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Introduction

For ech simply connected, reduced s.s. complex X, D. M. Kn [4] hs de-
fined as s.s. free group GX which serves a.s a loop complex for X. The lower
central series {1 GX} of GX was studied by E. B. Curtis [1] who proved that
the associated spectral sequence converges to the homotopy groups of X.
Here we confine ourselves to the Zs-Moore spaces. In the following we shall

derive a spectral sequence which converges to the stable mod-2 homotopy
groups of Z.-Moore spaces from the Curtis spectral sequence. An algebra
structure is introduced in the E term with the multiplication defined by com-
position of maps. We carefully study the derivations of the algebra E and
calculate the E term in low dimensions. It is found that all the part of the E
term with dimensions _<7 survives in the E term. Henceforth the stable
mod-2 homotopy groups of Zs-Moore spaces in dimensions _< 7 are obtained.
Through the universal coefficient theorem and the stable version of the
Blakers-Massey theorem applied to the cofibration

S SqUe+ S+,
the structure of the stable homotopy groups of Z.-Moore spaces with di-
mensions <_ 7 follows very easily.

1. Preliminaries

Since the statements in the following sections will be in terms of s.s. Lie
rings, we recall some definitions and fundamental theorems which will be used
later.

1.1. An s.s. complex X is a sequence of sets X for n >_ 0, with face oper-
ators d" X -- X_ and degeneracy operators s" X -- X+,, 0 _< i _< n
which satisfy the usual identities [4, p. 283]. If all the X and the d, s are
objects and morphisms in a category C, X will be called an s.s. object over C.

THEOREM 1.2. Le A, B be s.s. abelian groups and

fo f A --- Bbe s.s. homomorphisms. Then fo f, are homotopic if and only if Nfo and Nfx are
chain homotopic, where N is the normalization functor defined by

(NG), kerd . G/DG_x
DG,_ is generated by sG,_x for 0 <_ i <_ n 1.
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THEOREM 1.3. Let G be an s.s. abelian group, then the inclusion map
NG -- Tot G, Tot G G., d. ’0( 1)d}, is a chain homotopy equiva-
lence.

1.4. Given an abelian group M, let R be the free non-associative ring on
M, i.e., R R, where R M, R - -R (R)R forr> 1.
Let I be the two sided ideal generated by the elements

x (R) x, (x(R)y) (R) z- (y (R) z) (R) x- (Z (R) X) (R) y

for all x, y, z in R. For every positive integer r, let L’M R/(R n I).
Then the quotient LM R/I ,L’M is a Lie ring, .called the free
Lie ring on M.

1.5. Given a simply connected s.s. complex X and a finite-dimensional s.s.
complex Y, consider the filtration of the function complex (GX) r by

(GX)" (r,(GX)" (r,GX)" ....
For each r _> 1, there is an s.s. fibration

(r,+ GX) - (r, GX) (r, GX/r,+ GX) .
The homotopy exact couple yields a spectral sequence. E. Curtis [1] proved
the following

TEOaE 1.6 [1]. Let X and Y be as above, then there is a spectral sequence
{E.q(Y, X)} having

E’,., E, H’(SqY; r(r, GX/r,+, GX) ),
and for each q > 1 ,E,. is the graded group associated with certain filtration
on the group rq+( Y, X).

By Witt’s theorem F, GX/r,+ GX L(GX/r GX). One sees that the
L-functor plays an important role in computing r,( Y, X).

2. A spectral sequence
In this section, we are going to derive spectral sequence for the groups of the

homotopy classes of stable maps between Z-Moore spaces from the Curtis
spectral sequence.

Let (Z, n) be the s.s. Z-vector space with one nondegenerute basis
element such that d 0 for 0 _< i _< n, and let (Z, n) y

be the free s.s.
abelian group with two nondegenerate basis elements y+, x such that
do y+ 2x, d y+ 0 for 1 _< i _< n 1, and d. x 0 for 0 _< j _< n. Let
K’(Z, n - 1) be an s.s. Z-Moore space. Since both

GK’(Z., n - 1)/F. GK’(Z, n + 1) and (Z, n)
Here "" means direct sum.
q(Y, X) is defined as the set of homotopy classes of maps from SqY to X [3], and

GX is defined in [4].
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are free s.s. abelian groups and have the same homotopy groups, by a theorem
of Dold [2], they are of the same homotopy type. Thus by (1.6) the knowl-
edge of (Z2, n) v is essential in setting up such a spectral sequence. By an
argument on the basis of free Lie rings, the following is immediate.

