ON THE STABLE HOMOTOPY GROUPS AND THE STABLE MOD-2 HOMOTOPY GROUPS OF Z_{2}-MOORE SPACES

BY

John S. P. Wang
Introduction

For each simply connected, reduced s.s. complex X, D. M. Kan [4] has defined as s.s. free group $G X$ which serves as a loop complex for X. The lower central series $\left\{\Gamma_{r} G X\right\}$ of $G X$ was studied by E. B. Curtis [1] who proved that the associated spectral sequence converges to the homotopy groups of X.

Here we confine ourselves to the Z_{2}-Moore spaces. In the following we shall derive a spectral sequence which converges to the stable mod-2 homotopy groups of Z_{2}-Moore spaces from the Curtis spectral sequence. An algebra structure is introduced in the E^{1} term with the multiplication defined by composition of maps. We carefully study the derivations of the algebra E^{1} and calcula te the E^{2} term in low dimensions. It is found that all the part of the E^{2} term with dimensions ≤ 7 survives in the E^{∞} term. Henceforth the stable mod-2 homotopy groups of Z_{2}-Moore spaces in dimensions ≤ 7 are obtained. Through the universal coefficient theorem and the stable version of the Blakers-Massey theorem applied to the cofibration

$$
S^{q} \rightarrow S^{q} U_{2} e^{q+1} \rightarrow S^{q+1}
$$

the structure of the stable homotopy groups of Z_{2}-Moore spaces with dimensions ≤ 7 follows very easily.

1. Preliminaries

Since the statements in the following sections will be in terms of s.s. Lie rings, we recall some definitions and fundamental theorems which will be used later.
1.1. An s.s. complex X is a sequence of sets X_{n} for $n \geq 0$, with face operators $d_{i}: X_{n} \rightarrow X_{n-1}$ and degeneracy operators $s_{i}: X_{n} \rightarrow X_{n+1}, 0 \leq i \leq n$ which satisfy the usual identities [4, p. 283]. If all the X_{n} and the d_{i}, s_{i} are objects and morphisms in a category C, X will be called an s.s. object over C.

Theorem 1.2. Let A, B be s.s. abelian groups and

$$
f_{0}, f_{1}: A \rightarrow B
$$

be s.s. homomorphisms. Then f_{0}, f_{1} are homotopic if and only if $N f_{0}$ and $N f_{1}$ are chain homotopic, where N is the normalization functor defined by

$$
(N G)_{n}=\bigcap_{i=1}^{n} \operatorname{ker} d_{i} \approx G_{n} / D G_{n-1}
$$

$D G_{n-1}$ is generated by $s_{i} G_{n-1}$ for $0 \leq i \leq n-1$.
Received July 15, 1966.

Theorem 1.3. Let G be an s.s. abelian group, then the inclusion map $N G \rightarrow \operatorname{Tot} G, \operatorname{Tot} G=\left\{G_{n}, d_{n}=\sum_{i=0}^{n}(-1)^{i} d_{i}\right\}$, is a chain homotopy equivalence.
1.4. Given an abelian group M, let R_{M} be the free non-associative ring on M, i.e., $R_{M}=\sum_{r} R_{M}^{r}$, where $R_{M}^{1}=M, R_{M}^{r}=\sum_{i=1}^{r-1} R_{M}^{i} \otimes R_{M}^{r-i}$ for $r>1$. ${ }^{1}$ Let I_{M} be the two sided ideal generated by the elements

$$
x \otimes x, \quad(x \otimes y) \otimes z+(y \otimes z) \otimes x+(z \otimes x) \otimes y
$$

for all x, y, z in R_{M}. For every positive integer r, let $L^{r} M=R_{M}^{r} /\left(R_{M}^{r} \cap I_{M}\right)$. Then the quotient $L M=R_{M} / I_{M}=\sum_{r=1}^{\infty} L^{r} M$ is a Lie ring, called the free Lie ring on M.
1.5. Given a simply connected s.s. complex X and a finite-dimensional s.s. complex Y, consider the filtration of the function complex $(G X)^{Y}$ by

$$
(G X)^{Y} \supset\left(\Gamma_{2}(G X)^{Y} \supset \cdots \supset\left(\Gamma_{r} G X\right)^{Y} \supset \cdots\right.
$$

For each $r \geq 1$, there is an s.s. fibration

$$
\left(\Gamma_{r+1} G X\right)^{Y} \rightarrow\left(\Gamma_{r} G X\right)^{Y} \rightarrow\left(\Gamma_{r} G X / \Gamma_{r+1} G X\right)^{Y} .
$$

The homotopy exact couple yields a spectral sequence. E. Curtis [1] proved the following

Theorem 1.6 [1]. Let X and Y be as above, then there is a spectral sequence $\left\{E_{r, q}^{s}(Y, X)\right\}$ having

$$
E_{r, q}^{1}=\sum_{i} H^{i}\left(S^{q} Y ; \pi_{i}\left(\Gamma_{r} G X / \Gamma_{r+1} G X\right)\right)
$$

and for each $q \geq 1, \sum_{r} E_{r, q}^{\infty}$ is the graded group associated with certain filtration on the group $\pi_{q+1}(Y, X){ }^{2}$

By Witt's theorem $\Gamma_{r} G X / \Gamma_{r+1} G X \approx L^{r}\left(G X / \Gamma_{2} G X\right)$. One sees that the L-functor plays an important role in computing $\pi_{n}(Y, X)$.

2. A spectral sequence

In this section, we are going to derive a spectral sequence for the groups of the homotopy classes of stable maps between Z_{2}-Moore spaces from the Curtis spectral sequence.

Let $\left(Z_{2}, n\right)$ be the s.s. Z_{2}-vector space with one nondegenerate basis element \bar{x}_{n} such that $d_{i} \bar{x}_{n}=0$ for $0 \leq i \leq n$, and let $\left(Z_{2}, n\right)^{F}$ be the free s.s. abelian group with two nondegenerate basis elements y_{n+1}, x_{n} such that $d_{0} y_{n+1}=2 x_{n}, d_{i} y_{n+1}=0$ for $1 \leq i \leq n+1$, and $d_{j} x_{n}=0$ for $0 \leq j \leq n$. Let $K^{\prime}\left(Z_{2}, n+1\right)$ be an s.s. Z_{2}-Moore space. Since both

$$
G K^{\prime}\left(Z_{2}, n+1\right) / \Gamma_{2} G K^{\prime}\left(Z_{2}, n+1\right) \quad \text { and } \quad\left(Z_{2}, n\right)^{F}
$$

[^0]are free s.s. abelian groups and have the same homotopy groups, by a theorem of Dold [2], they are of the same homotopy type. Thus by (1.6) the knowledge of $\left(Z_{2}, n\right)^{F}$ is essential in setting up such a spectral sequence. By an argument on the basis of free Lie rings, the following is immediate.

