ORTHOGONAL PROJECTIONS ON MARTINGALE H^{1} SPACES OF TWO PARAMETERS

Paul F. X. Müller

1. Introduction

Given collections of pairwise disjoint dyadic rectangles \mathscr{A}_{k}, we wish to find conditions which ensure that the natural orthogonal projection

$$
P f=\sum_{k}\left(f \mid \phi_{k}\right) \phi_{k}
$$

where

$$
\phi_{k}=\left(\sum_{I \times J \in \mathscr{A}_{k}} h_{I \times J}\right) /\left\|\sum_{I \times J \in \mathscr{A}_{k}} h_{I \times j}\right\|_{L^{2}}
$$

defines a bounded operator on $H^{1}\left(\delta^{2}\right)$. (In the one dimensional case such conditions where found by P. W. Jones in [J]).

More precisely we are interested in the special case where ϕ_{k} is equivalent in $H^{1}\left(\delta^{2}\right)$ to the Haar basis $\left\{h_{I \times J}: I, J\right.$ dyadic $\}$. The condition given in Theorem 1 implies that the boundedness of P is determined by its action on dyadic rectangles. Adjusting a construction of Michele Capon we then apply this condition to prove that $H^{1}\left(\delta^{2}\right)$ is primary.

If the collections \mathscr{A}_{k} are of product structure then the boundedness of the projection P follows simply from the corresponding one-dimensional result. It is therefore natural to ask under which conditions one finds sufficiently rich collections of dyadic rectangles which are of product structure. Here a geometric version of Ramsey's theorem is proved.

The motivation for this study of $H^{1}\left(\delta^{2}\right)$ and its isomorphic structure comes from the fact that $H^{1}\left(\delta^{2}\right)$ is not isomorphic to the one-dimensional H^{1}. This was shown by Jean Bourgain in [B]. More precisely, it was shown there that the vector valued Hardy space $H^{1}\left(l^{2}\right)$ is not isomorphic to a complemented subspace of H^{1}. Therefore it may be noteworthy that a sequence of uniformly complemented subspaces of H^{1} can be constructed which are uniformly isomorphic to $H^{1}\left(l_{n}^{2}\right), n \in \mathbf{N}$. This sequence of examples was constructed during conversation of the present author with Przemyslaw Wojtaszczyk.

2. Notation and definitions

Given $n \in \mathbf{N}$ and $1 \leq i \leq 2^{n}$ we will use (n, i) to denote the dyadic interval

$$
\left[\frac{i-1}{2^{n}}, \frac{i}{2^{n}}[\right.
$$

\mathscr{D} denotes the collection of all dyadic intervals and \mathscr{D}^{n} contains dyadic intervals of length bigger than 2^{-n}. Accordingly $h_{(n, i)}$ denotes the L^{∞} normalized Haar functions, supported on the interval (n, i). On the unit square $[0,1] \times[0,1]$ we consider the tensor product of Haar functions

$$
h_{(n, i) \times(m, j)}(s, t):=h_{(n, i)}(s) h_{(m, j)}(t) .
$$

Rectangles of the form $(n, i) \times(m, j)$ are called dyadic rectangles. Given

$$
F=\sum^{\prime} c_{(n, i) \times(m, j)} h_{(n, i) \times(m, j)}
$$

on the square $[0,1] \times[0,1]$, the corresponding square function is

$$
S(F)=\left(\sum c_{(n, i) \times(m, j)}^{2}\left|h_{(n, i) \times(m, j)}\right|^{2}\right)^{1 / 2}
$$

We use the square functions to define

$$
H^{1}\left(\delta^{2}\right):=\left\{F \in L^{1}\left([0,1]^{2}\right): \int_{[0,1]^{2}} S(F)<\infty\right\}
$$

See [B], [Ch], [Ch-F], [G], [Ma, Ch V] and the references therein for results which relate this space to analytic functions.

3. The main technical result

For a collection \mathscr{A} of dyadic rectangles we denote by \mathscr{A} the pointset covered by \mathscr{A}. We consider $\mathscr{A}_{(n, i) \times(m, j)}$, pairwise disjoint collections of pairwise disjoint dyadic rectangles such that for $m, n \in \mathbf{N}, 1 \leq i \leq 2^{n}$ and $1 \leq j \leq 2^{m}$ the following conditions hold.

$$
\begin{align*}
A_{(0,1) \times(0,1)} & \neq \emptyset \tag{3.1}\\
A_{(n+1,2 i-1) \times(m, j)} \cap A_{(n+1,2 i) \times(m, j)} & =\emptyset \\
A_{(n+1,2 i-1) \times(m, j)} \cup A_{(n+1,2 i) \times(m, j)} & \subset A_{(n, i) \times(m, j)} \\
A_{(n, i) \times(m+1,2 j-1)} \cap A_{(n, i) \times(m-1,2 j)} & =\emptyset \\
A_{(n, i) \times(m+1,2 j-1)} \cup A_{(n, i) \times(m+1,2 j)} & \subset A_{(n, i) \times(m, j)} \\
\frac{2^{-n-m}}{C} & \leq\left|A_{(n, i) \times(m, j)}\right| \leq 2^{-n-m} C .
\end{align*}
$$

The block basis over the Haar system induced by $\mathscr{A}_{(n, i) \times(m, j)}$ is

$$
\tilde{h}_{(n, j) \times(m, j)}=\sum_{I \times J \in \mathscr{A}_{(n, i) \times(m, j)}} h_{I \times J} .
$$

The orthogonal projection P onto

$$
\operatorname{span}\left\{\tilde{h}_{(n, i) \times(m, j)}: m, n \in \mathbf{N}, 1 \leq i \leq 2^{n}, 1 \leq j \leq 2^{m}\right\}
$$

is given by

$$
P f=\sum_{(n, i) \times(m, j)}\left(f \mid \tilde{h}_{(n, i) \times(m, j)}\right) \frac{\tilde{h}_{(n, i) \times(m, j)}}{\left\|\tilde{h}_{(n, i) \times(m, j)}\right\|_{L^{2}}^{2}} .
$$

And by our assumption on $\mathscr{A}_{(n, i) \times(m, j)}$ we have

$$
\|P f\|_{H^{1}\left(\delta^{2}\right)}=\int_{[0,1]^{2}}\left(\sum_{(n, i) \times(m, j)}\left(f \mid \tilde{h}_{(n, i) \times(m, j)}\right)^{2} \frac{\tilde{h}_{(n, i) \times(m, j)}^{2}}{\left\|\tilde{h}_{(n, i) \times(m, j)}\right\|_{2}^{4}}\right)^{1 / 2} d s d t
$$

Our main theorem gives a criterion for the boundedness of P on $H^{1}\left(\delta^{2}\right)$.
Theorem 1. If there exists $C \in \mathbf{N}^{+}$so that for each $n_{0} \in \mathbf{N}, 1 \leq i_{0}, j_{0} \leq$ $2^{n_{0}}$ and for any $I \times J \in \mathscr{A}_{(n, i) \times(m, j)}$, with $(n, i) \times(m, j) \supseteq\left(n_{0}, i_{0}\right) \times\left(n_{0}, j_{0}\right)$ we have

$$
\begin{equation*}
\frac{1}{C}|I \times J| \leq\left|I \times J \cap A_{\left(n_{0}, i_{0}\right) \times\left(n_{0}, j_{0}\right)}\right| 2^{n_{0}-n} 2^{n_{0}-m} \leq C|I \times J| \tag{3.2}
\end{equation*}
$$

then P extends to a bounded linear operator on $H^{1}\left(\delta^{2}\right)$ and the range of P is isomorphic to $H^{1}\left(\delta^{2}\right)$.