PROPOSITION 2.1. The sequence

2
--+ L(Z., n) L( (Z+., n) -4- n(2.2) L(Z2, n) - (Z - 1))

is exact where is the natural projection with x, , and y,+l ,+.
Passing (2.2) to the long exact sequence of homotopy groups, we obtain

PROPOSITION 2.3. The following sequence

(2.4) _
L(

is exact where A denotes the ker (A _+2 A).

PROPOSITION 2.5. There is an isomorphism

iH(K’(Z. ,m),E,i(K’(Z. ,n - 1)))--+ w+ L((Z ,n) -4- (Z+. ,n -C 1)),

where K’(Z: is the Z-Moore space and E,(X) ri U(GX/r GX).

Proof. Since GK’(Z, n - 1)/F GK’(Z, n -+- 1) and (Z, n) F are of the
same homotopy type, we have

r,L(GK’(Z,n - 1)/F+.GK’(Z2,n + 1)) L(Z+.,n).
Therefore

H(K’(Z+. m), E,(K’(Z n -+ 1)))

=Hom (Z: r,,L(Z. n)) -4- Ext (Z. r,,+ L(Z. n))
r,L(Z, n) + r,+ L(Z, n)r/2r+ L(Z, n)

-+ r,,+ L( Z. n) - Z2 n -C 1)).

Let [(Z, ])F, L(Z, n)] denote the group of the homotopy classes of s.s.
homomorphisms from (Z, k) into L(Z, n). Clearly any s.s. homo-
morphism (Z, ]) -+ L(Z, n) F can be expressed by () such that do u 2v,
u e (NL(Z., n)Y)+ and ()y+ u, ()x v.

PROPOSiTiON 2.6. () and (’,) are homotopic iff there exists an element s in
(NL(Z:, n))+ such that u u’ do

Proof. This is immediate from Theorem 1.2.

THEOREM 2.7. Let

0" [(Z2, k) , L(Z n)] --+ r+ L((Z n) "C (Z n -+ 1))
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be the homomorphism defined by

0

where cl denotes the homotopy class. Then 0 is an isomorphism.

Proof. By Proposition 2.6, 0 is well defined. Let x be an element in
(NL((Z, n) + (Z., n + 1)))+1 with do x 0. Since is epic, N is also
epic. Hence there is an element u in (NL(Z, n))+ with u x. But
d0 u (d0 u) 0, d0 u 2v. Therefore

i.e., 0 is epic. Now let cl () be in ker 0, that is cl (u) 0. Hence there
isn dement c in (NL((Z n) + (Z n + 1)))+ with doc u. Let s be
in (NL(Z, n))+ with s c. Thus (d0 s u) 0, i.e., d0 s u is in
2L(Z, n). By Proposition 2.6, () is homotopic to (]), hence 0 is monic.

2.8. Suspension homomorphism. Let WK(Z n) be the free s.s. abelian
group with nondegenerate basis elements xn, y,+, x+, Yn+2 such that
do y+ 2x, do x+ x., do yn+ 2x+ y+l and all the other face
operators on these cells are trivial. Clearly we have an exact sequence

(2.9) (Z n) i_ WK(Z n) (Z n + 1) F

where i is the inclusion and is the natural projection. Since WK(Z, n) is
contractible, L(WK(Z, n)) is also contractible. Henceforth given any

(Z n) ]- L(Z, m) ",

there are fl and f. which make the following diagrams

(2.10)

(Z, n)
i

wg(z., n) (Z, n + )

L((Z m))
Li

L(WK(Z m)) Lr L((Z m + 1))

commute. Then we define the suspension homomorphism z by z(cl (f))
cl (f). It is quite easy to verify that z is well defined. We define
WK( (Z, n) + (Z, n + 1) to be WK(Z2, n)/2WK(Z, n) and the sus-
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PROPOSITION 2.11. The following diagrams
pension homomorphism a is an analogous manner.

(2.12)

(Z, n) F WK(Z n) r (Z2 n - 1) y

(Z, n) -(Z n -- 1)

are commutative.

Proof is easy.