Proposition 2.1. The sequence

$$
\begin{equation*}
L\left(Z_{2}, n\right)^{F} \xrightarrow{2} L\left(Z_{2}, n\right)^{F} \xrightarrow{\iota} L\left(\left(Z_{2}, n\right)+\left(Z_{2}, n+1\right)\right) \tag{2.2}
\end{equation*}
$$

is exact where ι is the natural projection with $\iota x_{n}=\bar{x}_{n}$ and $\iota y_{n+1}=\bar{x}_{n+1}$.
Passing (2.2) to the long exact sequence of homotopy groups, we obtain

Proposition 2.3. The following sequence

$$
\begin{align*}
& \pi_{k} L\left(Z_{2}, n\right)^{F} / 2 \pi_{k} L\left(Z_{2}, n\right)^{F} \xrightarrow{\stackrel{*}{x}} \pi_{k} L\left(\left(Z_{2}, n\right)+\left(Z_{2}, n+1\right)\right) \xrightarrow{\partial} \tag{2.4}\\
& { }_{2} \pi_{k-1} L\left(Z_{2}, n\right)^{F}
\end{align*}
$$

is exact where ${ }_{2} A$ denotes the $\operatorname{ker}(A \xrightarrow{2} A)$.
Proposition 2.5. There is an isomorphism

$$
\sum_{i} H^{i}\left(K^{\prime}\left(Z_{2}, m\right), E_{r, i}^{1}\left(K^{\prime}\left(Z_{2}, n+1\right)\right)\right) \rightarrow \pi_{m+1} L^{r}\left(\left(Z_{2}, n\right)+\left(Z_{2}, n+1\right)\right)
$$ where $K^{\prime}\left(Z_{2}, \quad\right)$ is the Z_{2}-Moore space and $E_{r, i}^{1}(X)=\pi_{i} L^{r}\left(G X / \Gamma_{2} G X\right)$.

Proof. Since $G K^{\prime}\left(Z_{2}, n+1\right) / \Gamma_{2} G K^{\prime}\left(Z_{2}, n+1\right)$ and $\left(Z_{2}, n\right)^{F}$ are of the same homotopy type, we have

$$
\pi_{i} L^{r}\left(G K^{\prime}\left(Z_{2}, n+1\right) / \Gamma_{2} G K^{\prime}\left(Z_{2}, n+1\right)\right)=\pi_{i} L^{r}\left(Z_{2}, n\right)^{F}
$$

Therefore

$$
\begin{aligned}
\sum_{i} H^{i}\left(K^{\prime}\left(Z_{2}, m\right)\right. & \left., E_{r, i}^{1}\left(K^{\prime}\left(Z_{2}, n+1\right)\right)\right) \\
& =\operatorname{Hom}\left(Z_{2}, \pi_{m} L^{r}\left(Z_{2}, n\right)^{F}\right)+\operatorname{Ext}\left(Z_{2}, \pi_{m+1} L^{r}\left(Z_{2}, n\right)^{F}\right) \\
& ={ }_{2} \pi_{m} L^{r}\left(Z_{2}, n\right)^{F}+\pi_{m+1} L^{r}\left(Z_{2}, n\right)^{F} / 2 \pi_{m+1} L^{r}\left(Z_{2}, n\right)^{F} \\
& \approx \pi_{m+1} L^{r}\left(\left(Z_{2}, n\right)+\left(Z_{2}, n+1\right)\right)
\end{aligned}
$$

Let $\left[\left(Z_{2}, k\right)^{F}, L\left(Z_{2}, n\right)^{F}\right]$ denote the group of the homotopy classes of s.s. homomorphisms from $\left(Z_{2}, k\right)^{F}$ into $L\left(Z_{2}, n\right)^{F}$. Clearly any s.s. homomorphism $\left(Z_{2}, k\right)^{F} \rightarrow L\left(Z_{2}, n\right)^{F}$ can be expressed by $\binom{u}{v}$ such that $d_{0} u=2 v$, $u \in\left(N L\left(Z_{2}, n\right)^{F}\right)_{k+1}$ and $\binom{u}{v} y_{k+1}=u,\binom{u}{v} x_{k}=v$.

Proposition 2.6. $\binom{u}{v}$ and $\binom{u^{\prime}}{v^{\prime}}$ are homotopic iff there exists an element s in $\left(N L\left(Z_{2}, n\right)^{F}\right)_{k+2}$ such that $u-u^{\prime}-d_{0} s$ lies in $2 L\left(Z_{2}, n\right)^{F}$.

Proof. This is immediate from Theorem 1.2.

Theorem 2.7. Let

$$
\theta:\left[\left(Z_{2}, k\right)^{F}, L\left(Z_{2}, n\right)^{F}\right] \rightarrow \pi_{k+1} L\left(\left(Z_{2}, n\right)+\left(Z_{2}, n+1\right)\right)
$$

be the homomorphism defined by

$$
\theta\left(\operatorname{cl}\binom{u}{v}\right)=\operatorname{cl}(\iota u)
$$

where cl denotes the homotopy class. Then θ is an isomorphism.
Proof. By Proposition 2.6, θ is well defined. Let x be an element in $\left(N L\left(\left(Z_{2}, n\right)+\left(Z_{2}, n+1\right)\right)\right)_{k+1}$ with $d_{0} x=0$. Since ι is epic, $N \iota$ is also epic. Hence there is an element u in $\left(N L\left(Z_{2}, n\right)^{F}\right)_{k+1}$ with $u u=x$. But $d_{0} u=\iota\left(d_{0} u\right)=0, d_{0} u=2 v$. Therefore

$$
\theta\left(\operatorname{cl}\binom{u}{v}\right)=\operatorname{cl}(\iota u)=\operatorname{cl}(x)
$$

