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1. Let o be a Krull domain with quotient field K. Let I be the collection
of all rank 1 prime ideals of 0 and for each p e I, let v be the corresponding
p-adic valuation on K. Finally, let $ be the set of all group homomorphisms
g from the multiplicative group K* of non-zero elements of K into the additive
group of real numbers and such that g is non-negative on K* a . The first
part of this paper is devoted to proving the following three theorems which
are basic to the statement of our main result"

THEORE (A). Given an element g of $, there exists a real-valued function
defined on I such that

G(p >_ O for each p eI.
K$"(ii) g(x) (p)v(x) for each x e

(Note that the choice of G depends on the choice of g.)

THEOnEM (B). Let g $ and let be a function satisfying conditions (i)
and (ii) of Theorem (A) relative to g. For each element p I, let

G’(p) inf {g(x)/v(x) x p, x 0}.

Then (p) G’(p) for each p I. Moreover, given one element q I, the
function can be selected so that (q) G’(q).

THEOE (C). Let g be an element of 8. The following statements are
equivalent:

K"(i) g(x) G’(p)v(x) for each x
(ii) There is but one function , corresponding to g, which satisfies condi-

tions and ii of Theorem A
(iii) Given q I and > O, there exists an element x q such that

.q G’(p)v(x) evq(x).

The above results were originally obtained by Samuel [5] for the class of
all integer-valued valuations w on K whose corresponding valuation ring
Rw dominates o, where was assumed to be a normal local domain. We
have obtained these more general results by making use of a different ex-
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tension theorem for linear functionals than that employed by Samuel. Other-
wise, our methods parallel those of Samuel.

In this paper, an element g of $ is said to be perfect in case the three equiv-
alent conditions of Theorem (C) are satisfied. Thus, if o is a normal local
domain and w is an integer-valued valuation whose corresponding valuation
ring dominates o, then is almost-gaussian (presque-factoriel) relative to w,
as defined by Samuel [5], if and only if w is perfect. The change in language
is due to the fact that $ always contains many perfect elements (for example,
each v is perfect) so that, in general, the fact that a given element f of $ is
perfect may give no additional information about the domain itself. We
now state our main result.

THEOREM (D). Let f and g be elements of $ and assume f is perfect. Let

l(f, g) inf {f(x)/g(x) x K* , g(x) > 0},

where g is assumed not to be the zero homomorphism. If l(f, g) O, then also
g is perfect.

Let be a normal local domain and assume that for any two divisors v,
w of second kind relative to o the relation l(v, w) 0 holds. In view of
Theorem (D), it would be proper to call such a domain "almost-gaussian"
(without reference to any particular divisor of second kind) in case there
exists a divisor w of second kind relative which is perfect. A class of two-
dimensional normal local domains which are, in fact, "almost-gaussian" in
the above sense of the word, has been described in [2].
The number l(f, g) (see Theorem (D)) is called the linking number of f

over g on K* . In Section 3 such linking numbers are studied briefly in a
purely abstract setting. That is, let T be an arbitrary non-empty set and let
f, g be non-negative functions defined on T into the set of real numbers with

adjoined. A number lr(f, g) (possibly infinite) is defined such that if

f and g are as in Theorem (D), then

l.o(f, g) inf {f(x)/g(x) x e K* , g(x) > 0}

and if g is trivial, then l.o (f, g) . Throughout this paper the number
/.o(f, g) will be denoted simply by l(f, g). More importantly, suppose T
is a noetherian ring, A and B proper ideals of T such that Rad A Rad B
and the intersection of all positive integral powers of A is the zero ideal.
Let 1.(B) be the number obtained by comparing high powers of A and B
introduced earlier by Samuel [4]. Let and . be the homogeneous pseudo-
valuations defined by A and B, respectively [3]. We show here that la(B)

Finally, in Section 4 we show that if f and g are perfect elements of $ such
that l(f, g) 0 or l(g, f) O, then f -t- g is perfect. Moreover, a partial
ordering is defined on $ which is such that each non-trivial perfect element of $
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can be embedded in a natural way in a distributive lattice of non-trivial per-
fect elements.
We express our appreciation to Professor H. T. Muhly for his generous

assistance and encouragement during the preparation of this paper... Throughout this paper, R will denote the set of real numbers. The
following lemma is a modification of a well-known extension theorem for lin-
ear functionals on a partially ordered vector space and is probably also known.
However, since no specific reference could be located, we give a proof here.

