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Introduction

In this paper, as in [5], we use Poincar 0-series to study the Hardy spaces
of a compact bordered Riemann surface. Our fundamental tool for projecting
theorems from the disk D to the surface R is the conditional expectation
operator E of Forelli [6], which we define in 2 by means of O-series. Our
definition allows us in 3 to interpret E as a map from C(OD), the space of
continuous functions on OD, to C(OR). The adjoint map E* enables us to
lift measures from OR to OD. Using E and E*, we .give easy proofs of the
Cauchy-Read theorem and the decomposition of L(oR) in 2, and of the
F. and M. Riesz theorem for R in 3. In addition, we obtain a pair of theo-
rems about O-series. The more surprising one, Theorem 4, states that every
differential which is analytic in R and continuous in/ is the O-series of a
function analytic in D and continuous in D.

If R D, the real parts of functions continuous in t and analytic in R do
not generate C(OR). There is a complementary subspace of finite but positive
dimension (see [1], [3], [6], [7]). Forelli [6] described such a subspace N, the
image under E of a certain subspace of/(D). Our definition of E shows
that N coincides with the complementary subspace obtained by Heins [7]
(see 2.3).

Interference from N makes it hard to obtain satisfactory forms of the
invariant subspace theorem or SzegS’s theorem on R. We illustrate the
difficulties in 3.6 by giving a form of SzegS’s theorem. One way around
them may be found in [1].

In the final 4 we examine some of our formulas more deeply to find their
relation to two classical reproducing formulas on R" the Poisson and Cauchy
formulas. Indeed we give explicit representations of the Poisson and Cauchy
kernels in terms of O-series.

Except in 4.2, all our O-series have dimension -2. Since series of that
dimension are a bit unfamiliar, we devote 1 to an exposition, based on
Tsuji’s book [12], of their elementary properties.

1. Poincare series

1.1. We shall consider a compact bordered Riemann surface/ R u OR
whose boundary OR consists of n _-> 1 analytic curves. The universal covering
surface of R can be identified with the unit disk D {z e C" z < 1}. Then
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the group G of cover transformations is a free group of MSbius transforma-
tions, and R can be identified with the orbit space DIG so that the natural
map r D --> DIG is holomorphic. G acts in the extended plane; the set of
limit points L(G) is a closed subset of OD. If we set D (3 u o L(G),
3/G can be identified with the double / of R, and the extended map r"
D --> DIG is holomorphic. Note that v-I(0R) OD L(G). We can
choose (in many ways) a relatively compact set a in OD L(G), consisting
of n half-open intervals, so that maps each interval 1-1 onto a component of
OR, different intervals corresponding to different components. Then

(1.1) A(a) nB(a) O, if A # B,A,BG,

(1.2) G(a) OD L(G).

Using z, we will identify functions f and differentials of the form g(z) dz on
R or/ with functions in D or/ which satisfy, respectively,

(1.3) f(Az) =f(z) for all AeG

(1.4) g(Az)A’(z) g(z) for all A e G.

A function satisfying (1.3) is said to be automorphic.

1.2. We will call g(z) dz a meromorphic differential on R or / if g(z) is a
meromorphic function in D or D satisfying (1.4). If g(z) has no poles and
has at least a double zero at oo, we call g(z) dz an analytic differential. The
condition at oo expresses the regularity of g (z) dz in terms of the local param-
eter i" 1/z. It is fulfilled automatically if g (z) satisfies (1.4) and is regular
at A oo for some A e G.
The anti-conformal involution j(z) 1/ induces an involution of/ and

an involution f -- ] o j of meromorphic functions on /. A meromorphic
function f(z) on/ is symmetric if f(z) ](1/) for all z e 3, or equivalently,
if f(z) is real on a. j also induces an involution j* of meromorphic differen-
tials g z dz on/ by

(1.5) j*(g(z) dz) ----z g(1/) dz O(jz) d(i/z).

is symmetric if j*(f) . If gl(z) izg(z), that is described by the con-
dition g(z) O(lfi) for all z e ; equivalently

(1.6) g(z) dz izg(z) dz ], z e , is real.

Every differential can be written in the form 1 + i, where B1 and
are symmetric. Simply put

+ (1/2i)( j*()).