i.e., θ is epic. Now let $\mathrm{cl}\binom{u}{v}$ be in $\operatorname{ker} \theta$, that is $\mathrm{cl}(\iota u)=0$. Hence there is an element c in $\left(N L\left(\left(Z_{2}, n\right)+\left(Z_{2}, n+1\right)\right)\right)_{k+2}$ with $d_{0} c=\imath u$. Let s be in $\left(N L\left(Z_{2}, n\right)^{F}\right)_{k+2}$ with $\iota=c$. Thus $\iota\left(d_{0} s-u\right)=0$, i.e., $\mathrm{d}_{0} s-u$ is in $2 L\left(Z_{2}, n\right)^{F}$. By Proposition 2.6, $\binom{v}{v}$ is homotopic to $\binom{0}{0}$, hence θ is monic.
2.8. Suspension homomorphism. Let $W K\left(Z_{2}, n\right)^{F}$ be the free s.s. abelian group with nondegenerate basis elements $x_{n}, y_{n+1}, x_{n+1}, y_{n+2}$ such that $d_{0} y_{n+1}=2 x_{n}, d_{0} x_{n+1}=x_{n}, d_{0} y_{n+2}=2 x_{n+1}-y_{n+1}$ and all the other face operators on these cells are trivial. Clearly we have an exact sequence

$$
\begin{equation*}
\left(Z_{2}, n\right)^{F} \xrightarrow{i} W K\left(Z_{2}, n\right)^{F} \xrightarrow{\zeta}\left(Z_{2}, n+1\right)^{F} \tag{2.9}
\end{equation*}
$$

where i is the inclusion and ζ is the natural projection. Since $W K\left(Z_{2}, n\right)$ is contractible, $L\left(W K\left(Z_{2}, n\right)\right)$ is also contractible. Henceforth given any

$$
\left(Z_{2}, n\right)^{F} \xrightarrow{f} L\left(Z_{2}, m\right)^{F},
$$

there are f_{1} and f_{2} which make the following diagrams

commute. Then we define the suspension homomorphism σ by $\sigma(\operatorname{cl}(f))=$ $\operatorname{cl}\left(f_{2}\right)$. It is quite easy to verify that σ is well defined. We define $W K\left(\left(Z_{2}, n\right)+\left(Z_{2}, n+1\right)\right)$ to be $W K\left(Z_{2}, n\right)^{F} / 2 W K\left(Z_{2}, n\right)^{F}$ and the sus-

Proposition 2.11. The following diagrams pension homomorphism σ is an analogous manner.

are commutative.
Proof is easy.
Proposition 2.13. $\sigma \theta=\theta \sigma$.
Proof. Given cl $\binom{u}{v}$ in $\left[\left(Z_{2}, k\right)^{F}, L\left(Z_{2}, n\right)^{F}\right]$, by definition $\theta\left(\operatorname{cl}\binom{u}{v}\right)=$ $\operatorname{cl}(\iota u)$. Let y, x in $N L\left(W K\left(Z_{2}, n\right)^{F}\right)$ such that $d_{0} x=v . \quad d_{0} y=2 x-u$. Clearly

$$
\sigma \mathrm{cl}\binom{u}{v}=\operatorname{cl}\binom{L(\zeta) y}{L(\zeta) x}, \quad \theta \sigma \mathrm{cl}\binom{u}{v}=\operatorname{cl}(L(\iota \zeta) y)
$$

However $d_{0} L(\imath) y=L(\imath) u=\imath u, \sigma \theta \operatorname{cl}\binom{u}{v}=\operatorname{cl}(L(\zeta \iota) y)$. By Proposition 2.11, $\zeta \iota=\iota \zeta$, hence $\sigma \theta=\theta \sigma$.

Dold [2] has defined suspension homomorphism σ for any functor T between two abelian categories which satisfies $T(0)=0 . \sigma$ is a natural transformation $\sigma_{T}: \pi_{*} T(X) \rightarrow \pi_{*+1} T(S X)$ for s.s. objects. It is easy to see that our definition here is compatible with that defined in [2].

Proposition 2.14 [2]. Let T be a functor on two variables such that $T(A, 0)=$ $T(0, B)=0$; then the total suspension homomorphism $\sigma_{T}=0$.

Corollary 2.15 [2]. Let T_{2} be the cross effect of a functor T between the category of abelian groups such that $T(0)=0$; then $\sigma_{T_{2}}=0$.
2.16. Composition of maps. Given a in $\left[\left(Z_{2}, k\right)^{F}, L\left(Z_{2}, n\right)^{F}\right]$ and b in $\left[\left(Z_{2}, j\right)^{F}, L\left(Z_{2}, m\right)^{F}\right]$ such that $j \geq n$, then the composition of a and b, i.e., $b a$ is defined by $\mathrm{cl}(f)$, where
$f=\left(Z_{2}, k+j-n\right)^{F} \xrightarrow{h} L\left(Z_{2}, j\right)^{F} \xrightarrow{L(g)} L L\left(Z_{2}, m\right)^{F} \rightarrow L\left(Z_{2}, m\right)^{F}$, $\operatorname{cl}(h)=\sigma^{j-n} a, \operatorname{cl}(g)=b$, and the last one is induced by the multiplication of Lie ring.

Proposition 2.17. $\sigma(b a)=\sigma(b) \sigma(a)$.
Proof. Given h and g as above. Then there exist $h_{1}, h_{2}, g_{1}, g_{2}$ which make the following diagrams commute:

But $\operatorname{cl} g_{2}=\sigma b, \operatorname{cl} h_{2}=\sigma^{j-n}(\sigma a)$. It is clear that the bottom line represents both $\sigma(b a)$ and $\sigma(b) \sigma(a)$.
2.18. The limit algebra. Through Propositions 2.5 and 2.6, we may identify the group $\sum_{i} H^{i}\left(K^{\prime}\left(Z_{2}, k\right), E_{r, i}^{1}\left(K^{\prime}\left(Z_{2}, m+1\right)\right)\right)$ with

$$
\left[\left(Z_{2}, k\right)^{F}, L\left(Z_{2}, m\right)^{F}\right]
$$

and through θ with

$$
\pi_{k+1} L\left(\left(Z_{2}, m\right)+\left(Z_{2}, m+1\right)\right)
$$

Let $M(m)=\sum_{k}\left[\left(Z_{2}, k\right)^{F}, L\left(Z_{2}, m\right)^{F}\right]$. Then the suspension homomorphism σ induces

$$
\sigma: M(m) \rightarrow M(m+1) \quad \text { for } \quad m \geq 1
$$

Let $\left\{M, \sigma_{m}: M(m) \rightarrow M\right\}$ be the direct limit of the system

$$
M(1) \stackrel{\sigma}{\longrightarrow} M(2) \xrightarrow{\sigma} \cdots
$$

Similarly we use $\pi_{i} L\left(Z_{2}\right)$ to denote

$$
\xrightarrow[n]{\lim } \pi_{i+n} L\left(Z_{2}, n\right) .
$$

In order to know $\pi_{i} L\left(Z_{2}\right)$ completely, Schlesinger [7] has introduced an oper ${ }^{-}$ ation [[,]] in arbitrary s.s. Lie ring.

