GENERALIZED SCALAR OPERATORS WHOSE SPECTRA ARE
CONTAINED IN A JORDAN CURVE

BY
FuMmi-Yukr Mampal

Introduction. In the previous paper [5], the author defined the canonical
spectral representation for a C7'-scalar operator whose spectrum is contained
in the real line. Such an operator will be called a C™-real operator in this
paper. H. G. Tillmann [9] and S. Kantorovitz [2] also treated similar kinds of
operators on a Banach space and they gave characterizations for an operator
to be C"-real. One type of characterization was given in terms of the rate of
growth of resolvents near the spectrum and another in terms of certain one-
parameter group constructed from the original operator. The same types of
characterization have also been discussed by F. Wolf [11] and 8. Kantorovitz
[2] for operators on a Banach space whose spectra are contained in the unit
circle. Such operators may be called C"-unitary. They generalize the notion
of unitary operators on a Hilbert space, just as C™-real operators generalize
the notion of Hermitian operators (cf. [5], [9] and [2]).

Now, it would be natural to think that analogous discussions may hold if
we replace the real line or the unit circle by a more general Jordan curve. In
fact, for spectral operators on a Banach space, N. Dunford [1] gave some
characterization theorems in terms of resolvents in the case the spectrum is
contained in a Jordan curve.

Thus, in this paper, we consider a C%-scalar operator S on a locally convex
space such that its spectrum Sp(8) is contained in a C™-Jordan curve and we
shall be concerned with the following two problems: (a) Definition and exist-
ence of the spectral representations for S which are entitled to be called
canonical; (b) Extension of characterization theorems for such an operator,
especially for a C"-unitary operator or a C™-real operator on a locally convex
space.

In Part I, we treat the case the curve is bounded. If the curve A is repre-
sented by a C"-function, we can induce a natural C”-structure on A. Then it
is possible to talk about an operator of class C"(A) (cf. [2]). It will be shown
that the C™(A)-representation for such an operator is uniquely determined;
this fact leads us to a definition of the canonical representation. We shall
give two existence theorems for canonical representations, one of which
is a corollary to a characterization theorem (§1.4). The characterization
theorems, especially for C™-unitary operators, will turn out to be similar to the
results in F. Wolf [11] (and also in [2] and [9]), but our results extend and im-
prove them. They may be summarized in the form of Theorem 3 in [6].
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In Part II, the case the curve is unbounded is treated. Definition of ca-
nonical representations can be discussed parallel to Part I. Essential differ-
ence of discussions in this part from those in Part I appear in the case Sp(S) is
unbounded. In this case, however, we are unable to obtain general characteri-
zation theorems corresponding to those in Part I. Only some results on C™-
real operators will be given. We remark here that the same implication dia-
gram as Theorem 3, (i) in [6] will hold for C™-real operators having compact
spectra, with certain modifications in the statements.

In the appendix, elementary proofs of approximation theorems, Lemma 1.1
and Lemma 2.1, will be given.”

Preliminaries. Throughout this paper, let E be a Hausdorff locally convex
space over the complex field C' such that L(E), the space of all continuous
linear operators on E into itself, is quasi-complete with respect to the bounded
convergence topology 75 .

Let m be a non-negative integer or m = o and let C™ be the algebra of all
complex-valued m-times continuously differentiable functions on R*(=2() and
C% be the subalgebra of C™ consisting of functions in C™ with compact support.
We introduce the usual topologies in these spaces. (The topology of C™ is de-
fined by uniform convergence of partial derivatives of order up to m on com-
pact sets. For C7, see e.g. [5, §1].)

A C7-spectral (resp. C™-spectral) representation is a continuous algebra
homomorphism U of C% (resp. C™) into L(E) with 5 such that there exists
a net {g,} in C% with the property that U(ep.)x — x for each z e E. (If U is
C™-spectral, then it follows that U(1) = I.) Such a net {¢,} will be called an
identity net for U.

Since C7 is dense in C™, any C™-spectral representation is C%-spectral.
Conversely, if U is a C%-spectral representation and if the support of U
(Supp U) is compact, then U is C™-spectral. Furthermore, in this case, we
can define U(e) for a function ¢ defined and m-times continuously differ-
entiable on a neighborhood ¢ of Supp U as the operator U(gpes), where ¢y € C%
is equal to 1 on a neighborhood of Supp U and Supp ¢o Co.

For the continuity of U, we remark: it is enough to assume that U is con-
tinuous with respect to the simple convergence topology in L(E), since the
continuity with respect to , follows from the facts that CT (resp. C™) is borno-
logical and that E is quasi-complete.

Let S be a closed linear transformation on E into itself and let Dy be its
domain. S is called a C%-scalar transformation (a C7-scalar operator if
S e L(E)) if there exists a C%-spectral representation U such that U(e)x e Dg
for each ¢ € C, ¢ ¢ E and

(%) lim, U(\¢a)z = Sz forall zeDg,

2 While preparing the manuscript, the author communicated with Professor E. Bishop
who indicated the same proofs.
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where {¢,} is an identity net for U. (For ¢ e (%, Ao denotes the function
N — Ae(N), NeC. Similarly, the identity function ¢(\) = \ will bedenoted
by A.) The condition (%) can be replaced by

(%)’ U(e)Sxz = U(Np)x forall ¢eC:y and =xeDg,
or by
(%)” U(e)S = SU(¢) on Dg and SU(¢) = U(Ne).

Thus the definition of a C%-scalar transformation does not depend on the
choice of an identity net {¢,}. It follows that Dgis dense in E and is equal to

{z e E;lim, UN\pa)x exists.}.

Also, we know that Supp U C Sp(S). (Sp(8) denotes the specirum of S in
Waelbroeck’s sense. See [3] or [5,§1].)

S e L(E) is called a C™-scalar operator if there exists a C™-spectral represen-
tation U such that S = U(N\). A C™-scalar operator is a C%-scalar operator.
Conversely, if S is a C%-scalar transformation and if Sp (S) is compact, then
S is a C™-scalar operator.

Most of these notions and properties are found in [3] and [5].

Part |. The case of bounded curves

1.1. C™-curve and C"(v)-scalar operators. In Part I, we consider a Jordan
curve, i.e., a closed curve in the complex plane C which is homeomorphic to the
unit circle T' = {NeC; | N| = 1}. More precisely, we define:

DerFiniTION 1.1. A compact set A in C is called a C™-curve (m: integer >0
orm = ), if there exists a one-to-one continuous mapping v of I into C' such
that

(i) v(T) = 4;

(ii) v can be extended to an open neighborhood ¢ of T' (the extended map
will also be denoted by v) in such a way that « is one-to-one on ¢ and v and
~ " are both m-times continuously differentiable on ¢ and v(¢) respectively as
functions in two real variables.

The mapping v is called a representation of A.

The unit circle T is a one-dimensional C*-manifold with the natural differ-
ential structure. Let C™(T') be the algebra of all complex-valued m-times con-
tinuously differentiable functionsonI'. Thus, a complex-valued function f on
I belongs to C™(T) if and only if the periodic function f : 7(8) = f(e”) of a real
variable 8 with period 2 is m-times continuously differentiable with respect to
6. We introduce the usual topology (defined by uniform convergence of de-
rivatives of order up to m) in C™(T).

If v is a representation of a C™-curve A, then this mapping induces a differ-
ential structure on A, so that A is regarded as a one-dimensional C™-manifold.
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The space C™(A) is isomorphic to C™(T') by the mapping g <> g o y. This ob-
servation justifies the following definition (cf. [2]):

DerintTion 1.2. Let v be a representation of a C™-curve. SeL(E) is
called a C™(v)-operator if there exists a continuous algebra homomorphism
W of C™(T') into L(E) such that W (1) = Iand W(vy) = S. If yistheidentity
map: y(e”) = ¢” (so that y(I') = T'), then a (" (y)-operator is called a C™-uns-
tary operator.

Here, we remark again (see Preliminaries) that the topology of L(E) may
be either 7, or the simple convergence topology for the continuity of W.

We shall show that the homomorphism W in the above definition is uniquely
determined by S and v. First, we state the following approximation theorem,
a proof of which will be given in the appendix:

Lemma 1.1 (Approximation Theorem). Let v be a representation of a C™-
curve and let No be a point lying inside the Jordan curve v(T'). Then the set of
Sfunctions of the form Q o (v — \o), where Q(2) = P(z)/2" with a polynomial P
and an integer n = 0, 1is dense in C™(T).