IEMMA 2.1. Let be a vector space over R, C a convex cone in whose vertex
is the neutral element of relative to vector addition. Let 7 be a vector subspace
of 8 and let G be a linear functional defined on 7 which takes non-negative values
on C n 7. Assume further that for each Y there exist elements x, x 7
such that x’-y e C and y- x e C. Then there exists a linear functional
G defined on which takes non-negative values on C and which extends G. More-
over, if Xo and xo 7, let

(, x0) {x ; x0 z c},

Then the numbers
T(7, Xo) {x’ e7; x’ Xo e C}.

sup {G(x); x e S(7, x0)}

and

are defined and a

_ .
that Xo ’.

t inf {G(x’); x’ e T(7, x0)}

For any , such that a <_ " <_ , can be chosen so

Proof. Let71 7-t-Rx0. If xeS(7, x0) and x’eT(7, x0), then

(x’-xo)+(xo-x) =x’-x.

Hence, G(x)

_
G(x’), so a and f are defined, a

_ . Let , be any real
number such that a

_
,
_ . For each element x txo (x 7, R) of

7, define Gl(x -t- txo) to be G(x) 27 t,),. It is easy to verify that G1 is a
linear functional on 71 which is non-negative on C n 71 and which extends G.
Let N be the collection of all ordered pairs of the. form (9, H) where is a
vector subspace of which contains 71 and H is a linear functional on which
is non-negative on C n and which extends G. A partial ordering, under
which N is inductive, will be defined as follows: (9, H) ((/, H’) in
case ’ contains and H’ extends H. Let (10, H0) be a maximal element
of N. If r0 , then there exists y0 e 5, y0 90 and a linear functional H
defined on 9 90 Ryo such that (9, H1) e N and

(0, H0) < (91, H1).
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This contradicts the maximality of (0, H0), so 90 8 and H0 is the re-
quired linear functional, Q.E.D.

In order to prove Theorem (A) and Theorem (B) we proceed initially as
did Samuel [5]. Let 8 be the vector space over R with base I. For each

K*x let (x) ’ v(x).p and let {(x); x K*}. Clearly, 8C is a
subgroup of 5 under vector addition. For each (x) e 3C, let G0((x)) be de-
fined to be g(x). Since g assumes the value zero at each unit of , Go is well
defined and is, moreover, a group homomorphism from 3 into the group of
real numbers under addition. Let be the vector subspace of 5 generated
by 8C. The function Go can be extended uniquely by linearity to a linear func-
tionalGon. Let+ {Xe;G(X) >_O},let

P {(,ra,’p) eS;a >_ 0, pI}

and let C P + if+. Then C is a convex cone in 5 whose vertex is the neu-
tral element of 5. Since I c__ C, Theorem (A) and Theorem (B), (ii) will
be proved once it has been shown that G can be extended to a linear functional

defined on 5 which is nonnegative on C and that, given q e I, ( can be
chosen so that ((q) G’(q).

Suppose first that is any function satisfying conditions (i) and (ii) of
Theorem (A). It is easy to verify that condition (i) of Theorem (B) holds.
Let q e I and assume that q e ft. Then by [5], Theorem 2, (a), there exists

K*y e such that (y) vq(y).q. Thus, G’(q) <_ g(y)/vq(y) l(q).
But already (Theorem (B), (i)) ((q)_< G’(q), so O(q)= G’(q). The
problem of proving that (7 exists has thus been reduced to the problem of
verifying the hypotheses of Lemma 2.1. It will first be shown that

In order to do this, it is enough to show that P n

_
+, so let Y e P n

be given. Let e be an arbitrary positive real number. By using directly
the techniques employed by Samuel [6] in the proof of 1, Lemma 1, (2),
it can be shown that there exists x e and a positive integer n such that
G(Y) n-lg(x) <_ en-. Since g(x) >_ 0 and e was chosen arbitrarily,

it follows that G(Y) >_ 0. Now let Y r a.p be an arbitrary element
of 5. Elements X, X’ must be constructed such that X’ Y e C and
Y- XeC. Let J {peI; a 0}. If Jis empty, there is nothing to
prove, so assume this is not the case. For each p e J, select x e p such that
v,(x,) >_ a,l and let x IIx. Clearly, (x) YP_C and
Y- (x-) e P_ C. We have shown that there exists a linear function
which is non-negative on C and which extends G (Lemma 2.1). Finally,

suppose q el and qeff. Let

and let

T(V, q) {X’ e$; X’ q e C}.
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If X S(, q), let be any linear functional on g, non-negative on C, which
extends G. Then G(X)= O(X)<-O(q)<-G’(q). Thus, aN G’(q),
where a sup {G(X); X e S(Y, q)}. On the other hand, let

