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ORTHOGONAL PROJECTIONS ON MARTINGALE H
SPACES OF TWO PARAMETERS

PAUL F. X. M/LLER

1. Introduction

Given collections of pairwise disjoint dyadic rectangles :’k, we wish to find
conditions which ensure that the natural orthogonal projection

where

k

I J S’k IXY J:"k L

defines a bounded operator on Hl(t2). (In the one dimensional case such
conditions where found by P. W. Jones in [J]).
More precisely we are interested in the special case where bk is equivalent

in Hl(t2) to the Haar basis {hij: I,J dyadic}. The condition given in
Theorem 1 implies that the boundedness of P is determined by its action on
dyadic rectangles. Adjusting a construction of Michele Capon we then apply
this condition to prove that H1(t2) is primary.

If the collections J’ are of product structure then the boundedness of the
projection P follows simply from the corresponding one-dimensional result.
It is therefore natural to ask under which conditions one finds sufficiently
rich collections of dyadic rectangles which are of product structure. Here a
geometric version of Ramsey’s theorem is proved.
The motivation for this study of HI(2) and its isomorphic structure comes

from the fact that H(2) is not isomorphic to the one-dimensional H. This
was shown by Jean Bourgain in [B]. More precisely, it was shown there that
the vector valued Hardy space H(l2) is not isomorphic to a complemented
subspace of H. Therefore it may be noteworthy that a sequence of uni-
formly complemented subspaces of H can be constructed which are uni-
formly isomorphic to nl(/n2), n N. This sequence of examples was con-
structed during conversation of the present author with Przemyslaw Woj-
taszczyk.

Received July 22, 1992.
1991 Mathematics Subject Classification. Primary 46B25, 46E15; secondary 60G42, 60G46.

(C) 1994 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

554



ORTHOGONAL PROJECTIONS 555

2. Notation and definitions

Given nN and 1<i<2 we will use (n,i) to denote the dyadic
interval

i-1 [2 ,2n

_q denotes the collection of all dyadic intervals and ..’ contains dyadic
intervals of length bigger than 2 -n. Accordingly h(n,0 denotes the L normal-
ized Haar functions, supported on the interval (n,i). On the unit square
[0, 1] x [0, 1] we consider the tensor product of Haar functions

h(n,i)(m,j)( s, t) h(n,i)( s)h(m,j)( t).

Rectangles of the form (n, i) (m, j) are called dyadic rectangles. Given

F ’C(n,i)(m,j)h(n,i)(m,j

on the square [0, 1] [0, 1], the corresponding square function is

S(F) ECn,o(m,jlh(n,o(m,j12) 1/2.
We use the square functions to define

nX(t2) {f El(J0,1]2) f[o, 1]2S(f)< ).
See [B], [Ch], [Ch-F], [G], [Ma, Ch V] and the references therein for results
which relate this space to analytic functions.

3. The main technical result

For a collection of dyadic rectangles we denote by the pointset
covered by sO’. We consider (,i)(,,j), pairwise disjoint collections of
pairwise disjoint dyadic rectangles such that for m, n N, 1 < < 2n and
1 < j < 2m the following conditions hold.

(3.1) A(o, 1)(o,1
A(n+ l,2i-1)(m,j) Cl A(n+ l,2i)(m,j)

Z(n+ 1,2i-1)(m,j)
I,.J h(n+l,2i)(m,j) C Z(n,i)(m,j

A(n,i)(m+ 1,2j-l) C) A(n,i)(m_l,2j
A(n,i)(m+l,2j_l) I,A Z(n,i)(m+l,2j) C Z(n,i)(m,j

C <[Z(n,i)x(m,J)l 2-n-me"
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The block basis over the Haar system induced by agC(,0(m, is

(n, y)x(m,y) htx"
IxJ(n,i)x(m,y)

The orthogonal projection P onto

span{(n, Ox(m,j)’m,n N,l_<i_< 2n,l_<j_< 2m}
is given by

(n,i)x(m,y)
(f[l(n,i)(m J)) h(n’i’(m’J)

And by our assumption on (n, i) (rn, j) we have

Ilefll,)
’112 (n,i)X(m,j)

(fl.l(n i,(m j))
2 h(n’i)(m’J)

1/2

ds dt.

