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1. Introduction

Throughout this paper we deal exclusively with chain complexes of abelian
groups. If K is a torsion-free complex, the homology spectrum of K consists
of : the groups

H(K), H(K,m) = HK ® Z,) (m > 0);

the coefficient homomorphisms induced by the canonical projections and in-
jections

and the connecting homomorphisms induced by the exact sequences
0-23%7Z—>2Z,—0 (m > 0).

The “multiplicative’” Kunneth Theorem given in [2] states that for K and L
torsion-free differential graded rings, the ring H(K ® L) is completely deter-
mined by the homology spectra of K and L. A natural question then is:
What is required to determine the ring H(K ® L) if K and L are not neces-
sarily torsion-free? The purpose of this note is to give a (partial) answer to
this question. In particular, we shall show that the results of [2], suit-
ably modified, can be extended to give a more general multiplicative Kun-
neth Theorem (Theorem 3.2) for which we need only require that
H(Tor (K, L)) = 0, instead of the condition that both K and L be torsion-
free. Finally, we indicate briefly how these results can be carried over to the
case of any finite number of complexes.

The chief difficulty with an arbitrary complex K is that the short exact co-
efficient sequence

0-25%572—-27Z,—0

does not remain exact (on the left) when tensored with the complex K, and
hence no connecting homomorphism H (K, m) — H(K) is defined. The basic
idea needed to remedy this defect and to produce an analogue for the homology
spectrum of a torsion-free complex (which reduces to the homology spectrum
in case K is torsion-free) is to move from the homology spectrum to the hyper-
homology spectrum of a complex.

2. The hyperhomology spectrum

We shall assume that the definition of the hyperhomology group of the
complexes K and L, £(K ® L), and the definition and properties of free double
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complex resolutions of complexes are known. This information may be found
in Chapter XVII of Cartan-Eilenberg [1]. In addition we assume a familiarity
with the main results of [2].

If K is a complex and @ is any abelian group, G can be considered as a com-
plex (in dimension zero). Then the hyperhomology group of K with coeffi-
cients in @ is the group £(K ® &). In particular if G = Z, (m > 0), we de-
note by £(K, m) the group £(K ® Z,). We shall occasionally denote
H(K) = £&(K ® Z) by £(K, 0).

Since £(K,m) = H(K ® Z,) (K free resolution of K), the canonical maps
Z —Zm, Lgpy — L and Z,, — Z, induce coefficient homomorphisms:

ek 8(K, mk) — £(K, m) (m, & > 0);
pmp + £(K, m) — £(K, mk) (m, k > 0).
Since K is free, the exact sequence
0>Z3%7Z—>Zy,—0
induces a connecting homomorphism of degree —1:
uo : &K, m) = HK ® Z,) —» HK) =~ H(K) = £(K, 0).

The hyperhomology spectrum of the complex K consists of the groups
&(K,m) (m > 0) together with the maps \p*, ume (m, & > 0). It is denoted
{€(K,m)}. It follows from the definition of £(K, m) that for K torsion-free
£&(K,m) = HK,m) = HK ® Z,); ie. in this case the hyperhomology
spectrum reduces to the homology spectrum (which was used in [2]).

If K an L are complexes, then the tensor product of their hyperhomology
spectra, denoted {£(K, m)} ® {£(L, m)}, is the abelian group

[ZMZO £(K7 m) ® £(L7 m)]/Sr
where S is the subgroup generated by all elements of the form:

(1) Nt ® v — (— 1) dEmby @ iy 0 (M > 0);
() Kok U ® Vi — U ® MO (mh > 0);

where u; ¢ £(K, 7) and v; e £(L, 7). Ifu ® v e £(K, m) ® £(L, m) repre-
sents an element = of {£(K, m)} ® {L&(L, m)}, then the degree of z is
degu + degv — 1if m > 0 and deg u 4 degvif m = 0.

If K is a complex and K a free resolution of K, then the hyperhomology
spectrum of K, {£(K, m)}, is by definition the homology spectrum of K,
{H(K,m)}. Hence as a special case of Theorem 2.2 of [2] we have

Tueorem 2.1.  If K and L are complexes, then there is a natural isomorphism
of graded groups:

{e(K,m)} ® {&(L, m)} = &(K ® L).
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3. Products

A differential graded ring K is a complex of abelian groups together with
chainmaps 7z : K ® K — K and Ix : Z — K such that thefollowing diagrams
are commutative:

Kokok *®L koK Z®@K-K=K®Z
(3.1) ll@rx ij lIK®1 l - ll@IK
K®K LN K KoK ™K ™ @K,

The first diagram asserts that the product uv = 7x(u ® v) is associative and
the second that Ix(1) = 1k is a two sided identity for this product. (ecf.
MacLane [4], Chapter 6).

If K is a free double complex resolution of K, then the maps mx and Ix can
be lifted to double complex maps 7z : K ® K — K and Iz : Z — K. This
fact follows from Proposition 1.2 in Chapter XVII of Cartan-Eilenberg [1].
The statement of this proposition requires that both X and Y be projective
resolutions; the proof, however, uses only the fact that Y is a projective res-
olution and that B} «(X), Hp «(X) are free complexes over B,(4), H,(4),
for each p. This is exactly the situation here: B'(K ® K) is free since
K ® K is, and by the Kunneth Theorem

H'(K ® R) ~ H(K) ® H(K),
which is free since K is a free double complex resolution.