1.8. Let m be the linear measure on OD m(S) fs dz !, S c OD a Baire
set.
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In fact, let (z) be the characteristic function of L(G). The Poisson integral
of is a harmoc function u(z) on D wch vashes on OD L(G). Since
L(G) is a G-invariant set, (z) and hence u(z) satisfy (1.3). In other words
u(z) is a harmoc function on R which vashes on OR. By the maximum
principle u 0 and hence 0 a.e., proving (1.7).

If f(z) is integrable on OD we obtain from (1.1), (1.2) and (1.7) that

f(z) dz. f(z)[dz f,
(t.s)

Ae

If in addition f satisfies (1.3) on OD, so that f is a function on OR, (1.8) sim-
plifies to

We ingroduee he function

(1.9) O(z) .,o A’(z)

so that our formula becomes

PROPOSXTmN 1. For every integrable function f(z) OR,

.. pplying (1.10) ihf() I we obtain

from weh we conclude (g) < a.e. in . ueh more is rue:
PgOOSIWION . e series (1.) converges formg o er ompg sub-

set of B whh does not intersect G( {A( A G}.

Proof. Let {A,} be an enumeration of G with A I. Each A, is of he
form

A.(z) (a.z + b.)/(.z + .), a. [ b. [ .
Since no element of G has a fixed point in D, b, 0 for n 1. For z e ,

A’.(z)l [.z + a.- >= (]b.l + [a.)- >= (21 a. )-.
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Since p(z) is finite for some z e , we have

and since a lb. 1,

(1.11) ;I b,, i-’ < .
ow let K be compact set in sjoint from G( ), nd let > 0 be the

stance of the closure G()uL(G) of G() from K. For zeK and
n>l,

A:(z)l b -2z + - -(1.12)
b, -2z A()]- -2b -2,

and Proposition 2 immeately follows. Note that each point of G( inter-
feres with oMy one term of (1.9).

COO,Av. p(z) is a bounded continuous function on .
1.8. One way to obtain a meromorphic differential on R or/ is to start with

an arbitrary meromorphic function F(z) in D or D and form the Poincar$

series

(1.13) ( F) (z) ,F(Az)A’(z).

If the series (1.13) converges uniformly on compact subsets of D or
), (OF)(z) dz will be a meromorphic differential on R or/. Proposition 2
implies the convergence of (1.13) for many functions F(z). For instance

PROPOSZTZON 3. Let r(z) be a rational function with no poles in L(G).
Then (Or)(z) dz is a meromorphic differential on [.

Proof. If K is a relatively compact subregion of D then A (K) n K
for only a finite number of A e G. Hence if K contains the poles of r(z) and
M sup, r(z)l, then r(Az)l < M for all A e G, with a finite number of
exceptions.

1.6. As an example consider our basic meromorphic differential

(1.14) a @)(l/z) dz ., (A’(z)/A(z)) dz, z e.
a is analytic in/ except for simple poles at v(0), ( (of residue -}-1, -1
respectively). Hence by the Riemann-Roch theorem, a has 2 zeros in
where is the genus of R.
The formula A’ (z) zA’(z)/A (z) for z e OD and A e G, with (1.9)

and (1.14), yields

(1.15) a z-1p(z) dz ip(z) dz I, z e
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Comparing (1.15) with (1.6), we find that/a is symmetric on/ and, by (1.5),
has symmetric zeros. Since p(z) _>- 1 for all z, no zero appears on OR. Thus,
a has exactly zeros in R.

It will turn out (2, 3) that has fundamental importance on R. But
this is hardly surprising, because a is closely related to Green’s function g(z)
on R with pole at r(0). Indeed, since

g(z) .,a log [A (z) 1, a dg + i .de.
Because dg 0 along OR, (1.15) gives

ip(z) dz a i(Og/On) dz on0R,

so that we can write (1.10) in the form

of(z) dz f(z)- dz

(2.1)

2. The conditional expectation

:For f(z) defined in D, D, or OD, set

(Ef)(z) f(Az)A’(z) / A’(z)
.o A(z) .,a A(z)

)(f/z)/O(1/z).
Obviously, Ef is an automorphic function whenever it exists. Its existence
for suitable functions f is guaranteed by Propositions 2 and 3. For example,
Ef is a meromorphic function on/ whenever f is rational with no poles in
L(G). If f is a bounded analytic function in D, then Ef is meromorphic in
R with poles only at the zeros of the differential a defined in 1.6. If f itself
is automorphic, then Ef f.