Our main theorem gives a criterion for the boundedness of P on HX(62).

THEOREM 1. If there exists C N+ so that for each no N, 1 _< io, Jo <-
2n and for any I x J n,i)x(m,y), with (n, i) x (m, j)

_
(no, o) x (no, Jo)

we have

(3.2)
1
11 J <[I J n h(no, io)(no, Jo)[2n-n2n-m <_ C[I J[,

then P extends to a bounded linear operator on Hl(t2) and the range of P is
isomorphic to H1(82).

Theorem 1 implies that the boundedness of P on H1(62) is determined by
a condition which involves only dyadic rectangles I J and does not involve
arbitrary open sets of II

_
[0, 1] [0, 1]. This makes our condition quite

simple and easy to verify in specific situations (see Section 4).
The price we have to pay is that BMO-techniquesmor atoms-- are not at

our disposal. Instead we will exploit the fact that HX(62) is a sequence space
and carefully study how P and the embedding of HX(62) into LX(/2) interact.
The example which ultimately led to the proof given below is described at the
end of Section 5.

Proof Let f Hl(t2). The product Haar system {h,xj: I, J _@} is an
unconditional basis in Hl(t2). We therefore assume that f is a finite linear
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combination of the form

f=

_
ai]hi.

IxJ,;ff"

where s’:= U ff((Cn, i)(Cm, j)" Therefore q-= {I J: alxJ 0} is a finite
collection of rectangles. Hence there exists n o N so that for any I J -any o, Jo and any Io Jo d((no, io)(no, Jo) we have: Io Jo n I J
implies I J

_
Io Jo. S(f) can therefore be minorized pointwise by

alxjhlxJ lloX/o.
io,Jo IoXJoS(no, io)X(no,Jo) lXJ_IoXJ

Consequently the norm of f in H1(2) is minorized by

2no

( )1/2(3.3) aEx Iio x Jol.
io,Jo =1 IoXJod((no, io)X(no, Jo) IXJ-loXJo

If Io Jo ((no, Jo)(no, Jo) and I J ((n i)(m j) then (by (3.2)) I J
_

Io Jo only if (n, i) (m, j)
_

(no, o) (n, Jo). Moreover for fixed n, m
N and fixed o, Jo, the condition (n, i) (m, j)

___
(no, io) (no, Jo)uniquely

determines 1 < < 2n and 1 < j" < 2m. Therefore (3.3)can be rewritten as

(3.4)
2no

io, Jo= IoXJoJ((no, io)(no, Jo)

no

m, n IXJ(n,i)(m,y
Ix]___1o ]o

1/2

we may further rewrite (3.4) as

(3.5)

io,Jo=l loJo,;(no, io)(no, Jo (n,i)(m,j)_(no, io)(no,jo) lJ-,(n,i)x(m,.i)
I]Ioo

Xl#o x Jol.

1/2

Let us mention that by hypothesis for fixed (n, i) (m, j), (no, o) (no, Jo),
and Io Jo satisfying (n, i) (m, j)

_
(no, io) (no, Jo) and Io Jo

SCno,o)=o,o), only one rectangle I J ,0m,’) can satisfy I J
_

Io Jo. Therefore the inner sum in (3.5) has at most one summand. To
handle this expression we need the next result.
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LEMMA 2. There exists C > 0 so that for any no N and (n, i) (m, j)
satisfying (n, i) (m, j)

_
(no, o) (mo, Jo) we have

(3.6)

Proof. Interchanging the order of summation in the LHS of (3.6) gives

( " IloXJol)lai]l.lXJd(n,i)xm,]) loXJo"(no, io)X(no,Jo)

IXJ_IoX]

As (no, io)X(no, Jo consists of pairwise disjoint dyadic rectangles the above
expression coincides with

E
IXJ d((n, i) (m, ])

I x ] n A(no, io)X(no,Jo)lla]l.