Definition 2.19. Let

$$
(\gamma, \delta)=(\gamma(0), \cdots, \gamma(p-1), \delta(0), \cdots, \delta(q-1))
$$

be a shuffle permutation of type (p, q). The degeneracy operation S^{γ} (or S^{δ}) is obtained from the word $S_{p+q-1} \cdots S_{1} S_{0}$ by deleting those symbols S_{j} whose subscripts j are in γ (or δ):

$$
S^{\gamma}=S_{p+q-1} \cdots S_{\gamma(p-1)} \cdots S_{\gamma(0)} \cdots S_{0}
$$

Definition 2.20. Let x and y be two simplexes of dimensions p and q in L. We define the double bracket:

$$
[[x, y]]=\sum(-1)^{(\gamma, \delta)}\left[S^{\gamma} x, S^{\delta} y\right]
$$

where the sum is over all shuffles of type (p, q) and $(-1)^{(\gamma, \delta)}$ denotes the sign of the permutation (γ, δ).

When $\operatorname{dim} x=\operatorname{dim} y, \frac{1}{2}[[x, y]]$ means that the summation runs over all (γ, δ) with the identification $(\gamma, \delta) \equiv(\delta, \gamma)$.

Given any sequence $I=\left(i_{1}, \cdots, i_{r}\right)$ of non-negative integers, we call r the length and $\sum_{j=1}^{r} i_{j}$ the dimension of $I . \quad I$ is said to be admissible if if $2 i_{j-1} \geq i_{j}$ for $2 \leq j \leq r$.

Proposition 2.21 [5]. $\pi_{i} L^{2}\left(Z_{2}\right)$ is generated by w_{i}, where $w_{i}=\sigma_{i}\left(\bar{w}_{i}\right)$, $\bar{w}_{i}=\operatorname{cl}\left(\frac{1}{2}\left[\left[\bar{x}_{i}, \bar{x}_{i}\right]\right]\right){ }^{3}$

Proposition 2.22 [5]. $\quad \pi_{n} L^{2^{r}}\left(Z_{2}\right)$ has a basis $w_{I}=w_{i_{1}} w_{i_{2}} \cdots w_{i_{r}}$ such that I is admissible of length $r, \operatorname{dim} I=n, i_{j}$ positive for $1 \leq j \leq r$ and $\pi_{n} L^{s}\left(Z_{2}\right)=0$ if s is not a power of 2 .

Proposition 2.23. Let

$$
M_{r, i}=\xrightarrow[m]{\lim }\left[\left(Z_{2}, m+i\right)^{F}, L^{2^{r}}\left(Z_{2}, m\right)^{F}\right] .
$$

θ induces an isomorphism $M_{r, i} \rightarrow \pi_{i+1} L^{2^{r}}\left(Z_{2}\right)+\pi_{i} L^{2^{r}}\left(Z_{2}\right)$.
Proof. We have

$$
M_{r, i}=\xrightarrow[m]{\lim }\left[\left(Z_{2}, m+1\right)^{F}, L^{2^{r}}\left(Z_{2}, m\right)^{F}\right] .
$$

But $\sigma \theta=\theta \sigma$. Hence

$$
M_{r, i}=\xrightarrow[m]{\lim } \pi_{1+m+i} L^{2^{r}}\left(\left(Z_{2}, m\right)+\left(Z_{2} m+1\right)\right) .
$$

By Corollary 2.15,

$$
\begin{aligned}
\xrightarrow[m]{\lim } \pi_{1+m+i} & L^{2^{r}}\left(\left(Z_{2}, m\right)+\left(Z_{2}, m+1\right)\right) \\
& =\xrightarrow[m]{\mathrm{lim}} \pi_{1+m+i} L^{2^{r}}\left(Z_{2}, m\right)+\xrightarrow[m]{\lim } \pi_{1+m+i} L^{2 r}\left(Z_{2}, m+1\right) .
\end{aligned}
$$

Thus $M_{r, i} \rightarrow \pi_{i+1} L^{2 r}\left(Z_{2}\right)+\pi_{i} L^{2 r}\left(Z_{2}\right)$.
Given a, b in M such that $a=\sigma_{n}(\bar{a}), b=\sigma_{n}(\bar{b})$. Then define $b a=$ $\sigma_{s+m}\left(\left(\sigma^{s} \bar{b}\right) \bar{a}\right)$ with s large enough to ensure $\left(\sigma^{s} \bar{b}\right) \bar{a}$ being defined.

Theorem 2.24. M is a Z_{2}-algebra.
Proof. By the universal property of free Lie ring, given any homomorphism

$$
A \xrightarrow{k} L B
$$

[^1]the following diagram

is commutative, where $\boldsymbol{\lambda}$ is induced by the multiplication of Lie ring. Hence given
\[

$$
\begin{gathered}
\left(Z_{2}, j\right)^{F} \xrightarrow{f} L\left(Z_{2}, m\right)^{F}, \quad\left(Z_{2}, m\right)^{F} \xrightarrow{g} L\left(Z_{2}, n\right)^{F}, \\
\left(Z_{2}, n\right)^{F} \xrightarrow{h} L\left(Z_{2}, p\right)^{F},
\end{gathered}
$$
\]

then $\lambda \circ L \lambda \circ L(L h) \circ L(g) \circ f=\lambda \circ L h \circ \lambda \circ L(g) \circ f$. Hence

$$
(\operatorname{cl} h \circ \operatorname{cl} g) \circ \operatorname{cl} f=\operatorname{cl} h \circ(\operatorname{cl} g \circ \operatorname{cl} f)
$$