2.2. G is a free group of rank , where is the genus of/.
of generaters {A }, 1

_
j -_< , and define

(2.2) h(z) z/(1 z), Aj(O),

LEMMA 1. (Eh)a is an analytic differential on .
Proof. From the deflations we have

(2.3) (Eh)a O i z

Thus (Ehi)a is a meromorphic erential on .
(Eh)a can have a pole oy at ( v(1/) ).

b +

Choose a set

l__<j<_a

Since A( 1/:,
But

(ATe)’(z) .
1-. -(4i(zJ + S(z)
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where f(z) is analytic in a neighborhood of 1/:j. Elementary calculation
shows that the bracketed expression is regular at 1/:.. That proves the
lemma.

2.3. Let a(R) be the (complex) vector space of analytic differentials on
R which are continuous in /. The Dirichlet integral [2] defines an inner
product

on g(R). Le F be he dosed curve in R covered by he line segmen in D
joining 0 o A(0). I is well known [2] h here is
enil (r) on R such ha

2[ 5 (,(P)) forll

Proof. 8e 5 f(z) dz. Then f is inegrable in D, for if is funda-
mental polygon for G in D we eompu

]f(Az) [ A’(z) I’ dx dy

ff If(z) ](z) dx dy,

where of course p(z) is defined by (1.9). But p(z) [f(z) is continuous, hence
bounded, in the closure of .

Since f is integrable in D, it satisfies

rf(z) ff, f()(1 z) D.

Integrating from 0 to we obtain

f() dz f(r)ri(1 ri)- d
ff.a, (r)r( r)

[[f(z)(f(1 i)-)()
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In view of (2.3), that proves Lemma 2.

DEFINITION.
l<j<0.=

N is the vector space spanned by the functions

COROLLARY 1. N has dimension .
(ii) N consists of the meromorphic functions f(z) on such that fa is an

analytic differential on .
(iii) N has a basis consisting offunctions real on OR.

Proof. (i) The vector space of analytic differentials on/ has dimension. If the differentials b(rj) (Ehj)a were not independent, there would
be a non-zero analytic differential on/ which was exact in R. That is im-
possible [2, p. 296].

(ii) Lemma 1 asserts that N is a linear subspace of the vector space
M(-(a)) of functions f such that fa is analytic in /. But M(-(a))
has dimension , for every analytic differential on / can be written

(/a)a, and /ae M(-(a)). By (i), N M(-(a)).
(iii) Choose a basis {}, 1 <= j <= , for the analytic differentials on/

such that each/, is symmetric (see 1.2). Since ia is a symmetric differ-
ential, the functions i/a form a symmetric basis for N. In particular, they
are real on OR. (A closer examination of the differentials k(r.) would reveal
them to be symmetric.)

COROLLARY 2. (Heins [7]). If f N and is analytic in R, then f O.

Proof. Let f C(Eh). If f is analytic in R, then df a(R), and
Lemma 2 gives

0 2 F ofr df (df, fa) iff. if lfl-
where the last equality is Stokes’ theorem. Equation (1.15) shows that the
differential ia is positive along OR. Therefore f vanishes on OR, hence every-
where.

THEOREM 1. If f is meromorphic in R and fa is regular in R, there is a
unique h e N such that f h is analytic in R.

Proof. The space P of principal parts of such functions f is a vector space
of dimension , for a has zeros in R. Corollaries 1 and 2 imply that the
map from N to P which sends each function to its principal parts is a vector
space isomorphism.