Condition (3.2) implies that this sum admits a minorization by

1

IxJ ((n,j)x(m,j)
II x Jllai]12-"+"2-"+m

which proves the lemma, i

We return to the proof of Theorem 1. Applying triangle inequality (for the
vector space g 2) to (3.5) gives

2n0

>- E E
io,Jo=l (n,i)(m,j)_(no,io)(no,jo)

Iio XJol
I0 XJo (no, io) (no, Jo

IXJ (n,i)x(m,j)
IXJDloX]

1/2
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By Lemma 2, one minorizes the above expression by

(3.7)

C
io, Jo= (n,i)(m,j)(no,io)(mo,Jo) IXJ(n,i)x(m,j)

II x Jlat)
2

x4-no+n4-no+m)
1/2

It remains to relate IlPfllHa(b to (3.7). But this is easy: We first have

(3.8) f[(n,i)(m,j)) E II Jla,..
I)<J((n,i)x(m,j)

Next one observes that

(3.9) llf(,i)<m,y)ll IA(,i)(,-)I

and

(3.10) 1A(n,i)x(m,j (n,i)(m,j)"

Finally, (3.2) implies that there exists Co > 0 so that

(3.11)
1

2-n2-m-C-o < IA(n,i)x(m,j)l <-C02-n2-m.

Combining (3.1) with (3.8)-(3.11) we see that the expression (3.7)>
CllefllHl(b. l

4. Primarity of HI(2)

In this section we give some applications to Banach space properties of
H1(2). Adjusting an idea of Michele Capon we verify that for any collection
( of dyadic rectangles either or its complement . .\ ’ contains
collections seek which satisfy the hypothesis of Theorem 1. This dichotomy is,
of course, the basis of our proof that HI(2) is primary.

Covering lemmas for dyadic rectangles involve the Orlicz norm exp(L)
rather then the L norm. See [Ch-F], p. 15. Therefore the mere fact that the
collections ’k consist of pairwise disjoint rectangles is not at all obvious.
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DEFINITION 3 (Michele Capon). Let

-g’:= J I. I . and J di}

where I c
_. Then tr(I) {t [0, 1]: t lies in infinitely many J di}

/t {I .&: r()} and B {t [0, 1]" Icr(t)[ > }.

THEOREM 4. /f IBI > 0 then there exist collections (n,i)(m,j) C which
satisfy the hypothesis of Theorem 1; consequently

span{ hlxj" I J }

contains a complemented copy ofHI(t2).

Proof. We fix B and sequences e
bers.

Part 1. Step (1). Define

> O, ej > 0 of positive real num-

(4.1) ’(0,1),

1),

{K t" K tr(Mt)I >_ (1 ex)lKI }.
{K d(o, 1, t" K maximal}.

Then choose N((0, 1), t) N so that

(4.2) E
K ’o, 1),

{[K[" IK[ >_ 2 -N((’ l)’ t)} >_ (1 El) U
K (o, 1),

K

Let

o, 1),, {K o, 1), t" [g[ 2-N((’ 1), t)}
h(o, 1), E hK.

K o, 1),

Step (n + 1). Having constructed (n,i),t and h(n,i), we let

E+: {s" h(.,i),,(s ) 1} and E-:= {s" h(.,i),t(s ) -1}.
Now define

(4.3) t(n + 1, 2i 1),

(n+ 1,2i),

{K /t" K c E+, IK tr(.t)l >_ (1 e,+l)lKI

{K /t" K c E-, IK tr(.t)l >_ (1 en+l)lKI }.
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Fix 6 e {- 1, 0} and define

((n+l,2i+6),t :"- {K (n+l,2i+6),t" K maximal}.

Next we determine a natural number N N((n + 1,2i + 6)t) so that for
each J ((n, i),

(4.4) E
g ((n+ l,2i +),t

{IKI" K c J, IKI > 2-r} > (1

and we let

and

((n+l,2i+6),t :’--{K - (n+l,2i+6),t" IKI > 2-N}

h(n+ 1,2i+),t 2 hr"
k (n+l,2i+$),t

Having completed the construction of part 1, we now collect six important
consequences thereof:

1. Let

E(n,i), supp{h(n,i),t}

then for every (m, j) (n, i) and J e ((m,j),t we have by (4.1)-(4.4).