Theorem 1 implies that the boundedness of P on $H^{1}\left(\delta^{2}\right)$ is determined by a condition which involves only dyadic rectangles $I \times J$ and does not involve arbitrary open sets of $\Omega \subseteq[0,1] \times[0,1]$. This makes our condition quite simple and easy to verify in specific situations (see Section 4).

The price we have to pay is that BMO-techniques-or atoms- are not at our disposal. Instead we will exploit the fact that $H^{1}\left(\delta^{2}\right)$ is a sequence space and carefully study how P and the embedding of $H^{1}\left(\delta^{2}\right)$ into $L^{1}\left(l^{2}\right)$ interact. The example which ultimately led to the proof given below is described at the end of Section 5.

Proof. Let $f \in H^{1}\left(\delta^{2}\right)$. The product Haar system $\left\{h_{I \times J}: I, J \in \mathscr{D}\right\}$ is an unconditional basis in $H^{1}\left(\delta^{2}\right)$. We therefore assume that f is a finite linear
combination of the form

$$
f=\sum_{I \times J \in \mathscr{A}} a_{I \times J} h_{I \times J}
$$

where $\mathscr{A}:=\cup \mathscr{A}_{(C n, i) \times(C m, j)}$. Therefore $\mathscr{T}=\left\{I \times J: a_{I \times J} \neq 0\right\}$ is a finite collection of rectangles. Hence there exists $n_{0} \in \mathbf{N}$ so that for any $I \times J \in \mathscr{T}$ any i_{0}, j_{0} and any $I_{0} \times J_{0} \in \mathscr{A}_{\left(n_{0}, i_{0}\right) \times\left(n_{0}, j_{0}\right)}$ we have: $I_{0} \times J_{0} \cap I \times J \neq \emptyset$ implies $I \times J \supseteq I_{0} \times J_{0} . S(f)$ can therefore be minorized pointwise by

$$
\sum_{i_{0}, j_{0}=1}^{2^{n_{0}}} \sum_{I_{0} \times J_{0} \in \mathscr{A}_{\left(n_{0}, i_{0}\right) \times\left(n_{0}, j_{0}\right)}}\left(\sum_{I \times J \supseteq I_{0} \times J_{0}} a_{I \times J}^{2} h_{I \times J}^{2}\right) \mathbf{1}_{I_{0} \times J_{0}} .
$$

Consequently the norm of f in $H^{1}\left(\delta^{2}\right)$ is minorized by

$$
\begin{equation*}
\sum_{i_{0}, j_{0}=1}^{2^{n_{0}}} \sum_{I_{0} \times J_{0} \in \mathscr{A}_{\left(n_{0}, i_{0}\right) \times\left(n_{0}, j_{0}\right)}}\left(\sum_{I \times J \supseteq I_{0} \times J_{0}} a_{I \times J}^{2}\right)^{1 / 2}\left|I_{0} \times J_{0}\right| . \tag{3.3}
\end{equation*}
$$

If $I_{0} \times J_{0} \in \mathscr{A}_{\left(n_{0}, j_{0}\right) \times\left(n_{0}, j_{0}\right)}$ and $I \times J \in \mathscr{A}_{(n, i) \times(m, j)}$ then (by (3.2)) $I \times J \supseteq$ $I_{0} \times J_{0}$ only if $(n, i) \times(m, j) \supseteq\left(n_{0}, i_{0}\right) \times\left(n_{0}, j_{0}\right)$. Moreover for fixed $n, m \in$ \mathbf{N} and fixed i_{0}, j_{0}, the condition $(n, i) \times(m, j) \supseteq\left(n_{0}, i_{0}\right) \times\left(n_{0}, j_{0}\right)$ uniquely determines $1 \leq i \leq 2^{n}$ and $1 \leq j \leq 2^{m}$. Therefore (3.3) can be rewritten as

$$
\begin{equation*}
\sum_{i_{0}, j_{0}=1}^{2^{n_{0}}} \sum_{I_{0} \times J_{0} \in \mathscr{A}_{\left(n_{0}, i_{0}\right) \times\left(n_{0}, j_{0}\right)}}\left(\sum_{m, n=1}^{n_{0}} \sum_{\substack{I \times J \in \mathscr{A}_{(n, i) \times(m, j)} \\ I \times J \supseteq I_{0} \times J_{0}}} a_{I \times J}^{2}\right)^{1 / 2}\left|I_{0} \times J_{0}\right| . \tag{3.4}
\end{equation*}
$$

we may further rewrite (3.4) as

$$
\begin{align*}
& \sum_{i_{0}, j_{0}=1}^{2^{n_{0}}} \sum_{I_{0} \times J_{0} \in \mathscr{A}_{\left(n_{0}, i_{0}\right) \times\left(n_{0}, j_{0}\right)}}\left(\sum_{(n, i) \times(m, j) \supseteq\left(n_{0}, i_{0}\right) \times\left(n_{0}, j_{0}\right)} \sum_{\substack{I \times J \in \mathscr{A}_{(n, i) \times(m, j)}^{I \times J \supseteq I_{0} \times J_{0}}}} a_{I \times J}^{2}\right)^{1 / 2} \tag{3.5}\\
& \quad \times\left|I_{0} \times J_{0}\right| .
\end{align*}
$$

Let us mention that by hypothesis for fixed $(n, i) \times(m, j),\left(n_{0}, i_{0}\right) \times\left(n_{0}, j_{0}\right)$, and $I_{0} \times J_{0}$ satisfying $(n, i) \times(m, j) \supseteq\left(n_{0}, i_{0}\right) \times\left(n_{0}, j_{0}\right)$ and $I_{0} \times J_{0} \in$ $\mathscr{A}_{\left(n_{0}, j_{0}\right) \times\left(n_{0}, j_{0}\right)}$, only one rectangle $I \times J \in \mathscr{A}_{(n, i) \times(m, j)}$ can satisfy $I \times J \supseteq$ $I_{0} \times J_{0}$. Therefore the inner sum in (3.5) has at most one summand. To handle this expression we need the next result.

Lemma 2. There exists $C>0$ so that for any $n_{0} \in \mathbf{N}$ and $(n, i) \times(m, j)$ satisfying $(n, i) \times(m, j) \supseteq\left(n_{0}, i_{0}\right) \times\left(m_{0}, j_{0}\right)$ we have

$$
\begin{align*}
& \sum_{I_{0} \times J_{0} \in \mathscr{A}_{\left(n_{0}, i_{0}\right) \times\left(n_{0}, j_{0}\right)}}\left|I_{0} \times J_{0}\right| \sum_{\substack{I \times J \in \mathscr{A}_{(n, i) \times(m, j)}^{I \times J \supseteq I_{0} \times J_{0}}}}\left|a_{I \times J}\right| \tag{3.6}\\
& \quad \geq\left.\frac{1}{C}\right|_{I \times J \in \mathscr{A}_{(n, i) \times(m, j)}}|I \times J| a_{I \times J}| |^{-n_{0}+n} 2^{-n_{0}+m} .
\end{align*}
$$

Proof. Interchanging the order of summation in the LHS of (3.6) gives

$$
\sum_{I \times J \in \mathscr{A}_{(n, i) \times(m, j)}}\left(\sum_{\substack{I_{0} \times J_{0} \in \mathscr{A}_{\left(n_{0}, i_{0}\right) \times\left(n_{0}, j_{0}\right)}^{I \times J \supseteq I_{0} \times J_{0}}}}\left|I_{0} \times J_{0}\right|\right)\left|a_{I \times J}\right| .
$$

As $\mathscr{A}_{\left(n_{0}, i_{0}\right) \times\left(n_{0}, j_{0}\right)}$ consists of pairwise disjoint dyadic rectangles the above expression coincides with

$$
\sum_{I \times J \in \mathscr{A}_{(n, i) \times(m, j)}}\left|I \times J \cap A_{\left(n_{0}, i_{0}\right) \times\left(n_{0}, j_{0}\right)}\right|\left|a_{I \times J}\right|
$$