This gives the associative law. The right distribution law is an immediate consequence of the definition of multiplication. Given

$$
\begin{gathered}
\left(Z_{2}, r\right)^{F} \xrightarrow{e} L\left(Z_{2}, j\right)^{F}, \quad\left(Z_{2}, j\right)^{F} \xrightarrow{f} L\left(Z_{2}, m\right)^{F}, \\
\left(Z_{2}, j\right)^{F} \xrightarrow{f^{\prime}} L\left(Z_{2}, m\right)^{F}, \\
\operatorname{cl}\left(f+f^{\prime}\right) \circ \mathrm{cl}(e)=\operatorname{cl}\left(\lambda \circ L\left(f+f^{\prime}\right) \circ e\right) .
\end{gathered}
$$

However $L\left(f+f^{\prime}\right)=L(f)+L\left(f^{\prime}\right)+L\left(f, f^{\prime}\right)$, where

$$
L\left(f, f^{\prime}\right)=L\left(Z_{2}, j\right)^{F} \rightarrow L\left(\left(Z_{2}, j\right)^{F},\left(Z_{2}, j\right)^{F}\right) \rightarrow L L\left(Z_{2}, m\right)^{F}
$$

By an argument similar to Corollary 2.15, $\sigma\left(\operatorname{cl}\left(\lambda \circ L\left(f, f^{\prime}\right) \circ e\right)\right)=0$. Hence left distribution law holds.

Proposition 2.25. $\left[\left(Z_{2}, m\right)^{F}, L\left(Z_{2}, n\right)^{F}\right]=0$ for $m<n-1$ and $\left[\left(Z_{2}, n-1\right)^{F}, L\left(Z_{2}, n\right)^{F}\right]$ is generated by cl $\binom{x_{n}}{0}$ and $\sigma \mathrm{cl}\binom{x_{n}}{0}=\operatorname{cl}\binom{x_{n+1}}{0}$.

Proof is easy.

We use the symbol β to denote both cl $\binom{x_{n}}{0}$ and the corresponding element in M. One shows easily that $\beta^{2}=0$. Consider the isomorphism

$$
\left[\left(Z_{2}, 2 n+1\right)^{F}, L\left(Z_{2}, n\right)^{F}\right] \xrightarrow{\theta} \pi_{2 n+2} L\left(\left(Z_{2}, n\right)+\left(Z_{2}, n+1\right)\right) .
$$

Let $\bar{w}_{n+1}=\operatorname{cl}\left(\frac{1}{2}\left[\left[\bar{x}_{n+1}, \bar{x}_{n+1}\right]\right]\right)$ in $\pi_{2 n+2} L\left(\left(Z_{2}, n\right)+\left(Z_{2}, n+1\right)\right)$; then we have
Proposition 2.26. Let $\theta^{-1}\left(\bar{w}_{n}\right)=w_{n}$; then unstably

$$
\begin{aligned}
w_{n} \beta & =\theta^{-1} \mathrm{cl}\left[\left[\bar{x}_{n}, \bar{x}_{n+1}\right]\right], & & \text { if } n \text { is odd }, \\
& =\theta^{-1} \mathrm{cl}\left[\left[\bar{x}_{n}, \bar{x}_{n+1}\right]\right]+\sigma w_{n-1}, & & \text { if } n \text { is even } .
\end{aligned}
$$

Proof. Just check the definitions.
Passing to the limit algebra, this yields
Corollary 2.27. $w_{n} \beta=0, \quad$ if n is odd,
$=w_{n-1}, \quad$ if n is even.
Proposition 2.28. The following diagram

is commutative where $i_{1}\left(i_{2}\right)$ is induced by the inclusion homomorphism into the first (second) factor, and β_{L} is left multiplication by β.

Proof. Let cl (a) be in $\pi_{k+1} L\left(Z_{2}, n+1\right)$. Then

$$
\theta^{-1} i_{2}(\operatorname{cl}(a))=\operatorname{cl}\binom{\bar{a}}{\frac{1}{2} d_{0} \bar{a}}
$$

where \bar{a} lies in $i^{-1}(a)$ and $\left(N L\left(Z_{2}, n\right)^{F}\right)_{k+1}$ (here we take a to be in $N L\left(Z_{2}, n+1\right)$ and this is always possible). Among $\iota^{-1}(a)$, there is a^{\prime} such that a^{\prime} is expressible in terms of y_{n+1} only. Since $\bar{a}=a^{\prime}+2 b$,

$$
\begin{aligned}
\theta\left(\beta \circ \theta^{-1}(\operatorname{cl}(a))\right) & =\operatorname{cl}\left(\iota L\binom{x_{n+1}}{0}\left(a^{\prime}+2 b\right)\right)=\operatorname{cl}\left(\iota L\binom{x_{n+1}}{0}\left(a^{\prime}\right)\right) \\
& =i_{1}\left(\operatorname{cl}\left(\iota a^{\prime}\right)\right)=i_{1}(\operatorname{cl}(a)) .
\end{aligned}
$$

Corollary 2.29. $M=\beta \circ \pi L\left(Z_{2}\right)+\pi L\left(Z_{2}\right)$ and $\operatorname{dim}(\beta \circ \alpha)=\operatorname{dim} \alpha-1$.
Proof. It suffices to verify that the identification given by Proposition 2.28 goes stably. But this is trivial.

It is very easy to show that the multiplication in $\pi L\left(Z_{2}\right)$ goes nicely into M. Summarizing the above results, we then get the following

Theorem 2.30. There is a spectral sequence $\left\{E_{r, q}^{s}, d^{s}\right\}$ such that $E_{r, q}^{1}=$ $M_{r, q}, \operatorname{deg} d^{s}=(s,-1)$ and $\sum_{r} E_{r, q}^{\infty}$ is the graded group associated with a certain filtration to the group $\pi_{q+n}^{s}\left(Z_{2} ; X_{2}, n\right)$, and $M=\beta \circ \pi L\left(Z_{2}\right)+$ $\pi L\left(Z_{2}\right)$, the multiplication of M is determined by $w_{2 n} \beta=w_{2 n-1}, \beta^{2}=0$ and that of $\pi L\left(Z_{2}\right)$, and d^{1} is a derivation.

Proof. The first part is just the stable version of the Curtis spectral sequence for Z_{2}-Moore spaces and the second part is the summary of the preceding results. That d^{1} is a derivation follows from the definitions of d^{1} and the multiplication of M.

Theorem 2.31. $w_{i} w_{2 i+1}=0$ for all positive integers i.