(4.5) Dm,.Zm-"lJI < IJ f E(.,i),tl < Cm,nZm-nlJI

where
n

Om,n IE(1,1),,1 I-I (1 + 2el) 2

l--m

Cm, n IE(1,1),tl 1-I (1 2et) 2

l=m

2. E(n,i), forms a tree of sets in the sense that

[E(x, 1),t[ >
E(n + 1,2i-1),t U E(n + 1,2i),t c E(n,i),
E(n+l,2i_l),t 0 E(n+l,2i),t

[E(n,i),t[
2(1 en+ 1) < [E(n + 1,2i+6),tl -< 2(1 + en+ 1),

where 6 e {- 1, 0}.
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3. During this process, for B we inductively selected integers
N((n, i), t). Looking back at the construction we observe that the dependence

--, N((n,i),t), B,

can be chosen to be measurable. Hence a repeated application of Egorov’s
theorem implies the existence of B’ c B so that for any (n, i) there exists
N((n, i)) satisfying

(4.6) sup{N((n,i),t)’tB’} <N((n,i)) and > .
4. Let n N, 1 < < 2n and let dU be a finite collection of intervals.

Then

I n’ (n ),
"(g/

is a measurable set and for any J dff we have the importanct inclusion

(4.7) Ic ().

Let us emphasize that (4.7) is systematically exploited in the construction
given below. Moreover by (4.6) the cardinality of {deal: I4: } is finite.

5. Given 61, 2, 3 > 0 and J .. By Lebesgue’s theorem on differentia-
tion of integrals we may select a finite collection of pairwise disjoint dyadic
intervals so that for any K ,
(4.8) Ig c tr()l > (1 l)lg

(4.9) Igl < 62

Moreover for Gj U K jK we have

(4.10) IGj Atr()l < 33.

6. Before going on with the proof the reader is advised to have a look at
[C], page 91, line 3. There M. Capon states that IBI > 0 implies the existence
of blockbasis

l(n,i)x(m,j span{hlx: I J }

so that

IZ(n,i)X(m,j)( t, Y)I If(n,i)( t)l Ih<m,y),t( Y)l

where{ If(n, i)l(t)} is the characteristic functions of a tree {B(,, i)} in [0, 1]. A
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moments reflection shows that this is already very close to (3.2). And in fact,
all we have to do is, to adjust the sets B(n,i properly to obtain (3.2). m

We continue now with our proof of Theorem 4.
Part 2. Step (1). Here we shall construct d(0,1)x (0,1). The main ingredi-

ents of this construction are (4.7)--(4.10) and will reappear several times
during the induction argument.

Let B(0,1 B’ and for a finite collection of dyadic intervals J/let

Ij {t n(0,1 (0,1),t-" ’b’/}

Then {I: c . finite} is a sequence of pairwise disjoint, measurable
subsets of B(0,1 so that

B(o, 1)
JU finite

Using Remark 3 we then find N N and Jr(i,..., JN, collections of
pairwise disjoint dyadic intervals so that

N

B(o,1, .J I.
j=l

Next fix J , j < N. By (4.7)-(4.10) we find finite collections of pairwise
disjoint intervals c so that with G U K,

(4.11)

(4.12)

K implieslK n > IKI(1

aI l _<

For k :/: l, k, < N we may obtain moreover that

(4.13) U Gjn U G=O,

because for J 4: Jk we have I ( I,
Finally we define

N

J(0,1) (0,1) U U J X J
j-- Je

which is a collection of pairwise disjoint dyadic rectangles.
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Having constructed ((m,j)(m’,j’) for m, m’ < n, 1 _< j _< 2’ and 1 < j’ <
2m’ we define now the collections ’ of level n + 1"

Let

n 2 2m’ )’n g . J .. g J
m m’ j=IUj’ "(m x(m’ j’

n is then a finite collection of dyadic intervals. The induction step is divided
into three steps. In the first step we shall define

1)x(n + 1, 2i+5)

where 5 { + 1, 0}. The second step describes the construction of

’(n + 1,2i +5) x (0, 1)"

We then complete the induction in the third step where

1,2i+5)

and

dgC((n + 2 +5 m

are constructed for 2 < m < n + 1 and 1 < j < 2m.