Condition (3.2) implies that this sum admits a minorization by

$$
\frac{1}{C} \sum_{I \times J \in \mathscr{A}_{(n, j) \times(m, j)}}\left|I \times J \| a_{I \times J}\right| 2^{-n_{0}+n} 2^{-n_{0}+m}
$$

which proves the lemma.
We return to the proof of Theorem 1. Applying triangle inequality (for the vector space ℓ^{2}) to (3.5) gives

$$
\begin{aligned}
& \|f\|_{H^{1}\left(\delta^{2}\right)} \\
& \geq \sum_{i_{0}, j_{0}=1}^{2^{n_{0}}}\left(\sum _ { (n , i) \times (m , j) \supseteq (n _ { 0 } , i _ { 0 }) \times (n _ { 0 } , j _ { 0 }) } \left(\sum_{I_{0} \times J_{0} \in \mathscr{A}_{\left(n_{0}, i_{0}\right) \times\left(n_{0}, j_{0}\right)}}\left|I_{0} \times J_{0}\right|\right.\right. \\
& \\
& \left.\left.\quad \times \sum_{\substack{I \times J \in \mathscr{A}_{(n, i) \times(m, j)}^{I \times J \supset I_{0} \times J_{0}}}}\left|a_{I \times J}\right|\right)^{2}\right)^{1 / 2} .
\end{aligned}
$$

By Lemma 2, one minorizes the above expression by

$$
\begin{equation*}
\frac{1}{C} \sum_{i_{0}, j_{0}=1}^{2^{n_{0}}}\left(\sum_{(n, i) \times(m, j) \supseteq\left(n_{0}, i_{0}\right) \times\left(m_{0}, j_{0}\right)}\left(\sum_{I \times J \in \mathscr{A}_{(n, i) \times(m, j)}}|I \times J| a_{I \times J}\right)^{2}\right. \tag{3.7}
\end{equation*}
$$

$$
\left.\times 4^{-n_{0}+n} 4^{-n_{0}+m}\right)^{1 / 2}
$$

It remains to relate $\|P f\|_{H^{1}\left(\delta^{2}\right)}$ to (3.7). But this is easy: We first have

$$
\begin{equation*}
\left(f \mid \tilde{h}_{(n, i) \times(m, j)}\right)=\sum_{I \times J \in \mathscr{A}_{(n, i) \times(m, j)}}|I \times J| a_{I \times J} \tag{3.8}
\end{equation*}
$$

Next one observes that

$$
\begin{equation*}
\left\|\tilde{h}_{(n, i) \times(m, j)}\right\|_{2}^{4}=\left|A_{(n, i) \times(m, j)}\right|^{2} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{1}_{A_{(n, i) \times(m, j)}}=\tilde{h}_{(n, i) \times(m, j)}^{2} . \tag{3.10}
\end{equation*}
$$

Finally, (3.2) implies that there exists $C_{0}>0$ so that

$$
\begin{equation*}
2^{-n} 2^{-m} \frac{1}{C_{0}} \leq\left|A_{(n, i) \times(m, j)}\right| \leq C_{0} 2^{-n} 2^{-m} \tag{3.11}
\end{equation*}
$$

Combining (3.1) with (3.8)-(3.11) we see that the expression (3.7) \geq $C\|P f\|_{H^{1}\left(\delta^{2}\right)}$.

4. Primarity of $H^{1}\left(\delta^{2}\right)$

In this section we give some applications to Banach space properties of $H^{1}\left(\delta^{2}\right)$. Adjusting an idea of Michele Capon we verify that for any collection \mathscr{C} of dyadic rectangles either \mathfrak{b} or its complement $\mathscr{D} \times \mathscr{D} \backslash \mathscr{b}$ contains collections \mathscr{A}_{k} which satisfy the hypothesis of Theorem 1 . This dichotomy is, of course, the basis of our proof that $H^{1}\left(\delta^{2}\right)$ is primary.

Covering lemmas for dyadic rectangles involve the Orlicz norm $\exp (L)$ rather then the L_{∞} norm. See [Ch-F], p. 15. Therefore the mere fact that the collections \mathscr{A}_{k} consist of pairwise disjoint rectangles is not at all obvious.

Definition 3 (Michele Capon). Let

$$
\mathscr{C}:=\left\{J \times I: I \in \mathscr{D} \text { and } J \in \mathscr{E}_{I}\right\}
$$

where $\mathscr{E}_{I} \subset \mathscr{D}$. Then $\sigma\left(\mathscr{E}_{I}\right):=\left\{t \in[0,1]: t\right.$ lies in infinitely many $\left.J \in \mathscr{E}_{I}\right\}$

$$
\mathscr{M}_{t}:=\left\{I \in \mathscr{D}: t \in \sigma\left(\mathscr{E}_{I}\right)\right\} \text { and } B:=\left\{t \in[0,1]:\left|\sigma\left(\mathscr{M}_{t}\right)\right|>\frac{1}{2}\right\} .
$$

Theorem 4. If $|B|>0$ then there exist collections $\mathscr{A}_{(n, i) \times(m, j)} \subset \mathscr{C}$ which satisfy the hypothesis of Theorem 1; consequently

$$
\operatorname{span}\left\{h_{I \times J}: I \times J \in \mathscr{C}\right\}
$$

contains a complemented copy of $H^{1}\left(\delta^{2}\right)$.
Proof. We fix $t \in B$ and sequences $\varepsilon_{n}>0, \varepsilon_{J}>0$ of positive real numbers.

Part 1. Step (1). Define

$$
\begin{align*}
\mathscr{K}_{(0,1), t} & :=\left\{K \in \mathscr{M}_{t}:\left|K \cap \sigma\left(M_{t}\right)\right| \geq\left(1-\varepsilon_{1}\right)|K|\right\} \tag{4.1}\\
\mathscr{F}_{(0,1), t} & :=\left\{K \in \mathscr{K}_{(0,1), t}: K \text { maximal }\right\} .
\end{align*}
$$

Then choose $N((0,1), t) \in \mathbf{N}$ so that

$$
\begin{equation*}
\sum_{K \in \mathscr{F}_{(0,1), t}}\left\{|K|:|K| \geq 2^{-N((0,1), t)}\right\} \geq\left(1-\varepsilon_{1}\right)\left|\bigcup_{K \in \mathscr{F}_{(0,1), t}} K\right| \tag{4.2}
\end{equation*}
$$

Let

$$
\begin{aligned}
\mathscr{T}_{(0,1), t} & :=\left\{K \in \mathscr{F}_{(0,1), t}:|K| \geq 2^{-N((0,1), t)}\right\} \\
h_{(0,1), t} & :=\sum_{K \in \mathscr{T}_{(0,1), t}} h_{K} .
\end{aligned}
$$

Step $(n+1)$. Having constructed $\mathscr{T}_{(n, i), t}$ and $h_{(n, i), t}$ we let

$$
E^{+}:=\left\{s: h_{(n, i), t}(s)=1\right\} \quad \text { and } \quad E^{-}:=\left\{s: h_{(n, i), t}(s)=-1\right\}
$$

Now define

$$
\begin{align*}
\mathscr{K}_{(n+1,2 i-1), t} & :=\left\{K \in \mathscr{M}_{t}: K \subset E^{+},\left|K \cap \sigma\left(\mathscr{M}_{t}\right)\right| \geq\left(1-\varepsilon_{n+1}\right)|K|\right\} \tag{4.3}\\
\mathscr{K}_{(n+1,2 i), t} & :=\left\{K \in \mathscr{M}_{t}: K \subset E^{-},\left|K \cap \sigma\left(\mathscr{M}_{t}\right)\right| \geq\left(1-\varepsilon_{n+1}\right)|K|\right\} .
\end{align*}
$$