(J is a finite set) be an element of T(Y, q). Then X’ q Y1 + Y. where
Y1 eY+ and Y2eP. Let Y i,J,(Yi) and let Y. ,,p.p (J’
is a finite set and p 0 for almost all p e I). Thus, for p # q,

"’, vq(xi) ,, vq(yi) "4- ’ q" 1.

K*Let e > 0 be given. A positive integer n and x, y e will be constructed
so that x/y e q, g(x/y)/v(x/y) g(x/y)/n and, moreover, such that

Since by hypothesis ,, g(y) O, this will show that G(X’) G’(q)
and, hence, that the number

inf {G(X’);X’e T(, x0)}

is not less than G’(q). Corresponding to the choice of e, choose > 0 such
that wheneverla a] G ,ieJ, and].- ] 3, jeJ’,then, (x) (x) ;
and

There exist integers n > 0, a, b and d 0 such that for all i e J, j J’, and
p e I the relations

a, n- n-,
[bn-- l n-,
dn- -[ G’3-n-

hold (see [1, VII, 1, n 1, Prop. 2]). Without loss of generality it can be
assumed that satisfies the following additional conditions"

(a) , v(x) < g- ro all L
(b) y, v (y) < 3- for all p e I.

If p q, then

--1 --1n av(x) ,bv(y) d < n
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Since the number inside the absolute-value signs is an integer, it follows that,a v(x) ,b v,(y) d- d
In a similar fashion it can be shown that

Let x I x.’ and let y I’’ Y’. It is easy to verify that n, x and
y have all the desired properties, Q.E.D.

In view of Theorem (B), the arguments previously used by Samuel [5]
now apply directly to prove Theorem (C).

3. Throughout this section, R* will denote the set R and the follow-
ing conventions will be adopted.

(1) IfaeR, thena < .
(2) IfaeR*,thenaW Wa .

R*(3) Ifae anda > 0, thena. .a .
(4) 0" ’0- 0.

Let T be an arbitrary non-empty set. Let ff be the collection of all non-
negative R*-valued functions on T. An element f e ff is said to be trivial
in case for each x e T, f(x) 0 or f(x) . Let f, g be arbitrary elements
of ft. Let

Lr(f, g) {r e ;f(x) >_ rg(x) for all x e T}.

If Lr(f, g) is bounded in R, let lr(f, g) sup Lr(f, g). Otherwise, let
lr(f, g) . It is easy to verify that f(x) >__ lr(f, g)g(x) for all x e T.

DEFINITION 3.1. The number lr(f, g) is called the linking number off over g on
T. (Note that when f, g e $,

K*l.t,(f, g) inf {f(x)/g(x) x , g(x) > 0}).

PROPOSITION 3.1 Let f, g and h be elements of .
(i) Iff is trivial, then lr(f, f) . Iff is non-trivial, then lr(f, f) 1.
(ii) lr(f, g)lr(g, h)

_
lr(f, h).

(iii) Iff is non-trivial or g is non-trivial, then

lr(f, g)lr(g, f)

_
1.

(iv) Let f d- g denote the point-wise sum of f and g. Then

lr(f h) d- lr(g, h) <_ lr(f d- g, h ).

(A case when equality holds will be given in the next section in Theorem
.2.)

(v) Letf and g be non-trivial. There exists a real number ( O,
such that f(x) ag(x) for all x T if and only if lr(f, g)lr(g, f) 1.
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Proof. Clear.
Let S be a commutative ring with identity. By a pseudo-valuation on S

we shall mean an R*-vahed non-negative function v, defined on S, which has
the following properties"

(1)
(2)
(3)

v(1) 0, (0) *.

v(x.y) >_ v(x) + v(y).
v(x y) >_ rain {v(x), v(y)}.

A pseudo-valuation v is said to be homogeneous in case for each x e S and
each positive integer n, v(x) nv(x).