:PROPOSITION 2.13.

cl (,u).
Clearly

- WK((Z., n) - (Z, n - 1)
(Z., n - 1)) (Z, n + 2)

Given cl () in [(Z, k) F, L(Z, n) ], by definition t(cl ())
Let y, x in NL(WK(Z. n)) such that do x v. do y 2x u.

acl (vu) cl (L()y)L()x’ Ozcl(Uv)=Cl(L()Y)"
However do L( ,)y L( ,)u ,u, at cl () cl (L()y). By Proposition
2.11, , hence a .
Dold [2] has defined suspension homomorphism a for any functor T between

two abelian categories which satisfies T(0) 0. a is a natural transformation
ar . T(X) ’.+1 T(SX) for s.s. objects. It is easy to see that our defi-
nition here is compatible with that defined in [2].

PROPOSITION 2.14 [2]. Let T be afunctor on two variables such that T(A, O)
T(0, B) 0; then the total suspension homomorphism , O.

COROLLARY 2.15 [2]. Let T be the cross effect of a functor T between the cate-
gory of abelian groups such that T(O) 0; then . O.

2.16. Composition of maps. Given a in [(Z, /), L(Z, n) y] and b in
[(Z ,j)r, L(Z2, m)] such thatj >_ n, then the composition of a and b,i.e., ba
is defined by cl (f), where

f (Z k + j n) L(Z: j)
L(g)

LL(Z. m) " ---->L(Z. m)

cl (h) aJ-na, cl (g) b, and the last one is induced by the multiplication of
Lie ring.

PnOPOSlTON 2.17. r(ba) a(b)r(a).

Proof. Given h and g as above.
the following diagrams commute:

Then there exist hi, h, g, g. which make
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h
(Z, k, + j n) L(Z,j)

L(g) . LL(Z m) --+ L(Z m)

WK(Z., k - j n)" h,
L(WK(Z ,j)’) LL(Z, m)’) --+ L(WK(Z, m)F

(Z,k +j--n + 1)F h-- L(Z,j + 1) L(g.)) LL(Z,m + 1) ----L(Z,m + 1).
But cl g2 zb, cl h2 zj-n(za). It is clear that the bottom line represents
both (ba) and ( b)(a).

2.18. The limit algebra. Through Propositions 2.5 and 2.6, we may
identify the group H(K’(Z ]), E,+(K’(Z2 m + 1))) with

[(Z k,), L(Z m) ’]
and through 0 with

rk+l L( (Z., m) + (Z., m + 1) ).

Let M(m) , [(Z., k) F, L(Z, m)]. Then the suspension homo-
morphism induces

M(m) -- M(m + 1) for m _> 1.

Let {M, an M(m) -- M} be the direct limit of the system

M(1) ---+ M(2) ....
Similarly we use r L(Z+.) to denote

lira
+n L(Z:, n).

n

In order to know ri L(Z) completely, Schlesinger [7] has introduced an oper"
ation [[ ]] in arbitrary s.s. Lie ring.

DEFINITION 2.19. Let

(% t) ((0), ..., 5’(P 1), i(0), ..., (q 1))

be a shuffle permutation of type (p, q). The degeneracy operation S (or S)
is obtained from the word Sq_ S So by deleting those symbols S. whose
subscripts j are in , (or )"

S S+_ (_)... <0)"’" S0.

DEFINITION 2.20. Let x and y be two simplexes of dimensions p and q in L.
We define the double bracket:

[Ix, y]] 1)(’)[Sx, Sy]
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where the sum is over all shuffles of type (p, q) and (-1) (’) denotes the
sign of the permutation (3", ).
When dim x dim y, 1/2[[x, y]] means that the summation runs over all

(3’, ) with the identification (% ) (, 3’).
Given any sequence I (il, it) of non-negative integers, we call r

the length and __1 i. the dimension of I. I is said to be admissible if
if 2i._ > i. for 2 < j _< r.

PROPOSITION 2.21 [5]. rL(Z2) is generated by w, where w (),
d (1/2[[,, ]]).

PROPOSITION 2.22 [5]. r, L2r Z.) has a basis w= wil wi2 wir such that
I is admissible of length r, dim I n, is positive for 1 <_ j <_ r and r,, L8(Z.) 0
if s is not a power of 2.

PROPOSITION 2.23. Let

lim
Mr,i [(Z, m + i), L(Z., m)].

m

0 induces an isomorphism Mr, -+ r+ L (Z) "1- r L (Z).

Proof. We have
lira

Mr,i [(Z2, m + 1), L2r(Z2, m)].
m

But a0 0. Hence
lim

By Corollary 2.15,

r+,+{L2r((Z, m) + (Zm -4- 1)).

lim
++L (Z, m) -4- (Z2, m + 1

lim lim
’l+m+i L2r (Z2, m) A-

m m
r+,+L+=(Z, m "4- 1).