TueoERM 1.1.  Let v be a representation of a C™-curve. If W1 and Wy are
continuous homomorphisms of C™(T') into L(E) such that W1(1) = Wy(1) = I
and Wi(y) = Wa(v), then Wy = W, .

Proof. Let A\ be a point inside v(T'). Then

1
Y—No

R (’Y _1 )\0> = (’Y —1 M) Waly) = %o 1 W (’Y —1 )\0)

1 1
=W, <*y — >\o> Wi(y) — N I] W, (7 — )\0>

1
- (1)

Hence, it follows that Wi(Q o (v — X)) = Wa(Q o (v — Np)) for any @ given
in Lemma 1.1. Hence this lemma and the continuity of W, and W, imply that
Wi(f) = Wy(f) for all fe C™(T).

By this theorem, we see that W in Definition 1.2 is uniquely determined by
S and v. We shall call W the C™(v)-representation for S.

Given a representation v of a C™-curve, we consider the function

e C"™(T)

and

—1
Y iarg y1

y = =

B
defined and m-times continuously differentiable on a neighborhood of v(T).
u, coincides with ~v " ony(T).

u
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Derintrion 1.3. Let U be a C¢'-spectral representation. We say that U
satisfies the condition (v), if

Supp U S v(I') and U(povyou,) = U(e) forall ¢eCr.

The following theorem is a consequence of Theorem 1.1 in [3] and the above
definition:

TueoreM 1.2. Let S be a C™(v)-operator for a representation v of a C"-curve
and let W be the C™(v)-representation for S. Then

(i) S s a C¢-scalar operator such that Sp(S) C v(T') ;

(ii) Uy : Ule) = W(pox) for ¢ e Cy defines a C¢-spectral representation
for S satisfying the condition (v).

A remark on the condition (v). There are some alternate forms for the con-
dition (v);if U is a C7-spectral representation and if Supp U € v(T') for a
representation y of a C™-curve, then the following conditions are mutually
equivalent:

(i) U(p) = Ul(poyouy) for all p e C7;

i) UGW™) = Udm7);

(i) U(e) = U(poyo (1/y1)) forall o e C;
(iv) U(~']) = 1.

Furthermore, if v is analytic (i.e., if v is a one-to-one holomorphic function on
a neighborhood of T'), then each one of (i)—(iv) is equivalent to

(v) UMN) = Ulve(1/v™).

In particular, if v is the identity map (so that Supp U C TI'), then the follow-
ing conditions are mutually equivalent:

(i) Uler) = Ul(e) for all p € %', where or(N) = o(N/|\]);
i) UM) = U1/N);

(iii)’ U($p) = U(e) for all € C7, where $(\) = o(1/X);
(iv)" U(N]) =1

To prove the equivalence, we use Proposition 2 in [5]. The equivalence of
(1)=(iv) can be reduced to the equivalence of (i)’-(iv)’.

1.2. Canonical representation. Suppose S e L(E) is a C-scalar operator
such that Sp(S) is contained in a C™-curve A and suppose U is a C7% -spectral
representation for S. If there exists a representation vy of A such that
U(N) = U(you,) (in particular, if U satisfies the condition (v)), then
W(f) = U(f o u,) defines the C™(v)-representation for S, so that Sisa C™(v)-
operator. Thus, the theorems in the previous section indicate that C'-spectral
representation U satisfying the condition (v), if it exists, is uniquely deter-
mined by S and A . The following theorem asserts that this is the case:

TurorEM 1.3. Let Uy and U, be two C-spectral representations with compact
supports and suppose Ui(N) = Us(\), so that T = Supp Uy = Supp U, . Let
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vi(¢ = 1, 2) be a representation of a C"-curve. If vi(T) no = v2(T) neo for
some neighborhood o of = and if each U:(i = 1, 2) satisfies the condition (v.),
then U1 = Ug .

Proof. Let

Wi(f) = Ui(fouy,)
Wa(f) = Us(fovi o420 uy,)

for fe C™(T'). By our assumption that vi(T') no = v2(T') n o, we see that W,
is well defined. It is easy to see that W; and W, are continuous homo-
morphisms of C™(T') into L(E) and W1(1) = W,(1) = I. Furthermore,

Wi(v1) = Ui(viouy,) = Ui(N) = Us(N) = Us(vz2 0 ty,)

= Us(v1071 020 Uyy) = Walm).

Hence, by Theorem 1.1, we have W, = W, . Therefore, for any ¢ € C%,
Uile) = Ur(eomiouy,) = Wilpom) = Waleom)
= Us(@© 71091 © 720 Uy,)
= Us(pov20ouy,) = Us(e).

DeriniTioN. 1.4.  Let S be a C7-scalar operator such that Sp(S) is con-
tained in a C™-curve A. A C¢-spectral representation U for S is called canoni-
cal with respect to A if there exists a representation v of A for which U satisfies
the condition (v).

By the above theorem, we see that the canonical representation is uniquely
determined by S and A.

The following is a consequence of Theorem 1.2 and the observation at the
beginning of this section:

CoroLLARY. Let S e L(E) and suppose Sp(S) s contained in a C™-curve A.
Then S is a C¢'-scalar operator having the canonical representation with respect to
A if and only if it is a C™(v)-operator for a representation v of A.

Ezxample 1.1. Let ¥ be an algebra of complex-valued functions on a set and
suppose ¥ contains constants. Let V be a homomorphism of ¥ into L(E)
such that V(1) = I. Suppose f ¢ ¥ satisfies the following conditions:

(i) @ofe¥forall peCy,
(ii) ¢ — V(pof) is a continuous mapping of C% into L(E),
(iii) The image of f is contained in a C™-curve A.

Then, V(f) is a C7-scalar operator whose spectrum is contained in A and
U:U(p) = V(pof) is the canonical representation for V (f) with respect to
A. In this case, the canonical representation is uniquely determined by V(f)
only.
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Let S be a C7-scalar operator such that Sp(8) = A for some C™-curve A.
Then there is no other C™-curve containing Sp(S). Hence, in this case, the
canonical representation for S is uniquely determined by S. If Sp(S) does not
coincide with a C™-curve, then the example below (Example 1.2) shows that
there can exist two different C™-curves A; and A, such that Sp(S) C A;n A,
and two different C%-spectral representations U; and U, for S which are
canonical with respect to A; and A, respectively.

Remark 1.1. If there exists a neighborhood ¢ of Sp(S) such that
Aino = Axna, then U; and U, in the above argument coincide by Theorem 1.3.

Ezample 1.2. Let Q ¢ L(E) be nilpotent, i.e., @ = 0. Then Sp(Q) = {0}.
Let

A =T+4+1

A =T+1

NeC; | N — 13| =1},

NeCiIN—1] =1},

v1(A) = N4+ 2and v2(A) = N 4+ 1. v; and v, are representations of A; and A,
respectively. Let

a 14
Uile) = o(01 +Z(0)Q and Uilp) = p(O) + 7 (0)Q
for e C3 (A = £ + 4y). It is easy to see that U, and U, are Ci-spectral
representations for @ and they satisfy the conditions (v1) and (v;) respec-

tively. Obviously, U; = U,.

TurorEM 1.4. If S is a Ci-scalar operator whose spectrum is contained in a
C’-curve, then S has a unique C'o-spectral representation, which is canonical with
respect to any C"-curve containing Sp(S).

Proof. It is enough to show that if U is any C'-spectral representation for
S and if v is any representation of a C’-curve containing Sp(S), then U
satisfies the condition (v). For any xe¢ E and 2’ ¢ E’ (the dual of E),
¢ — (U(p)x, 2') is a continuous linear form on C?. Hence, there exists a
Radon measure u, . such that .. (¢) = (U(e)x, ') for all o e C2. Obvi-
ously,
Supp ue,»» © Supp U € Sp(8) < v(T).

Therefore, ¢ o v o 4, = ¢ on Supp us,.- ; hence
Mo,z (@ 0¥ 0 Uy) = oo ().
Since this is true for any « ¢ E and 2’ ¢ E’, U satisfies the condition (v).

Canonical representations for C™-unitary operators. If S is a C™-unitary
operator, then there exists a uniquely determined C™ (e*)-representation W for
S and U(e) = W(e(e”)) defines the canonical representation for S with re-
spect to I'.  Conversely, if S is a C%-scalar operator such that Sp(S) € T and
if there exists the canonical representation U for S with respect to T, then it is
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a C™-unitary operator (by corollary after Definition 1.4). Thus, for a C"-uni-
tary operator S, its canonical representation with respect to I' is called the
canonical representation for 8. (Cf. Remark 2.4, Part II.)