2.4. Since A’(z) zA’(z)/A(z) for z eOD, we can write (2.1) in the
form

(2.4) (Ef)(z) ,,a/(Az) A’(z) lip(z), z e OD,
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wherep(z) is given by (1.9). SetLp Lp(dm), 1 =< p -< ,where m is
the linear measure on OD, and let LIG be the subspace of automorphic
functions. We claim that E" L ----> LiG is a projection of norm one; in
other words

(2.5) 11 Ef [1 <= [If [I 1 <= p <-_ .
That is clear if p because the series (1.9) converges almost everywhere
on OD. For p HSlder’s inequality and (1.9) give

p(z) Ef(z) [" <-_ _,,a f(Az) II A’(z) I)

< _,.,a f(Az) [" A’(z) i)p(z)"-,
or

(2.6)

For any g L, (1.8), (1.10), and (2.4) yield

(2.7)

From (2.6) and (2.7) we obtain

D D

(Eg) dz

E(I f I) dz f

1 <

If I" dz f II,

Thus E is the conditional expectation operator considered by Forelli [6].
course the numbers p and q above satisfy p- + q- 1.)

(Of

2.5. The Hardy space H(D), 1 _-< p _-< , is the Banach space of analytic
functions in D which satisfy the equivalent conditions

(i) : II; lim-, : l,f dz I/I z < (p <
,I

lI f 11 lim,_x max {I :(z) I: Il r} < ,
(ii) If has a harmonic majorant in D (p < ).

fo,f(Eg) dzl L (Ef)g dz I, f e Lv, g e Lq.
D

E(fe) leg,

is immediate from (2.4). With (2.7) it implies that

whence

E] f for all f Lv.
Remark. The identity

proving (2.5).
We should also note the obvious facts that Ef f for all f e L G and that



For each f eH(D), f(e) limrl f(re) exists a.e. on OD and is in L.
Furthermore, its L norm equals the norm given by (i), and f is equal to the
Poisson integral of its boundary vlues [8]. We my therefore identify H (D)
with subspce of L.
The Hrdy spce H(R), 1 p is the Bnch spce of nlytic func-

tions in R stisfying the equiwlent conditio (see [11])

(ii) f hs hrmonic mQornt in R (p < ),
(iii) f eH(D) nd f is utomorphic.

Here g is Green’s function on R with pole t (0), nd

l zeR g(z) 1 r}.

Furthermore l f ]]’ ] f ]. Using (iii) we shll identify H(R) with
subspce of L; in fct H (R) L G H (D).

Finally, H(D) is the set of f H(D) stisfying the equiwlent conditions
f(0) 0 nd

dz 0;

set H(R) H(D) H(R).

2.6. The operator E is powerful tool for the study of H(R), s Forelli
hs shown in [6]. The basic fct is

Poposwo 4 ([6]). EH(D) H(R) N, 1 p .
Proof. The inclusionH(R) EH(D) is obvious because E leaves H(R)

fixed. Since the unctions h belong to H(D) for 11 p 1, we lso hve
N EH(D). Corollary 2, 2.3, implies that H(R) N {0}. More-
over, H(R) N is closed in L/G, nd the nturl projection from
H(R) N to H(R) is continuous, because N is fite dimensional. (That
justifies the rect sum notation.) We hve proved that

H(R) N EH(D).

Suppose now thut f e H(D). As we observed in 2.1, Ef is meromorphic
in R with poles only t the zeros of a. By Theorem 1, there exists h e N
such that Ef h e(R). Thus, EH(D) (R) N.

If f eH(D), p < ,ndf(z) =f(rz),r < 1, then f f in L s r l
(see [8]). From (2.5) it follows that Ef Efin L G. But

Err eH(R) B N c H(R) N.
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Since H(R) N is closed, we conclude that EH(D) c H(R) N for
all p -> 1.

PROPOSITION 5 ([6], [7]). For 1 < p < ,
LI G H(R) H(R) N.

Proof. it is classical (see [8]) that L
Writing f e L G in the form f g W ], with g and h e Hp(D), and applying
E, we obtain

f= Ef Eg+Eh.

To complete the proof we apply Proposition 4 and observe that N 2 be-
cause of Corollary 1, 2.3.

L HPROPOSlTIOII 6. [3], [7], [9], [10]. f G is in (R) if and only if

(,2.9) f f 0 for allea(R).
R

Proof. If f e HI(R) is continuous in /, (2.9) follows immediately from
HStokes’ theorem. For any f e (R), Eft is continuous on OR, r < 1. If Q

is the (continuous) projection from HI(R) @ N to H(R), then QEfr belongs
to Hi(R) and is continuous in . Since QEf -. QEf f as r --* 1, (2.9)
holds for all f e H (R).