Thus Mr.i --* 71"i+1 L
2(Z2) - 7ri L2(Z2).

Givena, b inM such that a (a), b a(g). Then define ba
.+,((’g)a) with s large enough to ensure (a’g)a being defined.

THEOREM 2.24. M is a Z.-algebra.

Proof. By the universal property of free Lie ring, given any homomorphism

A --LB
The notation L here is just L in [5].
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the following diagram
L(Lk)

LLA L(LLB

X 1 1XLX
LA LB

is commutative, where k is induced by the multiplication of Lie ring. Hence
given

(Z, j)v L(Z., m) " (Z, m)- g- L(Z n)

h
(Z., n) F L(Z., p)F,

then k o Lk o L(Lh o L(g o f k o Lh o k o L(g o f. Hence

(clhoclg) oclf- clho(clgoclf).

This gives the associative law. The right distribution law is an immediate
consequence of the definition of multiplication. Given

(Z2, r) e L(Z2, j)F, (Z2, j) f L(Z, m),
Z2 j) f- L(Z m),

cl(fWf’)ocl(e) cl(koL(f+f’)oe).
However L(f + f’) L(f) + L(f’) + L(f, f’), where

L(f, f’) L(Z, j)Y ----> L((Z, j)F (Z. j)) ----> LL(Z., m)

By an argument similar to Corollary 2.15, z(cl(k o L(f, f’) o e) O. Hence
left distribution law holds.

PnOPOSTON 2.25. [(Z2, m), L(Z, n) r] 0 for m < n 1 and
[(Z ,n 1) , L(Z., n)] is generated by cl () and (r cl (0") cl (,%+1).

Proof is easy.
We use the symbol to denote both cl () and the corresponding element

in M. One shows easily that 0. Consider the isomorphism

[(Z., 2n + 1) , L(Z, n) ]- r+2L( (Z, n) + (Z., n + 1) ).

Let .+ cl (1/2[[n+, n+]]) in r+.L( (Z., n) + (Z., n + 1) then we have

PROPOSiTiON 2.26. Let 0-( z,,) w,, then unstably

w 0- cl [[, +]], if n is odd,

0- cl [[, Z+]] + zw_, if n is even.
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Proof. Just check the definitions.

Passing to the limit algebra, this yields

COtOLLAIV 2.27. W, O, if n is odd,
w,_l, if n is even.

PROPOSITION 2.28. The following diagram

0--1
-k+iL(Z.,n + 1) - k+L((Z.,n) + (Z,n + 1)) [(Z,k)F,L(Z,n)F]

r+lL((Z., n + 1) + (Z, n + 2)) [(Z.,/c) F, L(Z, n + 1)]
is commutative where i i2) is induced by the inclusion homomorphism into the
first (second) factor, and L is left multiplication by .

Proof. Let cl (a) be in 7f’k+l L(Z2, n + 1). Then

0 ,(cl(a)) cl lddo
--1where a lies in (a) and (NL(Z, n))k+ (here we take a to be in

NL(Z., n + 1) and this is always possible). Among a), there is a
asuch that a is expressible in terms of Yn+I only. Since a + 2b,

0(o0-1 (cl (a)))= cl (,L (x+l)(a’+ 2b))=cl (L (x+)
il (cl (a’)) il (cl (a)).

COROLLARY 2.29. M rL(Z) + ’L(Z) and dim ( o a) dim 1

Proof. It suffices to verify that the identification given by Proposition
2.28 goes stably. But this is trivial.

It is very easy to show that the multiplication in zL(Z) goes nicely into M.
Summarizing the above .results, we then get the following

THEOREM 2.30. There is a spectral sequence {Er,q, d} such that E,q
Mr,q, deg d (s, -1) and Er,q i8 the graded group associated with a
certain filtration to the group +(Z2 X, n), and M o rL(Z) +

2L(Z2), the multiplication ofM is determined by w2, w,_ 0 and that of
L(Z2), and d is a derivation.

Proof. The first part is just the stable version of the Curtis spectral se-
quence for Z-Moore spaces and the second part is the summary of the pre-
ceding results. That d is a derivation follows from the definitions of d
and the multiplication of M.