Ezxample 1.3. If E is a Hilbert space, then S ¢ L(E) is a C*-unitary oper-
ator if and only if it is similar to a unitary operator. In this sense, C™-uni-
tary operators on a locally convex space generalize the notion of unitary oper-
ators on a Hilbert space.

If E is a Banach space, we shall see (§1.5) that any one-to-one isometry on
E is a C*-unitary operator.

Example 1.4. Let E = $(R") be the Fréchet space of the rapidly de-
creasing function on R" (see e.g. [3], Example 2.5). Let

a= (ar, "+ ,oan) eR".

If we define operators T , Uas(e) (¢ € C7) on E by

[Tofl(z) = <" f(x)
[Ua()fl(2) = @(e"*)f(x)

for feS(R"), where ¢ = (@1, -+, ) and (&, ) = a1 21 + -+ + o s,
then T, , Uu(e) e L(E) and we see that T, is a C*-unitary operator and U, is
its canonical representation.

Let § be the Fourier transform of S$(R") onto itself. Since ¥ is a
topological isomorphism, 7, = &7, ' is again a C”-unitary operator
and U.(e) = FUa(p) 5" defines the canonical representation for To. We
see that [T, fl(z) = f(z + a), i.e., Ty is the translation of variable by a.
Taking the dual, we also see that the above arguments hold on the space
E = $(R™)' of tempered distributions. Thus, we have seen that a translation
is a C”-unitary operator on $(R") and on S(R")".

We shall see (§1.5) that the Fourier transform is C’-unitary on $(R")
and on $(R")’.

Properties of the canonical representations

TueoreM 1.5. Let S be a Ct-scalar operator such that Sp(S) s contained
n a C™-curve A and suppose it has the canonical representation U with respect
to A.

(i) If TeL(E) commutes with S, then T commutes with each Ua(p),
peCy.

(ii) If F is a closed subspace of E and if S and (NI — S)™" leave F in-
variant for some N\ lying inside A, then each Ux(p) leaves F invariant.

Proof. (i) Let v be a representation of A for which U, satisfies the con-
dition (y). Let W(f) = Ua(fowu,) for fe C"(T'). Then W is the C"(v)-
representation for S. It is enough to show that 7' commutes with each W (f).
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By assumption, TW(y) = W(y)T. Let X be a point inside A. Then

() 7= () now (1)

o Y — N

W( 1 )(W(v)—MI)TW( 1 >

Y — Mo Y= Mo

1
=TW .
(’Y—)\o)

It follows that W(Qo (v — No))T = TW(Qo (y — N)) for any @ given
in Lemma 1.1. Hence, by this lemma, we have W(f)T = TW({).

(ii) With the same notations in (i), our assumptions imply that
W(Qo(y — N))(F) € F. TFor each feC™(T'), there exists a sequence
{Q.} such that @, o (v — N) — fin C™(I') by Lemma 1.1. If z¢F, then

W(Quo(vy — N))xeF and W(Qn.o (v — N))z — W(f)x.

Hence W(f)x ¢ F, i.e., W(f) leaves F invariant for each f e C™(T'); hence so
does Ua(e) for each ¢ ¢ C%.

It

CoroLLARY 1. Let S be as in the theorem. Then any other C¢-spectral
representation U for S commutes with Ua (i.e., U(p)Ua(¢) = Ua(¥)U(p)
for any o, ¥ € C7).

CoroLLARY 2. Let S; (¢ = 1, 2) be a C%*-scalar operator such that Sp(S:)
is contained in a C%i-curve A; (1 = 1, 2) and suppose S; (¢ = 1, 2) has the
canonical representation U, with respect to A; (1 = 1, 2). If S; and Sz com-
mute, then Uy and U, commudte .

THEOREM 1.6. Let S be a C7-scalar operator whose spectrum s contained
i an analytic curve A (i.e., there exists a representation of A which is holomorphic
on a neighborhood of T') and suppose S has the canonical representation Ua with
respect to A.  Let U be any other C7-spectral representation for S. If m s finile,
then there exists Q e L(E) such that Q™™ = 0 and

U = 3 LUty

for all ¢ € C2", where D = 1(8/8% 4+ 1 8/31) (N = £ + in).
If m = o and if E is a Banach space, then there exists Q ¢ L(E) such that
Q™™ = 0 for some non-negative integer mo and

Up) = & & va)

for all o ¢ C5 .
Proof. By Corollary 1 above, U commutes with U, . Let
Q = UX) — Us(¥).
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By the remark at the end of §1.1, we see that
Us(X) = Ua(7 (I/v))-

Since 7 o (1/4~1) is holomorphic on a neighborhood of Sp(S), we have
Us(X) = U(ye (I/47)).

Thus, @ = UX — 70 (1/y™)). The function X — 7o (1/41) vanishes
on Supp U € v(T'). Hence Q"™ = 0if m is finite. If we put

Uile) = i ¢ Us(D)

for ¢ ¢ C2™, then we see that U, is a C2"-spectral representation, U;(\) = U(\)
and Uy(X) = U(X). Hence, Us(p) = U(p) for all ¢ e C2" by Proposition
2 in [5].

The last half of the theorem is proved in a similar way.

CoroLLARY. Let S, Us and U be as in the theorem. If m is finite, then
[U(e) — Us(e)"™ = 0 for any ¢ € C7.

These results improve Theorem 2 and its Corollary in [5] in our special
case where Sp(S) is contained in an analytic curve.

1.3. An existence theorem. Let S be a C7-scalar operator such that
Sp(8) is contained in a C"-curve A. If m > 1, we do not know whether
there always exists a canonical representation for S with respect to A. We
can prove the following theorem which, in particular, asserts the existence
form = «.

TueoreMm 1.7. Let m > 1 and let S be a C7-scalar operator such that Sp(S)
is contained in a C*"-curve A. (If m = o, we read 200 = o.) Then there
exists a canonical representation with respect to A for S as a C2"-scalar operator.

Proof. Let v be a representation of A and let
g:(N) = I\ = v(u, O (k=0,1,2 ).

gr is defined and 2m-times continuously differentiable on a neighborhood ¢
of A. Let U be a C7-spectral representation for S. Since Supp U & A,
U(gx) is well defined.

We consider a differential operator of the form

D = w(& ) (/0% + 19/0n) (N =&+ )

such that w e C*"*(¢) and D(y o u,) = 1 ono. The existence of such a func-
tion w can be easily seen by the fact that the Jacobian of the transformation
v~ does not vanish on o.

Case I. m is finite. If k > m =+ 1, then all the partial derivatives of g
of order <m vanish on A. Since ¢ — (U(p)z, 2') is a distribution of order
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m whose support is contained in A foreach ze¢E and 2’ ¢ E’, it follows
U(gy) = Ofor k > m + 1 (see e.g., Théoréme XXVIII of [7], Chapter III).
Similarly, we see that

# U(gry) =0 fork=m+1,m+2, ---
for any ¢ e Cv. Now, we define U, by

m

Us(e) = X 2 Ulas DG o v o )
for ¢ € C2". Then the right hand side is well defined and U, is a continuous
linear mapping of C3" into L(E). Furthermore, it is easy to see that
Supp Us € A, Ua(1) = I, Us(\) = U(N) = Sand Ua(povou,) = Ur(e).
From (#), it follows that U, is multiplicative. Hence U, is the canonical
C"-respresentation for S with respect to A.

Case II. m = . If we apply the proof of Théoréme XXVIII of [7],
Chapter III to our L(E)-valued distribution U, we can conclude the following:
For any continuous semi-norm q on L(E), there exists a non-negative integer
mq such that if all the derivatives of ¢ € C; of order <m, vanish on A, then
qlU(¢)] = 0. Hence we see that

(#Q) Q[U(gk’//)] =0 fork = Mg + 1; My + 27 )

for any ¢ € C5.
Now, we define T, (p = 1,2, ---) by

T,(0) = k; L Ulge Do v o u)]

for ¢ e C7. Then, for each p, T, is a continuous linear mapping of C? into
L(E) such that Supp T, € A, T,(1) = I, T,(A\) = Sand Ty(poyou,) =
T,(¢). The property (#,) shows that {T,(¢)} is a Cauchy sequence in
L(E) for each ¢ ¢ C7. Since L(E) is quasi-complete, there exists Ua(p) ¢ L(E)
such that

Ty(¢) — Uale) (p— )

for each ¢ € C;. In fact, ¢(Tp(¢) — Ua(e)) = 0for p > m,. It follows
then that Supp Ua C A, Ua is continuous linear on C7, Ua(1) = I, Ua(N) = 8
and Us(povyouy) = Ua(e). Furthermore, (#,) implies

AT, (e¥) — Tr (@) T5,(¥)] = 0

for any p1, pa, s > Mmq ; 0, ¥ € Cy. It follows then that Ua is multiplicative.
Hence, U, is the canonical representation for S with respect to A.