LConversely, let f G satisfy (2.9). Then, for all n >- 0,

i f f(z)S(zn+l)p(z)ldz I"- i foDf(z)zn+lldz i,

H(D).by (2.1) (1.15) and (2.7) A classical theorem implies that f e

Thus, f eH(D) Ll G HI(R).
Remark. Proposition 6 is a weak form of the Cauchy-Read theorem [9],

[10]. We shall obtain the strong form in 3.2 as a consequence of the F. and
M. Riesz theorem.

2.7. Remark. Let g be any meromorphic function on/ having the same
zeros as a, with no other zeros or poles in/. Then, it is clear that

E(gH(D)) g(H(R) @ N) HO(R).
For on the one hand g(HO(R) @ N) is obviously contained in H(R), and

Hon the other hand Theorem 1 implies that fig (R) @ N whenever

As Forelli showed in [6], the corona conjecture for HO(R) can be proved
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in a few lines as soon as g eH(D) with E(gH(D)) I-I(R) is found.
He found such a g by methods quite different from ours.

3. Functions with continuous boundary values

3.1. Let C(OD) and C(OR) be the Banach spaces of continuous complex-
valued functions on OD and OR, respectively. Proposition 2 and the formula
(2.4) show that E maps C(OD) into C(OR). Formula (2.5) shows that
E:C(OD) C(OR) has norm one. We shall calculate the adjoint map
E* C(OR)* ---. C(OD)*. In addition, we shall use a map. C(OD)* -- C(OR)*
induced by the natural map b --,/.
By the Riesz representation theorem, C(OD)* is the space of finite complex

Baire measures on OD, and C(OR)* is the space of finite complex Baire meas-
ures on OR, or equivalently, on c_ OD.

LEMMA 3. For each e C(OR)* and each Baire set S OD,

(3.1)

Proof. Let *(S) denote the right side of (3.1). It is clear that is a
finite complex Baire measure on OD. We will show that it has he properties

(3.2) *(L(G) 0

(3.3) (B(S) (z) d*(z) Be G

(3.4) fo)f(z) d*(z) f (Ef)(z) d(z), f e C(OD).

The truth of (3.2) is clear. (3.4) implies that * E%. By a change of
variable w B(z), B e G, in (3.1) we find that *(S) is equal to the series in
(3.1) with replaced by B(). Hence d*(B(z)) p(w)-d(w)
B’(z) p(z)- d(z) B’(z) ]d*(z), first for z e and then for arbitrary
z e OD L(G). This is the differentiated form of (3.3). To prove (3.4)"

f  s(z) f

LMMX 4. Define , C(OD)* C(OR)* by
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for each tt C(OD)* and each Baire set S c OR. r, is linear of norm one.
Moreover, r, o E* is the identity on C(OR)*, and P E*o r, is a projection of
norm one from C(OD)* onto the closed subspace of measures which satisfy (3.2)
and (3.3).

Proof. Let iz, r,, e C(OD)*. Then dtt,(z) d(Az), and

fo)_L(o)f d _, f f(w) d(Aw) f f d#,

for all f C(OR). Thus , has norm one. Let e C(OR)* and suppose
* C(OD)*S c is a Baire set. Setting E* e we obtain

(r,#*)(S) #*(A(S)) fs A’(z) d*(z)
Ae(7 Ae(7

o E*proving that r, is the identity.

Finally, each * *e C(OD) which satisfies (3.2) and (3.3) is in the range,
of E*; in fact, * P* E*, where r, For by (3.3),

() f (z) d,*(z) ifS c .
Hence for any Baire set T OD

(E*#)(T) , f,4q -I(T) rl
A’(z) d*(z)

Aq
d#*(Az) #*( T),

by (3.2) and (3.3).

Remark. We map L into C(OD)* by identifying each f e L with the
measure d ](z) dzl on OD. Each subspace of L will be identified with
its image in C(OD)*. The restriction of P to L is simply E. In particular,
P(H(D)) H(R) @ N.

