TAME ORDERS, TAME RAMIFICATION AND GALOIS
COHOMOLOGY

BY
L. Smver'

Introduction

Let R be a commutative ring, and let G be a finite group, represented as
R-automorphisms of a commutative R-algebra S. Consider the cohomology
group H*(G, U(8)), where U(S) is the multiplicative group of units of S.
To each cohomology class f, we associate a tower

RcScAl S 6)

of R-algebras, where A(f, S, @) is the crossed product algebra, or semi-linear
group ring with factor set f. Classically, this tower has received considerable
attention. For example, when S/R is a Galois extension of fields, or of rings,
then A(f, S, G) is an R-central simple, or separable, algebra split by S, and
defines an element of the Brauer group B(S/R).

This is the case when S is an unramified extension of the integrally closed
noetherian domain R, in a Galois extension L/K of their quotient fields. It is
natural to consider the tower in a more general setting—for example, when the
integral closure S of R in L is a tamely ramified extension of R. It is this
case which is the focal point for the present investigations.

In particular, we consider the structure-forgetting functor from A; =
A(f, 8, G)-modules to S-modules. In our main theorem, we show that this
functor preserves homological dimension for every cohomology class f if,
and only if, the extension S/R is tamely ramified. The major corollary of
this result indicates that all of the ramification in the tower B C S C Ay
takes place in the extension R < 8.

A fortiori, a crossed product in a tamely ramified extension S/R is an order
over R which is a reflexive R-module, and whose localization at every minimal
prime ideal p of R is an hereditary order over B,. Such an order is called a
tame order. In Chapter I, we study the ideals and automorphisms of a tame
order.

In Chapter II, we consider crossed product algebras and apply the theorems
of Chapter I.

In Chapter III, we consider also Amitsur Cohomology, and applications to
the study of the Brauer Group.

Although the main applications of these results are to integral extensions of
integrally closed noetherian domains whose quotient field extension is finite
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8 L. SILVER

Galois, the formal techniques applied here make it undesirable to assume such a
restrictive hypothesis as a blanket condition. We make only the conventions
that all rings have unit elements, that all modules and ring homomorphisms
are unitary, and that all modules are finitely generated unless explicitly stated
otherwise. Additional hypotheses will be stated in the text as they become
necessary.

We mention here several notational conventions. If E is a right module
over a ring T', then Endr(E) denotes the ring of I'-endomorphisms of E, and
E will always be considered as a left Endr(E)-module. A similar convention
will hold for left T-modules. The trace ideal rr(E) is defined to be the image
of

7:E ®r Homr(E, T) — T,

given by 7(e ® f) = f(e), and is a two-sided ideal of I'. Its main application
will be with the Morita theorems [3, Appendix]. We also recall here the
notion of conductor, i.e., if A < T are orders in the same simple algebra =,
then the conductor C,(T') of I' with respect to A is defined to be

CA(T) = {xeZ; Tz € A} = Homi(T, A).

(For a functor F of A-modules, we will use the notations F'(x), F'(x), i.e.,
left and right, whenever there is ambiguity.)

The author wishes to acknowledge here his deep gratitude to Professor
D. 8. Rim, without whose encouragement this paper would not have been
possible.

. Tame orders

1. Orders over a tame order. In this section we prove an analogue of
Theorem 1.7 of [12] for orders over general integrally closed noetherian do-
mains.

Throughout chapter I, the following hypotheses will hold without any fur-
ther mention. R denotes a commutative integrally closed, noetherian domain
with quotient field K. All R-modules and R-algebras are finitely generated
over R.

DgerinttioN. Let R be an integrally closed domain. An order A over
R will be called tame if

(i) A is reflexive as an R-module;
(ii) Ay is an hereditary order over R, for every minimal prime p of R.

LemMma 1.1. Let R be an integrally closed domain and X the set of minimal
primes of R, Then

(i) R= np R,;

(ii) @ torison-free R-module E is reflexive if and only if E = N, E, .
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Proof. Well known. For example, it follows directly from 3.4 of [1].

CoROLLARY 1.2. If A is a tame order, then A = Ny, A,. If A, B are R-re-
Sflexive ideals of A, then A = B & A, = B, for all minimal primes p.

DerinmrioN.  Two ideals of a tame order A are quasi-equal if A** = B**,
ie., if A, = B, for all minimal primes p. The relation of quasi-equality is
obviously an equivalence relation on the set of left, or right, or two-sided
fractionary ideals of A [11]. An R-reflexive two-sided ideal A such that 4
is quasi-equal to A* will be called quasi-idempotent.

Lemma 1.3.  Let R be any commutative ring and M C R a multiplicative set.
Let F C E be R-modules, not necessarily finitely generated. Then Fy = Ey

if and only if for each x ¢ E, Anngz(F + Rx/F) and M have a non-empty inter-
section.

Proof. Clear by standard techniques.

CoroLLARY 1.4. Let A be an R-algebra which s reflexive as an R-module.
Suppose that, for each minimal prime p, we are given a left ideal I(p) of Ay
such that I(p) = A, for all but a finite number of p. Then I = N, I(p) is a left
ideal of A and I is R-reflexive as a module.

Proof. Suppose first that I(p) C A, for all p. Then by 1.2, I C A.
Consider the exact sequence

0—-I—A— ZQ(AQ/I(Q))'
Localizing at p, we obtain the exact sequence

0—I,—A,— (ZaAq/I(Q))p-

(A/I(@))p = (Ag)o/I(Q)y, and Anna(A,/I(g)) = ¢"R,nR = ¢, the nth
symbolic power of the prime ideal ¢g. If p # ¢, then ¢ & p, ie.,
¢™n(R — p) # ¢. By Lemma 1.3, (A), = I(q), if ¢ # p. Thus

(Zq A/I(q))p = Ap/I(p) and I(p) = I,.

So I is reflexive as an R-module.

In general let 0 # z ¢ K such that I < A. Then 2I(p) C A, for all p,
and 2I(p) = A, for almost all p, since z is a unit of B, for almost all p. Then
xI = N, xI(p) is a reflexive R-module and an ideal of A by the foregoing, and
sois I.

LemMa 1.5, If E, F are A-modules and F is R-reflexive, then Hom,(E, F)
18 R-reflexive.

Proof. Homy(E, F) = Homu(E, F**) = Homz(F* ®, E, R) by [7,
I1.5.2].
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CoroLLARY 1.6. If A is an R-reflexive algebra, then a A-reflexive module is
R-reflexive.

LemMmA 1.7. Let A be any ring and P a (finitely generated) left A-projective
module. Then the trace ideal To(P) is an idempotent two-sided ideal.

Proof. This follows easily from the appendix of [3].

TaEOREM 1.8. Let A be a tame order over a domain R. Then every R-re-
Sflexive order containing A is again tame, and there exists a one-to-one correspond-
ence between R-reflexive orders containing A, and gquasi-idempotent two-sided
1deals of A, through the conductor.

Proof. If A C T, then A, C T, for all minimal primes p C R, so by [12,
Corollary 1.4], T, is hereditary for all p. Hence T is tame if T is B-reflexive.

Now Ca(T') = Homj (T, A) is an R-reflexive two-sided ideal of A. C4(T), =
Cy,(T,) is idempotent for all p, and (Cx(T)*), = CA,,(I‘,,)Z, ie., (4%, = (4,)°
for any ideal 4 since they are both the imagein A, of (A ®14)p = 4, ®4, 45,.
Hence by Theorem 1.7 of [12], Ca(T') is quasi-idempotent. By localization,
it is obvious that Endia(CA(T)) = T.

Conversely, if A is a quasi-idempotent ideal of A, then Endi(4) is a tame
order containing A, and, finally, C,(Endi(A4)) = A by localization.

CoroLrLARY 1.9. If A is a tame order over R, then there are only a
finite number of R-reflexive orders containing A. In fact, there are exactly
e = 2 ,(e(p)) tame orders containing A (including A), where e(p) is the
number of (necessarily hereditary) orders containing A, for each minimal prime
p of R.