Remark 1.2. If E is a Banach space, then so is L(E). Hence there exists
mo > 0 such that Up = T, .

CoroLLaRY 1. Let S; (i = 1,2, ---, n) be a C%-scalar operator such that
Sp(8:) € A for a C-curve A; (¢ =1, -+, n). If Sy, -, Su commute
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with each other, then P(Sy, « -+ , S,) is a Cs-scalar operator for any polynomial
P in n variables.

Proof. The previous theorem implies the existence of the canonical repre-
sentation for each S; with respect to A;. By Corollary 2 to Theorem 1.5,
these representations commute with each other. Hence, by (ii) of Corollary
to Proposition 3.1 in [4], we see that P(S;, ---, S,) is & -scalar.

CoroLLARY 2. If Si, .-+, S. are C*-unitary operators commuting with
each other, then Sy« -+ + S, is a C”-unitary operator.

1.4. Characterization in terms of resolvents. Let SeL(E) be
any C¢-scalar operator with compact spectrum. For N ¢ Sp(S8), let
dv = dis (\, Sp(8)) and R(\) = (\[ — 8)7%

Lemma 1.2. For any continuous semi-norm q on L(E), there exists a non-
negative integer mq (= m, if m is finite) such that

gRON)] < Mo(di™ ™ + dy) (M, > 0)
Sfor all N ¢ Sp(8).

Proof. For d > 0, we can choose ¢4 ¢ C% in such a way that s = 1 on a
neighborhood of Sp(S), ¢a(z) = 01if d, > min (d/2, 1), 0 < ¢a < 1 and

leallis < K(d 4+ 1) (1 =0,1,2, ---; K; > 0 is independent of d),
where
f Ic1+k2
leluz: = supl Py LANON )‘ 0<ki+k <LreZ={zd < 1}}.

(See, e.g., the proof of Théoreme XXVIII of [7], Chapter I11.) Let

on(z) = ‘de(z)

-z
Then e iz = Ki (d“‘l + &,
Il =01, 2 ---. Let U be a C;-spectral representation for S. Since

R(N\)= Ul(gnr), the lemma follows from the continuity of U.

Taeorem 1.8 (Cf. Tillmann [9, Satz 1]). Letm > 2 and let S e L(E) have
a spectrum contained in a C™-curve. If, for each continuous semi-norm q on
L(E), there exists an integer mq with 0 < mq < m — 2 such that

(1) gRON)] < My ™™ (M, > 0)

for all N with 0 < dy < do (do > 0), then S is a C%-scalar operator having a

canonical representation with respect to any C™-curve containing Sp(S).

Proof. Let v be a representation of a C™-curve A containing Sp(S).
First, we remark that (1) implies

(1) dR(v()] < Mol 1 — 2| [T (M, > 0)
forallzwith0 < |1 — |z|| < &, & being taken sufficiently small.
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By Theorem 1.2, it is enough to show that S is a C"(v)-operator. Let
v5(8) = {(1 + 8)e”} for | 5| < & . Let

W) = g [ () = 1D = r-o(®) — 9(DIL0)) do

for 0 < ¢ < &. Then v(y) = +1. For feC™(T) and ¢ (0 < ¢ < &),
we define

Wor) = 20 [ () (Rlve(@)] 70) = B s (0)] 4-:(0)) s

The integral exists and W.(f) e L(E), since all the functions in the integral
are continuous in 6 and L(E) is quasi-complete. We shall show that
lim ..o W.(f) exists for each fe C"(T).

For a real & with | 8| < & and for feC™(T'), let

D d .
[05°11(6) = — l-i@f(eo)

07116) = — & (B AOWOT, 1 =2, m

8 — 9§"f is continuous from [—e,, &] into C™"(T') and f — 85™f is linear
continuous from C™(T') into C™ "(T") for each 4.

Let o1 be the bounded component of C — A. We may assume that
Y—e(0) ey for 0 < & < & and that v(y) = 1. (We can similarly discuss the
other cases.) Since ¢y is simply connected, R(N) have n-fold indefinite
integrals R“™(\) in oy for all n = 1, 2, --- . Then, integrating by parts,
we have

fo Wf(e”)R['y_g(O)] vLo(0) do = f”[a(—’i)f](0)R(—")[7—e(0)] o (n=1,2---m).

On the unbounded component of C — A, we define REP(\) for N = ~.(0),
0<e < &,0<L60 < 27 as follows:

RP(\) = R\\V);

R = [ R @] @) da+ [ Bl 0)] L ,(6) ar
e A &0 &9 e r dr r y

n =12 ---. Next, we define S,(f, ¢) e L(E),n = 1,2, --- , m by
Sl(f) 8) = 21I"Lf(1)1,
2w
$ulf, &) = Sweal, ) + DEAOWON [ R n (o) do.
n =2, ---,m. Then, integrating by parts, we have

fo ” 7(e")Rlv.(0)]7.(6) d6 = S.(f, ) + [o v [071(0)R ™ [v.(6)] do,
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n=1,2 .-, m. We remark here that lim.., S.(f, ¢) exists for each n, f
and f — lim.,q S, (f, €) is continuous on C™(T') for n < m.

From (1’), by a method of Tillmann [8] (also see [11]), we can conclude
that R [y,.(6)] has a ¢-limit as & — 0 and the convergence is uniform in 6.
Since m, + 2 < m and f e C™(I"), it follows that W.(f) has a ¢-limit as ¢ — 0.
Hence W(f) = lim.., W.(f) exists and W(f) e L(E). Furthermore, the
above arguments show that the mapping f — W () is continuous from C™(T")
into L(E). Obviously the mapping is linear.

If h is a function holomorphic on a neighborhood of A, then the opera-
tional caleulus is written as

2T
S) = o [ {(hre(O)IRIY.(0)17:(6) — hly-.(0)RIy—.(0)nc(6)) da

21t Jo

for sufficiently small ¢ > 0. Hence

h(S) — W(hoy) = lim —1—.{ fo " (Hre(8)] = Hv(@) Rlve(0)L(6) db

erot 2wt
~ [ a1 = MO - O1(6) i .

We can see that this limit is equal to zero, by repeating the arguments given
above (also see [8] and [11]). Hence, W(hovy) = h(S); in particular,
W(1) = I and W(y) = S. Furthermore, it follows that W is multiplicative
on the set {hov; h is holomorphic on a neighborhood of A}, which is dense
in C™(I') (Lemma 1.1). Since we have seen that W is continuous on C™(T"),
it follows that W is multiplicative on C™(T'). Hence, W is a C"(v)-representa-
tion for S.

CoroLLARY. If S is a C%-scalar operator (m > 1) such that Sp(8S) s

contained in a C™-curve, then there exists the canonical representation with
respect to any C™-curve containing Sp(S) for S as a Cr -scalar operator.

This corollary improves Theorem 1.7 in the case m is finite >3. (It gives
as good results in the casesm = 2and m = «.) Thus, our best known result
on the existence of the canonical representations is as follows:

If 8 is a C™-scalar operator such that Sp(S) is contained in a C™-curve A,
then there exists a canonical representation with respect to A for S as a
C7 -scalar operator, where m’ = Qifm = O,m’ = 2if m = 1, m' = m + 2
f2<m< oandm’ = ©ifm = =,

Remark 1.3. In the above theorem, it is enough to assume that (1) is
satisfied for each ¢ belonging to a family of semi-norms on L(E) which defines
the topology 7, . Hence, if E is a Banach space, we can say:

If there exists a non-negative integer mo such that Sp(S) is contained in a
C™**_curve and

ROV || £ Mdy™™ (M > 0)

for all A with 0 < dy < do (do > 0), then S is a (™ -scalar operator.
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1.5. Another characterization of C-unitary operators.