3.2. Our work in 3.1 has two immediate applications.

THEOREM 2. E maps C(OD onto C(OR

Proof. A standard result in functional analysis [4, p. 488] says that E
has dense range if and only if E* is one-to-one and E has closed range if and
only if E* does. Therefore Theorem 2 is equivalent to the assertion that
E* is one-to-one and has closed range. These properties of E* are immediate
consequences of Lemma 4, specifically of the fact that E* has a left inverse.
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We will now introduce the two Banach spaces

Ao(D) {f e H(D) f is continuous in

Ao(R) {f H(R) f is continuous in

The functions z, n >_ 1, are dense in Ao(D). We have by uniform conver-
gence that Ef is meromorphic in R, continuous on OR, and vanishes at r(0).
Hence as in 2.6,

(3.6) E(Ao(D) c Ao(R) @ N

but the opposite inclusion is not obvious.

LEMMA 5 (F. and M. Riesz) [3], [7], [10]. Let be a finite complex Baire
measure on OR such that

fof d O, all f e E(Ao(D) ).

HThen d h(z)p(z) dzlfor some h e (R).

Proof. Set * E*. (3.4) implies that fo)z d* 0 for all n >_ 1,
and hence the classical result in D implies that d* h(z) ldz for some
h’e HI(D). But (3.3) implies that

h(B(z) B’(z) II dz B’(z) [h(z)
so that h(B(z)) h(z) for allz eOD andB eG. Hence h eH(R).
COROLLARY 1 ([9], [10]). [A0(R) N] ’,(HI(R)).
Proof. Since ,(HI(R)) consists of the measures on OR of the form
d h(z)p(z) dz I, h eHI(R), (3.6) and Lemma 5 imply that

(3.7) [A0(R) (R) Y]" c [E(Ao(D))] ,(H(R)).
Conversely, iff eAo(R) @ N and er,(HI(R)), then

i ffd=i f f(z)h(z)p(z),dz [= f, hfa= O,

by (1.15) and Proposition 6, sincefa a(R) whenf e Ao(R) @ N.

COOL,ARV 2. E(Ao(D) is dense in Ao(R) @ N.

In fct, Corollary 1 and (3.7) imply that every linear functional which
vanishes on E(Ao(D) wnishes on Ao(R) @ N.

Remark. Corollary 1 is the strong form of the Cauchy-Read theorem which
we promised in 2.6. It corresponds to the classical theorem that

Ao(n)" H(D).
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3.3. We are now ready to prove the main result of this chapter.

THEOREM 3. E(Ao(D) Ao(R) N.

Proof. By Corollary 2 of Lemma 5, we need to prove only that

E" Ao(D ---. Ao(R @ N

has closed range. As in Theorem 2, we shall prove instead that E* has closed
range. Corollary 1 of Lemma 5 allows us to interpret E* as a map from the
coset space C(OR)*/r.(HI(R)) into C(OD)*/HI(D). The image of E* is
therefore

E*(C(OR)*)/HI(D) P(C(OD)*)/HI(D),
where P" C(OD)* C(OD)* is the projection defined in Lemma 4. It is
not obvious that P(C(OD)*)/H (D) is closed. The difficulty is that P does
not preserve HI(D). To compensate for that we use the projection

Q" HI(D) @ N -- HI(D)with kernel N. Here we interpret H(D) and N as closed subspaces of
C(OD)*. The subspace H(D) (R) N is closed, and Q is continuous, because
N has finite dimension.

Let ,} c P(C(OD)*) and } c H(D) be sequences such that

t, + ’, -- X C(OD *.
HI(D) such that -t- X P( -t- X). We assert thatWe must find e

o- Q(PX x) lim (QP,, ), n-- oo,

suffices. First we verify that exists. Since + . --. X,

P(, + ..) ,. + P,. PX.

HI(D) @ N, and exists, becauseTherefore PX X lim (P ) e

P,, e PHI(D) HI(R) (R) N c HI(D) ( N,

Ha closed subspace. Since QP, e (R), it is fixed by P, and we find that

P( + X) lim (PQPe, Pe, + P + )
lim (QP,, ,, q- ,, q- ,) q- X,

completing the proof.