Fix $\delta \in\{-1,0\}$ and define

$$
\mathscr{F}_{(n+1,2 i+\delta), t}:=\left\{K \in \mathscr{K}_{(n+1,2 i+\delta), t}: K \text { maximal }\right\}
$$

Next we determine a natural number $N=N((n+1,2 i+\delta) t)$ so that for each $J \in \mathscr{T}_{(n, i), t}$

$$
\begin{equation*}
\sum_{K \in \mathscr{F}_{(n+1,2 i+8), t}}\left\{|K|: K \subset J,|K|>2^{-N}\right\} \geq\left(1-\varepsilon_{n+1}\right)|J| \tag{4.4}
\end{equation*}
$$

and we let

$$
\mathscr{T}_{(n+1,2 i+\delta), t}:=\left\{K \in \mathscr{F}_{(n+1,2 i+\delta), t}:|K|>2^{-N}\right\}
$$

and

$$
h_{(n+1,2 i+\delta), t}:=\sum_{k \in \mathscr{T}_{(n+1,2 i+\delta), t}} h_{K} .
$$

Having completed the construction of part 1, we now collect six important consequences thereof:

1. Let

$$
E_{(n, i), t}:=\operatorname{supp}\left\{h_{(n, i), t}\right\}
$$

then for every $(m, j) \supseteq(n, i)$ and $J \in \mathscr{T}_{(m, j), t}$ we have by (4.1)-(4.4).

$$
\begin{equation*}
D_{m, n} 2^{m-n}|J| \leq\left|J \cap E_{(n, i), t}\right| \leq C_{m, n} 2^{m-n}|J| \tag{4.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& D_{m, n}=\left|E_{(1,1), t}\right| \prod_{l=m}^{n}\left(1+2 \varepsilon_{l}\right)^{2} \\
& C_{m, n}=\left|E_{(1,1), t}\right| \prod_{l=m}^{n}\left(1-2 \varepsilon_{l}\right)^{2}
\end{aligned}
$$

2. $E_{(n, i), t}$ forms a tree of sets in the sense that

$$
\begin{aligned}
\left|E_{(1,1), t}\right| & >\frac{1}{4} \\
E_{(n+1,2 i-1), t} \cup E_{(n+1,2 i), t} & \subset E_{(n, i), t} \\
E_{(n+1,2 i-1), t} \cap E_{(n+1,2 i), t} & =\emptyset \\
2\left(1-\varepsilon_{n+1}\right) & \leq \frac{\left|E_{(n, i), t}\right|}{\left|E_{(n+1,2 i+\delta), t}\right|} \leq 2\left(1+\varepsilon_{n+1}\right),
\end{aligned}
$$

where $\delta \in\{-1,0\}$.
3. During this process, for $t \in B$ we inductively selected integers $N((n, i), t)$. Looking back at the construction we observe that the dependence

$$
t \rightarrow N((n, i), t), \quad t \in B
$$

can be chosen to be measurable. Hence a repeated application of Egorov's theorem implies the existence of $B^{\prime} \subset B$ so that for any (n, i) there exists $N((n, i))$ satisfying

$$
\begin{equation*}
\sup \left\{N((n, i), t): t \in B^{\prime}\right\} \leq N((n, i)) \quad \text { and } \quad \frac{\left|B^{\prime}\right|}{|B|} \geq \frac{1}{2} \tag{4.6}
\end{equation*}
$$

4. Let $n \in \mathbf{N}, 1 \leq i \leq 2^{n}$ and let \mathscr{K} be a finite collection of intervals. Then

$$
I_{\mathscr{K}}=\left\{t \in B^{\prime}: \mathscr{T}_{(n, i), t}=\mathscr{K}\right\}
$$

is a measurable set and for any $J \in \mathscr{K}$ we have the importanct inclusion

$$
\begin{equation*}
I_{\mathscr{H}} \subset \sigma\left(\mathscr{E}_{J}\right) \tag{4.7}
\end{equation*}
$$

Let us emphasize that (4.7) is systematically exploited in the construction given below. Moreover by (4.6) the cardinality of $\left\{\mathscr{K}: I_{\mathscr{K}} \neq \emptyset\right\}$ is finite.
5. Given $\delta_{1}, \delta_{2}, \delta_{3}>0$ and $J \in \mathscr{D}$. By Lebesgue's theorem on differentiation of integrals we may select a finite collection of pairwise disjoint dyadic intervals $\mathscr{\mathscr { G }}_{J} \subset \mathscr{E}_{J}$ so that for any $K \in \mathscr{G}_{J}$,

$$
\begin{gather*}
\left|K \cap \sigma\left(\mathscr{E}_{J}\right)\right|>\left(1-\delta_{1}\right) \mid K \tag{4.8}\\
|K| \leq \delta_{2} \tag{4.9}
\end{gather*}
$$

Moreover for $G_{J}:=\cup_{K \in \mathscr{G}_{J}} K$ we have

$$
\begin{equation*}
\left|G_{J} \Delta \sigma\left(\mathscr{E}_{J}\right)\right| \leq \delta_{3} \tag{4.10}
\end{equation*}
$$

6. Before going on with the proof the reader is advised to have a look at [C], page 91, line 3. There M. Capon states that $|B|>0$ implies the existence of blockbasis

$$
Z_{(n, i) \times(m, j)} \in \operatorname{span}\left\{h_{I \times J}: I \times J \in \mathscr{C}\right\}
$$

so that

$$
\left|Z_{(n, i) \times(m, j)}(t, y)\right|=\left|f_{(n, i)}(t)\right|\left|h_{(m, j), t}(y)\right|
$$

where $\left\{\left|f_{(n, i)}\right|(t)\right\}$ is the characteristic functions of a tree $\left\{B_{(n, i)}\right\}$ in $[0,1]$. A
moments reflection shows that this is already very close to (3.2). And in fact, all we have to do is, to adjust the sets $B_{(n, i)}$ properly to obtain (3.2).

We continue now with our proof of Theorem 4.
Part 2. Step (1). Here we shall construct $\mathscr{A}_{(0,1) \times(0,1)}$. The main ingredients of this construction are (4.7)-(4.10) and will reappear several times during the induction argument.

Let $B_{(0,1)}:=B^{\prime}$ and for a finite collection of dyadic intervals \mathscr{K} let

$$
I_{\mathscr{K}}:=\left\{t \in B_{(0,1)}: \mathscr{T}_{(0,1), t}=\mathscr{K}\right\} .
$$

Then $\left\{\mathrm{I}_{\mathscr{K}}: \mathscr{K} \subset \mathscr{D}\right.$ finite $\}$ is a sequence of pairwise disjoint, measurable subsets of $B_{(0,1)}$ so that

$$
B_{(0,1)}=\bigcup_{\mathscr{K} \text { finite }} I_{\mathscr{K}} .
$$

Using Remark 3 we then find $N \in \mathbf{N}$ and $\mathscr{K}_{1}, \ldots, \mathscr{K}_{N}$, collections of pairwise disjoint dyadic intervals so that

$$
B_{(0,1)}=\bigcup_{j=1}^{N} I_{\mathscr{K}_{j}} .
$$

Next fix $J \in \mathscr{K}_{j}, j \leq N$. By (4.7)-(4.10) we find finite collections of pairwise disjoint intervals $\mathscr{G}_{J} \subset \mathscr{E}_{J}$ so that with $G_{J}:=\cup_{\mathscr{H} \in \mathscr{G}_{J}} K$,

$$
\begin{gather*}
K \in \mathscr{G}_{J} \text { implies }\left|K \cap I_{\mathscr{K}_{j}}\right|>|K|\left(1-\varepsilon_{J}\right) \tag{4.11}\\
\left|G_{J} \Delta I_{\mathscr{K}_{j}}\right| \leq \varepsilon_{J} \tag{4.12}
\end{gather*}
$$

For $k \neq l, k, l \leq N$ we may obtain moreover that

$$
\begin{equation*}
\bigcup_{J \in \mathscr{K}_{l}} G_{J} \cap \bigcup_{J \in \mathscr{K}_{k}} G_{J}=\emptyset \tag{4.13}
\end{equation*}
$$

because for $\mathscr{K}_{l} \neq \mathscr{K}_{k}$ we have $I_{\mathscr{K}_{l}} \cap \mathrm{I}_{\mathscr{K}_{k}}=\emptyset$.
Finally we define

$$
\mathscr{A}_{(0,1) \times(0,1)}:=\bigcup_{j=1}^{N} \bigcup_{J \in \mathscr{K}_{j}} \mathscr{G}_{J} \times J
$$

which is a collection of pairwise disjoint dyadic rectangles.