Proof. Tt follows from the conductor that A, is a maximal order over R,
for all but a finite number of p. By [12, Theorem 1.7], the number e(p) is
finite. Since a quasi-idempotent ideal is R-reflexive by definition, we have
the first statement and the inequality ¢ < > o(e(p)).

For each minimal prime p, let I(p) be an idempotent two-sided ideal of
A, Let I = N, I(p). Since A, is maximal for almost all p, we must have
I(p) = A, for almost all p. It follows from 1.4 that I is a two-sided R-re-
flexive ideal of A, with I, = I(p). Itisnow trivial that I is quasi-idempotent,
ie., (I, = (I,)* = I, forallp. The equality e = 2, (e(p)) now follows.

If A is a quasi-idempotent ideal of a tame order A, then 74(4) = A by
Lemma 1.5 of [12] and localization. On the other hand, by Lemma 1.7,
ma(A)** is quasi-idempotent for every left ideal A of A. The following simple
proposition will clarify further the relation between A and ra(A4)**.

ProrosiTion 1.10. Let A be an R-reflexive left ideal of the tame order A.
Let A C T be the tame order corresponding to ra(A)** as in Theorem 1.8. Then
T s the unique largest order of Z such that A is a left T-module. Moreover,
(rr(A))*™* = T.
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Proof. It suffices to prove this-statement when A is an h-order. We have
I' = Endi(ma(4)). Also, A = 7,(4)-A, hence

YA = ya(A)-A S (A)- A=A for yeT,

so A is a left I'-module. If x ¢ = such that A C A, then zAA™ < AA™,
ie., zra(A) C 7a(4), so z €T by definition. Finally, by 1.8, 7r(4) = T,
since 7r(4 ) is idempotent and Endr(7r(A)) = T by the first assertion of this
proposition.

From this proposition, we can see that the theory of R-reflexive ideals of
a tame order A has two separate facets: The first is the determination of
all tame orders containing A over R, e.g., Theorem 1.8. The second is the
study of those ideals which admit A as left order, i.e., I' = A in Proposition
1.10. We begin this study in the next section.

2. Quasi-equality classes. We consider in this section the set of quasi-
equality classes of certain two-sided ideals of a tame order. It is clear that
every quasi-equality class has a unique representative which is a reflexive
R-module, and we will deal with these representatives. We consider here a
generalization of a group formulated by O. Goldman for maximal orders in
[11].

The conventions stated in I.1 remain in force throughout this section.

ProrositioN 2.1. Let A be a two-sided fractionary ideal of a tame order
A.  The following are equivalent:

(i) 7a(A)** = 4A;
(ii) Endi(4) = A;
(iil) h(4)*™* = 4A;
(iv) Endi(4) = A;

Proof. By localization, it suffices to prove the equivalence for an h-order
A. By the same arguments as in Proposition 1.10, it is clear that

End}(7h(4)) = Endi(4) and Endi(7i(4)) = Endi(4),

so (i) < (ii), (iii) & (iv) are clear. By symmetry, it is enough to show
(i) = (iv). By Theorem A.5 of [3], A and End} (4) have the same number of

maximal two-sided ideals. But A < End}(4), so equality holds, cf. Theorem
4.3 of [12].

DeriniTION. A two-sided R-reflexive fractionary ideal A satisfying one,
hence all, of the conditions of Proposition 2.1 will be called a divisor of A.
It is clear that A is a divisor if, and only if, 4 is R-reflexive and A, is invertible
at every minimal prime p of B. For the rest of this section, the word “ideal”
will mean a two-sided fractionary divisor of A.

We proceed as in [11]. If A, B are ideals, we define their product by
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A-B = (AB)™*. This may be looked at as the product of the quasi-equality
classes of A and B.

LemMa 2.2. Let A, B, C be ideals.

(i) A-B s an ideal.
(i) (4-B)-C = A-(B-0).
(i) A-B = B-A.

Proof. Tt suffices to show this when A, B, C are divisors of an h-order A.
However, by Theorem 6.1 of [12], the divisors of an h-order are simply the
invertible ideals, and they form a cyclic group generated by the radical.

TueorEM 2.3. Let D(A) denote the set of ideals (or of quasi-equality classes
of two-sided ideals) of the tame order A. Then D(A) s an abelian group.
In fact, D(A) s the free abelian group generated by the ideals r(Ap) n A, for all
manimal primes p, where r( ) denotes the Jacobson radical of the ring.

Proof. If AeD(A), then Homi(A, A) eD(A). In the h-order A,, we
know that Homh(A,, A,) is again invertible. Moreover, A-Homj(A4, A) =
75 (A)** = A by definition of A. Hence D(A) isagroup. Definea : D(A) —
> »D(Ap) by (a(A))p = Ap. By Lemma 1.2, ais one-to-one. By definition
of the multiplication in D(A), o« is a homomorphism. Finally, if
(A(p)) € 2_p D(A,), then by 1.4, A = N, A(p) is a finitely generated R-re-
flexive two-sided A-module in 2, and is thus an element of D(A) with
a(A) = (A(p)). Therefore, « is onto and an isomorphism.

COROLLARY 2.4. For A e D(A), Hom} (A, A) = Hom}(A4, A).

Proof. By uniqueness of the inverse in a group and Proposition 2.1,
ie., A-Homh(4, A) = Hom}(A4, A)-A = A.

Remark. This could be demonstrated directly from Endi(4) =
Endj(4) = A, using the isomorphism ¢ : Hom,(E, A) — Homr(E, I') de-
fined just before Theorem A.2 of [3], where E is any A-module and I' = End,(E).

3. Invertible ideals.

DeriniTioN. A divisor A of the tame order A will be called <nvertible if
A is left and right A-projective. The following proposition justifies this
terminology.

ProrosiTioN 3.1. For a divisor A of A, A 1s left A-projective & 73 (A) = A.
Hence A is invertible = AA™ = A™'A = A.

Proof. See Theorem A.2(g) of [3]. This shows that 74(4) = A = A
is left A-projective. Moreover, since the map
¢ : Hom} (4, A) — Hom}(4, A)
is an isomorphism (see the note following 2.4), we have that A is left A-pro-
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jective = 73(A) = A by the same theorem. The second assertion follows
trivially by symmetry.

ProrosiTioN 3.2. Let A, B be invertible. Then A™ and A-B = AB are
invertible. Hence, the tnvertible ideals form a subgroup of D(A), and multiplica-

tion of invertible ideals in D(A) corresponds to the ordinary multiplication of
two-sided ideals.

Proof. Since A is right A-projective, we have an exact commutative
diagram

0 — A ®.B > A » A ®\A/B — 0
0 — AB A A/AB — 0

where all the maps are canonically defined. Since g is the identity and « is
onto, we have by [7, III1.3.3] that « is an isomorphism. Now by [7, I1.5.2],

Homi(A ®4 B, E) ~ Homi(B, Homs(A, E))

for all left A-module E. Passing to derived functors, we see that A ®, B is
left A-projective. Similarly, A ®, B is right A-projective. In particular,
AB ~ A ®, B is already R-reflexive and is forced to be the same as 4-B.

Let D’(A) denote the group of invertible divisors of A. Recall that U(T)
denotes the group of invertible elements of a ring 7. Let x ¢ U(K). Then
Az is a well-defined element of D'(A), and

Az = Ay © Azt = A @ oy e UA) & ay ' e U(R).

Hence D’(A) contains a subgroup canonically isomorphic to U(K)/U(R).
This subgroup can be identified as all those elements of D’(A) which are
isomorphic with A as modules over the enveloping algebra A° = A ®z A° of A.
In fact, if A, B are two-sided A-modules in 2, then

Homys (4, B) © Homs e(Z, 2) = K,
so that
Homy. (4, B) = {zeK;zA C B}.
The set C(A) of A’-isomorphism classes of invertible divisors is clearly a
group, under the multiplication A-B = A ®, B. Then we have

Lemma 3.3. 0 — U(K)/U(R) — D'(A) — C(A) — 0 s an eract sequence
of abelian groups.