Proof. Let w_{i} and $w_{2 i+1}$ be considered in $\pi_{2 i+1} L^{2}\left(Z_{2}, i+1\right)$ and $\pi_{4 i+2} L^{2}\left(Z_{2}, 2 i+1\right)$ respectively, then $w_{i} w_{2 i+1}$ is defined and sits in $\pi_{4 i+2} L^{2}\left(Z_{2}, i+1\right)$. But $\pi_{*} L\left(Z_{2}, i+1\right)$ is generated by W_{I} where I is admissible and with $i_{1} \leq i+1$. Hence $w_{i} w_{2 i+1}=n w_{i+1} w_{2 i}$ where n is either i or 0 . Applying β on both sides, we have $n w_{i+1} w_{2 i-1}=0$. Since $w_{i+1} w_{2 i-1}$ is not $0, n$ has to be 0, i.e., $w_{i} w_{2 i+1}=0$.
2.32. The mod-2 binomial relations generated by $w_{i} w_{2 i+1}=0$. From [5, 2.4.iii], we know that all the defining relations among w_{i} 's are obtained by applying an operator D and its powers on $w_{i} w_{2 i+1}=0, i>0$, where D acts like a derivation sending each w_{j} to w_{j+1}.

Let $w_{i} w_{2 i+1+n}=\sum_{n>j>0} a_{n-j, j} w_{i+n-j} w_{2 i+1+j}$ be expressed in admissible form, i.e., $a_{n-j, j}=1$ or 0 and $a_{n-j, j}=0$ for $2(i+n-j)<2 i+1+j$. Apply D on both sides, we get the following recursive formula.

Proposition 2.33.

$$
\begin{array}{rlrl}
a_{n, i}+a_{n-1, i+1}+a_{n-1, i-1} & =a_{n, i+1} & \text { for } i \geq 1 \\
a_{n-1,0}+a_{n, 0} & =0 & \text { for } n \geq 2 \\
a_{n, 0}+a_{n-1,1} & =a_{n, 1} & & \text { for } n \geq 2 \\
a_{0,0}=0, \quad a_{1,0} & =1, \quad a_{1,1}=0(\bmod 2) . &
\end{array}
$$

Set $F(X, Y)=\sum_{n, j \geq 0} a_{n, j} X^{n} Y^{j}$. Then Proposition 2.33 yields the identity $F(X, Y)=F(X, Y)\left(X+Y+X Y^{2}\right)+X+X Y(\bmod 2)$. Hence $F(X, Y)=X /(1-(1+Y) X)=X+\sum_{n=1}^{\infty} X^{n+1}(1-Y)^{n}(\bmod 2)$ and

$$
a_{n, i}=\binom{n-1}{i} \quad(\bmod 2)
$$

Theorem 2.34.

$$
w_{i} w_{2 i+1+n}=\sum_{j \geq 0}\binom{n-j-1}{j} w_{i+n-j} w_{2 i+1+j}
$$

the binomial coefficients are, of course, taken $\bmod 2$ and with the usual convention $\binom{r}{s}=0$ for $r<s$.

3. The derivations of the algebra M

Algebraically M is a graded Z_{2}-algebra generated by the symbols β and w_{n} for each positive integer n with the relations $\operatorname{dim} \beta=-1, \operatorname{dim} w_{n}=n$, $\beta^{2}=0, w_{2 n} \beta=w_{2 n-1}$ and

$$
w_{i} w_{2 i+1+m}=\sum_{j \geq 0}\binom{m-1-j}{j} w_{i+m-j} w_{2 i+1+j}
$$

for $m \geq 0$ (here $\operatorname{dim}=$ degree). Then $M_{r, n}$ is just the subgroup of M generated by w_{I} and βw_{J} such that length $I=$ length $J=r$ and $\operatorname{dim} I=$
$\operatorname{dim} J-1=n . \quad$ Clearly $M=\sum_{r, n} M_{r, n}$ and we call r the filtration degree. Let $M_{r}=\sum_{n} M_{r, n}$ and

$$
M \xrightarrow{P_{r}} M_{r}
$$

be the natural projection. Given any derivation D, let D_{i} be defined by $D_{i} x=P_{i+r} D x$, if x lies in M_{r}. Then the following proposition is immediate.

Proposition 3.1. Let D be a derivation; then each D_{i} is also a derivation.
Proposition 3.2. Let D be a derivation which lowers the dimension at least by one and $D w_{i}=0,1 \leq i \leq 8$; then $D=0$.

Proof. If $D w_{i}=0$ for $1 \leq i \leq 2 m, m \geq 4$, the defining relations always imply $D w_{2 m+1}=0$ and $D w_{2 m+2}=0$. Hence by induction the proposition follows easily.

Theorem 3.3. Let \bar{D} be the group of derivations of M which lower the dimension by one and \bar{D}_{i} be the subgroup of derivations which raise the filtration by i; then $\bar{D}=\sum_{i} \bar{D}_{i}$.

Proof. Given any derivation D, by Proposition 3.2, all but a finite of D_{i} are trivial, hence $D=\sum_{i} D_{i}$. Since D_{i} is in \bar{D}_{i}, there is a canonical homomorphism from \bar{D} to $\sum_{i} \bar{D}_{i}$ which maps D into $\sum_{i} D_{i}$. Clearly this homomorphism is an isomorphism.

Remark. The theorem is still true when \bar{D} is replaced by the group of derivations which lower the dimension at least by 1.

Proposition 3.4. $\quad \bar{D}_{0}$ is generated by $\bar{\beta}$ where $\bar{\beta} x=\beta x+x \beta$, for x in M.
Proof. It is trivial that $\bar{\beta}$ is a derivation. Let D be any element in \bar{D}_{0}. Then it is not difficult to verify that $D^{\prime} w_{i}=0,1 \leq i \leq 8$ where $D^{\prime}=D-a_{1} \bar{\beta}$ and $D w_{1}=a_{1} \beta w_{1}$. Therefore by Proposition 3.2, $D^{\prime}=0$, i.e., $D=a_{1} \bar{\beta}$.

Proposition 3.5. $\quad \bar{D}_{i}=0$ for $i \geq 2$.
Proof. Let D be any element in $\bar{D}_{i}, i \geq 2$. The defining relations of M imply $D w_{i}=0$ for $1 \leq i \leq 8$, hence by Proposition 3.2 , imply $D=0$.