TreEOREM 1.9 (Cf. Kantorovitz [2, Lemma 2.9]).

(1) If S is a C%-scalar operator such that Sp(S) C I' (in particular, of S
is a C™-unitary operator), then for each continuous semi-norm q on L(E) there
exists a non-negative integer mq = m, if m s finite) such that

(2) g(8") < My k™ (Mg > 0)

forall b = £1, £2, .-+ .
(ii) Conversely, if S e L(E), S~ exists and ¢ L(E) and if (2) is satisfied
Jor mg with 0 < my < m— 2 for each q, then S is a C™-unitary operator.

Proof. (i) For0 < d < 1, let e C; be the function defined in the proof

of Lemma 1.2 and let yx(\) = Noyw(2\) for k = +1, +£2, ---. Since
Supp ¢ S (M1 — 1/2/ k| <N <1+ 1/2[k[},
we have || ¢ |1z < K| k|'forallk = +£1, 2, -+ ;1=0,1,2, ---. Since

S* = U(yx) for any C7-spectral representation U for S, (2) follows from
the continuity of U.

(ii) We may apply Kantorovitz’ method [2, Lemma 2.9] to obtain the
C™(e”)-representation for S. Here, we shall show that (2) implies

g(RON)) < Myl 1 — |||

for \¢T, |N| < 2. Then we conclude the existence of a C™(e”)-representa-
tion by Theorem 1.8. (In this way, we prove the implication III (m) =
IV (m) in Theorem 3, (i), of [6]. Cf. [11, 4.12].)

If |\ < 1, then let Ry(N) = — 2 ro NS * and if | X| > 1, then
let Ry(\) = Do N *™8*  The condition (2) implies that these series
converge in L(E), so that R;(\) e L(E) for each \ ¢ I'. Furthermore, we see
that A\ — Ry(\) is holomorphic on ¢ — TI'. Direct computations show that
(M — S)Ri(\) = Ri(\)(M — 8) = I for each \¢T. Hence Sp(S) & T
and R(N\) = Ri(\). Again by (2), we have

g(R(N) < My 2= | MM h+ 1" < M1 — |\
for || < 1 and
gRON) < qD)/IN] + Mg 2 [ N[®k™ < Mo(In] — D™
forl1 < |N| < 2.

Remark 1.4. By this theorem, we see that a one-to-one isometry on a
Banach space is C*-unitary and the Fourier transform on $(R") or on $(R")’
is C*-unitary (see Examples 1.3 and 1.4). Also, we can directly show that
any translation on $(R") or on $(R")’ is a C*-unitary operator (cf. Example
14).

Remark 1.5. We showed that the condition (2) implies the condition (1).
As a converse, we can prove the following: If S e L(E) has a spectrum con-
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tained in T' and if (1) is satisfied for each g, then
q(8*) < Mol k™ (Mg > 0)
forall k = 1, &2, --- . See, e.g., [11], 4.11.

CoroLLARY 1. Let S: (1 = 1, 2) be a C%*-scalar operator such that Sp(S:) &
I' (¢ =1,2). (Inparticular, let S; (¢ = 1, 2) be a C""-unitary operator.) If
Sy and S commute, then Si-Sy is a C™ ™ unstary operator. (Cf. Corollary
2.10 in [2].)

Proof. 1If either my = « ormy = oo, then this corollary reduces to Corollary
2 to Theorem 1.7. Suppose both m; and m, are finite. Then
By = {Si/|k|™k = %1, £2, -+
and
By = {So/| k"™ k = %1, £2, -}

are bounded sets in L(E) by the above theorem. Since
B = {($:8)*/|k|™™ ; k = £1, £2, ---} C By-Bs,

B is a bounded set, so that ¢[(S; S2)"] < Kol k|™* ™ forallk = £1, +2, ---.
Hence, 8;8; is a €™ .unitary operator by (ii) of the above theorem.

CoRrROLLARY 2. Let S be a C%-scalar operator such that Sp(S) is contained
in a C"-curve A, v be a representation of A and U be a C7-representation for S.
For any continuous semi-norm q on L(E), there exists a mon-negative integer
mqe(= m, ¢f m s finite) such that

dU(™" < M k™ (M, > 0)
forallk = 41, &2, .- .
Proof. U(y™") is a C7-scalar operator and Sp (U(y™")) C T.

CorOLLARY 3. Let SeL(E) and suppose Sp(S) s compact. If there
exists a one-to-one holomorphic function h on a meighborhood of Sp(S) such
that h(8) ™" e L(E) and if for each continuous semi-norm q on L(E) there ex-
ists an nteger mq with 0 < my, < m — 2 such that

g9} < My k™ (M, > 0)

for all k = 41, £2, --- | then S is a C7-scalar operator having a canonical
representation with respect to a C”-curve.

Proof. By Theorem 1.9, (ii), h(S) is a C™-unitary operator. Let V be
the canonical representation for A(S). If we define U(g) = V(po V)
for ¢ € C7, then U is a C7-spectral representation for U(\) = V(h™ ') =
R~ '(h(8)) = 8. Since we can find a representation vy of a C®-curve such
that v = K" on a neighborhood of Sp(h(8S)) and since U satisfies the con-
dition (y) for such v, we have the corollary.
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Part ll. The case of unbounded curves

2.1. Unbounded C™-curve and C™(y)-transformation. In Part II, we con-
sider a Jordan curve in ¢ = C u { ] passing through the point «, or its
restriction to C. Such a curve is homeomorphic to the extended real line
R=Ru {»}.

DeriNtTioN 2.1. A closed set A in C is called a Cw-curve (m : integer > 0
or m = «),if there exists a one-to-one continuous mapping v of R into € such
that R

(i) v(R) = A v(o) = «; (Hence, v(B) = A — {=}.)

(ii) v can be extended to an open neighborhood ¢ of R in C (the extended
map will also be denoted by «v) in such a way that v is one-to-one on ¢ and vy
and v ' are both m-times continuously differentiable on ¢ and v (o) respec-
tively as functions in two real variables.

The mapping v is called a representation of A.

Let C7(R) be the space of all complex-valued m-times continuously dif-
ferentiable functions with compact support in R. We introduce the usual
topology in C% (R) similar to that in C7%.

If v is a representation of a Cw-curve A, then this mapping induces a dif-
ferential structure on A — { =}, so that A — {«} is regarded as a one-dimen-
sional C"-manifold. The space Cv(A — {o}) is defined to be isomorphic
to C¢(R) by the mapping g <> g ovy. Thus, corresponding to Definition 1.2,
we define:

DrriNiTION 2.2. Let v be a representation of a Cx-curve. A closed trans-
formation S with domain Dy is called a C™(v)-transformation (C™(v)-operator,
if Se L(E)), if there exist a continuous algebra homomorphism W of C%(R)
into L(E) and a net {f.} in CT(R) such that W(f,)x — z for each z ¢ E,
W (f)x e Dg for any feCv(R) and

(%) lime W(~vfo)x = Sz forall x e Dy .

The net {f,} is called an identity net for W. If v is the identity map y(¢) = ¢
(so that v(R) = R), then a C™(¢)-transformation (resp. a C™(t)-operator) is
called a C"-real transformation (resp. a C™-real operator). (Cf. [5], [2],
and [9]).

Remark 2.1. The condition (#%) can be replaced by

(%%)’ W(f)Sx = W(yf)x forallfe C7(R)andzeDs,
or by
(#%)" W(f)S = SW(f) on Ds and SW(f) = W(~f).

Hence, the definition of a C™(v)-transformation does not depend on the
choice of {f,} (cf. Preliminaries). Furthermore,

Ds = {x e E; lim, W(~f,) exists}.
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Also, we can make the same remark as in Preliminaries on the topology of
L(E) and the continuity of W.

An approximation theorem corresponding to Lemma 1.1 may be formu-
lated as follows (see appendix):

Lemma 2.1 (Approximation Theorem). Let v be a representation of a
Ca-curve. Given a compact set = on B and an m-times continuously differentiable
function f on R, there exists a sequence {P.} of polynomials (in one complex
variable) such that

(Prov)g — fg (n— )

m Co(R) for all g e CT(R) with Supp g & =.

TueorREM 2.1. Let v be a representation of a Cw-curve. If Wi and W, are
1

continuous homomorphisms of C¢(R) into L(E) with identity nets {fo'} and
{157} respectively such that
(1) limg Wa(f&"v)z = lims Wa(fs"v)e

then Wy = W,. (Here, (1) meansthat if the limit of one side exists, then so
does the limit of the other side and they are equal.)