4. Automorphisms. Let R be any commutative ring, and A any R-cen-
tral algebra, not necessarily finitely generated as an R-module. Denote by
U(A) the group of units of A, and by Aut(A) the group of R-algebra auto-
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morphisms of A. There is a natural map U(A) — Aut(A) which associates
to a unit u e A the inner automorphism # — uxu™ determined by u. The
group O(A), called the group of outer automorphisms of A, is defined by the
exact sequence

0 — U(R) — U(A) — Aut(A) — 0(A) — 0.

In this section, we will compute O(A) for a tame order A over the integrally
closed noetherian domain R. This is essentially a generalization of [15].
The conventions stated in I.1 remain in effect throughout this section.

Levma 4.1. Let teZ. Suppose that At is an invertible two-sided ideal of A.
Then At = tA and te U(Z), hence a(N) = IN! defines an automorphism o
of A.

Proof. tA C At because Af is a right ideal. Since 73(Af) = A by 3.1,
1 = 2 ;(zi(\:t)), where N;eA and zie (A1), s0 (D i@ Ni)t = 1 and ¢ is
a unit of X. Then

™ e Homh(Af, A) = Homh(At, A)

so t 'At € A. Hence At C tA and we have equality. The final assertion is
now trivial, since t "A = Af™ is also invertible.

We define now C’(A) to be the set of left A-isomorphism classes of invertible
divisors of A. Multiplication in C’(A) is again defined by the tensor
product ®, .

ProrosrTioN 4.2. C’'(A) is an abelian group.
Proof. Let A, B be left A-modules in . Then
Homy(4, B) € Homs(Z, 2)

ifA®rK =B Q®rK = 2,50 Homy(4, B) = {zreZ; Ax C B}. Hence A
and B are left A-isomorphic if, and only if there exists ¢ ¢ Z such that A¢ = B.

Now suppose that A and B are invertible divisors which are isomorphic as
left A-modules and write At = B. Then At = A™'B is an invertible divisor,
so that ¢ is a unit of = and tAt™ = A by 4.1. Moreover, by commutativity of
D(A), At = tA for any invertible divisor A. Now let 4’ = At, B’ = Bs,
where A, A’, B, B’ are all invertible divisors. Then A’B’ = (At)(Bs) =
A(tB)s = A(Bt)s = ABits so that multiplication in C’(A) is well defined.
Since the map j : C(A) — C’(A), which associates to every A’-isomorphism
class its left A-isomorphism class, is onto and preserves multiplication, the
proposition follows.

Remark. 1t is clear by the above proof that invertible ideals are left A-iso-
morphie <> they are right A-isomorphic. Of course, this is not the same thing
as A’-isomorphic.
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TaEOREM 4.3. Let A be a tame order. Then there exists an exact sequence

0—0) 5 cm) L ra) —o.

Proof. We have already noticed that j is clearly onto. Let a be an R-al-
gebra automorphism of A. Then « is uniquely extended to

a®1:A®:K—>A®:zK,

which is a K-algebra automorphism of the K-central simple algebra =. By
the Skolem-Noether theorem, there exists ¢ e U(Z) such that a(x) = tat™
for allz ¢ Z. Then, in particular, A = ¢tAf" and At = ¢A, so A¢ is an invertible
divisor of A. (@) is defined to be the class of At in C(A). If also
a(r) = ses', with seU(Z), then st = axts for all z¢Z, hence
t7"se U(K). Thus As =  's(At) is A*-isomorphic with A¢, hence ¢ is well
defined on Aut(A). If @ is an inner automorphism, then a(z) = txt™ for
some t e U(A), whence At = A. Hence 7 is well defined on O(A). If As, At
are invertible divisors, then As-At = Ast by 4.1, so 7 is a homomorphism. By
4.1 again, it is clear that ker(j) = im(z). Finally, if ¢(e) = 1, then Af is
A’-isomorphic to A, where a(z) = tat " for all z ¢ =. Hence At = Ar, some
re K. This entails t = ur, st = r, for some u, se A. Then t = ur = wust,
so us = 1, and these are units of A. Then

a(r) = tet™ = (ur)z(ur)™ = uru™"

since r ¢ K. Hence « is inner.
CoROLLARY 4.4. O(A) is an abelian group.

Let S be a maximal commutative subring of the tame order A, and
L = 8 ®z K. The group Og(A) is defined by the exactness of

0 — U(S) — Autg(A) — Og(A) — 0

where Autg(A) is the group of R-algebra automorphisms of A which leave S
elementwise fixed, and the map U(S) — Autg(A) associates with a unit «
of S the inner automorphism z — uxu ™" of A. Og(A) is a subgroup of O(A)
since if a(2) = wau™ is an inner automorphism of A leaving S elementwise
fixed, then » and % both lie in S by definition of a maximal commutative
subring. Hence we have a monomorphism Og(A) — C(A) by 4.3. We will
compute the cokernel of this map.

Let A, B be two-sided A-modules in £. Since A ® S C A®, we can consider
then as left A ® S-modules, where ® means ®r. Then

Homygs(A, B) = {xeL; Az C B}.

Then 4, B are (A ® S)-isomorphic < B = Az for x ¢ L. Define Cs(A) to
be the set of A ® S-isomorphism classes of invertible divisors. It is trivial
that Cs(A) is a group under ®, .
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COROLLARY 4.5.
0 — 0s(A) = C(A) > Cs(A) -0
s an exact sequence of abelian groups.

Proof. We have only to show for an invertible ideal A of A, A is (A ® S)-
isomorphicto A < A = Atforsomet e L. By the above remarks and Theorem
4.3, this is trivial.

Another special computation is the case of a maximal order in a total
matrix ring, i.e., by [3, Proposition 4.2], an order Endz(E), where E is a
reflexive R-module. We begin with a general lemma.

LemMma 4.6. Let T', A be rings. Let A be any right T-module, C any left
A-right T-bimodule, and B a finitely generated A-projective module. Then there
18 a natural tsomorphism

ot B ®, Homr(4, C) — Homr(4, B ®, C).
Proof. We define [a(b ® ¢)l(a) = b ® ¢(a). If zeA, then
[a(bz ® ¢)](a) = bx ® p(a) = b ® zp(a) = b ® (z¢)(a) = [a(b ® 2¢)](a)

so that « is well defined. For B = A, « is clearly an isomorphism, hence «
is an isomorphism for any finitely generated right A-projective module B
by a direct sum argument.

CoROLLARY 4.7. Let E be a reflexive R-module, A = Endr(E), and A a
right A-projective module. Then

Homz(E, A ®, E) ~ A ®, Homz(E, E) ~ A

as right A-modules. Consequently, for an invertible divisor A, A & A as right
A-modules & A @1 E =~ E as R-modules.

Proof. From4.6,a: A — Homg(E, A ®,4 E) is an isomorphism of abelian
groups defined by [a(a)](e¢) = ¢ ® e. Then for fe A,

[a(af)l(e) = of ® e = a ® fe = [a(a)-fl(e),

so a is an isomorphism of right A-modules. Hence if A ®, £ =~ E
as R-modules, then

A ~ Homz(E, A ®, E) ~ Homz(E, E) &~ A

as right A-modules. Conversely, if A /& A as right A-modules, then 4 = {A
for some t e U(Z), and A ®, E = tE is R-isomorphic to E since ¢ is by defini-
tion a monomorphism on E.

Let C(E) be the set of R-isomorphism classes of A ®, E, where A runs
through the invertible divisors of A = Endz(E). A natural multiplication
is given by

(A®,E)(B®,E)=AB ®, E.
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TraeoreMm 4.8. C(E) is an abelian group, and the sequence
0 — O(Endz(E)) — C(Endr(E)) — C(E) — 0

18 exact.
Proof. It follows immediately from 4.3 and 4.7.