Step (n + 1, a). Fix {-1, 0} and Jc .& finite. Let

l, 5 {t B(1,1)" -((n+1,2i+5),t-- }"

Then

Ix, 5" dffc_ . finite}

is a sequence of pairwise disjoint measurable subsets of B(1,1 so that

(4.14) I,.J I,5 B(1,1).
/finite

Using Remark 3 we next choose N N and Jl,..., JN, finite collections
of pairwise disjoint dyadic intervals, so that

N

(4.15) U I,’Kj, 5 n(0,1).
j---1
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Now fix j < N and J . By (4.7)-(4.10) there exists a collection of
pairwise disjoint dyadic intervals , ___

so that

(4.16)

(4.17)

K , implies [g

aI<, l _<

For k l,k, < N we may obtain

(4.18)

Having done this construction for 6 -1 we repeat the same construction
for 15 0 and using (4.9) we may do this in such a way that

N N
g U U J-1 implies K

1=1 JJ/ /--1 J

Finally, for 6 {- 1, 0}, we put

N

(0,1)x(n+l,2i+8) U U J,t} X J.
l= j

Step(n + 1, b). We consider the following finite set of intervals.

"n+l ’n I0 {I _" ::lJ

_
I J e (1,1)(n+1,2i) IO d(1,1)(n+l,2i_l)}

Choose now two disjoint measurable subsets B(n+l,2i_l),B(n+l,2i) of B(n,i so
that for every I (n / x, 6 {- 1, 0},

(4.19)
(4.20)

1/2lB(ni) t II IB(n+X,2i+) q II
B(n,i B(n+l,2i_l) kJ O(n+l,2i).

Let now gg/___ . be finite and define

Then

1o/,6 {t O(n+1,2i+6)" (1,1),,-- }.

{I," gg___ ., finite; 6 {-1,0}}
is a measurable partition of O(n+l,2i_l) kJ B(n+l,2i). We next choose N N,
J/1,- JC/N so that for 6 {- 1, 0},

N

(4.21) Bn+l,2i+ U I,yg/k,6
k=l
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and obviously for I ,,+1 we have, by (4.20),

N

(4.22) I f) [,.J I,a I q Bn+ 1,2k-a"
k=l

Next we fix k < N, J JUk. By (4.7)-(4.10) there exists a collection of
pairwise disjoint dyadic intervals , _

so that

(4.23)

And for G, I,.JKCj.K,

(4.24) IG, AI,I < e.

For k 4: l, k, < N and 6, ’ {- 1, 0} we may obtain

(4.25) 0 G,a N l,.J Gy,, O.

By (4.9)we may achieve that

N

(n+l,2i+6)X(0,1) :--" U U "J, 6 X J

satisfies (3.1).

Step (n + 1, c).
construct

Here we complete the induction step and shall first

(m,j)(n+l,2i+6) for m < n + 1, 1 < j < 2m.

Then we shall define

(n+l,2i+a)(m,j) for m < n, 1 < j < 2m.

Fix (m, j) m < n + 1, 1 < ] < 2m and 6 {- 1, 0} and consider the follow-
ing procedure: In step (n + 1, a) we defined collections of dyadic intervals
JUk to build (0,1)(n+1,2i+6)" We use those JUk’S now to construct
aZCm,j)(n/ 1,2i/): Take J JUk and consider the collection , which was
defined in step (n + 1, a) as well. By (4.7)-(4.10) for I ,, there exists

c so that

(4.26) K / implies IK N B(m,y)l > (1 en+lez)lKI.
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For LI UK .i K,

(4.27) IL1 A I B(m,j)l <_ elen+ l.