Having constructed $\mathscr{A}_{(m, j) \times\left(m^{\prime}, j^{\prime}\right)}$ for $m, m^{\prime} \leq n, 1 \leq j \leq 2^{m}$ and $1 \leq j^{\prime} \leq$ $2^{m^{\prime}}$ we define now the collections \mathscr{A} of level $n+1$:

Let

$$
\mathscr{B}_{n}:=\left\{L \in \mathscr{D}: \exists J \in \mathscr{D} L \times J \in \bigcup_{m, m^{\prime}=1}^{n} \bigcup_{j=1}^{2^{m}} \bigcup_{j^{\prime}=1}^{2^{m^{\prime}}} \mathscr{A}_{(m, j) \times\left(m^{\prime}, j^{\prime}\right)}\right\}
$$

\mathscr{B}_{n} is then a finite collection of dyadic intervals. The induction step is divided into three steps. In the first step we shall define

$$
\mathscr{A}_{(0,1) \times(n+1,2 i+\delta)}
$$

where $\delta \in\{+1,0\}$. The second step describes the construction of

$$
\mathscr{A}_{(n+1,2 i+\delta) \times(0,1)} .
$$

We then complete the induction in the third step where

$$
\mathscr{A}_{(m, j) \times(n+1,2 i+\delta)}
$$

and

$$
\mathscr{A}_{(n+1,2 i+\delta) \times(m, j)}
$$

are constructed for $2 \leq m \leq n+1$ and $1 \leq j \leq 2^{m}$.
Step $(n+1, a)$. Fix $\delta \in\{-1,0\}$ and $\mathscr{K} \subset \mathscr{D}$ finite. Let

$$
I_{\mathscr{K}, \delta}=\left\{t \in B_{(1,1)}: \mathscr{T}_{(n+1,2 i+\delta), t}=\mathscr{K}\right\}
$$

Then

$$
\left\{I_{\mathscr{K}, \delta}: \mathscr{K} \subseteq \mathscr{D} \text { finite }\right\}
$$

is a sequence of pairwise disjoint measurable subsets of $B_{(1,1)}$ so that

$$
\begin{equation*}
\bigcup_{\mathscr{K} \text { finite }} I_{\mathscr{K}, \delta}=B_{(1,1)} \tag{4.14}
\end{equation*}
$$

Using Remark 3 we next choose $N \in \mathbf{N}$ and $\mathscr{K}_{1}, \ldots, \mathscr{K}_{N}$, finite collections of pairwise disjoint dyadic intervals, so that

$$
\begin{equation*}
\bigcup_{j=1}^{N} I_{\mathscr{K}_{j}, \delta}=B_{(0,1) .} \tag{4.15}
\end{equation*}
$$

Now fix $j \leq N$ and $J \in \mathscr{K}_{j}$. By (4.7)-(4.10) there exists a collection of pairwise disjoint dyadic intervals $\mathscr{G}_{J, \delta} \subseteq \mathscr{E}_{J}$ so that

$$
\begin{gather*}
K \in \mathscr{G}_{J, \delta} \text { implies }\left|K \cap I_{\mathscr{K}_{J, \delta}}\right| \geq|K|\left(1-\varepsilon_{J}\right) . \tag{4.16}\\
\left|G_{J, \delta} \Delta I_{\mathscr{K}_{j}, \delta}\right| \leq \varepsilon_{J} \tag{4.17}
\end{gather*}
$$

For $k \neq l, k, l \leq N$ we may obtain

$$
\begin{equation*}
\bigcup_{J \in \mathscr{K}_{t}} G_{J, \delta} \cap \bigcup_{J \in \mathscr{K}_{k}} G_{J, \delta}=\emptyset \tag{4.18}
\end{equation*}
$$

Having done this construction for $\delta=-1$ we repeat the same construction for $\delta=0$ and using (4.9) we may do this in such a way that

$$
K \in \bigcup_{l=1}^{N} \bigcup_{J \in \mathscr{K}_{l}} \mathscr{G}_{J,-1} \text { implies } K \notin \bigcup_{l=1}^{N} \bigcup_{J \in \mathscr{K}_{l}} \mathscr{G}_{J, 0}
$$

Finally, for $\delta \in\{-1,0\}$, we put

$$
\mathscr{A}_{(0,1) \times(n+1,2 i+\delta)}:=\bigcup_{l=1}^{N} \bigcup_{J \in \mathscr{K}_{l}} \mathscr{G}_{J, \delta} \times J
$$

Step $(n+1, b)$. We consider the following finite set of intervals.

$$
\mathscr{C}_{n+1}:=\mathscr{B}_{n} \cup\left\{I \in \mathscr{D}: \exists J \in \mathscr{D} I \times J \in \mathscr{A}_{(1,1) \times(n+1,2 i)} \cup \mathscr{A}_{(1,1) \times(n+1,2 i-1)}\right\}
$$

Choose now two disjoint measurable subsets $B_{(n+1,2 i-1),} B_{(n+1,2 i)}$ of $B_{(n, i)}$ so that for every $I \in \mathscr{C}_{n+1}, \delta \in\{-1,0\}$,

$$
\begin{align*}
& \frac{1}{2}\left|B_{(n i)} \cap I\right|=\left|B_{(n+1,2 i+\delta)} \cap I\right| \tag{4.19}\\
& B_{(n, i)}=B_{(n+1,2 i-1)} \cup B_{(n+1,2 i)} \tag{4.20}
\end{align*}
$$

Let now $\mathscr{K} \subseteq \mathscr{D}$ be finite and define

$$
I_{\mathscr{K}, \delta}:=\left\{t \in B_{(n+1,2 i+\delta)}: \mathscr{T}_{(1,1), t}=\mathscr{K}\right\}
$$

Then

$$
\left\{I_{\mathscr{K}, \delta}: \mathscr{K} \subseteq \mathscr{D}, \text { finite } ; \delta \in\{-1,0\}\right\}
$$

is a measurable partition of $B_{(n+1,2 i-1)} \cup B_{(n+1,2 i)}$. We next choose $N \in \mathbf{N}$, $\mathscr{K}_{1}, \ldots, \mathscr{K}_{N}$ so that for $\delta \in\{-1,0\}$,

$$
\begin{equation*}
B_{n+1,2 i+\delta}=\bigcup_{k=1}^{N} I_{\mathscr{H}_{k}, \delta} \tag{4.21}
\end{equation*}
$$

and obviously for $I \in \mathscr{C}_{n+1}$ we have, by (4.20),

$$
\begin{equation*}
I \cap \bigcup_{k=1}^{N} I_{\mathscr{K}_{k}, \delta}=I \cap B_{n+1,2 k-\delta} \tag{4.22}
\end{equation*}
$$

Next we fix $k \leq N, J \in \mathscr{K}_{k}$. By (4.7)-(4.10) there exists a collection of pairwise disjoint dyadic intervals $\mathscr{G}_{J, \delta} \subseteq \mathscr{E}_{J}$ so that

$$
\begin{equation*}
K \in \mathscr{\mathscr { G }}_{J, \delta} \text { implies }\left|K \cap I_{\mathscr{K}_{k}, \delta}\right| \geq|K|\left(1-\varepsilon_{J}\right) \tag{4.23}
\end{equation*}
$$

