that

(5) (X ateum) = 0.
Since‘P(XA(e)u Be)) = tand ,(Xae) < ‘P(XA(et/2))) we see that

(6) ¢(XB(2)) >t
Thus,

1 =o(f) = o(fXpw) + e(fXuem) + e(fXmaenacun)
< (1 = 8)e(Xney) + (1 + &t/2)o(Xmnee) (by (5))
< o(Xp0) — & + e(mse) + &t/2 (by (6))
=1—s/2<1.
This is impossible. Thus, d(C(g)) = 1, as we claimed.
IV. ForneN, d(f*) = 1.
Proof. SincefeMy,f" ¢F. Fora fixed 8 > 0, since, by III, d(C(8)) = 1,
there exists a ¢ ¢ M such that o(Xc¢@) = 1. It follows that

(") (") = o(f*) = o(f"X cw)-
On the other hand, since (1 — 8)" < f"X¢w < (14 6)". Wesee that
(8) (1=8)"< o(f"Xow) < (1 +8)"

Combining (7) and (8), we have (1 — §)" < d(f") < (1 + 8)" for each
6 > 0. Thusd(f") = L.

V. Fore> 0,d(A(e)) = 0and d(B(¢e)) = 0.
Proof. Let ¢ e M. Then,
1 =0o(") 2 o(f"Xue) (sincef > 0)
2 (14 &)"e(Xuw)-

Since n can be arbitrarily big, (X aey) = 0. Thusd(4(e)) = d(4(e)) = 0
for each ¢ > 0.

By way of contradiction, if there exist an ¢ > 0 and a ¢ € M such that
o(Xpy) > Othenset & = o(Xpy) e/2. Then, by the above, o(X i) = 0.
Thus, as in the proof of III, we have the following inequalities:

1< (1= ¢&)e(Xpey) + (1 + 8)e(Xeawram)
<1 — ep(Xpe) + 0
=1—-—6<1.
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This is impossible. Thus ¢(B(¢)) = 0 for each ¢ > 0 and each ¢ ¢ M. Thus
d(B(g)) = Ofor each ¢ > 0. This completes the proof of the theorem.

Remarks. (1) We actually proved that if (i) X, ¢ F for each X, ¢ F and
(ii) f" € F for each n € N, then f is 7-convergent. In particular, let A C N.
Then X 45 € F for each X € F if and only if d(4) = O or 1.

(2) Let A(N) be the algebra of almost periodic functions on N. Then it
is well known that A(N) < F. But A(N) N 9 only consists of constant
functions. Indeed,if f e A(N) n 9Mp,say, r — limf = o, thenf” = aon K'.
Thus ¢( |f — a|) = 0 for each ¢ ¢ M. Thus the non-negative almost periodic
function | f — & | has mean value 0. Thusf= aonN.

Asan example,let A = {1, m + 1,2m + 1, - - -} wherem > 2,m e N. Then
X4 € A(N) and there exists B C N such that Xz e F but X, X ¢F. Thus,
the almost convergent function X  is not even weakly almost periodic.

(3) The fact that 7 — lim f = « exists does not imply the existence of a set
B = {b,by, --}inN, b < by < --+, such that d(B) = 1 and lim,f(b,)
exists.

Example. Let a, be an arbitrary increasing sequence of positive integers
such that @,y — a, — ©. LetA, = (n — 1) + {a1,02, --},neN. Then
ud, = Nandd(4,) = 0Oforn e N. Define a function f e m(N) as follows:

f =1 on A1
=1/n ond,\(41u - Ud,y), n=2

Given £ > 0, choose 79 ¢ N such that 1/ny < ¢ and let B = up2 A;. Then
d(B) =0and|f(n) | < eifn e N\B. Thus r-limf = 0. On the other hand,
if B © N such that d(B) < 1, then, by Lemma 2.1, there exists n ¢ N such that
Ayu - U A,.\B is infinite. Let N\B = {bl, bz"'}, where by < by -+ .
Then clearly lim,f(bs) does not exist. (A similar example is also considered
by Raimi [8].)