Then we define

l,2i+)

N

U U
k= JS I

We start this construction at (m, j)= (1, 1) and continue until (m, j)=
(n + 1,2n+1). By (4.9)we can guarantee that the resulting collections
(m,j)(n+l,2i+) are pairwise disjoint and satisfy conditions (3.1). Now fix
(m, j), m < n, 1 < j < 2m, {- 1, 0} and consider the following procedure.
Fix o,___ finite and define

I {t B(n+l,2i+6," o((m,j,,t

{Iar,: J finite} is a measurable partition of B(n+l,2i+6). We choose N N
and J, 1,..., JU, N, finite collections of pairwise disjoint dyadic intervals, so
that

N

(4.28) U I,g,, k O(n+ 1,2i+6).
k=l

By (4.7)-(4.10) for every k < N and J ,k we find c so that

(4.29) K implieslK n B(,,+ 1,2i-,)1 > (1 + en+ 1)IKI.

For G Uk K we have

(4.30)

Then we define

N

’(n + 2 +$ X (m U U J X J
k= JS

Again we start this construction with (m, j)= (1, 1) and stop at (m, j)
(n, 2n). By (4.9) the resulting collections "n+ 1,2i+i)(m,j) can be chosen to
be disjoint. This completes the induction step and Part 2 of the proof of
Theorem 4.

It remains to observe that the resulting families ((n, i) X (m, j) satisfy (3.2).
To do so we simply have to trace back the construction. Suppose (3.2) holds
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for no N with constant C0. We then show that (3.2) holds for no + 1 and
constant C0(1 + n- -). Indeed, this follows from (4.29), (4.30), (4.26), (4.27),
(4.21), (4.22), (4.19),+t4.20) and (4.5) provided ej > 0 and ek > 0 are chosen
small enough, m

It is easily observed that for any collection ’ of dyadic rectangles, either
or

_
.\ satisfies the hypothesis of theorem (see [C]). Using this

stability property, it is now clear that:

THEOREM 5. nl(t$ 2) is primary.

5. Examples and remarks

In this section we discuss several observations which relate results concern-
ing the 1-dimensional dyadic H1 to the construction given above.
For a collection of dyadic intervals its "Carleson constant" is given by

CC{g]’} sup E [J___l
l,.[’{J,.g": Jcl} III

This quantity, which is of great importance to questions of classical function
theory (see [Ga]), determines the relation of the subspace span {hI" I ’}
of n to the spaces 11 and H (see [M]).
The next observation which may be considered as a geometric version of

Ramsey’s theorem shows that Carleson’s condition is also relevant to detect
copies of H (R) Hn in or . _\ .
LEMMA 6. For no N there exists n N so that for any collection c

.qn .n, one finds , c . such that
(i) either s’ c or s’ c .. .n\ ,
(ii) sup I ..Y"tJ ,.01’: J c I} III /IJI >- 2n and sup I E{j ;: j I} III /IJI >--

Remark. The one dimensional results of [M, Main Lemma 2] imply now
that for any no N and any collection ’ c

_
.n (with n big enough)of

dyadic rectangles either

span{h" I J (}

or

span{hij’I J \. ..n}

contains well complemented copies of Hlno (R) Hnlo"
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Proof For no givens, we choose k N so that 2k-1 no and select
n N so that 2 _> n022. Let 11 12.+1 be enumeration of the intervals in
.n. Now we define collections

d= {j ..n: I J ..}
,.-= J ..n: I1)< J -$"}.

We use them to define a function

We put

Having defined

we let

Finally we let

[0 if CC{} > CC{,-}f( I1)
1 otherwise.

if CC{} > CC{ ,.9r}
otherwise.

f(I1),’’’, f(Im-1)
1, #m-,

0 ifCC{oo} > CC{r}f(Im)
1 otherwise.

if CC{ d} > CC{ ,3r}
otherwise.