And for $G_{J, \delta}=\bigcup_{K \in \mathscr{S}_{J, \delta}} K$,

$$
\begin{equation*}
\left|G_{J, \delta} \Delta I_{\mathscr{K}_{j}, \delta}\right|<\varepsilon_{J} \tag{4.24}
\end{equation*}
$$

For $k \neq l, k, l \leq N$ and $\delta, \delta^{\prime} \in\{-1,0\}$ we may obtain

$$
\begin{equation*}
\bigcup_{J \in \mathscr{K}_{l}} G_{J, \delta} \cap \bigcup_{J \in \mathscr{K}_{k}} G_{J, \delta^{\prime}}=\emptyset \tag{4.25}
\end{equation*}
$$

By (4.9) we may achieve that

$$
\mathscr{A}_{(n+1,2 i+\delta) \times(0,1)}:=\bigcup_{j=1}^{N} \bigcup_{J \in \mathscr{M}_{j}} \mathscr{G}_{J, \delta} \times J
$$

satisfies (3.1).
Step $(n+1, c)$. Here we complete the induction step and shall first construct

$$
\mathscr{A}_{(m, j) \times(n+1,2 i+\delta)} \quad \text { for } m \leq n+1,1 \leq j \leq 2^{m} .
$$

Then we shall define

$$
\mathscr{A}_{(n+1,2 i+\delta) \times(m, j)} \quad \text { for } m \leq n, 1 \leq j \leq 2^{m}
$$

Fix $(m, j) m \leq n+1,1 \leq j \leq 2^{m}$ and $\delta \in\{-1,0\}$ and consider the following procedure: In step $(n+1, a)$ we defined collections of dyadic intervals \mathscr{K}_{k} to build $\mathscr{A}_{(0,1) \times(n+1,2 i+\delta)}$. We use those \mathscr{K}_{k} 's now to construct $\mathscr{A}_{(m, j) \times(n+1,2 i+\delta)}$: Take $J \in \mathscr{K}_{k}$ and consider the collection $\mathscr{G}_{J, \delta}$ which was defined in step $(n+1, a)$ as well. By (4.7)-(4.10) for $I \in \mathscr{\mathscr { G }}_{J, \delta}$ there exists $\mathscr{L}_{I} \subset \mathscr{E}_{J}$ so that

$$
\begin{equation*}
K \in \mathscr{L}_{I} \text { implies }\left|K \cap B_{(m, j)}\right| \geq\left(1-\varepsilon_{n+1} \varepsilon_{I}\right)|K| \tag{4.26}
\end{equation*}
$$

For $L_{I}:=\bigcup_{K \in \mathscr{l}} K$,

$$
\begin{equation*}
\left|L_{I} \Delta I \cap B_{(m, j)}\right| \leq \varepsilon_{I} \varepsilon_{n+1} \tag{4.27}
\end{equation*}
$$

Then we define

$$
\mathscr{A}_{(m, j) \times(n+1,2 i+\delta)}:=\bigcup_{k=1}^{N} \bigcup_{J \in \mathscr{K}_{k}} \bigcup_{I \in \mathscr{G}_{J, \delta}} \mathscr{L}_{I} \times J
$$

We start this construction at $(m, j)=(1,1)$ and continue until $(m, j)=$ $\left(n+1,2^{n+1}\right)$. By (4.9) we can guarantee that the resulting collections $\mathscr{A}_{(m, j) \times(n+1,2 i+\delta)}$ are pairwise disjoint and satisfy conditions (3.1). Now fix (m, j), $m \leq n, 1 \leq j \leq 2^{m}, \delta \in\{-1,0\}$ and consider the following procedure. Fix $\mathscr{K} \subseteq \mathscr{D}$ finite and define

$$
I_{\mathscr{K}_{\delta}}:=\left\{t \in B_{(n+1,2 i+\delta)}: \mathscr{T}_{(m, j), t}=\mathscr{K}\right\} .
$$

$\left\{I_{\mathscr{K}_{\delta}}: \mathscr{K}\right.$ finite $\}$ is a measurable partition of $B_{(n+1,2 i+\delta)}$. We choose $N \in \mathbf{N}$ and $\mathscr{K}_{\delta, 1}, \ldots, \mathscr{K}_{\delta, N}$, finite collections of pairwise disjoint dyadic intervals, so that

$$
\begin{equation*}
\bigcup_{k=1}^{N} I_{\mathscr{K}_{\delta, k}}=B_{(n+1,2 i+\delta)} \tag{4.28}
\end{equation*}
$$

By (4.7)-(4.10) for every $k \leq N$ and $J \in \mathscr{K}_{\delta, k}$ we find $\mathscr{G}_{J} \subset \mathscr{E}_{J}$ so that

$$
\begin{equation*}
K \in \mathscr{G}_{J} \text { implies }\left|K \cap B_{(n+1,2 i-\delta)}\right| \geq\left(1+\varepsilon_{n+1}\right)|K| \tag{4.29}
\end{equation*}
$$

For $G_{J}:=\bigcup_{k \in \mathscr{G}_{J}} K$ we have

$$
\begin{equation*}
\left|G_{J} \Delta I_{\mathscr{K}_{k}, \delta}\right| \leq \varepsilon_{n+1} \varepsilon_{J} \tag{4.30}
\end{equation*}
$$

Then we define

$$
\mathscr{A}_{(n+1,2 i+\delta) \times(m, j)}=\bigcup_{k=1}^{N} \bigcup_{J \in \mathscr{K}_{k}} \mathscr{\mathscr { G }}_{J} \times J
$$

Again we start this construction with $(m, j)=(1,1)$ and stop at $(m, j)=$ ($n, 2^{n}$). By (4.9) the resulting collections $\mathscr{A}_{(n+1,2 i+\delta) \times(m, j)}$ can be chosen to be disjoint. This completes the induction step and Part 2 of the proof of Theorem 4.

It remains to observe that the resulting families $\mathscr{A}_{(n, i) \times(m, j)}$ satisfy (3.2). To do so we simply have to trace back the construction. Suppose (3.2) holds
for $n_{0} \in \mathbf{N}$ with constant C_{0}. We then show that (3.2) holds for $n_{0}+1$ and constant $C_{0}\left(1+\tilde{\varepsilon}_{n_{0+1}}\right)$. Indeed, this follows from (4.29), (4.30), (4.26), (4.27), (4.21), (4.22), (4.19), (4.20) and (4.5) provided $\varepsilon_{J}>0$ and $\varepsilon_{k}>0$ are chosen small enough.

It is easily observed that for any collection \mathfrak{b} of dyadic rectangles, either \mathfrak{b} or $\mathscr{D} \times \mathscr{D} \backslash \mathfrak{b}$ satisfies the hypothesis of theorem (see [C]). Using this stability property, it is now clear that:

Theorem 5. $\quad H^{1}\left(\delta^{2}\right)$ is primary.

5. Examples and remarks

In this section we discuss several observations which relate results concerning the 1 -dimensional dyadic H^{1} to the construction given above.

For a collection \mathscr{A} of dyadic intervals its "Carleson constant" is given by

$$
C C\{\mathscr{A}\}:=\sup _{I \in \mathscr{A}} \sum_{\{J \in \mathscr{A}: J \subset I\}} \frac{|J|}{|I|} .
$$

This quantity, which is of great importance to questions of classical function theory (see [Ga]), determines the relation of the subspace span $\left\{h_{I}: I \in \mathscr{A}\right\}$ of H^{1} to the spaces l^{1} and H_{n}^{1} (see [M]).

