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Introduction

The intuitive feeling persists that the convexity of polyhedron should be
determined by the nture of the vertex set of the polyhedron. A few minutes
with pper nd pencil, however, convince the newcomer to convexity that the
precise relationship between the vertex set nd convexity is not n obvious
one. This pper investigates that relationship. In Section II we demonstrate
that finite geometric simplicil n-complex (polyhedron) is convex if nd only
if it fulfills certain vertex condition similar to convexity, is contained in n
n-hyperplne nd is either starlike or (n 1)-connected. In Section III
these results re pplied to the problem of subdividing complex in such
wy s to mke the star t each vertex convex. Some of the complexes in
Section III re not simplicil, but, in the bsence of explicit comment to the
contrary, it should be ssumed that ll complexes re simplicil.

I. Definitions

If S nd T re sets in E (rel n-spce), S T denotes the union of ll closed
line segments st with s e S nd e T. It is esy to see that set X in E is
convex if nd only if S X nd T X imply S T X. If K is complex,
K will denote the point set occupied by K lthough, where the distinction is

not important, we my refer to the complex K itself (as opposed to the set
K I) s convex. A set T in E is n-connected if nd only if every mp

f S -- T (0 -< /c <= n) is homotopic to constant mp g S -- T, where S
denotes the k-sphere. A set T in E is starlike if nd only if it contains
point v such that s e T implies the segment vs is contained in T. A poly-
hedron K is n-vertex-convex (n-vc) if nd only if the simplex spanned by ny
n + 1 of its vertices is contained in K I. All discussions tke place in E.

II. Vertex convexity and convexity
If K is the n-complex obtained by joining the brycenter of the n-simplex

to ech of its vertices, let K be the complex obtained by removing one of the
n-simplexes of K nd the (n 1)-face of this simplex which lies on the
boundary of the original simplex. The set K’I is not convex, but it is str-
like, (n 1)-connected nd lies in n n-hyperplne. The complex K
however is not (n 1)-vc lthough it is (n 2)-vc. The key to ssuring
convexity is (n 1)-vertex convexity.

THEOREM 1. If K is an n-polyhedron, n >= 2), then KI is convex if and
Received My 9, 1966.

330



CONVEXITY OF POLYHEDRA 331

only if K is n 1)-vc and K is (n 1)-connected and contained in an
n-hyperplane.

Proof. If K is convex, it is contained in an n-hyperplane and is a
topological n-cell. Necessity is clear.
Now suppose the three conditions hold and let ql and q2 belong to K I.

Suppose ql q2 is not contained in ]K I. Since [KI is compact, q q g
contains an interval p p. with pl and p Bd (IK I). The segment pl p
has no points of K on its interior, If p and p. are vertices, we are through,
since (n- 1)-vertex convexity implies 1-vertex convexity. We now consider
two cases.

Case 1. One of the points pl and p2 (saypl) is a vertex, but the other is not.
Let a

k by the simplex of lowest dimension containing p and v(ak) the unique
K-hyperplane containing a. If p e r(a), p p is in r(a). Now p must
be on the interior of a, so p p contains interior points of a and hence points
of K I. This is impossible and we may assume that..pl e (a). Hence pl o a

is a (] - 1)-simplex, ]c -t- 1 -< n.
kIf k 1 n,/c 1 -<_ n 1, and by (n 1)-vertex convexity p o a

must be contained in K [. This again contradicts the fact that p p misses
{K completely.

If lc -t- 1 n, we consider Bd (p a) (p Bd a) u a. Each simplex
in p o Bd a

k is of dimension __< n 1 and by (n 1)-vertex convexity is
contained in K I. Hence pl o a is an n-cell whose boundary is contained in
K but which is not itself contained in K [. This contradicts the (n 1)-

connectedness.

Case 2. Neither p nor p is a vertex. We pick a and a of minimal dimen-
sion containing p and p2 respectively; a o a is a convex j-cell, and since both
are contained in an n-hyperplane, j <- n.

If j n we may triangulate a o a without adding vertices. (To see that
this is possible, note that it is possible for convex 2-polyhedra. The general
case follows by induction, triangulating boundary cells and taking the cone
from any vertex of the polyhedron.) By (n 1)-vertex convexity each
simplex of the resulting complex is contained in K I. The contradiction is
established by noting that a

k
o a is now contained in K I.