Il. Crossed products

1. Relative dimension. Let S be a commutative ring. Let G be a finite
group represented as automorphisms of S. Let R be the fixed-point subring.
Let f e Z°(G, U(S)) be a 2-cocycle, i.e., f: @ X G@ — U(S) such that

f(z, p)°f(a, 70) = f(o7, p)f(o, 7)

for all ¢, 7, p, € G. (See [17] for definitions and properties.) The crossed
product A(f, S, G), or Ay if there is no ambiguity, is defined to be the free
left S-module generated by {u.; o € G}, where

Su tu, = st’f(a, 7)Uor

whenever s, t ¢ S (¢’ means o(£)). Associativity of this multiplication follows
from the above formula for f. We will always assume that f is a normalized
2-cocycle, i.e., f(o, 1) = f(1, ) = 1 for all o ¢ G, so that u, is the identity of
the crossed product. Every element of H*(@, U(S)) can be represented by a
normalized cocycle.

If f and g are cohomologous 2-cocycles, it is well known that A; and A,
are isomorphie, and the tower B < S C Ay of rings is an invariant, up to iso-
morphism, of the class of f in H*(G, U(S)).

If S is an integrally closed noetherian domain with quotient field L, then R
is an integrally closed domain with quotient field K = L€ and L is a Galois
extension of K. If fe H(G, U(L)), then Z; = A(f, L, @) is a K-central
simple algebra split by L when @ acts faithfully. If fe H(G@, U(S)) then
A; is an order over R in Z;, where we identify f with its image under

HYG, U(8)) — H (G, U(L)).

It is this case which is the most interesting.
The map ¢ : S — R given by t(x) = D, 2’ is the trace in S/R with respect
to G. 1In nice cases, ¢t actually is the trace of multiplication in S. (see [4])

PropostrioN 1.1. Let f e H(G, U(S)), and A = A;. For every A-module
A and S-module C,

Exts(4, C) = Exti(4, A ®5C).
Hence, dhs(A) < dha(A), and equality holds when dhy(A) s finite.
Proof (See Lemma 3.4 of [4]). Define
p : Homg(A4, C) — Homy(4, A ®;5C)
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by pg(a) = Dets ® g(u;'a) whenever ae A and g e Homs(A4, C). Then
forseS, €@,
o1 f(e 7, 1) (e 7 7 00)

f(e™ 0)

- fe 7 )6 e)
=5 2l ® o 7e) 9(u; a)

pg(sur a) = Dot ® $ 9((us-1,) ""a)

. e )6, o) -1
SUr © Drtle ® e T = A

= su, - pg(a)
since f is a 2-cocycle. Hence p is well defined. We have also

(X4 Homs(A ®s C, C)
given by
(DU ®¢) =c and == D, u ® o(u; )
for all ze A ®5 C. Hence given g e Homy(A4, A ®5 C), ¢g e Homs(A, C)
and
plep)l(a) = 2ous ® eg(ur'a) = 2ous ® o(ur'g(a)) = g(a)

so p is onto. Since p is clearly injective, we have the desired isomorphism.
Hence Extg(A, C) = Exty(A, A ®5C) so dhg(A) < dha(A) for all A-modules

A. Ifdm(A) = n < o, then Extj(A4, A) # 0, and thus Exts(4, S) = 0
and dhg(A) = n.

ProrostTioN 1.2. Let f e H(G, U(8)) and A = A;.

(i) ¢(8) = R = every short exact sequence of A°-modules which splits over
S ® A splits over A°. The converse holds if G acts faithfully in S.

(ii) If ¢(8) = R, then every short exact sequence of A-modules which- splits
over S splits over A.

Proof. (i) Suppose t(S) = R, and let s ¢ S with {(s) = 1. Let

0E —-ELE -0

be a short exact sequence of A°-modules, and let h ¢ Homggs(E”, E) such that
gh is the identity on E”. Define p : E” — E by

p(e”) = 2su h(sus'e”), e’ e E”.

The proof that p ¢ Hom,. (E”, E) is exactly analogous to the proof of Propo-
sition 5.1, and will be omitted. Then

gp(e") = 2og(uch(sus'e”)) = Dousgh(suse”), = 2 u,su; -¢’
= (2,8 = ¢

and p splits the sequence over A°.
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Conversely, suppose that G acts faithfully in S, and that every short exact
sequence of A°-modules which splits over S ® A splits over A°. Consider the
following exact sequence of A°-modules:

0>J >A®sAL A0
Then it is easy to check that for a A°-module E,
Homye (A, E) = {ee E;(A® 1 —1® X)e =0 forall\eA},
Homgsga(A, E) = {eeE; (s® 1 —1® s)e =0 forallsesS].

Since the above exact sequence splits over 8§ ® A, it splits over A°. Then there
exists

0 = Za,f(av,ruv ® u‘r) eA ®s A
suchthat (s® 1 —1® )0 = 0,and (4, ® 1 — 1 ® u,)0 = 0 for all s e S,
p € G, and, also, ¢(8) = 1. Now
(s®1)0 =2 8t Us ® Uy, (1® )0 =2 sty the ® U,

hence a,, % 0 & s = s for all se S < or = 1 since G acts faithfully in S.
Rewriting accordingly, we have

0 = anvuc ® u;l
Now

(u, ® 1)0 = D upa,u ® uy"
= 2 (6e)’f(p, 0)thps ® ts"
= 2 (a,-10)"f(p, p'0)ths ® (Up=16)™"
_ e, H o ), 0)°
= 2 (@) 7oy 07
= Z (ap'la)puc ® Ue—1Up

since f is a 2-cocycle. Also, (1 ® u,)0 = 2 a, %, ® u; u,. Comparing,
we have a, = (a,~1,)” for all ¢, peG. In particular, a, = (ar)° for all
o e G. Finally, from ¢(0) = 1, we get {(a1) = 1, as desired.

(ii) The proof exactly duplicates (i) and will be omitted.

Us ® Ug—1U,

Remark. The situation of Proposition 1.2 is described in terms of relative
cohomology in [13, ch. IX], i.e., every A’-module is relatively (A* — S ®z A)-
projective, ete.

Taeorem 1.3. The following statements are equivalent:

(i) #8) = R.

(ii) For every f e H(G, U(S)) and every A;-module E, dhs(E) = dha,(E).
(iii) For every Ai-module E, dhs(E) = dhy,(E).

Proof. (i) = (iii) is trivial. (iii) = 8 is A;-projective, so (iii) = (i) is
proved in [4, Proposition 3.5]. It remains to show (i) = (ii).
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Using Proposition 1.2(ii), it follows that for every left A = As;-module E,
E is a A-direct summand of A ® 4 E, e.g., the sequence

is exact and split over S, so split over A. Thus for any left A-module F,
Ext\(F, E) is a direct summand of

Exts(F, A ® s E) = Exts(F, E)

by 1.1. Hence, d(F) < dhg(F). On the other hand, A is S-free, so
dha(F) > dhs(F) always, and we have equality.

Remark. As an immediate corollary, we have Williamson’s result [18].

COROLLARY 1.4. Let R be local and f e H'(G, U(8)). If {(8) = R, then
the radical r(Ays) of Ay is equal to r(S)A;.

Proof. Let m be the maximal ideal of B. Let M, ---, M, be the maxi-
mal ideals of S (the reader will recall that all algebras are finitely generated
R-modules, so that S is an integral extension of R). It is well known that G
acts transitively in the set Iy, -- -, M, , i.e., M, = M1 forsomeo ¢ G. Then
we have 7(S) = DUz --- M,, and »(S)A = Ar(8) is a two-sided ideal,
A= Af .

Now it is clear that we have ¢(S) = R, where we have written S = S/r(S)
and B = R/m. Applying Theorem 1.3 to the situation B, S, G, we find that
dhi(E) = dhs(E) = 0 for every A = A(f, §, G)-module E. Hence every
A-module is A-projective, and A is semi-simple using the characterization of
[7]. The assertion of the corollary is clear

Actually, A is a separable algebra over B [5], i.e., k ® z A is semi-simple for
every field k& containing R, by Theorem 1.3. The theorem is applied to the
extension k C k ®z S, in which @ acts through its action on S, using the
following:

k®zA=k®:A(,8,G) =A1®fk®:8 10 Q)
and

t(k ®z8) = kt(S) = k.
In an important special case, we have

CoroLLARY 1.5. Let R be an integrally closed noetherian domain with
quotient field K, and let S be the integral closure of R in a finite Galots extension
L of K, G the Galois group. The following statements are equivalent:

(i) S s a tamely ramified extension of R.
(i) A(f, Su, @ is Ru-separable for all f e H*(G, U(S)), and every mazimal
ideal m of R. _

(ili) A(1, Sm, G) is Ry-separable for every maximal ideal m of R.