THEOREM 2.31. W W+ 0 for all positive integers i.
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Proof. Let w and W2i-kl be considered in 2i-t-1 n(z2, i -- 1) and
m+L2(Z, 2i + 1) respectively, then ww2+l is defined and sits in
m+ L(Z, i - 1). But r. L(Z, i + 1) is generated by Wr where I is
admissible and with il _< i - 1. Hence ww2+l nw+ w2 where n is
either i or 0. Applying f on both sides, we have nw+ w2_ O. Since
w+ w2_ is not 0, n has to be 0, i.e., w w2+ 0.

2.32. The mod-2 binomial relations generated by ww2+ O. From
[5, 2.4.iii], we know that all the defining relations among w/s are obtained by
applying an operator D and its powers on w w2+ 0, i > 0, where D acts
like a derivation sending each w. to W+l.

Let w w21+ >’>0 a_.,, w+_, w2+1+ be expressed in admissible
form, i.e., a,_, 1 or 0 and a_.,. 0 for 2(i + n j) < 2i -[- 1 + j.
Apply D on both sides, we get the following recursive formula.

PaOPOSTON 2.33.

an,i - an-l,i+l -- an-l,i-1 an,/+l for i > 1

an-l,o + an,o 0 for n > 2

an,o + a_, ana for n > 2

ao,o O, a,o 1, a,l 0 (rood2).
xny. Then Proposition 2.33 yields the iden-Set F X, Y) n,’>0 an ,"

tityF(X, Y) F(X, Y)(X- Y- XY2) - X + XY(mod2). Hence

Zn+lF(X, Y) X/(1 (1 - Y)X) X - :.. (1 y)n (mod2)

THEOREM 2.34.

and

(n--1)an, i
(mod 2).

>o

the binomial coecients are, of course, taken mod 2 and with the usual convention
(:) O for r < s.

3. The derivations of the algebra M
Algebraically M is a graded Z-algebra generated by the symbols/ and w

for each positive integer n with the relations dim -1, dim w n,
2 O, W2n W2n--1 and

ww++ (m-- l--j) iTm--
o

for m 0 (here dim degree). Then M,, is just the subgroup of M
generated by w and w such that length I length J r and dim I
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dim J 1 n. Clearly M ,M, and we call r the filtration degree.
Let M M, and

M--M
be the natural projeegion. Given any derivation D, leg D be defined by
D x P+ Dx, if lies in M. Then he following proposition is immediate.

PROPOSITION 3.1. Let D be a derivation; then each D is also a derivation.

PROPOSITION 3.2. Let D be a derivation which lowers the dimension at least
by one and Dw 0,1 <_ i <_ 8; then D O.

Proof. If Dw 0 for 1 _< i _< 2m, m _> 4, the defining relations always
imply Dw,,+ 0 and Dw,,+ 0. Hence by induction the proposition
follows easily.

THEOREM 3.3. Let D be the group of derivations of M which lower the dimen-
sion by one and D be the subgroup of derivations which raise the filtration by i;
then

Proof. Given any derivation D, by Proposition 3.2, all but a finite of D
are trivial, hence D Di. Since Di is in/, there is a canonical homo-
morphism from/) to iD which maps D into i Di. Clearly this homo-
morphism is an isomorphism.

Remark. The theorem is still true when D is replaced by the group of
derivations which lower the dimension at least by 1.

PROPOSITION 3.4. 0 is generated by where x x - x, for x in M.

Proof. It is trivial that/ is a derivation. Let D be any element in/0.
DThen it is not difficult to verify that

and Dw a w. Therefore by Proposition 3.2, D’ 0, i.e., D a/.

PROPOSITION 3.5. D 0 for i >_ 2.

Proof. Let D be any element in/, i >_ 2. The defining relations of M
imply Dw 0 for 1 _< i _< 8, hence by Proposition 3.2, imply D 0.

COROLLARY 3.6. D Do D.

Since deg d (1, -1), d lies in/). Our next task is to determined d.
Let D be any element in D, we express

nw
in admissible form, i.e., a_.,, and b_., 1 or 0, a_.,. 0 for
2(n-j- 1) <jandb_.,. 0for2(n-j) <j.

Since w w.+ 0 and w w.+ w+ w+, we have

Dwn W2n--I + Wn Dw,+I O,
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and
w Dw2+. - Dw)w2+ DWn+l)w2n+l -- Wn+l DWn+j.