3.4. Theorem 3 has an interesting application to Poincar6 series Set
A(D) Ao(D) @ C; A(D) is the closure in C(OD) of the polynomials.

THEOREM 4. The Poincar$ series (1.13), maps A(D) onto a(R).

Proof. The map f(z) fo(z) zf(z) carries A(D) onto Ao(D). Com-
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paring (1.13), (1.14) and (2.1) we find that

(z) dz

By Theorem 3, the range of is the set of all differentials fa, f Ao(R) N.
But the mapping -. /a is a one-to-one correspondence between a(R)
and Ao(R) @ N, by Theorem 1.

Remark,. Since polynomials are dense in A(D), the Poincar series of
polynomials are dense in a(R). Thus each differential in a(R) can be
uniformly approximated in/ by meromorphic differentials in / which have
poles only at 7( ).

3.5. The meromorphic differentials on/ can also be described easily by
Poincar series. In fact, Proposition 3 has the following converse.

THEOREM 5. Every meromorphic differential on [ has the form (Or)(z) dz,
where r(z) is rational with no poles in L(G).

Proof. Put r,,(z) (z )’*. If e ) G( ), then (0r.) (z) dz has
a pole of order -n at (i’) for n < 0, a pole of order n -t- 2 at 7( for
n > -2, and no other poles in/. Therefore, every meromorphic differential
on/ is the sum of an analytic differential and a linear combination of the
differentials (0r.)(z) dz. From (2.3), Lemm 1, and Corollary i of Lemma
2, we conclude that every analytic differential on/ is the O-series of a ra-
tional function with poles only in G( ). Tha proves Theorem 5.

3.6. To illustrate some of the difficulties that can arise upon projecting a
theorem on H(D) we will present the theorem of Szeg5 and Kolmogoroff-
Krein as presented in [8] (cf. [1, 5]).

Let be a finite positive Baire measure on OR with

d (1/2r)h(z)p(z) dz "t- do,, singular. Then for

Ji I1 f I d,D(f)

inf,(,(,)) D(f) <- exp (1/2) f (log h)p(z) dzl <- inf,,() D(f).

There is equality on both sides if N A (R) with respect o d.

Proof. The corresponding theorem ia D applied to E* implies that

inf,,a0,, f E( 1 g ) d exp (1/27) f, (log h)p(z) dz !.

On the one hand from (2.6) we have

E(I 1 g [:) __.- [.E(1 g) I1 .E(g)I.
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On the other hand if f e Ao(R) then fr(z) f(rz) e Ao(D) and it is not hard
to show that

limE(ll --frl) E(]I -f) 1 --f[
uory on . Finally if N A(R) with respect to d thea writing
f eE(Ao(D)) asf + f eAo(R), feN, we hve

4. Reproducing kernels on R
4.1. We will first construct the Poisson kernel for R. We recall that

P(z) (1 )/ z , z eOD, eD

is the Poisson kernel for D. Noting thut

1-- AJ (1- ) A’() P(z) [A’(z) [--Pr(Az) Az A z ] A’(z) A’()

for all A e G, we find that

E(P)(z) E(P)(z), all A e G and z e OD L(G)

Thus (EPic)(B(z)) (EP)(z) for all z e OD L(G), e D and A, B e G,
so thut (EPr)(z) is a function on OR X R. Furthermore if f() is ny har-
moc function in R, continuous on OR, we have, using (2.8),

Therefore (EPt)(z) is the Poisson kernel for R.

4.2. We cM1 the function C(z, ) Cauchy kernel in R if for fixed
z L(G), C(z, ) d is a meromorphic fferential in having one simple
pole of residue one at (z), and for fixed , C(z, ) is a meromorphic function
in having one simple pole of residue 1 at (). Thus C(z, ) must satisfy

C(Az, B)B’() C(z, ), z, D; A, B G.