Proof. It remains only to show (iii) = (i). Since A = A(1, Sn, @) is
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semi-simple, then S, is A-projective, so by proposition 3.5 of (4], #(S.) = R .
Hence, #(S,) = R, . Since this is true for every maximal ideal m, we have
ti(S) = R.

Remark. The main use of the above theorems has been as a technique for
generating examples of orders with given global dimensions and studying their
properties. For example, one can prove:

(i) A maximal order over an integrally closed local domain R can have an
arbitrary (finite) number of maximal two-sided ideals. The only bound
seems to be the Krull dimension of R.

(ii) If R is the center of an order A of finite global dimension, then
gl dim(R) may be infinite.

2. Modules over crossed products. We begin with a very formal lemma.
The proof is a simple computation and will be omitted.

Lemma 2.1, Let f, ge H(G, U(S)). Let A be a left A;-module, B a left
A,-module. Then A ® s B s a left As,-module under

(sw,)(a ® b) = su,a ® v, b
and Homg( A, B) is a left Ay-1-module under
(swop)(a) = sv,-0(Us'a).

LemMma 2.2. Let R C 8 be an integral extension of integrally closed noetheridan
domains. Then an S-module E which is R-reflexive is also S-reflexive.

Proof. Let E be R-reflexive, and we use the characterization of I, Lemma
1.1. Since S/R is integral and E is torsion-free over R, then E is torsion-free
over 8. If pis a minimal prime of R, then S, is a dedekind domain, and E, is
S,-projective. Then E, = N, (E,), = N,E, where ¢ runs through the
minimal primes of S with gn R = p. Then

E = anp = np(nQ/pEQ) = anq
and F is S-reflexive

If C and D are abelian categories, an isomorphism of C and D will consist of
covariant additive functors from C to D and from D to C which yield the re-
spective identity functors on composition.

TaeoreM 2.2. Denote by C; the category of left As-modules.

(1) If there exists a As-module P which s S-projective of rank one, then C,
and Cy, are isomorphic abelian categories for all g e H* (@, U(S)).

(ii) Let R be an integrally closed noetherian domain with quotient field K,
and 8 the integral closure of R in a finite Galois extension L of K, with G the
Galois group. Suppose that every S-reflexive module of rank one is S-projective,
i.e., S is locally a UFD. Then the converse of (i) holds. In particular, C; is
isomorphic to C, & f — 1in H*(G, U(L)).
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Proof. (i) We observe first that if P is a A;-module which is S-projective
of rank one, then Homg (P, S) is a A7* module which is S-projective of rank
one, and then the canonical isomorphisms

S <% Homs(P, P) & P ®; Homs(P, S)
are also isomorphisms of A;-modules, where
(u(a ® ¢)1(b) = ¢(b)a, a,beP, peHoms(P, 8);
[Z(s)](a) = sa, seS, aelP.

Now if A is a Ag-module, then P ® s A is a Ay;-module. If B is a As-module,
then Homg(P, S) ®s B is a A;-module. Also

P ®s Homg(P,S) ®s B=B
as Ay, modules,
Homs(P, S) ®s P ®3A =~ A

as A,-modules by the above observations. Moreover, the canonical map
Hom,, (A, A’) — Homy,,(P ®s A, P ®s A")

is obviously an isomorphism.

(ii) It remains only to prove that, under these restrictive hypotheses,
C; and C, are isomorphic < f is a coboundary in H*(G, U(L)). If C;and C,
are isomorphie, let F be a covariant additive functor fom C, to C; which is an
isomorphism. Since a functor must preserve composition of maps, it follows
that F leads to a ring isomorphism of Endy, (E) with End, (F(E)) for all
Aj-modules E. In particular, let P = F(S). Then Endss(P) = R, so P has
rank one as an S-module. Hence, there exists a Z;-module of L-rank one, so
Z; must be a total matrix algebra over K, i.e., f must be a coboundary in
HY (@, U(L)).

Conversely, suppose that f becomes a coboundary. Then Z; is a total
matrix algebra over K, and A; is an order over R in Z;. Let I' be a maximal
order containing Ay . Then by [3, Proposition4.2], I' = Endz(E), where E is
a reflexive R-module. Then E is a reflexive S-module by Lemma 2.2. More-
over, by an elementary counting argument, [E:S] = 1. Since S is locally a
UFD, E is a A;-module which is S-projective of rank one, and the isomorphism
follows from (i). This completes the proof.

We consider now the special case f = 1. Denote by P(S, G) the set of
As-isomorphism classes of A;-modules which are S-projective of rank one, If
P, @ are such modules, then P ® ¢ @ is also such. Moreover, if

a:P—P and B:Q—Q

are Aj-isomorphisms, then o ® 8 is again a A;-isomorphism. Thus, we have a
well-defined multiplication in P(S, G). Associativity follows from the as-
sociativity of the tensor product, and commutativity is obvious from the
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definition in Lemma 2.1. By the proof of 2.3, S &~ P ® s Homg(P, S) as
Asy-modules if P ¢ P(S, ). We have proved

Prorostrion 2.4. The set P(S, G) of Ar-isomorphism classes of Aj-modules
which are S-projective of rank one forms an abelian group for which 8 s the
identity.

In the most interesting special case, we have the following canonical compu-
tationof P(S, @): Weassumeas usual that R is an integrally closed noetherian
domain and S is the integral closure of R in a finite Galois extension L of the
quotient field K of R, @ = G(L/K). Then A, is an order over R in the total
matrix ring 2; = A(l, L, G). Since P ®& K is a simple Z;-module for
PeP(8, @), it is clear that every element of P(S, G) has a representative
which is a A;-submodule of L, i.e., a projective fractionary ideal of S which is
closed under the action of G.

Let D(S) denote the group of projective fractionary ideals of S, i.e., the
subgroup of the group of divisors consisting of projective ideals. D(S) is a
G-module, where the action of G comes from its action on L.

ProrositioN 2.5. If R is a noetherian, integrally closed domain and S is the
integral closure of R in a finite Galois extension L of its quotient field K, with
G = G(L/K), then there is an exact sequence

0— U(K)/U(R) = D(8)°— P(8, G) — 0.

Proof. By the above remarks, D(8)¢ — P(8, @) is onto, so we have only to
compute the kernel. If a is a G-invariant ideal which is A;-isomorphie to S,
then o« = Sa is a principal fractionary ideal generated by a e L such that
o’ = aforalloe@,ie. aeK. The restisimmediate.

‘We next prove a theorem which is in part a reformulation of some results in
[14]. It is true without restrictive hypotheses on S or G. Before stating the
theorem, we make the following general observation: If E is an S-module and
¢ € G, then we define a new S-module E° which is R-isomorphic to E, such that
se = s for seS and ee E°. If P(S) denotes the group of isomorphism
classes of S-projective modules of rank one, then this defines the structure of
G-module on P(8).

TarEoREM 2.6. There exists an exact sequence
0— H'(G, U(8)) = P(8, @) — P(8)° — HX(G, U(8)).
Proof. We define
e H(G, U(8)) = P(8, @)
as follows: Let h: G — U(S) be a 1-cocycle, i.e., h(e)h(7)° = h(ar) for all
o, 7eG. ¢@i(h) will be the class of an S-free module Sz, where u, sz = s’h(a)x

forall seS, o eG. This is easily seen to define a A;-module. It is clear that
o1 is well defined.
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If ¢1(h) = 8, then Sz is generated by some 2’ such that u,z’ = 2’ for all
ceG. We have 2/ = ax, x = a'z’, for a, @’ €S, s0 aa’ = 1, aeu(S).
Ue ' = Uy ax = a’h(c)r = ax, hence h(c) = a'~" and h is a 1-coboundary.
Hence ¢ is injective.

The map P(8, @) — P(8S) ¢ simply forgets the A;-module structure. Exact-
ness at P(S, G) is obvious.