The next observation which may be considered as a geometric version of Ramsey's theorem shows that Carleson's condition is also relevant to detect copies of $H_{n}^{1} \otimes H_{n}^{1}$ in \mathscr{C} or $\mathscr{D} \times \mathscr{D} \backslash \mathfrak{C}$.

Lemma 6. For $n_{0} \in \mathbf{N}$ there exists $n \in \mathbf{N}$ so that for any collection $\mathfrak{b} \subset$ $\mathscr{D}^{n} \times \mathscr{D}^{n}$, one finds $\mathscr{A}, \mathscr{B} \subset \mathscr{D}^{n}$ such that
(i) either $\mathscr{A} \times \mathscr{B} \subset \mathscr{C}$ or $\mathscr{A} \times \mathscr{B} \subset \mathscr{D}^{n} \times \mathscr{D}^{n} \backslash \mathscr{C}$,
(ii) $\sup _{I \in \mathscr{A}} \sum_{\{J \in \mathscr{A}: J \subset I\}}|I| /|J| \geq 2^{n_{0}}$ and $\sup _{I \in \mathscr{B}} \sum_{\{J \in \mathscr{B}: J \subset I\}}|I| /|J| \geq$ $2^{n_{0}}$ 。

Remark. The one dimensional results of [M, Main Lemma 2] imply now that for any $n_{0} \in \mathbf{N}$ and any collection $\mathscr{b} \subset \mathscr{D}^{n} \times \mathscr{D}^{n}$ (with n big enough) of dyadic rectangles either

$$
\operatorname{span}\left\{h_{I \times J}: I \times J \in \mathscr{C}\right\}
$$

or

$$
\operatorname{span}\left\{h_{I \times J}: I \times J \in \mathscr{C} \backslash \mathscr{D}^{n} \times \mathscr{D}^{n}\right\}
$$

contains well complemented copies of $H_{n_{0}}^{1} \otimes H_{n_{0}}^{1}$.

Proof. For n_{0} given, we choose $k \in \mathbf{N}$ so that $2^{k-1} \geq n_{0}$ and select $n \in \mathbf{N}$ so that $2^{n} \geq n_{0} 2^{2^{k}}$. Let $I_{1} \cdots I_{2^{n+1}}$ be enumeration of the intervals in \mathscr{D}^{n}. Now we define collections

$$
\begin{aligned}
& \mathscr{E}=\left\{J \in \mathscr{D}^{n}: I_{1} \times J \notin \mathscr{D}\right\} \\
& \mathscr{F}=\left\{J \in \mathscr{D}^{n}: I_{1} \times J \in \mathscr{C}\right\}
\end{aligned}
$$

We use them to define a function

$$
f\left(I_{1}\right)= \begin{cases}0 & \text { if } C C\{\mathscr{E}\} \geq C C\{\mathscr{F}\} \\ 1 & \text { otherwise }\end{cases}
$$

We put

$$
\mathscr{G}_{1}= \begin{cases}\mathscr{E} & \text { if } C C\{\mathscr{E}\}>C C\{\mathscr{F}\} \\ \mathscr{F} & \text { otherwise }\end{cases}
$$

Having defined

$$
\begin{gathered}
f\left(I_{1}\right), \ldots, f\left(I_{m-1}\right) \\
\mathscr{G}_{1}, \ldots, \mathscr{G}_{m-1}
\end{gathered}
$$

we let

$$
\begin{aligned}
\mathscr{E} & =\left\{J \in \mathscr{E}_{m-1}: I_{m} \times J \notin \mathscr{C}\right\} \\
\mathscr{F} & =\left\{J \in \mathscr{G}_{m-1}: I_{m} \times J \in \mathscr{C}\right\} \\
f\left(I_{m}\right) & = \begin{cases}0 & \text { if } C C\{\mathscr{E}\}>C C\{\mathscr{F}\} \\
1 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Finally we let

$$
\mathscr{I}_{m}= \begin{cases}\mathscr{E} & \text { if } C C\{\mathscr{E}\} \geq C C\{\mathscr{F}\} \\ \mathscr{F} & \text { otherwise }\end{cases}
$$

Having completed the construction of f for $I_{1}, \ldots, I_{2^{t}}$, we set

$$
\begin{aligned}
\mathscr{T}^{1} & =\left\{J \in \mathscr{D}^{k}: f(J)=1\right\} \\
\mathscr{T}^{0} & =\left\{J \in \mathscr{D}^{k}: f(J)=0\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \mathscr{T}^{1} \cup \mathscr{T}^{0}=\mathscr{D}^{k} \\
& \mathscr{T}^{1} \times \mathscr{G}_{2^{k}} \subset \mathscr{C} \\
& \mathscr{T}^{0} \times \mathscr{G}_{2^{k}} \subset \mathscr{D}^{k} \times \mathscr{D}^{k} \backslash \mathscr{C}
\end{aligned}
$$

and

$$
C C\left\{\mathscr{\mathscr { O }}_{2^{k}}\right\} \geq \frac{2^{n}}{2^{2^{k}}}
$$

Finally we let

$$
\begin{aligned}
& \mathscr{A}:= \begin{cases}\mathscr{T}^{1} & \text { if } C C\left\{J^{1}\right\}>C C\left\{J^{2}\right\} \\
\mathscr{T}^{2} & \text { otherwise } .\end{cases} \\
& \mathscr{B}=\mathscr{G}_{2^{k} .} .
\end{aligned}
$$

Our initial choice of k and n gives now the result.
The examples constructed below should be compared with a result of J. Bourgain [B] which says that $H^{1}\left(l^{2}\right)$ is not isomorphic to a complemented subspace of H^{1}.

Theorem 7. There exists a sequence of uniformly complemented isometric copies of $H^{1}\left(l_{n}^{2}\right)$ in H^{1}.

Proof. Fix $n \in \mathbf{N}$. We pick a subsequence $\left\{s_{i} \in \mathbf{N}\right\}$ of natural numbers, and a sequence of subsets R_{i} so that for each $i \in \mathbf{N}$, the cardinality of R_{i} equals n and

$$
s_{1}<\inf R_{1}<\sup R_{1}<s_{2}<\cdots<s_{m-1}<\inf R_{m}<\sup R_{m}<s_{m}<\cdots
$$

We use the sequence $\left\{s_{i}: i \in \mathbf{N}\right\}$ in the usual way to construct "Haar" functions $\tilde{h}_{(0,0)}:=r_{s_{1}}$. Having constructed $\tilde{h}_{(k, j)}$, for $k \leq m$, and $j \leq 2^{k}$ we let

$$
\begin{aligned}
\tilde{h}_{(m+1,2 j)} & =\mathbf{1}_{\left\{\tilde{h}_{(m, j)}=1\right\}} r_{s_{m+1}} \\
\tilde{h}_{(m+1,2 j+1)} & =\mathbf{1}_{\left\{\tilde{h}_{(m, j)}=-1\right\}} r_{s_{m+1}}
\end{aligned}
$$

To build the components of l_{n}^{2} we use Rademacher functions associated to R^{n} : We denote the k-th element of R_{m} by m_{k}. The linear extension of the map

$$
h_{(m, i)} \otimes e_{k} \mapsto \tilde{h}_{(m, i)} r_{m_{k}}
$$

gives us an isometric embedding of $H^{1}\left(l_{n}^{2}\right)$ into H^{1}. Indeed given vectors
$\vec{a}_{(m, i)}=\left(a_{k,(m, i)}\right)_{k=1}^{n}$ in l_{n}^{2} we obtain

$$
\begin{aligned}
\left\|\sum_{m, l, k} \tilde{h}_{(m, i)} r_{m_{k}} a_{k(m, i)}\right\|_{H^{1}} & =\int\left(\sum_{(m i), k}\left|h_{(m, i)}\right| a_{k(m, i)}^{2} r_{m_{k}}^{2}\right)^{1 / 2} d t \\
& =\int\left(\sum_{(m i)}\left|h_{(m, i)}\right|\left(\sum_{k=1}^{n} a_{k(m, i)}^{2}\right)\right)^{1 / 2} d t \\
& =\int\left(\sum \mid h_{m, i}\| \| \vec{a}_{(m, i)} \|_{2}^{2}\right)^{1 / 2} \\
& =\left\|\sum h_{m i} \vec{a}_{(m, i)}\right\|_{H^{1}\left(l_{n}^{2}\right)}
\end{aligned}
$$

The span $\left\{\tilde{h}_{(m, i) r_{m}}: m \in \mathbf{N}, i \leq 2^{m}, m_{k} \in R_{m}\right\}$ is complemented in H^{1}, because the orthogonal projection onto this subspace is bounded. (The best way to see this is to observe that the criterion in [Jo] is satisfied.)