Corollary 3.6. $\bar{D}=\bar{D}_{0}+\bar{D}_{1}$.
Since $\operatorname{deg} d^{1}=(1,-1), d^{1}$ lies in \bar{D}_{1}. Our next task is to determined d^{1}. Let D be any element in \bar{D}_{1}, we express

$$
D w_{n}=\sum_{0<j<n-1} a_{n-j, j} w_{n-j-1} w_{j}+\sum_{0<j<n} b_{n-j, j} \beta w_{n-j} w_{j}
$$

in admissible form, i.e., $a_{n-j, j}$ and $b_{n-j, j}=1$ or $0, a_{n-j, j}=0$ for $2(n-j-1)<j$ and $b_{n-j, j}=0$ for $2(n-j)<j$.

Since $w_{n} w_{2 n+1}=0$ and $w_{n} w_{2 n+2}=w_{n+1} w_{2 n+1}$, we have

$$
\left(D w_{n}\right) w_{2 n+1}+w_{n} D w_{2 n+1}=0
$$

and

$$
w_{n} D w_{2 n+2}+\left(D w_{n}\right) w_{2 n+2}=\left(D w_{n+1}\right) w_{2 n+1}+w_{n+1} D w_{2 n+1}
$$

This yields

$$
\begin{align*}
& \sum_{j} a_{n-j, j} w_{n-j-1} w_{j} w_{2 n+1}+\sum_{j} b_{n-j, j} \beta w_{n-j} w_{j} w_{2 n+1} \\
& =\sum_{i} a_{2 n+1-i, i} w_{n} w_{2 n-i} w_{i} \tag{3.7}\\
& \quad+\sum_{i}(n-1) b_{2 n+1-i, i} w_{n-1} w_{2 n+1-i} w_{i}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{j} a_{n-j, j} w_{n-j-1} w_{j} w_{2 n+2}+\sum_{j} b_{n-j, j} \beta w_{n-j} w_{j} w_{2 n+2} \\
& \quad \quad+\sum_{i} a_{2 n+2-i, i} w_{n} w_{2 n+1-i} w_{i}+\sum_{i}(n-1) b_{2 n+2-i, i} w_{n-1} w_{2 n+2-i} w_{i} \\
& =\sum_{s} a_{n+1-s, s} w_{n-s} w_{s} w_{2 n+1}+\sum_{s} b_{n+1-s, s} \beta w_{n+1-s} w_{s} w_{2 n+1} \tag{3.8}\\
& \quad+\sum_{t} a_{2 n+1-t, t} w_{n+1} w_{2 n-t} w_{t}+\sum_{t} n b_{2 n+1-t, t} w_{n} w_{2 n+1-t} w_{t}
\end{align*}
$$

Notice that (3.7) and (3.8) are not in admissible form, i.e., not expressed in terms of $w_{I}, \beta w_{J}$ with I and J admissible. However through the defining relations of M, we can always render them with both sides in admissible forms and we assume that this is done. Then equating the coefficients of those admissible terms $w_{(n-1, ~, ~) ~ i n ~(3.7), ~ w e ~ h a v e ~ t h e ~ f o l l o w i n g ~}^{\text {a }}$

Proposition 3.9. $\quad a_{n-j, j}=(n-1) b_{2 n-2 j, 2 j+1}$ for even j.
Similarly equating the coefficients of those admissible terms $\beta w_{(n, \text {, }}$ in (3.8), we have the following

Proposition 3.10.

$$
b_{n-j, j}=\binom{n-j-1}{j-1} b_{n, 1}
$$

Again, equating the coefficients of those terms $w_{(n, \text {, }}$ in (3.8), we obtain the following

Proposition 3.11. $a_{n-j, j}=a_{2 n-2 j, 2 j+2}+n b_{2 n-2 j-1,2 j+2}$.
Theorem 3.12.

$$
b_{n-j, j}=\binom{n-j-1}{j-1} b_{1,1}, \quad a_{n-j, j}=\binom{n-j-1}{j+1} b_{1,1}
$$

Proof. From Proposition 3.10, $b_{n, 1}=b_{1,1}$. Hence

$$
b_{n-j, j}=\binom{n-j-1}{j-1} b_{1,1}
$$

From Propositions 3.11 and 3.9, we have

$$
\begin{aligned}
a_{n-j, j} & =a_{2 n-2 j, 2 j+2}+n b_{2 n-2 j-1,2 j+2} \\
& =(2 n+1) b_{4 n-4 j, 4 j+5}+n b_{2 n-2 j-1,2 j+2}
\end{aligned}
$$

$$
\begin{align*}
& =\left(\binom{4 n-4 j-1}{4 j+1}+n\binom{2 n-2 j-2}{2 j+1}\right) b_{1,1} \tag{3.13}\\
& =\binom{2 n-2 j-1}{2 j+2} b_{1,1}=\binom{n-j-1}{j+1} b_{1,1} \quad(\bmod 2)
\end{align*}
$$

for $n \geq 2$.
Corollary 3.14. $\quad \bar{D}_{1}$ is generated by d^{1} and $d^{1} \beta=0, d^{1} w_{1}=0$, $d^{1} w_{n}=\sum_{j \geq 1}\binom{n-j-1}{j+1} w_{n-j-1} w_{j}+\sum_{j \geq 1}\binom{n-j-1}{j-1} \beta w_{n-j} w_{j}, \quad n \geq 2 ;$ of course, the binomial coefficients are taken mod 2 and with the usual convention $\binom{r}{s}=0$ for $r<s$.

Proof. d^{1} is nontrivial, otherwise we would have that $\pi_{n+1}^{s}\left(Z_{2} ; Z_{2}, n\right)$ is of order 8 which contradicts the fact that $\pi_{n+1}^{s}\left(Z_{2} ; Z_{2}, n\right)=Z_{2}+Z_{2}$.

Lemma 3.15.

$$
\binom{n-s}{s}=0 \quad(\bmod 2)
$$

for $s>0$, if and only if $n+1$ is a power of 2 .
Proposition 3.16.

$$
\begin{aligned}
d^{1}\left(\beta w_{n}\right) & =0 \quad \text { iff } n=2,2^{r}-1 \text { and } \\
d^{1}\left(w_{n}+\beta w_{n+1}\right) & =0 \quad \text { iff } n=2^{r}-1 .
\end{aligned}
$$

Proof. Immediate from Lemma 3.15.