We define

2t P(8)¢ — H(G, U(8))

as follows: Let P be an S-projective module of rank one such that P and P’
are S-isomorphic for every ¢ ¢ G, and let g,: P — P’ be an S-isomorphism,
ie., g, e Autz(P) with g,s = s%, whenever se¢S, c¢G. Then g,g.gor =
f(a,7) e Autzg(P) commutes with all of S, andhence f(c, 7) € U(S) = Auts (P)
for all o, 7€ G. It is clear that f must be a 2-cocycle. ¢y(cl (P)) is defined
tobecl (f). This clearly does not depend upon the choice of the isomorphism
go . Moreover, ¢(P) depends only on the isomorphism class of P, since if
B:Q — P is an S-isomorphism, then 8¢, 8 is an S-isomorphism of @ with Q”
and

(8790 B)(B7'9:B)(B7'9er B) ™" = B(a, 7)B = f(a, 7).

Hence ¢, is well defined. The exactness at P(S)¢ is now trivial once one ob-
serves that the g, give rise to a 2-coboundary if and only if they generate a
Ai-module structure on P.

3. Invertible ideals and automorphisms. Let R be an integrally closed
noetherian domain with quotient field K. Let L be a Galois extension of K
with Galois group G, and assume that the integral closure S of R in L is tamely
ramified over R. Then for all f e H*(@, U(8)), Theorem IL.3 states that A, is
a tame order over B in 2;. These notations will persist throughout this sec-
tion. The proof of the following lemma is an easy computation, which will be
omitted. See 1.4.

Lemma 3.1.  Suppose R is a discrete valuation ring, and M is the radical of S.
Let f e H*(@, U(8)) and N be the radical of A;. Then N™* = MA;.

ProrosiTioN 3.2. Let A be an invertible divisor of A = Ay (see definition
in Section 1.3). Then A n L is a A;-module, hence defines an element of P(8S, @)
and A = (AnL)A. Hence C(A;) =~ P(8, G) for every f e H(G, U(8)).

Proof. Write A = N, A, over all minimal primes p of R. By 1.2.3,
I1.1.4,and IL.3.1, A = N,(r(S,)™)A, , and this is equal to (N, 7(S,)"*)A, by the
properties of localization, and because A is S-free. Clearly, N,7(S,)™p is a
Ar-module and is equal to A n L. Moreover, A = (4 nL)-A is the direct
sum of copies of A n L as S-module, so A is S-projective < A n L is S-projec-
tive, i.e., by tame ramification and I1.1.3, A is As-projective & A n L is Ay-pro-
jective. The last conclusion now follows from I1.2.5, i.e., we have only to
show that A ~ B as Aj-modules < A n L & B n L as A;-modules. But A =~ B
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as Ay-modules <& B = Ag for some ae K & (AnL)a = BnlL since
A = (AnL)A.

We will now compute Os(A), the group of “outer S-automorphisms”, and
Cs(A), the group of 8 ®z A'-isomorphism classes of invertible divisors of
A = Ay. (See 14:5)

Let h: G — U(S) be a one-cocycle. By Hilbert’s Theorem 90 [17, X,
Propositon 2], h(c) = s's" for some se U(L). IfN = D, a,u, € A, then

—1 —
SN = 2, 8 5 A U €A,

50 the 1-cocycle h gives rise to an S-automorphism of A. A coboundary gives
rise to an inner automorphism, clearly, so the map

H'(G, U(8)) — 0s(4)

is well defined. Actually, it is a monomorphism, for suppose that & gives rise
to an inner automorphism. Then s™As = ¢ At for all A ¢ A, some ¢ ¢ U(S).
Putting N\ = u, , we get s 's” = £ ¢’ for all ¢, as desired.

Let P’(8) be the image of P(S, G) — P(8), using the map which assigns to
each A;-isomorphism class its S-isomorphism class. (SeeI1I.2.6.) Then P’(S)
is the group of S-isomorphism classes of Aj-projective modules which are
S-modules of rank one, by I11.1.4. There is a natural map P/(8S) — Cs(Ay)
which associates to the ambiguous ideal class a the S ®  Ay-isomorphism class
of the invertible divisor aA;.

TaeoreM 3.3. HY(G, U(8)) — O0s(A;) and P'(8) — Cs(A;) are iso-

morphisms.
Proof. We have the commutative diagram
0 — HYG, U(8)) — P(8,@) — P'(8) —0

l S !
0 — Os(Ay) — C(Ay) — Cs(As) —0

where the rows are exact by I1.2.6 and I1.4.5, and the middle vertical map is an
isomorphism by I1.3.2. The left vertical map is injective by the observations
preceding the statement of the theorem. By the five lemma, it suffices to
prove that H'(G, U(8S)) — Os(A;) is onto. By the Skolem-Noether the-
orem, and the fact that L is a maximal commutative subring of 25, any
S-automorphism 8 of A; can be written as B(A) = 2 ~'Az for some z ¢ U(L),
all NeA;. Then 2 ",z = & @us €Ay, s0 2 2" e S foralloe@. Ttis
easily seen that this means 72" ¢ U(S), and we are done, since this is a
1-cocycle of G in U(S).

lll. Relations with Amitsur cohomology

1. A(S, @) and Endg(S). Throughout this section, B will be an in-
tegrally closed noetherian domain with quotient field K, S the integral closure
of R in a finite Galois extension L of K, and G = G(L/K).
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The order A(1, S, G) = A, is contained in the maximal order Endz(S);
i.e., as usual we have A(1, S, @) — Endz(8) by (2 @eu)(8) = 2 a, ¢,
and this is injective since the quotient field extension is Galois. Endg(S) is
a maximal order by [3, Proposition 4.2] once we know that S is a reflexive
R-module. But by I.1.1, 8** D 8§ is a subring of L which is finitely generated
as an R-module, hence 8§ = §** since § is integrally closed. If the extension
S/R is unramified [1], or S/R is a Galois extension in the terminology of [8],
then A; = Endg(S). In this case, Os(Endz(S)) = HY(G, U(S)) by 3.3.
It is interesting to compute this group in a more general case. We will do so
using the concept of Amitsur cohomology, the details of which are found in
[16] or [9]. The following brief outline is reproduced from [10] for the con-
venience of the reader.

Let R be a commutative ring and T a commutative R-algebra, R not neces-
sarily neotherian and T not necessarily finitely generated as an R-module.
Let T" denote the n-fold tensor product of T over R, in the category K of
commutative R-algebras. Forall7z = 0,1, ..., n -+ 1, we have R-algebra
homomorphisms

ei:Tn+l__)Tﬂ+2
defined by
@ ® b)) =6 ® - ®tLa@®LIO®U® -+ @Iy,

The ¢; satisfy cosemisimplicial identities £, &; = g1 e:for¢ < j. Let F be a
covariant functor from K to the category Ab of abelian grouns. A cochain
complex C(T/R, F) is defined by

C"(T/R, F) = F(T"™) for n>0.
with coboundary A" : C"(T/R, F) — C"*(T/R, F) defined by
A" = > (—1)F(e)).

The n-th cohomology group of this complex, written H"(T/R, F), is the n-th
Amitsur cohomology group.

The Galois cohomology canbe defined in a similar manner. Let G be repre-
sented as R-automorphisms of T, and let E, denote the T-algebra of functions
of n variables, defined on G, with values in 7. As an R-algebra, E, is iso-
morphie to the direet product of n + 1 copies of T. We define R-algebra
homomorphisms 6;: E, — E,4; as follows: For fe E,,

00f(0‘1 102, °°° a'n+1) = f(O'z, ttty a'n-l-l)n’
0:f(o1, e yonps) = flor, *++ ,0i1,0i001, 002, *** , Ont1)
for 1=1,2,..-,n,

and

0"+1f(0'1, e 1°'n+1) = f(o'l’ v ’aﬂ)’
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A cochain complex C(G, F) is defined by
C"(G,F) = F(E,) for n >0,
with coboundary d" : F(E,) — F(E,4) given by
d = 21 (—1)F(6)).