Proof. TFirst, we observe that lim, Wi(f&v)Wa(g)z exists and is equal
to Wa(gy)z for any geCy(R) and x e E. We shall show that

(2) Wi(gi ¥ ) Walge) = Wi(g) Welg2v*), k=0,1,2, -

for any g1, g2 e Co(R). If k = 0, then (2) is trivial. Suppose (2) is true
for a k. Then, for any xz ¢ E,

Wi(geY* ™) Walge)z = Wi(gny™) lim, Wi(f) Wa(ga)
= lim, W1(g¥" ) Wa(fLv) Walgs)x

= W1(917k)W2(gz'Y)$

= Wl(gl)W2(92’Yk+1)$~
Hence, by induction, we have (2). It follows then that
(3) Wilgi(P o v)IWa(ge) = Wi(g1) Walga(P o v)]

for any polynomial P. Let f e C7 be given. By Lemma 2.1, there exists a se-
quence {P,} of polynomials such that

gi(Puoy) = guf and g(Puoy) — ¢of (n— =)
in C¢. Hence, (3) implies

Wilg) Wi(f)Wa(ge) = Wilg) Wa(f)Wea(ge).
Now, taking g: = f&, ¢» = f5° and taking limits, we see that Wi(f) = Wy(f).

By this theorem and Remark 2.1, we see that W in Definition 2.2 is uniquely
determined by S and y. We shall call W the C"(v)-representation for S.
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Derinmrion 2.3. Let v be a representation of a Cu-curve and let U be a
C7-spectral representation. We say that U satisfies the condition (v), if

Supp U € v(R) and U(poyoRey™) = Ulp)
for all o € C7.

TuroREM 2.2. Let S be a C™(v)-transformation for a representation v of a
Cs-curve A and let W be the C™ (v )-representation for S. Then

(1) 8 is a C%-scalar transformation such that Sp(S) C A;

(ii) o: Uile) = W(poy) for ¢ e C7 defines a C7-spectral representation
for 8 satisfying the condition (v).

Proof. Tt is easy to see that U, is a C7-spectral representation with an
identity net {f. o '}, where {fa} is an identity net for W and that U, satisfies
the condition (v). If x € Dg, then

UMfuo v le = W(vfa)z — Sz
Hence S is a % -scalar transformation and U, is for S.

A remark on the condition (v). Corresponding to the similar remark in
Part I, we can state some equivalent forms for the condition (v) in the case vy
is a representation of a Cw-curve; if U is a C%-spectral representation and if
Supp U C v(R), then the following conditions are mutually equivalent:

(i) U(p) = U(poyoRey™) forallpeCr;
(i) U(ve) = Uy ) forall ¢  C3;

(i) U(e) = Ulpoyoy ) forallpeCy;
(iv) Ul(Imvy V)] = 0for all p € C7.

Turthermore, if v is analytic, then each one of (i)—(iv) is equivalent to
(v) UQw) = Ul(yoy )l forall ¢ e CT.

In particular, if v is the identity map (so that Supp U € R), then the fol-
lowing are mutually equivalent:

(1) Uler) = U(p) for all ¢ € C%', where pr(N) = ¢(ReN);
(i) UQw) = (A) for all ¢ € C7;
(iii)’ Ule™®) = U(e) for all ¢ e C7, where o*(\) = ¢(X);
(iv)’ Ul(ImN)g] = 0 for all ¢ € C7.

2.2. Canonical representation. Corresponding to Theorem 1.3, we have
the following theorem, which leads to the definition of a uniquely determined
canonical representation:

TaroreMm 2.3. Let Uy and Us be two C% -spectral representations with identity

nets {5’} and {§”} respectively and suppose

lime Ur(he)z = limg Us(Nes? )z,
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so that Supp Uy = Supp Us(=Z). Let vi(1 = 1, 2) be a representation of a
Cu-curve. If yvi(R) no = v(R) n o for some neighborhood o of Z and if each
U.(1 = 1, 2) satisfies the condition (v.), then Uy = U, .
Proof. Let
Wi(f) = Ui(feReni)

Wea(f) = Us(fovi ov2oRexs')

for fe Cy(R). Then, W, and W, are well defined and they are continuous
homomorphisms of C%'(R) into L(E). Let

© =edom and f¥ =g om.
Then {f’} and {f§”} are identity nets for Wy and W, respectively. Turther-
more,

Wl(fle)’vl) = Uil{ (¢ o v1)71} ° Re 7]
= Uill(MeP) omioReni] = Uied).
Similarly, we see that Wa(f2v1) = Us(Mes”). Hence
lime Wi(f&v1)x = limg Wa(fs"v1)a.
Therefore, we have Wy = W, by Theorem 2.1. Hence, for any ¢ € C¢,
Ui(p) = UilpemioReri) = Wilpov) = Wa(pom)
= Us(poviovi ovioRens’)
= Us(povzoRens) = Us(op).
DEeriniTioN 2.4. Let S be a C%-scalar transformation such that Sp(S) is

contained in a Co-curve A. A C7-spectral representation U for S is called

canonical with respect to A, if there exists a representation v of A for which U
satisfies the condition (v).

By the above theorem, we see that the canonical representation is uniquely
determined by S and A.

CoroLLARY. Let S be a closed transformation such that Sp(S) s contained
in a Cx-curve A. Then S is a C%-scalar lransformation having a canonical
representation with respect to A if and only +f it is a C™ () -transformation for a
representation vy of A.

Proof. Theorem 2.2 is the “if” part. If S is a C7-scalar transformation
having the canonical representation U with respect to A, then U satisfies the
condition (v) for some representation y of A. If we define W(f) =
U(foRey™), then we can see, by an argument similar to the proof of the
previous theorem, that S is a C™(v)-transformation with the C"(vy)-represen-
tation W.

Remark 2.2. We can formulate an example corresponding to Example 1.1
with an extra condition on the existence of an identity net.
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If S is a C%-scalar transformation such that Sp(S) = A for some Cx-curve
A, then there is no other Cs-curve containing Sp(S). Hence, in this case, the
canonical representation for S is uniquely determined by S.

If Sp(S) does not coincide with a whole Cs-curve, then we can make re-
marks similar to Remark 1.1.

Remark 2.3. In the arguments in Part I, if Sp(S) does not coincide with a
whole C™-curve, then it is enough to assume that the representation v of the
curve can be extended to be one-to-one and C™ only on a neighborhood of
~ 1 (Sp(8)). If Sp(8) is contained in a C%-curve and if it is compact, so
that v (Sp(8)) € [—r, 7] for some 7 > 0, then

% = (14 Im~™") exp (4w Re y™/2r)

gives a one-to-one C™-mapping of a neighborhood of Sp(S) onto a neighbor-
hood of 4(Sp(S)) S T and v10uy, = voRe ™", wherey; = 4. Hence, we
can regard Sp(S) to be contained in a C™-curve in the sense remarked above.
Thus, if Sp(8) is compact, then we can reduce our arguments to those in
Part I. This means that essential difference of Part IT from Part I, in general
discussions, appears only when Sp(S) is not compact. In this respect, we
shall state in this part, only those theorems which deal with general trans-
formations having non-compact spectrum or with C™-real operators.

TaEOREM 2.4. If S is a Ce-scalar transformation whose spectrum is con-
tained in a C%-curve, then S has a unique Co-spectral representation, which is
canonical with respect to any C%-curve containing Sp(S).

The proof of this theorem is similar to that of Theorem 1.4.

Canonical representations for C™-real operators (cf. [5]). If S is a closed
transformation whose spectrum is contained in R, then S is C7-scalar with a
canonical representation with respect to R if and only if it is a C™-real trans-
formation. Thus, for a C™-real transformation S, its canonical representation
with respect to R is called the canonical representation for S. (This definition
is equivalent to the definition in [5,§7], where a C™-real transformation was
called a real C¢-scalar operator.)

Remark 2.4. IfSp(8) C {1, —1}(=T nR), then S can be C"-unitary and
C™-real at the same time. In this case, the canonical representation for S as
a C"-unitary operator may be different from that for S as a C™-real operator.
Example: S = I + @ with a nilpotent operator Q.

Examples of C™-real transformations were given in [5].

Properties of the canonical representations.

TueoreM 2.5. Let S be a C7-scalar transformation such that Sp(S) is con-
tained in a Ce-curve A and suppose it has the canonical representation Ua with
respect to A.