Let v be an arbitrary pseudo-valuation on S. Rees [3] has shown that
limo_.v(x)/n O(x) exists for each x S and that is a homogeneous
pseudo-valuation on S. Moreover, O(x) >_ v(x) for each x e S.

PROIOSITION 3.2. If V, W are pseudo-valuations on S, then

(v, w) < (, w) t(, ).

Proof. Since v(x)

_
(x) for each x S, ls(v, w)

_
ls(, w).

other hand, since w(x)

_
@(x) for each x e S, ls(0, @)

_
ls(, w).

On the
If x e S,

(x) (x)/n >_ (, w)w(x)/n.

Consequently, O(x) >_ ls(, w)(x) so that ls(, w)

_
ls(, ), Q.E.D.

Let A be an ideal of S and let v be a pseudo-valuation on S. The number
inf {v(a); x e A} will be denoted by v(A). For each x e S, let v(x)
in case x e >0 A" and if x e .>0 A", let v(x) be that integer (0) such
that x e but x A Clearly, v is a pseudo-valuation on S. Let S
be a noetherian ring, A and B proper ideals of S such that (1) Rad A
Rad B, and (2) >0 A 0 (hence >0 B 0). Samuel [4] has shown
that lim va(B’)/n exists and has denoted this number by l(B). It has
been observed by Rees [3] that (1’) (x) l(B)s(x) for all x e S and
(2’) l(B) O(B). The following proposition shows that l(B)

PRO1)OSITION 3.3. Let S be a commutative ring with identity and let A be an
ideal of S. Let v be an arbitrary pseudo-valuation on S. Then

(i) ls(v, v) v(A ).
(it) ls(, ) (A).

Proof. Statement (it) follows from (i) and Proposition 3.2. If first will
be shown that v(x) >_ v(A)v.(x) for all xeS. Suppose xeAn, n _> 0.
Then v(x) >_ v(A n) >_ nv(A ). It follows from this that v(x) >_ v(A )v(x)
and, therefore, v(A)

_
/s(v, v). On the otherhand,

v(A) >_ ls(v, v.)v.(A) >_ ls(v, v),

Q.E.D.
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4. Let the notation be as in Section 1. Since for each g e $, G’(p) is
precisely equal to l(g, vp), the symbol l(g, vp) will henceforth replace the less
suggestive symbol G’ (p).

DEFINITION 4.1 An element g e $ is said to be perfect in case g(x)
K*x l(g, v)v(x) for each x e

DEFINITION 4.2. Let g e . Any function G satisfying (i) and (ii) of
Theorem (A) is called a representation function for g.

LEMMA 4.1. Let f be a perfect element of $. Let g be a non-trivial element of
$ and let be any representation function for g. Then

l(f, g) inf {l(f, v)/G(p) p e I, G(B) > 0}

inf {l(f, vp)/l(g, v); p e I, l(g, v) > 0}.

Proof. Let

r inf {l(f, v)/(p);p I, (p) > 0}

and let

r’ inf {l(f, v)/l(g, v);p I, l(g, ) > 0}.

Since ((p) < l(g, v) for each peI, r’ <_ r. If xe f3 , then
since r(p) <_ l(f, v) for all p e I, it follows that r.g(x) < f(x). Thus,
r’ <_ r < l(f, g). On the other hand, l(f, g)l(g, v) <_ l(f, v) for each p e I,
sol(f,g) <_ r’ < r. Hence, r’ r I(f, g), Q.E.D.

LEMMA 4.2. Let f e and let F be a representation function for f.
any element of I. The following are equivalent"

Let q be

(i) For each > O, there exists x q such that

x,q f(p)v,(x) <_ ev(x).

(ii) F(q) l(f, vq).

We wish to point out that condition (i) is similar to, but slightly weaker
than Samuel’s condition that q be almost-principal relative to f. (See [5,
2].)

