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In a Banach algebra A one can define, for each element x,

ixp x Z:---I x/n!
or, if A has identity e, exp x e ixp x. Then, for a given x, a --, ixp ax
(a -- exp ax) is a one-parameter semigroup under circle composition (group
under multiplication). In this paper we deal with the following question"

How "bounded" can such a semigroup be when the generator x is "topo-
logically very nilpotent"?

In [4, pp. 248, 259] the following results are given:

I. If limn xn 1/ 0 and x 0, then ixp ax can not be bounded ia
norm for all a.

II. If lim n xn 1/n 0 and x 0, then ixp ax can not be bounded in
norm for a > 0.

This type of problem has arisen in two different contexts. In the paper by
Bohnenblust and Karlin [1] on the geometry of the unit sphere in Banach
algebras they make a coniecture, which can be shown, to be equivalent to

"assumption of I conclusion of II".

This is not true, as has been shown in [7], but apparently I and II are the
affirmative results corresponding to that conjecture. On the other hand, I is
a key result in the author’s classification of real Banach algebras [4].
In improving these results in several different directions, we use methods

from the theory of functions, in particular conditions for perfectly regular
growth of an entire function. The sharpest result in the relevant direction
seems to a recent theorem by Ess6n [2], which we quote here in the form most
suitable for the application.

Let f be an entire function with f O 1, maximum modulus M and minimum
modulus m. "or a number ), 0 1, let

Kx(R) R-x log M(R)
R

Ix(R) f0 r--x [log m(r) cos rX log M(r) dr
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If Kx(R) and Ix(R) are both bounded from above, then Ix(R) is bounded from
below and limR Kx(R exists if and only if limR Ix(R exists.

In the following theorem, which contains most of the technical material
needed in the sequel, a condition in form of weuk integral bound (3) on the
semigroup is introduced. The space of continuous linear functionals on A is
denoted A. In Theorem 1 nd all the proofs we take A complex; the results
for real scalars are easily obtained by complexification.

THEOREM 1. Assume 0 < X

_
1/2. and that x A has the properties

(1) lim sup n1/x)-1 x 1/ < :

(2) lim inf n(1/x)- x" 111/ 0.

If, for every x’ A ’,

f log+ x’ ixp ax)
3 da <

then

(4) ixp zx O(el*’x), z -- , for arbitrary > O.

Proof. With

f(a) 1 +x’(ixpax) 1- (x’)a’,
n= n

f is an entire function and it follows from (1) that Kx is bounded from above.
But since

(5) log m(a) cos rk log M(a) 2 log* x’ (ixp ax) + 1

it follows from (3) that Ix (R) is bounded from above. But it is then a conse-
quence of Essn’s result that Ix(R) is bounded from below and this to-
gether with (3) and (5) shows that lim.. Ix(R) exists. Hence also
lim.** Kx(R) B exists. If B 0 for each x’, x’(ixp zx)l O(e1"1) for
ny given > 0. By the uniform boundedness principle, (4) holds.

If B 0 for some x’, we can use a theorem by Valiron [9, p. 44] asserting in
this case that iflim., R-x log M(R) B there exists a sequencen of integers
with the properties n-. ,

(6) lim,_, n, x’ (x /n, xl’ Beh

and

(7) limr. n/n 1.

For given e > 0, p large enough and B e-(BeX)x,
z’(x"’) /’" >_. (B e)x/a-x)

1
n(pl/X)-I
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and
i , , i,i,_ KoII " " >_ Ilx’ IL"" (’)i a (Bz 2e) (-x)

For given n, let n n < n+z und s nz n. It is a consequence of
(7) that lim, sin 0. Condition (1) tells that, if a (l/h) 1,

x’ lI
for all s and a constant K. Hence, using the submultiplieativity of the norm,
one gets

x > II x+’tl > K+ 1

or

K (G+)** K (1 +
enee

liminf**n* II x 11/ K0 [(BeX)/Xe-- 2el
for ench e > 0, und

lim inf. n* l] x ’ e(BX)u(-x) > 0,

But this conflicts with (2) nd so we must hve B 0.
For the cnse X we cn now formulate u result that is n direct improve-

ment of II.

THEOREM 2. Assume that x e A satisfies (1) and (2) for X . If x # O,
p ax is unbound in norm for a > O.

Proof. Assume ixp ax bounded for a > 0. (Clearly, it is equiwlent to
ssume x’(p ax) bounded for eeh x’ e A’.) The integrnnd in (3) is less
thnn eonst., a-z*. From Theorem 1 it follows that x’(p ax) is n entire
function of order {, minimum type, nd Phrgm6n-LiadelSf theorem,
originMly due to Wimn [10], shows that x’(x) O. But then x 0, which
is contradiction.

It k esy to see from n example (see [5, sec. 9]) that, if condition (2) is re-
moved, the conclusion is no longer true.
Theorem 2 could hve been obtained without reference to the integral con-

dition (3), using instead the bsic result by Heins [3]. In combination with
other conditions, however, (3) hs decisive importunce. As n snmple result
of this nnture, we give the following different generalization of II.

TaoaE 3. Assume that x e A satisfies (1) and (2), with X . Tn the
cditions (3) and

(8) y p nx, n 1, 2, is a boun&d set

can not both be satisfied, unless x O.
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Proof. If (1), (2) and (3) are satisfied it follows from Theorem 1 that f is
a function of order 1/2, minimum type. If (8) is also true, it follows from a
theorem by Polya [8] that it must be a constant. Then x’(x) 0 for every
x’ and x 0.

Results similar to that of Theorem 3 exist even for 0 < , < 1/2. In those
cases the situation is even more favourable since different types of boundedness
conditions are available" e.g., boundedness in certain sequences of points or
bounds on the logarithmic density of sets where the function is large (see [6]).
The case 1/2 <: < 1 can partly be reduced to 0 < < 1/2 and one is led to con-
sider, e.g., symmetric sets and their density instead of just sets on the positive
axis. For 1, i.e., direct generalizations of I, there is no point in relaxing
limn x 1 0 to (1) and (2), since the limit always exists. It is clear,
however, that it can suffice with weaker boundedness conditions than a uni-
form bound on the norm on the entire axis.
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