(i) If TeL(E) commutes with S8 on Dg, then T commutes with each
Ualp), ¢e Ce.
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(it) If F s a closed subspace of Es = {Ua(p)x; ¢ €C%, ze E} and if S
leaves F invariant, then each Us(p) leaves F invariant.

Proof. (1) Let v be a representation of A for which U, satisfies the con-
dition (v). Then there exists the C™ () -representation W for S. It isenough
to show that T' commutes with each W (f), fe Ct(R). TForany g1, g:¢ Co(R)
and z ¢ E, we have

W(gv)TW (g2)x = W(g1)STW (g2)z = W (g:) TSW (g2)x = W (g1) TW (g2 ).
Similarly, we have

W(gl 'Yk)TW(gg)il} W(gl) TW(g2 'yk)x; k= 0’ 1) 27 e

Hence,

Wlgi(P o V)ITW (g2) = W (g)TWga(P © v)]

for any polynomial P. Given feC%e(R), we approximate it by Po~y on
Supp g1 u Supp g2 (Lemma 2.1) and we obtain

W(g)W(HTW (g2) = W(g)TW ()W (gs)-

Letting g1, g2 be members of an identity net for W and taking limits, we
finally have W (f)T = TW(J).
(ii) With the same notations as in (i), we shall show that each W (f) leaves
F invariant. If xeF C Eg, then there exists fyeC:(R) such that
z = W(fo)x. Then
W(fov)x = SxeF

by assumption. By induction, we see that W(fov*)z e F for all zeF. It
follows that
Wifo(Poy)lxeF

for any polynomial P. Hence, given f ¢ C7'(R), we conclude that

Wz = W(hf)zeF
by Lemma 2.1.

CoROLLARY 1. Let S be as in the theorem. Then any other C%-spectral
representation for S commutes with U .

COROLLARY 2. Let S;e L(E)(s = 1, 2) be a C7'-scalar operator such that
Sp(S:) is contained in a Cui-curve Ai(i = 1, 2) and suppose Si(¢ = 1, 2) has
the canonical representation U; with respect to Ai(4 = 1, 2). If Si and S, com-
mute, then Uy and Uz commule.

2.3. An existence theorem. Let S be a C¢-scalar transformation such
that Sp(S) is contained in a C%'-curve A. If Sp(8) is compact, then we can
reduce the arguments to Part I (see Remark 2.3), so that we have Theorem
1.7 for an existence of the canonical representation. In this connection, we
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correct an error in [5], i.e., Proposition 6 in [5] should read:

Proposition 6. If S is a C7-scalar operator whose spectrum is compact and
contained in the real line, then there exists a unique C2"-spectral representation
U such that S = Sy = Sy .

The three lines after the definition in p. 148 of [5] should also be changed in
accordance with the above correction.

If Sp(S) is not compact, we do not know if the corresponding theorem holds
in general. When we try to apply the method of Theorem 1.7 to this case, a
difficulty appears in showing the existence of an identity net for Uy . How-
ever, we can prove:

TueorEM 2.6. Let m > 1 and let S be a C™-scalar operator such that Sp(S)
is contained in a Cx'-curve A. Then there exists the canonical representation
with respect to A for S as a C2"-scalar operator. Furthermore this representation
is C*"-spectral.

The proof is similar to that of Theorem 1.7. Here we use the function
Re v " instead of u, . We take a C"-spectral representation U for S and con-
struct U, .

CoroLLARY 1. Let S;(¢ = 1, -+, n) be a C”-scalar operator such that
Sp(8:) € A for a Ca-curve Ay(i = 1, -+ ,n). If Sy, -+, S, commute with
each other, then P(S1, « -+ , S») 1s a C”-scalar operator for any polynomial P inn
variables. )

Proof. By the above theorem and Corollary to Theorem 2.5, we see that
81, -+, S, have C”-spectral representations Uy, -- - , U, respectively which
commute with each other. Then, we see that P(S;, « -+, S,) is C*-scalar by
(i) of Corollary to Proposition 3.1 in [4].

COROLLARY 2. If Sy, -+, 8. are C*-scalar operators such that Sp(S;) C R
foralli = 1, -+, n and if they commute with each other, then P(Sy, -+, Sy)
18 @ C”-real operator for any polynomial P in n variables with real coefficients.

2.4. Rate of growth of resolvents.

LemmA 2.2. Let S be a Ct-scalar transformation. For \¢Sp(S), let
dy = dis (A, Sp(8)) and R(\) = (\[ — S)™".

For any continuous semi-norm p on E and x ¢ Eg , there exists a non-negative
integer my = m(p, ) (=m, if m is finite) such that
(4) P(RMN)z) < Mpo(d™ ™ + &y (M > 0)
for all N ¢ Sp(8).

If S is C™-scalar, then for any continuous semi-norm q on L(E), there exists
a non-negative integer mq (=m, if m s finite) such that

(5) gRON)) < Mo(da" ™ + di') (Mg > 0)
for all N ¢Sp(8).
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Proof. (i) First, let S be a C7-scalar transformation and let U be a
C%-spectral representation for S. Given z e E, there exists ¢, € (5 such that
U(ps)z = z. Then,

2 = Sp(8) n Supp ¢

is a compact set. For any d > 0, we choose (cf. the proof of Lemma 1.2)
¢a € C7 in such a way that ¢z = 1 on a neighborhood of Z,, 0 £ ¢a £ 1,
0i(z) = 0 if dis (2, Z;) > min (d/2, 1) and | ¢a |1z < Ki(d™" + 1) for all
1=0,1,2, -+, where 2 = {2;dis (¢, Z,) < 1}. Let

Wa(2) = %

for X ¢Sp(S). Then, || ¥rz |1z < Ki(dr™ + di') and RNz = U(¥a)z.
Hence, by the continuity of the mapping ¢ — U(¢)z, we have (4).

(ii) If S is C™-scalar, then there is a C™-spectral representation U for S.
For any continuous semi-norm ¢ on L(E), there exists a compact set =’ and an
integer mq (=m, if m is finite) such that

qU()] £ My | @ |lmgz (M, > 0)

for all p e C™. Then, we easily obtain (5) by expressing R(\) = U(¥») with
a suitably chosen ¥, ¢ C™.

It is an open problem to formulate a general theorem corresponding to
Theorem 1.8 inA the case Sp(8) is not compact. Here, we discuss only the
case Sp(8) € R.

Lemma 2.3. Let S be a closed transformation. If Sp(S) S R and if, for
each continuous semi-norm q on L(E), there exists a mon-negative integer
me < m — 2(m > 2) such that

(6) dR(E + )] < Mo(|n ™7+ [n]™)
for all &, m (n £ 0), then
(1) 8= (8—=0)(S+1)" =TI+ %UR(—1) is a C"-unstary operator;
(ii) There exists a continuous homomorphism W of Ce(R) into L(E) such

that W (f)x € Dg for all f e Co(R), x e E, W(f)Sx = SW(f)z for all f e Co(R)
and x e Dg and SW(f) = W(if).

Proof. (i) First, we remark that S e L(E). Forz¢T, let
- 1 . 142\ _ T 2 142
k@) = l—z(S+$)R($1—z>—z—1+(z— 1)2R<’1—z>‘

It is easy to see that R(z) = (eI — 8)™ for all z¢T. It follows that
Sp(S) T
Since

2
Im(i1+z>—1_|z|

1—2) " [1=z]
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(6) implies )
q(R(2)) < Mg|1 — |z| ™

for all z with |2| < 2, | 2| # 1. Hence, by Theorem 1.8, S is aC™-unitary
operator. B ]
(ii) Let W be the C™(¢”)-representation for 8. For fe CT(R), let

7 = f ( %—te—o)

629
Then fe C™(T') and 1 ¢Suppf. Let W(f) = W(J) for feC7(R). Then, we
easily see that W is a continuous homomorphism of C7(R) into L(E). Ifxe¢E
and f e Cy(R), then
W)z = Wz = (8 — I)W( / 1):0 = 2%R(—0)W (—f—1> zeDg.

Since 8 commutes with W (f), it follows that SW(f)x = W (f)Sz for z ¢ D5 .

Now,
W) = ( %f) = i(I + s)w( few)

Since

W) = 2iR(—i)W<1_f >

ew
as we have seen above, we have
W) = 3(I + 8)(S + o)W ()

= HI+ (S =) +)THS + )W) = SW().