Remark. It is also natural to ask if one can find a sequence of uniformly complemented copies of $H_{n}^{1} \otimes H_{n}^{1}$ in H^{1}. A related problem is to prove that $\mathrm{BM} O\left(\delta^{2}\right)$ is isomorphic to BMO .

The following discussion is included to isolate the idea of the proof of Theorem 1 in a very special, simple and one dimensional setting: Given real numbers $a_{1}, b_{1}, \ldots, b_{4}$ and c_{1}, \ldots, c_{16} and consider the matrix

$$
A=\left\{\begin{array}{llllllllllllllll}
a_{1} & a_{1} \\
b_{1} & b_{1} & b_{1} & b_{1} & b_{2} & b_{2} & b_{2} & b_{2} & b_{3} & b_{3} & b_{3} & b_{3} & b_{4} & b_{4} & b_{4} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{6} & c_{7} & c_{8} & c_{9} & c_{10} & c_{11} & c_{12} & c_{13} & c_{14} & c_{15} & c_{16}
\end{array}\right\}
$$

Then we form the following sums:

$$
\begin{aligned}
& \left(\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right)+\left(\begin{array}{l}
a_{1} \\
b_{1} \\
c_{3}
\end{array}\right)+\left(\begin{array}{l}
a_{1} \\
b_{3} \\
c_{9}
\end{array}\right)+\left(\begin{array}{l}
a_{1} \\
b_{3} \\
c_{11}
\end{array}\right)=\left(\begin{array}{c}
a_{1} \\
\left(b_{1}+b_{3}\right) / 2 \\
\left(c_{1}+c_{3}+c_{9}+c_{11}\right) / 4
\end{array}\right) 4=v_{1} \\
& \left(\begin{array}{l}
a_{1} \\
b_{1} \\
c_{2}
\end{array}\right)+\left(\begin{array}{l}
a_{1} \\
b_{1} \\
c_{4}
\end{array}\right)+\left(\begin{array}{l}
a_{1} \\
b_{3} \\
c_{10}
\end{array}\right)+\left(\begin{array}{l}
a_{1} \\
b_{3} \\
c_{12}
\end{array}\right)=\left(\begin{array}{c}
a_{1} \\
\left(b_{1}+b_{3}\right) / 2 \\
\left(c_{1}+c_{4}+c_{10}+c_{12}\right) / 4
\end{array}\right) 4=v_{2} \\
& \left(\begin{array}{l}
a_{1} \\
b_{2} \\
c_{5}
\end{array}\right)+\left(\begin{array}{l}
a_{1} \\
b_{2} \\
c_{7}
\end{array}\right)+\left(\begin{array}{l}
a_{1} \\
b_{4} \\
c_{13}
\end{array}\right)+\left(\begin{array}{l}
a_{1} \\
b_{4} \\
c_{15}
\end{array}\right)=\binom{\left(b_{2}+b_{4}\right) / 2}{\left(c_{5}+c_{7}+c_{13}+c_{15}\right) / 4} 4=v_{3} \\
& \left(\begin{array}{l}
a_{1} \\
b_{2} \\
c_{6}
\end{array}\right)+\left(\begin{array}{l}
a_{1} \\
b_{2} \\
c_{8}
\end{array}\right)+\left(\begin{array}{l}
a_{1} \\
b_{4} \\
c_{14}
\end{array}\right)+\left(\begin{array}{l}
a_{1} \\
b_{4} \\
c_{16}
\end{array}\right)=\left(\begin{array}{c}
a_{1} \\
\left(b_{2}+b_{4}\right) / 2 \\
\left(c_{5}+c_{7}+c_{13}+c_{15}\right) / 4
\end{array}\right) 4=v_{4}
\end{aligned}
$$

For $c_{j}, j \leq 16, A\left(c_{j}\right)$ denotes the j-th column of the matrix $A . l_{3}^{2}$ denotes the three dimensional Hilbert space. Triangle inequality implies that

$$
\sum_{j=1}^{16}\left\|A\left(c_{j}\right)\right\|_{\ell_{3}^{2}} \geq \sum_{k=1}^{4}\left\|v_{k}\right\|_{\ell_{3}^{2}}
$$

To relate the above considerations with orthogonal projections consider

$$
\begin{aligned}
& \tilde{h}_{1}=h_{(0,0)} \\
& \tilde{h}_{2}=h_{(2,1)}+h_{(2,3)} \\
& \tilde{h}_{3}=h_{(2,2)}+h_{(2,4)} \\
& \tilde{h}_{4}=h_{(3,1)}+h_{(3,3)}+h_{(3,9)}+h_{(3,11)} \\
& \tilde{h}_{5}=h_{(3,2)}+h_{(3,4)}+h_{(3,10)}+h_{(3,12)} \\
& \tilde{h}_{6}=h_{(3,5)}+h_{(3,7)}+h_{(3,13)}+h_{(3,15)} \\
& \tilde{h}_{7}=h_{(3,6)}+h_{(3,8)}+h_{(3,4)}+h_{(3,16)} .
\end{aligned}
$$

Now consider

$$
P f=\sum_{k=1}^{7}\left(f \mid \tilde{h}_{k}\right) \frac{\tilde{h}_{k}}{\left\|\tilde{h}_{k}\right\|_{2}^{2}}
$$

Obviously $\|f\|_{H^{1}(\delta)}$ can be realized as $\sum_{j=1}^{16} 1 / 16\left\|A\left(c_{j}\right)\right\|_{\iota_{3}^{2}}$, where A is of the form considered above, such that

$$
\|P f\|_{H^{1}(\delta)}=\sum_{k=1}^{4} \frac{1}{16}\left\|v_{k}\right\|_{\ell_{3}^{2}} .
$$

References

[B] J. Bourgain, The non-isomorphism of H^{1} spaces in one and several variables, J. Funct. Anal. 46 (1982), 45-57.
[Ch] S.Y.A. Chang, Two remarks on H^{1} and BMO on the bidisc, Conference on Harmonic Analysis in honor of A. Zygmund, vol II, pp. 373-393.
[Ch-F] S.Y.A. Chang and R. Fefferman, Some recent developments in Fourier Analysis and H^{p} theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-41.
[C] M. Capon, Primarite de $L^{p}\left(L^{r}\right), 1<p, q<\infty$, Israel J. Math. 42 (1982), 87-98.
[G] R. Gundy, Inégalités pour martingales à un et deux undices-L'espace H^{p}, L'ecole d'ete de St. Flour. SLM 774 (1978).
[Ga] J.B. Garnett, Bounded analytic functions, Academic Press, San Diego, Calif., 1981.
[J] P.W. Jones, BMO and the Banach space approximation problem, Amer. J. Math. 107 (1985), 853-893.
[Ma] B. Maurey, Isomorphismes entre espaces H^{1}, Acta Math. 145 (1980), 79-120.
[M] P.F.X. Müller, On projection in H^{1} and BMO, Studia Math. 89 (1988), 145-158.
J. Kepler Universität Linz

Linz, Austria