If j n, Bd (a at) consists of (n 1)-cells, each of which, by the above
argument, is contained in K I- Hence ao a is an n-cell which is not con-
tained in K I, but whose boundary is contained in [K I. This contradiction
to the (n 1)-connectedness establishes the theorem.
The topological property, (n 1)-connectedness, can be replaced in the

above theorem by a non-topological property, starlikeness, since a starlike
polyhedron is a contractible absolute neighborhood retract thus an absolute
retract and n-connected. We will, however, avoid Theorem 1 and prove the
following theorem in a vector space over an arbitrary ordered field.
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THEOREM 2. If K is an n-polyhedron, then K is convex if and only if K
is n 1)-vc and K is starlike and contained in an n-hyperplane.

Proof. Again necessity is clear.
The proof of sufficiency is the same as that used in Theorem I until we con-

sider the cases in whichp o is an n-simplex and a o at is an n-cell. It is only
in these cases that the (n 1)-connectedness is used.

Let v be the point with respect to which K is starlike.

Case 1. Suppose poa is an n-simplex. If qIntpp and qv,
q e Int (p o ), since p e Int a. Let L be the line determined by q and v.
Now Bd (p o a) is contained in K[ by (n 1)-vertex convexity and by
convexity of p o a, L meets Bd (p o ) in exactly two points, at least one of
which (call it x) lies on the opposite side of q from v. The starlikeness assures
that vx K I. However, q is now on both vx and p p. This contradiction
establishes the theorem in this case.

kCase 2. Suppose a a s an n-cell. By (n 1)-vertex convexity
Bd (a o a) is contained in K and the same contradiction as in above case
establishes the theorem.
An obvious corollary of these two theorems is that for (n 1) n-re n-com-

plexes in E starlikeness and (n 1)-connectedness are equivalent.

III. Convex subdivisions
The principal tool of this section is Theorem 2. All the results hold in a

vector space over an arbitrary ordered field.
If v is a vertex of a complex K, the star at v, denoted by St(v), is the complex

consisting of those simplexes of K which contain v, and all faces of such sim-
plexes. A subdivision Sd(K) of a complex K is called convex if and only if
St(v)I is convex for each vertex v of Sd(K). The obvious advantages of

convex complexes lead us to ask whether an arbitrary convex polyhedral n-cell
can be triangulated in a convex fashion. If we allow subdivision by poly-
hedral cells, rather than insisting upon simplexes, the following theorem gives
an affirmative answer.

THEOREM 3. If K is a convex n-complex, there exists a subdivision ofK into
n-cells in which St(v) is convex for each vertex v of Sd(K).

Proof. The subdivision is that given by the (n 1)-hyperplanes de-
termined by the (n 1)-simplexes of K. Of course St(v) is a cell-complex,
and each cell is convex. We prove the convexity of St(v) by induction
Oil n.
We first triangulate St(v) by triangulating eachof its n-cells without adding

vertices and so that v is a vertex of each simplex in Sd(St(v)). Since
St(v) is starlike and contained in an n-hyperplane, we need only show

(n 1)-vertex convexity.
For n 2, we must show 1-vertex convexity. If v and v are vertices of
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St(v) which lie in the same cell, vl v is in the cell by convexity and hence in
St(v)I. If vl and v are not in the same cell and p is a point of
v w. St(v) I, pv intersects Bd St(v) in a point q of the triangle
If q v, p fails to belong to K, contradicting the convexity of K. Since it
lies on Bd St(v) I, if q is on a 1-cell containing v, it is an endpoint of the
cell. In this case q must also lie on a 1-simplex of Bd(St(v)). Hence, in
any case, q is on a 1-simplex of Bd(St(v)), which does not contain v. But
this simplex must have been extended in the subdivision process and hence
must cut vv (or vv) on its interior, implying that vl (or v) is not a vertex of
St().
Now assume the theorem for n and let K be an (n 1)-complex and

v,v, ..., v.+ vertices of St(v). We will show that if the simplex
vl v v.+ is not contained in St(v) at least one of the v’s is not a vertex
of St(v).
Suppose p e vw..., v.+ St(v) ], and let vv i) v+l be the