THEOREM 2.7. Any C™-scalar operator S such that Sp(S) S R is a C™-
real operator.

Proof. In view of Theorem 2.6, it is enough to prove the case m > 2. By
the previous two lemmas, we see that 8§ = (S — ¢)(S + )™ is a C"**-unitary
operator. Let W and W be asin the proof of the previous lemma. (Here, W,
W are continuous homomorphisms of C™*(T') and C7*(R), respectively, into
L(E).)

By Theorem 2.6, there exists a continuous homomorphism W; of C*"(R)
into L(E) such that Wi(1) = I and W1(t) = 8 (i.e., Wi(f) = Ua(f(Rez))
for fe C*™(R)). We shall show that Wi(f) = W(f) for feC3"(R). Since
2m > m + 2, it follows that W is a C™**(t)-representation for S and the
theorem will be proved.

Let u(t) = (t — 4)/(t + 2) (teR). u is a one-to-one C”-mapping of R
onto T' — {1}. For geC*™(T), goueC™(R) and ¢ — gowu is continuous
from C*™(T) into C*"(R). Hence, Wi(g) = Wi(g o u) defines a continuous
homomorphism W, of ¢**(T') into L(E). Furthermore,

Wi(l) =1 and Wi(e?) = W, <t+ 1) S.
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Hence, by Theorem 1.1, W(g) = Wa(g) for all g C*"(T'). Since W(f) =
W(fou™), it follows that W(f) = Wi(f) for all f e C2"(R).

Remark 2.5. If the condition (6) of Lemma 2.3 is satisfied, then we see, by
a method of Tillmann [8], that

@ W =lin ok [ jORE =9 - R+ i) d

is defined for f e C7(R) and W is a continuous linear mapping of C7(R) into
L(E). If Sp(S) is compact (ZR), then we can prove that W is a C™(¢)-
representation for S (Tillmann [9]; also see Remark 2.3). Now, we ask the
following question for S such that Sp(S) € R and Sp(8) is mot compact:
Under what conditions on R(\), does W, defined by (7), become the C™(¢)-
representation for S? If this question is solved under suitable conditions on
R()\), we may be able to prove Theorem 2.7 directly without using Lemma 2.3
or Theorem 2.6.

2.5. Another characterization of C™-real operators. If Sp(S) is com-
pact, then ¢’ (— 0 < t < ) is defined by the operational calculus. Follow-
ing Kantorovitz [2], we give here a characterization of a C™-real operator whose
spectrum is compact in terms of ¢**, which extends Corollary 2.11 of [2].

Tuaeorem 2.8. (i) If S is a C7-scalar operator such that Sp(8S) s compact
and contained in R (in particular, if S is a C™-real operator with compact
spectrum), then for each continuous semi-norm q on L(E), there exists a non-
negative integer mq (=m, if m is finite) such that

(8) q(e") < M| t|™

for all real number t with | t| = 1.
(i1) Conversely, if S ¢ L(E), Sp (8) is compact and if (8) is satisfied by m,
with 0 < mg < m — 2(m > 2), then S is a C™-real operator.

Proof. (i) Let ¢a(d > 0) be the functions defined in the proof of Lemma
1.2 and let ¥;(\) = g;q(\)e'* for | t| > 1. Then

Il < K7 | 2]

foralll = 0,1,2,---;]t| =2 1. If U is a C7-spectral representation for S,
then ¢ = U(y,). Hence, we obtain (8) by the continuity of U.

(ii) By Theorem 1.9, (ii), the condition (8) implies that Sp(e'”*) € T
for each t. It follows from the spectral mapping theorem that Sp(S) C R.
Let

7 2 sup {| M [; X eSp(S)} (r>0)

and let {p = «/2r. Then, A\ — ¢ is a one-to-one analytic mapping of a
neighborhood of Sp(S) onto a neighborhood of the semi-circle on which
Sp(e**®) lies. Hence, by Corollary 3 to Theorem 1.9, we see that S is a
C™-real operator.
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Remark 2.6. The second part of the previous theorem can also be proved
as follows: The condition (8) implies that

(9) g(R(\)) < Mg|ImA[™" for 0 < |Im\]| < 1.

Then, it follows that S is C"*-real (see Remark 2.5). The inequalities (9)
can be seen from the facts that

RO\ =i fo S dp for Tm N < 0

RO\ = —i f ¢ @t for Im A > 0
0
and that

© o |
f e dt=% forany 7 > 0, m=0,1,2 -
0 n

We can also show that (9) implies
o) < MY [o]
for all ¢ with | ¢| > 1, provided that Sp(S) is compact and contained in R.

CoroLLARY (Cf. Corollary 2.12 of [2]). Let S; and S; be commuting C™*- and
C™-real operators respectively and suppose Sp(S1) and Sp(S:) are both com-
pact. Then Sy + Sy is a C™ ™ real operator and Sy - Se is a C*™ ™ reql
operator.

Appendix. Proofs of approximation theorems

We shall give proofs of Lemmas 1.1 and 2.1. If m = 0, then these lemmas
are Theorem 7 and Theorem 8 of Walsh [10]. Our proofs for m > 1 are based
on these theorems. We shall prove only the case m is finite, since, if these
lemmas are true for any finite m, then it follows that they are true form = «.

We remark that in order to have Lemma 1.1 (resp. Lemma 2.1), it isenough
to assume that the representation v is defined only on I' (resp. on R) in such a
way that v is one-to-one on I' (resp. on R), veC"(T') (resp. C"(R)) and
7'(0) = 0 everywhere on I' (resp. v'(¢) # 0 everywhere on R).

I. Proof of Lemma 1.1. Without loss of generality, we may assume that
the origin lies inside v(T'), so that we can take \o = 0. For any fe Cc™(T), we
use the notation £(8) for f(8) = f(e”). Let

M = supe| 1/v(8)] and M’ = sups|~'(6)].
We know that 0 < M, M’ < «. Let
® ={P(2)/2"; P : polynomial and [ : integer > 0}.

For Q € ®, let r(Q) = the residue of @at z = 0.
We prove by induction on m. Asremarked above, the case m = 0is known
to be true. Now, we assume that Lemma 1.1 is true for m(>0). If
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feC™™(I), then g = f//4' ¢ C™(T'). (v is now a representation of a C™"-
curve.) Hence, given ¢ > 0 there exists ; ¢ ® such that

(A1) g®(0) — dal Ql('v(ﬂ))
forallandl = 0,1,2, -+, m. Inparticular,
(A2) L f(8)/7'(8) — Qu(v(6))] < e.

Let Q(2) be a primitive of Q:(z) — 7(Q1)/z such that Q(v(0)) = f(0). Then
Qe®. Let R(6) = f(6)/v'(6) — €Qu(v(6)). Then,

f1(0) = v (6)Qu(v(6)) + ¥'(8)R(6)

Y (6)Q (v(8)) + v (8) "(8;)) + Y(O)R().

Integrating both sides from 0 to 8 (0< 6 < 2r), we have

ll

5 = 50) = Q) ~ () +1(@) [ T ao 4 [ v(0)R®) oo

If 6 = 2, this equation becomes

0 = £2m¢7(Q1) + jo'h v (8)R(6) do.

By (A2), | R(0) | < eforall 6. Hence,

(A3) | 7(Qu) | < eM’.
Then,
¥ (6) '
150 = @) | < 1@ 1| [ Y9 a0 | [ v orreo) o |
< 2rMM”e + 2xM'e = eM, (M, > 0).

Now,

76) = & 60 =70 — v [ @) - 1&]

0
= ¥O)lg(®) = Q)] + L Q0.

Hence, for1 <1< m++1,

O = dol (Q )

> (l T 1) [ - & (e v ]+ @ 4 (”)
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By (Al) and (A3), we see that there exists M; > 0 such that
dl
de!

forall6,l = 1,2, ---, m + 1. Hence, we have the lemma for m + 1

7P00) — = Q(x(0)) | < eM,

II. Proof of Lemma 1.2. It is enough to prove the following: Given
feC™, a compact interval [—7, ] on R and ¢ > 0, there exists a polynomial
P such that

!

0) d

W -4
forallte[—7,7]and l = 0,1,2, --- , m.

The proof goes in the same way as in I, replacing @; and @ by polynomials,

Theorem 7 of [10] by Theorem 8. Since we do not have to worry about the
residue in this case, the proof becomes simpler.

P(y(¢)) } <e
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