4. The generalization

Let G be an amenable group and denote the set of all left invariant means on
@ by ML(@) (cf. Day [3] for the basic facts concerning amenable groups.)
As before, we set

d(f) = sup {¢(f): ¢ e ML(®)} and d(f) = inf {¢(f) : 0 ¢ ML(G)},

where f is a bounded real function on G. If d(f) = d(f) then we say f is almost
convergent and in this case we denote the common value by d(f). The space of
almost convergent functions on @ is denoted by F(G). A bounded real func-
tion f on @ is said to be G-convergent if there exists a real number « such that
for each ¢ > 0 there is a set A C @G satisfying (a) d(4) = 0 and
(b) |f(z) — @] < eifz ¢ A. We wonder whether fF(G) c F(G) implies
that f is G-convergent. (The other implications of Theorem 3.1 can be readily
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generalized.) We can only answer the above question when G has an addi-
tional property:

(¥x) If A Gandd(A) > 0then thereexists B C A such that X zis almost
convergent and d(B) > 0.
It is easy to show that finitely generated abelian groups and locally finite
groups have property (*). We would like to conjecture that every amenable
group has property (*).

LemMma 4.1. Let G be an amenable group.
(1) IfC c Gand d(C) > O then there exist z; , -« + -, , 70 G such that for each
z e,
Cninz, -, z.x} #= 0.
(2) Ifw, ---, %, are n distinct elements of G then there exists C C G such
that d(C) > 0 and
zllnz;C =0, 7]

(8) LeeCc Ganda;eG, 2 =1, -, n, such that ,C nz,C = @if ¢ = J-
A ssume that ¢ € C s associated with an element

i(c) e{xic, « -+, Tac}
and set T = {t(c) : ceC}. Then foreach o e ML(Q), o(Xr) = o(X¢).
Proof. (1) is an easy consequence of [7, Theorem 7].
(2) ChooseC < Gsuch that z:C nz;C = @if 7 > j and that C is a maximal
with this property. Then U} jm 27 2;C = G. Thusd(C) > 0.
(8) LetCi={ceC :t(c) = z¢}. ThenC=Cyu---uC,,C;nC;=0
if¢=jand T = 2,C10 -+ - uz,Cn. Thuse(Xr) = o(X¢) if o € ML(G).

Tueorem 4.2. Let G be an amenable group with property (). Then
fF (@) C F(QG) implies that f is G-convergend.
Proof. The proof is similar to (a) = (b) of Theorem 3.1 except step I
there. Let f be a multiplier of F(@),f > 0; let
A=1{zeG@:f(z) >2b and B ={xeG: f(z) < a}
where @ < b are real numbers. We have to show that either d(A) = 0 or
d(B) = 0.
Assume that both d(4) and d(B) are positive. Then, by Lemma 4.1 (1)
there exist z; , - - -, 2, in G such that for each z € G,
{awx, -, xnx}n A =0 and {2, - -, 2.2} n B = 0.

Let C be a subset of @ such that 2:.C n z;C = @ if 4+ > j and that d(C) > 0,
cf. Lemma 4.1 (2). Since @ has property (), there exists D < C such that
d(D) > 0. Without loss of generality, we may assume that @ is infinite.
Then there exists E C @ such that d(E) = 1 and d(E) = 0, cf. [2]. For
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2 € D, choose
t(z) eAn{mz, - -, 22} ifreDnE,

t(z) eBn{xwm, -, 2w} if x e D\E.

Let T = {t(x) : « ¢ D}. Then, by Lemma 4.1 (3),d(T) = d(D). Itisclear
that d(fXr) > d(D)-b and d(fXr) < d(D)-a. This contradicts the fact
that f is a multiplier of F(@).

Added in Proof. (1) We are able to show that every group in EG has prop-
erty (%). Cf. [3, p. 520] for the definition of EG. (2) J. P. Duran and the
author have proved recently that Theorem 4.2 holds for countable left amen-
able cancellative semigroups.
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