By analogy with 4.1 define

where the subscript indicates that ( z)- is interpreted as a function of. For f(z) analytic in R and continuous in we find

. z)

-i
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Furthermore, C(z, )d is a differential on R for each z e D. However
C(z, ), for fixed ’, is not a function on R. To rectify this problem we will
use a projection P that we constructed in [5]. Consider the Poincar series

h _,a,a h(A (z))A’(z).
We choose a polynomial F so that CF is non-,ero in/ (see [5]), and we define

(Pf)(z) (fF)(z)/(F)(z).

If f is analytic in D, Pf is an analytic function in/2. If f is meromorphic in
D with a simple pole of residue c at z i’, then Pf is meromorphic in/ with
a simple pole of residue cF()/(F)() at r(’).
Now we claim that

(4.2) C(z, ) P C(z,

where the subscript z indicates that C(z, ) is to be considered as a function
of z, is the required Cauchy kernel. Explicitly

. F(Bz)A’()B’(z) _, F(Sz)A’()(4.2) C(z, )
a.o" (A Bz)(z) ,p(Bz)(A Bz)

where (z) (F) (z).
To prove thut the double series involved in (4.2) converges, we need the

identity
B(A) B(z) A()

and the inequalities

IB’(z) <- ,-[b]-,
Here B(z) (az + b)/(z + g), ]ai ]bl 1, (Ris afundamental
region for G in D, and a is the distance from $t to the closed set G( o u L(G)
(cf. (1.12)). Setting

M sup{If(z) i’zeD} and m =inf

we obtain, for z, " e ,
PC,(z, ) < M ]S’(z)

m ](BA)() B(z)[

m , , [a(’)-z[

< M(a ]A’(’)
m6 A(t’) z

where E’ denotes summation over all B # I. By (1.11), Z’lb - con-
verges. Since a/b B-( oo ], the terms [a/bl are uniformly bounded,
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and the second series in parenthesis converges. The first converges uni-
formly for z e t, provided the term A I is omitted.

Finally we note that the residue at () for fixed " of P Cl(z, )d is

F(A)/(6)F)(A) -1

and similarly we see that C(z, ) d for fixed z is a meromorphic differential in
with simple pole at z. Since Pf f for G-invariant functions f, the

fact that C is a Cauchy kernel now follows from (4.1).

Remark. The essential part of our proof is the construction of C1. At
that point there is considerable freedom in choosing a projection P. Our
construction of a Cauchy kernel appears to be simpler and, in a sense, more
natural than the classical one.

REFERENCES

1. P. 1. AHERN AND D. SARASON, The H spaces of a class of function algebras, Acta
Math., vol. 117 (1967), pp. 123-163.

2. L. V. AHLFORS AND L. SARIO, Riemann surfaces, Princeton University Press, Prince-
ton, 1960.

3. N. ALLIN(, Extension of meromorphic function rings over non-compact Riemann

surfaces II, Math. Zeit., col. 93 (1966), pp. 345-394.
4. N. DUNFORD AND J. T. SCHWARTZ, Linear operators I, Interscience, New York,

1958.
5. C. J. EARLE AND A. MARDEN, Projections to automorphic functions, Proc. Amer. Math.

Soc., col. 19 (1968), pp. 274-278.
6. F. FORELLI, Bounded holomorphic functions and projections, Illinois J. Math., vol.

10 (1966), pp. 367-380.
7. M. HEINS, Symmetric Riemann surfaces and boundary problems, Proc. London Math.

Soc., col. 14A (1965), pp. 129-143.
8. K. HOFFMAN, Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs,

New Jersey, 1962.
9. A. H. READ, A converse of Cauchy’s theorem and applications to extremal problems,

Acta Math., col. 100 (1958), pp. 1-22.
10. H. L. ROYDEN, The boundary values of analytic functions, Math. Zeit., vol. 78 (1962),

pp. 1-24.
11. W. RUDIN, Analytic functions of class H, Trans. Amer. Math. Soc., vol. 78 (1955),

pp. 46-66.
12. M. TsuJi, Potential theory in modern function theory, Maruzen Co., Ltd., Tokyo,

1959.

CORNELL UNIVERSITY
ITHACA, NEW YORK

UNIVERSITY OF WARWICK
COVENTRY, ENGLAND

UNIVERSITY OF MINNESOTA
MINNEAPOLIS, MINNESOTA

CORNELL UNIVERSITY
ITHACA, NEW YORK