Suppose that F is a multiplicative functor from K to Ab (called ‘“additive” in
[8D), i.e., F commutes with direct products. This means that the canonical
map

generated by the projections Ty @ --- @ T, — T, is an isomorphism of
abelian groups for every finite set T, - -+, T'» of R-algebras. In this case,
F(E,) is the abelian group of all functions of n variables, defined on @, with
values in F(T); it is then clear that the complex C(G, F) is the standard non-
homogeneous cochain complex of G with coefficients in F(T), whose nth co-
homology group is H*(@, F(T)) [17].

We define a map k,:T"™ — E, by

Ba(to ® -+ ® tapa)(on, -+, on) = bo(b1)7(8)7*% « ¢ (fpga) ¥ ™
This is a map of R-algebras for all n» > 0. Moreover, the following diagram
commutes for alln > 0,alls =0,1,---,n + 1:

hn
1m+1 LN E”

SiJ 0,‘

+2 hm+l
Tn —_— E ntl.

Therefore, the h, define a chain map 4 : C(T/R, F) — C(G, F) for any multi-
plicative functor F. In [9], it is proved that & is an isomorphism of complexes
when T/R is a Galois extension with group G. In general, we have a map

ki : H*(T/R, F) — H™(G, F(T)).

This map will be studied more closely in Section 2.

Let U denote the multiplicative functor which assigns to an R-algebra T its
group of units U(T'), and UK the multiplicative functor which assigns to T
the group U(K ®z T), where we assume that R is an integrally closed no-
etherian domain with quotient field K. The natural transformation of U to
UK induced by the injection B — K defines maps on cohomology

H"(T/R,U) — H'(T/R, UK) = H'(T ®=: K/K, U).

We consider the special case n = 1.
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Let S be the integral closure of R in a finite Galois extension L of K,
G = G(L/K). Then we have

H(S/R, UK) = H'(L/K, U) = H\G, U(L)) = 0

by Hilbert’s Theorem 90. Using the coboundary maps explicitly, we find that
an Amitsur 1-cocycle is therefore an element a ® a™ ¢ U(S”), where a ¢ U(L),
and that this is a coboundary if, and only if, e ® ¢ = b ® b~ for some
beU(S).

TueoreMm 1.1. There is a natural map
¢ : H'(S/R, U) — 0s(Endzx(8)),

which is @ monomorphism. Moreover, ¢ 18 an tsomorphism if S is R-projective
as a module.

Proof. TFirst we observe that Homz(S, S) is naturally an § ® S-module
under

(s ® t)f(a) = sf(ta) for s,t,aeS, ® = ®z.

Moreover, Annggs(Homz(S, S)) = (0), since Homg(S, S) ® K = Homg
(L, L) is an (L ® g L)-free module generated by the trace ¢,z , by definition
of a Galois extension.

It follows that if @ e U(L) such that a ® ¢ ¢ U(S®), then
f—(a® a)f = afa”™

is an S-automorphism of Endz(S). Moreover, if afa™ = bfb™ for all
f eHomz(S, 8), thena ® ¢ = b ® b in U(S®). In particular, @ and b
define the same element of H*(S/R, U). Finally, if we definep(a ® a™)(f) =
afa”", then ¢ is a well-defined monomorphism of abelian groups by these re-
marks.

Next, suppose that S is R-projective and let a ¢ U(L) such that f — afa™ is
an S-automorphism of Endz(S). Itis clear that every S-automorphism must
be of this type. Now

Homg(S, S) ® S — Homyes(S ® S, S ® 8)

is an isomorphism since S is R-projective. Hence every S-automorphism of
Endz(S) can be extended to an (S ® 8)-automorphism of Ends(S ® 8S).
By [8, Lemma 3.9(¢)], every (S ® 8)-automorphism of Ends(S ® 8) is
inner. Hence, there exists u ¢ U(S ® 8) such that

u(f ® s)u™"
—(@® 1) ®s)a® )™ = afa' ® s forall feEnda(S), ses.

By the same reasoning as above, Hom, (L?, L?) is L’-free on one generator.
Thus,

a®a®1 = awelu™?) in L.
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Hence, a ® ¢ ® 1eU(S8®), by definition of u. Applying the natural de-
generacy operator §° — S* which maps sy ® s, ® s; onto sy ® sy s, it follows
that a ® o™ ¢ U(S?), as desired.

CororrARY 1.2. If S is R-projective, then every S-automorphism of Endg (S)
maps A(1, S, G) onto itself.

Proof. This follows directly from the theorem, along with Theorem I1.3.3.

2. A spectral sequence. The relation between the Galois cohomology
and the Amitsur cohomology, studied briefly in the previous section, can be
expressed in terms of a spectral sequence. The terminology of the last sec-
tion will be used here without further definition.

Let S be an R-algebra and @ a finite group represented as R-automorphisms
of 8. For any multiplicative functor F from commutative R-algebras to
abelian groups, we define the functor FS from commutative R-algebras to
G-modules by FS(T) = F(S ® T). If F is multiplicative, then so is F'S,
since the tensor product of R-algebras distributes over finite direct products.

We define a double complex of cochains C(S/R, @, *) as follows: For
every pair p, ¢, of non-negative integers, let C**(S/R, @G, *) be the S-algebra of
functions of ¢ variables, defined on @, with values in 8**, i.e.,

C*(8/R, G, ) = E, ®=z Sp+1:

so C(S/R, G, *) is the tensor product of the standard non-homogeneous co-
chain complexes C(@, *) and C(S/R, *) for Galois and Amitsur cohomology,
respectively, as defined in the previous section. In the usual manner, the
differentiations

AP 8P 5 8P 47 B — By

4

give rise to differentiations Dy = 1 ® A”, Dy = (—1)?d* ® 1 which are de-
fined on C**(S/R, G, %), with the total coboundary operator D = D’ + D”,
and these form a double complex. Let F be a multiplicative functor from
R-algebras to abelian groups. Then the double complex C(S/R, G, F) is
given by

C™(S/R, G, F) = F[C"*(S/R, G, *)].

This is the group of functions of g variables from G to F(S**?) or the G-module
of functions of g variables from G to FS(S8”*'). The coboundary operators

Dy: C*(S/R, G, F) — C*™%(S/R, G, F)
and
Dy : C*(S/R, G, F) — C**"™(8/R, G, F)
are given by . _
D, = 2.2 (=1)'FS8(e:) = 228 (—1)"MF(¢))
Dg = 2235 (—1)*"FS(65)
where the ¢; and 6; are defined in the previous section.
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Differentiating first with respect to D”, we get, for every ¢, the Amitsur
complex C(S/R, F?), where F? is the multiplicative functor from R-algebras
to abelian groups defined by

F(T) = H(G,F(S®:T))

for any R-algebra T. Differentiating next with respect to D’, we get the
bigraded cohomology E3? = H”(S/R,F?).

To compute the total cohomology of C(S/R, G, F), we will show that the
so-called first spectral sequence of C(S/R, G, F) is degenerate, i.e., we differ-
entiate first with respect to D’, then with D”.

We begin with some observations about the complex C(S ®z S/S, *) for
Amitsur cohomology in the extension S ®z 8/S. Let ¢ : 87 — 87 be the
“degeneracy’’ given by

(8 ® s ® - ®Spy1) =808 ®H® - ® Sp1.
The following identities are easily verified:
eer=1 oA +eap=1,
QE; = i1 for 7> 1,
eA? + AP =1 for p > 1.

From these identities, we conclude immediately that ¢ is a contracting
homotopy for the complex C(S ®& S/8S, F), where F is any functor from
S-algebras to abelian groups, and therefore:

H" (S ®:8/8,F) =0 for n >0,
&: F(8) —. H(S ®= 8/8, F).

We now return to the discussion of the double complex C(S/R, G, F).
Differentiating with respect to D’, we have, for each p > 0, the complex

C(G, H*(S/R, F8)) = C(G, H*(S ®= 8/S,F)) =0
and, for p = 0, the complex
C(@, H'(S/R, F8)) = C(G, F(8)).