This yields

a_i, Wn--j--1 Wj W2n-I + j b_,i Wn--j Wj W2nw1

(3.7) a+_i, w w_w

+ (n 1)b+_, w_i w+i_w,
and

an-i,i Wn--I Wl W2n+ + bn-i, Wn-- Wl W2n+2

+ i a2n+2--i,i Wn W2nWl--i Wi + i ( 1)b2n+2_i,i Wn--lW2nT2--iWi
(3.8)

Notice that (3.7) and (3.8) are not in admissible form, i.e., not expressed
in terms of w, w with I and J admissible. However through the defining
relations of M, we can always render them with both sides in admissible forms
and we assume that this is done. Then equating the coefficients of those
admissible terms w(_,, in (3.7), we have the following

PROPOSITION 3.9, an-i,1 (n 1)b_:,i+ for even j.

Similarly equating the coefficients of those admissible terms W(n,, in
(3.8), we have the following

PROPOSITION 3.10.

b-i,i j 1

Again, equaing he eoeeiengs of ghose erms (,, in (.8), we obtain
ghe following

PROPOSITION 3.11. an-i,i a2n-2i,2+2 b2n-2i-,21+2.

THEOREM 3.12.

)j- 1 b, a-,ib-,= j-- 1 j+ 1

PROOF. From Proposition 3.10, bn, b,. Hence

b-i,i j 1

rom Proposigions a.ll and a.9, we have
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(3.13)

(2n--2j w 22J--1) bl. j-t-1
forn > 2.

COROLLAnY 3.14. D1 is generated by d and d O, dwl O,

dw= (n--j-- i) (--j--i)w,_jwi n> 2;j + 1 w--_ w" + n
j- 1

of course, the binomial coeNcients are taken rood 2 and wih he usual conven-
tion () 0 for r < .

Proof. d is nontrivial, otherwise we would have that +t(Z Z, n)
is of order 8 which contradicts the fact that +(Z ;Z=, n) Z= + Z.
LEMMA 3.15.

n-z’) 0 (rood2)
8

for s > 0, if and only if n + 1 is a power of 2.

PROPOSITION 3.16.
d(w) 0 iffn 2,2- land

d(w + w+) 0, iffn 2- 1.

Proof. Immediate from Lemma 3.15.

4. Some computations of homotopy groups
Recall that M is iust the E term for the groups r+,(Z2 Z2, n). In Table

4.a a table of E H,(M, d) in low dimensions is given.
Column 8 is incomplete. However all terms with dimension _< 7 are

retained in E. Using this, we are able to determine r;+r(Z2 Z, q) and,
through the universal coefficient theorem, %+rK(Z= q) withr _< 7.

Table 4.a. (d dimension, f filtration degree, v </w. w wt w})

w2

71)1

Wl W2

?.el 71)2

W3 W4

(w3 w)

Wl w6

W3 Wl

Vl W6

W7 W

W7 W8

w(w -w)

(w w)w
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TABLE 4.b

-1
o
1
2
3
4
5
6
7

,rq+(Z ;Z q)

Z2
Z

Z+. + Z
Z + Z + Z,.

Z. + Z
Z

Z + Z+. + Z
Z + Z + Z

TABLE 4.c

r 0, 1, 2, 3, 4, 5, 6, 7
r;+(Z,q) Z,Z,Z,Z+.+Z,Z,0, Z,Z.+Z

From Table 4.a, we know that (Z ;Z, q) is a group of order 4. This is
not enough, we still have the group extension problem. However Barratt’s
theorem gives us the following

PROPOSITION 4.1 (Barratt). q(Z Z, q) Z, and w, corresponds to
2(cl (a,)) where a, is the identity map of K Z q).

Since it is known that w corresponds to 2(cl(a,) ), Table 4.b is immediate
from Table 4.a and the relations

cl (w)w w) cl (w),
cl ((w)(w ) cl (w)

and
cl ((wx)w w) el (w w).

(Z, q) and +(Z ;Z, q) are connected by the following

PROPOSITION 4.2. There is an exact sequence

(4.3) Ext (Z, q++(Z, q) q+(Z Z, q) Hom (Z, ,+(Z, q)).

Proof. This is immediate from the universal coefficient theorem.

Consider the cofibration

then the stable version of the Blakers-Massey theorem gives

PnOPOSlTION 4.4. There exists an exact sequence

(4.5) q+(Sq) q+(Z, q) ,+( ,+,_( +.
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Proof. The only nontrivial fact is that the boundary map is 2. But the
boundary homomorphism is induced by the attaching map for eq+l in sqU2eq+l,
clearly it is 2.

From Propositions 4.2, 4.4, Table 4.b, and the knowledge of stable homotopy
groups of spheres, we immediately hve Tble 4.c.
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