Proof. Suppose (i) holds. Let e > 0 be given and select x e q such that
,q(p)v(x) <_ evq(x). Then f(x) <_ ((q) + e)vq(x)so that
l(f, vq) < (q) + e. Since e was chosen arbitrarily, l(f, vq) g (q). Hence,
equality hods (Theorem (B), (i)). Conversely, let e > 0 be given. Choose
x e qsuch thatf(x)/vq(x) <_ l(f, vq) + e. Since by hypothesis f(q) l(f, vq),
it is immediate that .pq t7(p)v(x) <_ evq(x), Q.E’D.
TIEOREM 4.1. Let f be a perfect element of . If g and l(f, g) O, then

g is perfect.
Proof. If l(f, q) , then g is trivial and is already perfect, so assume
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l(f, g) . For each x e K*, let g’(x) l(f, g)g(x). It suffices to show
K* gPthat g’ is perfect. Since g’(x) <_ f(x) for all x e n 0, 1 < l(f, ). Let

OP be any representation function for g’. It follows from Lemma 4.1 that
G’(p) <_ l(fi v) for each p e I. Since f is perfect, condition (iii) of Theorem
(C) is satisfied relative to f. Hence, for each q e I and each e > 0, there
exists x eq such that -.oqO’(p)v(x) <_ evq(x). By Lemma 4.2,
G’(q) l(g’, vq), Q.E.D.

THEOREM 4.2. Let f and g be perfect elements of $ and let f + g denote the
point-wise sum of f and g (clearly, f + g e $). If l(f, g) 0 or l(g, f) O,
then f + g is perfect.

Proof. Since f+g =g+f, it can be assumed that l(f,g) O. If
l(f, g) , g is trivial and there is nothing to prove, so assume l(f, g) # .
It will be shown that l(f, f + g) # O. From Lemma 4.1 and the fact that
l(g, v) 0 whenever l(f, v) 0 (since l(fi g) # 0), it follows that

l(f, f + g) inf {l(f, v)/(l(f, v,) + l(g, v)); p e I, l(f, v) > 0}.

For each p e I such that l(f, v) O,

l(f, vv)/(l(f, vv) q- l(g, v)) (1/2/(f, vv) q- 1/21(f, vv))/(l(f, v) q- l(g, v))

>_ min {1/2, 1/2l(f, g)} > 0,

where 1/21(f, vv)/l(g, vv) in case l(g, vv) 0. Thus, l(f, f q- g) 0 so

f + g is perfect, Q.E.D.
We shall explore briefly a few lattice properties of 8. Let f, g be elements

of $. A partial ordering is defined on $ as follows" g-< f in case 1 <_ l(f, g)
K*(i.e. g(x) <_ f(x) for all x e n D). As a consequence of Lemma 4.1, when

f is perfect, g - f if and only if l(g, vv) <_ l(f, vv) for each p e I. For each
pair f, g of perfect elements of $, define (fn g)(x) to be

v, (min {l(f, vv), l(g, vv)} )vv(x)

and define (f u g) (x) to be,, (max {l(f, v), l(g, v)})v(x).

Then f n g, f u g are elements of $ and f n g is perfect due to the fact that
l(f, f n g) >_ 1 ) 0. Sincel(f-q- g, f u g) >_ 1 > O, f u g is perfect when
l(f, g) 0 or l(g, f) O. It is clear that (relative to the partial ordering
-< restricted to the set $’ of perfect elements of $) f n g GLB{fi g} and
when f u g is perfect, f u g LUB{f, g}.

LEMMA 4.3. Let f, g and h be non-trivial perfect elements of $. Then

(i) l(f u g, h) >_ max{l(f, h), l(g, h)}.
(ii) l(h, f u g) min {l(h, f), l(h, g)}.
(iii) l(f n g, h) rain {l(f, h), l(g, h)}.
(iv) l(h, f n g) >_ max {l(h, f), l(h, g)}.
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Proof. Clear.
Let f be any non-trivial perfect element of $ and let

L(f) {g e 6; l(f, g) 0 and l(g,f) 0}.
Clearly, f e L(f), so L(f) is non-empty. If g e L(f), then g is perfect due to
the fact that l(f, g) 0. On the other hand, l(g, f) 0 implies g is non-
trivial. If g, g’ L(f), then l(g, g’) >_ l(g, f)l(f, g’) > 0. Thus, g u g’ is
again perfect. From Lemma 4.3 it follows that g ng’ and g u g’ are in L(f)
whenever g, g’ e L(f).

THEOREM 4.3. Let 6’ be the collection of all nontrivial perfect elements of $.

Let 2 {L(f) f e $’}. Then 2 is a partition of 6’ and each element L(f) of2
is a distributive lattice under the operations u and n.

Proof. Clear.
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