It follows that H"(Tot (C(S/R, G, F))) = H"(G, F(8)) for all non-negative
integers n. We summarize these results:

TaEOREM 2.1. Let G be a finite group represented as R-automorphisms of an
R-algebra S. Let F be a multiplicative functor from R-algebras to abelian groups.
Then there is a sectral sequence

H?(8/R, F?) P H™(@, F(8))

where FU(T) = HYG, F(S ®r T)) defines a multiplicative functor from
R-algebras to abelian groups.
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We next compute the first subgroup Fy H” in the filtration of
H"(Tot (C(S/R, G, F))).

We observe that F1 C(S/R, G, F) is the subcomplex of C(S/R, G, F) generated
by all bihomogeneous elements of bidegree p, g, with ¢ > 1. The quotient
complex C(S/R, G, F)/F,C(S/R, G, F) is canonically isomorphic with the
complex C(G, F(S ®z 8S)) for the Galois cohomology in 8§ ® » §/S. It follows
that the natural projection

induces an exact sequence on cohomology
0 — Fy H" — H'(G, F(S) = H'(G, F(8 ®2 )
Moreover, p* = &1 is exactly the map generated by
g:8—>8S ®:S.

This can be most easily seen by studying the collapsing of the first spectral
sequence of C(S/R, G, F).

To obtain the main consequence of this spectral sequence, we state here a
formal lemma, which is well known [9, Lemma 7.5].

Lemma 2.2. Let E, be any cohomology spectral sequence, i.e., E3* = 0 for
p < 0orq<0. LetH be a graded, filtered abelian group such that

E;*= H".
Then there is an exact sequence ’
0 — E3* — H' — B Ey* — F1H' — Ey' — B3
where Fy H® is the first filtration subgroup of H.

TaeoreMm 2.3. Let G be a finite group represented as R-automorphisms of a
commutative R-algebra S. Let F be a multiplicative functor from R-algebras to
abelian groups. Let F* be the functor from R-algebras to abelian groups defined
by

FYT) = H(G,F(S ®: T)).
Then there exists an exact sequence
0 — H'(S/R, F) — H'(G, F(8)) — H'(S/R, F*)
— H*(S/R, F) — ker [H*(G, F(8)) — H*(G, F(S ®z 8))]
— H'(S/R, F') — H(S/R, F)

Remark. If R is local and S is a finitely generated projective E-module
then H*(S/R, U) = B(S/R) by [16], where U(T) is the group of units for an
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R-algebra T and B(S/R) is the Brauer group [2]. Then the above spectral
sequence computes the kernel and cokernel of the map

B(8/R) — ker [H*(G, U(8)) — H(@, U(S ®z 8))].

3. The Brauer group and crossed products. Let R be a local ring and S
a commutative R-algebra which is a finitely generated R-module. Let A be
an R-central separable algebra split by S [2], i.e., A ® S =2 Endg (E) for some
faithfully S-projective module E. TUsing techniques similar to those of [16],
we define a map

6: B(S/R) — H*(G, U(8))

as follows: for each ¢ e G, E° is a (A ® S)-module defined by (A ® s)-e =
AN® s)eforeeE’, seS, NeA. It is clear that E° is faithfully S-projective,
s0 E° is faithfully (A ® S)-projective by separability. Using the appendix of
[3], we have E =2 E° as (A ® S)-modules, since every projective module over
the semi-local ring S is free. Let

go:E — E°, go € Auty(E),
be the given isomorphism. Then

Gogr g = f(0, 7) € Autags(E) =2 U(S)

gives a 2-cocycle, leading to an element of H*(@, U(S)) represented by f.
It is clear that this map is well defined. Actually, if we identify B(S/R) with
the Amitsur cohomology group H’(S/R, U) using [16], then 6 is exactly the
map in the exact sequence of Section 2.

We wish to identify the subgroup of H*(@, U(S)) which is the image of
B(S/R) under 6:

ProrositioN 3.1.  Given a 2-cocycle f, ¢l (f) e I.(6) < there is a As-module E
which is faithfully S-projective such that Enda,(E) s central R-separable.

Proof. 1If Endys,(F) is central E-separable, then
End,,(E) ®r S = Ends(E).

Applying the construction of 8, we clearly retrieve the cocycle f. On the other
hand, if A ® S =2 Ends (E) represents the splitting of an R-central separable
algebra A with 6(cl (A)) = ecl (f), then it is clear from the definition of 8 that
E is a A;-module, and A = End,,(E).

In general, it is an open question to characterize those f which have this
property. We proceed to examine a special case:

CoroLLARY 3.2. Let R, S be integrally closed noetherian domains and sup-
pose S is an f.g. projective R-module. Then for feH (G, U(S)),
fe0(B(S/R)) & A; is contained in an R-separable order T which is S-projective.
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Proof. 1In case such I exists, then End,,(T') = T, and T' is split by S, since
T ®= S € Endg(T) by [24.1 and 7.1]. Moreover, f = 6(T').

On the other hand, let f ¢ 9(B(S/R)) and E as in 3.1, A = A;. Then we
have a canonical R-algebra map

A ®g EndA(E) bl EndR(E').

Since S is R-projective, then E is R-projective, and Endz(E) is R-central
separable. By [2, Theorem 3.3], the commutant T' of Endx(E) in Endz(E)
is R-separable. Clearly, A C T'. By [2, Theorem 2.1], R is a direct summand
of Enda(E) as R-modules, hence T is a direct summand of Endz(E) as
I'-modules, thus as S-modules. Then T is S-projective since Homz(E, E) is
S-projective by the appendix of [3].

Remark. The proof and construction of T', can be gotten from Amitsur
cohomology using the techniques of [16].

TueoreM 3.2. Let B C S be a tamely ramified extension of a discrete rank
one valuation ring R in a Galots extension K C L of the quotient fields, where S s
integrally closed and @ is the Galois group. Let f e H*(G, U(S)). Then A; is
contained in a separable order over R if and only if Ay has exactly e maximal two-
stded ideals, where e = e(S/R) s the ramification index.

Proof. By Theorem I1.1.3, A; is an hereditary order over R. A; has a
finite number of maximal two-sided ideals by standard methods.

As in [6, Chapter 5], we define the different of the hereditary order A to be
the inverse of the invertible ideal

D1 = Homg(A, R) = A* = {zeA ®z K; trd (zA) C R}

where trd : A ® g K — K is the reduced trace [5]. If N is the Jacobson radical
of A, we can write ®;, = N”* for some integer n > 1. If I' is a maximal order
containing A, and Dr = 7(I')” ", then by Theorem 5.6 of [6], mr = n, where r
is the number of maximal two-sided ideals of A. Furthermore, we apply [10,
Satz 3, p. 84], and the fact that A is R-separable < its completion is separable
over the completion of R, to conclude that T' is R-separable & m = 1. Hence,
T is R-separable &n = r.

The reduced trace in a crossed product Z; defined in L/K can be computed
from right multiplication by Z; on itself as an L-free module, using the L-iso-
morphism

L ® 2} — End. ().

It follows that trd (auw.) = 0if 7 # 1, and trd (aus) = D, a° = tryr(a).
Therefore,

trd (28u;') = trge(a,8) for = = D .(a-u,) eZs.
It follows that trd (xA;) C R < trgz(a,S) C R for all 7. Hence, Dy, =
Dg/r+ Ay , where Dg;r is the classical different in S/R from the trace map [1].
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Finally, let m be the radical of S, and write Ds/z = m*™" for some integer e.
It is well known that ¢ = e(S/R) is the ramification index. Then Dy, =

m A, = (mA;)" = r(A;)* " by I.1.4. The conclusion of the theorem now
follows.

Remark. Using the results of [18], those f such that A; has exactly e maxi-
mal two-sided ideals are exactly those f such that f ¢ H(Dy , U(Sx)) is in the
image of the inflation map

H2(DM/TM ’ U(—S—M)) - H2(DM ’ U(—S—M-)),

for a maximal ideal M of S, Dy and T'x being respectively the decomposition
and inertia subgroups of M in A. This means that B(S/R) and B (8/R) have
the same image in H*(Dy , U(Sx)).
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