4. Some computations of homotopy groups

Recall that M is just the E^{1} term for the groups $\pi_{q+n}^{s}\left(Z_{2} ; Z_{2}, n\right)$. In Table 4.a a table of $E^{2}=H_{*}\left(M, d^{1}\right)$ in low dimensions is given.

Column 8 is incomplete. However all terms with dimension ≤ 7 are retained in E^{∞}. Using this, we are able to determine $\pi_{q+r}^{s}\left(Z_{2} ; Z_{2}, q\right)$ and, through the universal coefficient theorem, $\pi_{q+r}^{s} K^{\prime}\left(Z_{2}, q\right)$ with $r \leq 7$.

Table 4.a. $\quad\left(d=\right.$ dimension, $f=$ filtration degree, $\left.v=\left\langle\beta w_{2}, w_{1}^{2}, w_{1} w_{2}\right\rangle\right)$

| 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 |$|$

Table 4.b

r	$\pi_{q+r}^{s}\left(Z_{2} ; Z_{2}, q\right)$
-1	Z_{2}
0	Z_{4}
1	$Z_{2}+Z_{2}$
2	$Z_{2}+Z_{2}+Z_{2}$
3	$Z_{2}+Z_{4}$
4	Z_{2}
5	Z_{2}
6	$Z_{2}+Z_{2}+Z_{2}$
7	$Z_{2}+Z_{4}+Z_{4}$

Table 4.c

From Table 4.a, we know that $\pi_{q}^{s}\left(Z_{2} ; Z_{2}, q\right)$ is a group of order 4. This is not enough, we still have the group extension problem. However Barratt's theorem gives us the following

Proposition 4.1 (Barratt). $\pi_{q}^{s}\left(Z_{2} ; Z_{2}, q\right)=Z_{4}$, and βw_{1} corresponds to $2\left(\operatorname{cl}\left(\alpha_{1}\right)\right)$ where α_{1} is the identity map of $K^{\prime}\left(Z_{2}, q\right)$.

Since it is known that βw_{1} corresponds to $2\left(\operatorname{cl}\left(\alpha_{1}\right)\right)$, Table 4.b is immediate from Table 4.a and the relations

$$
\begin{aligned}
\operatorname{cl}\left(\left(\beta w_{1}\right) w_{1} w_{2}\right) & =\operatorname{cl}\left(w_{1}^{3}\right) \\
\operatorname{cl}\left(\left(\beta w_{1}\right)\left(w_{7}-\beta w_{8}\right)\right) & =\operatorname{cl}\left(\beta w_{7} w_{1}\right)
\end{aligned}
$$

and

$$
\operatorname{cl}\left(\left(\beta w_{1}\right) w_{1} w_{6}\right)=\operatorname{cl}\left(w_{3}^{2} w_{1}\right)
$$

$\pi_{q+r}^{s}\left(Z_{2}, q\right)$ and $\pi_{q+r}^{s}\left(Z_{2} ; Z_{2}, q\right)$ are connected by the following
Proposition 4.2. There is an exact sequence
(4.3) $\operatorname{Ext}\left(Z_{2}, \pi_{q+r+1}^{s}\left(Z_{2}, q\right)\right) \rightarrow \pi_{q+r}^{s}\left(Z_{2} ; Z_{2}, q\right) \rightarrow \operatorname{Hom}\left(Z_{2}, \pi_{q+r}^{s}\left(Z_{2}, q\right)\right)$.

Proof. This is immediate from the universal coefficient theorem.
Consider the cofibration

$$
S^{q} \xrightarrow{i} S^{q} U_{2} e^{q+1} \xrightarrow{p} S^{q+1}
$$

then the stable version of the Blakers-Massey theorem gives
Proposition 4.4. There exists an exact sequence

$$
\begin{equation*}
\rightarrow \pi_{q+r}^{s}\left(S^{q}\right) \xrightarrow{i_{*}} \pi_{q+r}^{s}\left(Z_{2}, q\right) \xrightarrow{p_{*}} \pi_{q+r}^{s}\left(S^{q+1}\right) \xrightarrow{2} \pi_{q+r-1}^{s}\left(S^{q}\right) \rightarrow . \tag{4.5}
\end{equation*}
$$

Proof. The only nontrivial fact is that the boundary map is 2. But the boundary homomorphism is induced by the attaching map for e^{q+1} in $S^{q} U_{2} e^{q+1}$, clearly it is $2 .{ }^{4}$

From Propositions 4.2, 4.4, Table 4.b, and the knowledge of stable homotopy groups of spheres, we immediately have Table 4.c.

Acknowledgments. The author is greatly indebted to Professor D. M. Kan for suggesting this topic and for numerous discussions; it was Kan who conjectured the main result (2.30). He also wishes to express his deep gratitude to Professor P. J. Hilton who gave the author constant encouragement and valuable suggestions.

Bibliography

1. E. B. Curtis, Some relations between homotopy and homology, Ann. of Math., vol. 83 (1965), pp. 386-413.
2. A. Dold and D. Puppe, Homologie nicht-additiver Funktoren, Anwendungen, Ann. Inst. Fourier (Grenoble), vol. 11 (1961), pp. 201-312.
3. P. J. Hilton, Homotopy theory and duality, New York, Gordon and Breach, 1965.
4. D. M. Kan, A combinatorial definition of homotopy groups, Ann. of Math., vol. 67 (1958), pp. 282-312.
5. A. K. Bousfield et al., The mod-p lower central series and the Adams spectral sequence, to appear.
6. P. May, The cohomology of restricted Lie algebras and of Hopf algebras, Princeton University thesis.
7. J. W. Schlesinger, The semi-simplicial free Lie ring, Trans. Amer. Math. Soc., to appear.
8. H. Toda, Composition methods in homotopy groups of spheres, Princeton Univ. Press, Princeton, 1962.
9. J. H. C. Whitehead, A certain exact sequence, Ann. of Math., vol. 52 (1950), pp. 51-110.

Cornell University
Ithaca, New York
${ }^{4}$ This was pointed out to the author by P. J. Hilton.

[^0]: ${ }^{1}$ Here "+" means direct sum.
 ${ }^{2} \pi_{q}(Y, X)$ is defined as the set of homotopy classes of maps from $S^{q} Y$ to X [3], and $G X$ is defined in [4].

[^1]: ${ }^{3}$ The notation L^{r} here is just L_{r}^{u} in [5].