In general, however, K (with the maps =& , Iz) is not a differential graded
ring. The fact that the diagrams (3.1) commute for K implies only that the
corresponding diagrams for K are homotopy commutative It is true, there-
fore, that H(K) is a graded ring and that the augmentation K — K induces a
ring isomorphism H(K) =~ H(K).

Similarly if L is a differential graded ring and L a free resolution for L, then
it follows that H(K, m),H(L,m),H(K ® L,m),H(K ® L,m), H(K ® L, m)
(m > 0) are all graded rings. This involves showing that the diagrams (3.1)
withK ® Zn, L ® Z, , K ® L, ete. in place of K are homotopy commutative.
These facts are consequences of standard arguments about homotopic maps
and their tensor products. Therefore if K and L are differential graded rings,
£(K ® L) is a ring with = being the composition:

S(K®L) ® &K ®L)
=HE®L ®@HEK®L) SHE®L® K® L)
SHReRKeLel) O™, mkel) = <Ko L),

where a is the usual homology product and 7 the obvious interchange of factors.
The identity in £(K ® L) is given by
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z=z@z JE®ID: prel)- ek eL).

Note that essentially the same product will be defined if one uses H (I-(_ ® L)
or H(K ® L) in place of H(K ® L), since the augmentation maps K — K
and L — L induce ring isomorphisms

HEK®L) <« HEK®L) —»HK®L).

If K and L are differential graded rings, then so are £(K,m) and
L&(L,m) (m = 0). We would like to put a product structure on the spectra,
tensor product {£(K,m)} ® {£(L, m)} in such a way that the isomorphism
of Theorem 2.1 becomes a ring isomorphism. The fact that this can be done
is again a consequence of Section 3 of [2].

For convenience we indicate briefly how this product is defined. First a
product is defined on Y _n=0 £(K, m) ® £(L, m) (it is non-associative and has
other peculiarities) ; this induces the desired product (associative, etc.) on the
quotient

[2on (K, m) ® £(L, m)/S = {£(K, m)} ® {£(L, m)}.

If x and y are homogeneous generators of £(K,7) ® £(L, %) and
&(K,7) ® £(L,j) respectively, then a product = is given in ) _nms0 £(K, m) ®
£(L, m) by

zxy = z-[(\] ® \))y], if j=0;
zxy = (=N ® \Da2]-y, if >0 and ¢ = 0;
zxy = o[\ ® N)z]-[(M ® N)(D; )]
+ (—=1)%PEBI(N @ M) (Diz)]- [\ ® M)y,
if ¢>0 and j5> 0,

where - is the product in (each) £(K, m) ® £(L, m);¢ = (4, j) and
at + bj = ¢;and

D, :£(K,m) ® &L, m) > L(K,m) ® £(L, m)
is the map given on 4 ® v e £(K, m) ® £(L, m) by
[ s ® 1) + (—1)**(1 @ M uit)](u ® ).
We can summarize these results in

TuaeorEM 3.2. If K and L are differential graded rings, then there is a natural
isomorphism of graded rings:

{£(K,m)} ® {&(L, m)} = £(K ® L).

Thus the ring £(K ® L) is completely determined by the hyperhomology spectra
of K and L. Furthermore, if

H(Tor (K, L)) = 0
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then the theorem remains true with H(K ® L) in place of £(K @ L).

The proof of the last statement is a consequence of the fact that there is an
exact triangle (cf. [1]):
£(K ® L)
e N
H(K ® L) — H(Tor (K, L)).

Thus we have obtained a much more general multiplicative Kunneth Theorem
than the one given in [2].

4. A multiple multiplicative Kunneth Theorem

If K, K%, ..., K" are complexes, then the tensor product of theirhyper-
homology spectra

{e(K', m)} ® {&(K*, m)} ® -+ ® {&(K", m))
is again a certain quotient of the group
(4°1) ZMZO £(K1) m) ®: - ® £(Kn) m)’

The precise definition is given in [3]. The only relevant fact needed here is
the observation that if K*, - - - , K" are differentially graded rings, a * product
(analogous to the one defined in Section 3) can be defined on (4.1) and induces
a product in the spectra tensor product.

It is clear that all the other products defined in Section 3 extend without
difficulty to the case of n differential graded rings; in particular,

&K' ® - ® K"

is a graded ring. If we so denote by Mult; (4, - -+, A") the i-th left derived
functor of the functor A' ® A’ ® --- ® A", then we have

TuroreM 4.2. If K', -+, K" are differential graded rings, then there is a
natural tsomorphism of graded rings:

(43) (&K, m)}® - ®{&K" ' m)}=2LK ® - ®K").

Thus the ring £(K' ® --- ® K") is completely determined by the hyper-
homology spectra of K*, -+ , K*. Futhermore, if

(4.4) H(Mult; (K, -+-,K")) =0 for i> 0,
then the theorem remains true if £(K' ® -+ ® K") is replaced by
HK' ® --- ® K").

The existence of an isomorphism (4.3) of the additive groupsis just a special
case of Theorem 3.1 of [3]. The proof that (4.4) implies that

&K ® - - ®K") = H(K1 ® --- ® K")
is given in the proof of Corollary 1.2 of [3]. It might also be noted that it is
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shown there that (4.4) holds if n — 1 of the complexes K*, - - - , K" are torsion-
free. Finally, the fact that the isomorphism (4.3) does in fact preserve the
product structure and is thus a ring isomorphism, follows as in Theorem 3.2
from Section 3 of [2] (where the case n = 3 is treated; but all of the arguments
are valid for any n).
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