(n 1)-face of v v v.+ which does not contain v and r the n-hyperplane
determined by v, v, w., ..., v_, v+l, ..., v.+. Suppose first that
p v v v+. Since the subdivision of K automatically subdivides
K n r in a similar fashion we may consider K n r as an n-complex. The

star in K r at v is St(v) n r and by the induction hypothesis St(v)
is convex. However, p i St(v) r r and each of

does. Hence p vl v i)i v+.
Now letting q pv n Bd(St(v)) n (vv v v,,+), q is on a bounding

hyperplane r of St(v) which does not contain v. Since, by the previous
paragraph

v v... v,,+ St(v)1,
the same is true of vv vs... v,,+ by starlikeness. Hence

q e Int (vv v v,+) or q e v v,..., v.+.
The line segment pv intersects Bd (vv v v,,+) in p and v only. Other-

wise the entire segment would be on a face of vvl v ...v,+ other than
vv v.+, and all these faces are contained in St(v)i. Hence if
q e v w..., v.+, q p, but p t St(v) so q p.

Suppose now that q e Int(vv v v,,+). If the plane v contained n A- 1
vertices of vvl v v,,+, it would intersect this simplex in an n-face, but we
have just established that q is not on any n-face of vv v...v,+l. Thus
r contains at most n vertices of vv v v,,+ and at least one v is not in r.
If all the vertices v, vl, w., v,+l were on the same side of r as v, r could
contain only boundary points of vv w.... v,,+ and q r. Therefore at least
one vertex v is separated from v by r. This vertex cannot be a vertex of
St(v).
The subdivision into cells rather than simplexes leaves something to be
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desired, but, at least in low dimensions, convex simplicial subdivisions are
possible. The situation in higher dimensions is unsettled.

THEOREM 4. If K is a convex 2-complex there exists a convex simplicial
subdivision of K.

Proof. We first subdivide the complex in the fashion described in the
previous theorem. We now triangulate ech of the convex 2-cells formed in
this process by joining one vertex to ech of the others in the cell. We
will let St*(v) denote the star at v in the cell subdivision nd St(v) denote
the ordinary star. We need only show 1-vertex convexity of St(v) to es-
tablish the theorem.

If vl and v2 are vertices of St(v), vvl and vv2 are 1-simplexes in the triangula-
tion. Suppose there is a point p e v v St(v) [, nd let q pv n Bd St(v).
Nowq p, andsincev eIntSt(v),q v. Nowqisona 1-fceofBd (St(v))
which does not contain v. If this face cuts vvl it does so in a vertex of St(v)
which is also vertex of St*(v). Since there is no vertex of St*(v) between
v and v, the 1-fce in question cuts neither vv nor vv. Therefore it must
have a vertex w in the triangle vv v. Hence w is vertex of St*(v) and the
ray from v containing w intersects vl v in a point which cnnot be in
St*(v) I. This contradicts the convexity of St*(v) i.
This proof is possible because the subdivision of convex 2-cells without

adding vertices hs the property that all strs are convex. This is not the
case even for a three cell as can be seen from the diagram. Although K is
convex, after the ddition of line AB, St(C) is not convex.

We might sk whether it is possible to triangulate an rbitrary convex
polyhedron in a convex fshion. This is possible in low dimensions, but
vertices re dded in the triangulation nd the method of the previous theorem
cn not be extended to dimension three. The situation in higher dimensions
is unsettled.
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THEOREM 5. If K is a convex polyhedral n-cell (n 1, 2, 3) there is a tri-
angulation T(K) in which St(v) is convex for every vertex v of T(K).

Proof. The statement is trivial for n 1. For n 2 it is sufficient to
join one fixed vertex v to each of the remaining vertices. Clearly St(v) K
and is convex. We number the vertices in a counterclockwise direction
v v0, vl, v2, ..., vk. St(v) and St(vk) are single simplexes. For
1 < i < ]c we consider the two half planes containing vi and bounded by vv_
and vvi+. The intersection of these half planes and K is St(v) and is convex.,
For n 3, we pick a vertex v* and a plane v intersecting K in v* alone.

Let be a plane parallel to 7" which misses ]KI and is so situated that
]K] lies between and *. Let K v* - v be the obvious projection
of K v* on (i.e. (x) is the intersection of the line through v* and x and
the plane ). Letting V be the union of those 2-cells on Bd(K) which do not
contain v*, (V) (K) is a convex 2-complex in r which can be subdivided
in a convex fashion by Theorem 4. We perform the subdivision and then
triangulate V by considering - Sd (V). We triangulate K by taking the
cone over the triangulation of V from v*.
Now [St(v*) g and is convex. If v’e T(V), note that St (v’) is

convex. But
let (v’) (v*o St $(v’)) n K,

and hence is convex.
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