Having completed the construction of f for Ix,..., I2t, we set

,-1._._ {j ...k: f(j) 1}
y-o {j w. f(s) o}

Then
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and

Finally we let

n

>
22k

o-1 if CC{ j1} . CC{ j2}- otherwise.

Our initial choice of k and n gives now the result.

The examples constructed below should be compared with a result of J.
Bourgain [B] which says that Hi(/2) is not isomorphic to a complemented
subspace of H1.

THEOREM 7. There exists a sequence of uniformly complemented isometric
H (ln) in Hcopies of 2

Proof. Fix n N. We pick a subsequence {S (7- N} of natural numbers,
and a sequence of subsets R so that for each N, the cardinality of R
equals n and

S < inf R < sup R < s2 < < sm_ < inf Rm < sup Rm < sm <

We use the sequence {si" N} in the usual way to construct "Haar"
functions (0,0):= rsl. Having constructed (k,j), for k < rn, and j < 2k we
let

h(m+ l,2j) l{[(m,D=l}rsm+

(m+l,2j+l) l{f(m,j)---1}rsm+

To build the components of In2 we use Rademacher functions associated to
Rn: We denote the k-th element of Rm by mk. The linear extension of the
map

h(m, i) ek ’--> f(m, i)rmk

gives us an isometric embedding of Hl(/n2) into H1. Indeed given vectors
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a-’(m,i (a k, (m, i))= in In2 we obtain

m,l,k H
) 1/2f E Ih(m,i)l 2 r 2 dtak(m,i) mk

(mi),k

f lh<m,i)l E 2 dtak(m, i)
(mi) k=

f(E [hm,i [[[-(m,i)[[22) 1/2

The span {f/(m i)r m N, < 2m, mk Rrn} is complemented in H 1,
because the orthogonal projection onto this subspace is bounded. (The best
way to see this is to observe that the criterion in [Jo] is satisfied.)

Remark. It is also natural to ask if one can find a sequence of uniformly
complemented copies of Hn (R) Hn in H1. A related problem is to prove that
BMO(82) is isomorphic to BMO.

The following discussion is included to isolate the idea of the proof of
Theorem 1 in a very special, simple and one dimensional setting: Given real
numbers a 1, bl,... b4 and Cl,..., c16 and consider the matrix

al al al al al al al al al al al al al al al all
A bl bl bl bl b2 b2 b2 b2 b3 b3 b3 b3 b4 b4 b4 b4

Cl 2 C3 C4 C5 C6 C7 C8 C9 Cl0 Cll C12 C13 C14 C15 C16

Then we form the following sums:

/aa/ a

C3

al

bl
c4

/ albc7
b
c8

al /
+ b3 +

clo

al /Cll

al
b3

c12

aa
(bl + b3)/2 4 v

(Cl + c3 + c9 +c11)/4

a

(b + b3)/2
(1 + C4 d- Cl0 q- C12)/4

+ b4 + b4 ( b2 d- b4)/2
C13 C15 (C5 "t" C7 "l- C13 -- c15)/4

lal ax al

+ b4 + b4 (b2 + b4)/2
C14 C16 (C5 q- C7 -- C13 at- c5)/4

4=/9

’/4 U4
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For cj, j < 16, A(cj) denotes the j-th column of the matrix A. 132 denotes
the three dimensional Hilbert space. Triangle inequality implies that

16 4

IIA(cy)ll4 >- IIv,l14.
j=l k=l

To relate the above considerations with orthogonal projections consider

Now consider

hi h(o, o)

f/2 h(2,1) "+" h(2,3)

h 3 h(2,2 + h(2,4

h4 h(3,1 + h(3,3) + h(3,9) + h(3,11)

f’/5 h(3,2) + h(3,4) + h(3,10) + h(3,12)

]7/6 h(3,5 + h(3,7) + h(3,13) + h(3,15)

f/7 h(3,6) + h(3,8) + h(3,4) + h(3,16).

7

)

Obviously Ilfllu<) can be realized as E)6=xl/1611A(c)II, where A is of the
form considered above, such that

4

IIPfHH’<) -611v114.
k=l
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